EP0862558A1 - Substituierte 4,5-di(trifluormethyl)pyrazole und ihre verwendung als herbizide und zur desikkation/defoliation von pflanzen - Google Patents

Substituierte 4,5-di(trifluormethyl)pyrazole und ihre verwendung als herbizide und zur desikkation/defoliation von pflanzen

Info

Publication number
EP0862558A1
EP0862558A1 EP96937209A EP96937209A EP0862558A1 EP 0862558 A1 EP0862558 A1 EP 0862558A1 EP 96937209 A EP96937209 A EP 96937209A EP 96937209 A EP96937209 A EP 96937209A EP 0862558 A1 EP0862558 A1 EP 0862558A1
Authority
EP
European Patent Office
Prior art keywords
alkyl
haloalkyl
methyl
carbonyl
trifluoromethyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96937209A
Other languages
English (en)
French (fr)
Inventor
Zagar Cyrill
Gerhard Hamprecht
Elisabeth Heistracher
Olaf Menke
Peter Schäfer
Karl-Otto Westphalen
Ulf Misslitz
Helmut Walter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP0862558A1 publication Critical patent/EP0862558A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/561,2-Diazoles; Hydrogenated 1,2-diazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/12Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms

Definitions

  • the present invention relates to new subsituted 4, 5-di (trifluoromethyl) pyrazoles of the formula I.
  • R 2 is hydrogen or halogen
  • R 3 cyano, halogen, -CC 4 alkyl or -CC 4 -kalogenalkyl
  • R 4 is hydrogen, nitro, cyano, halogen, -0-X 2 -R 5 , -0-CO-X 2 -R 5 ,
  • X 1, X 2, X 3 independently represent a chemical bond or an ethene-1, 2-diyl, methylene, ethylene or propane-1, 3-diyl chain, which in each case be tuiert unsubsti ⁇ or one or two can carry the following substituents: halogen, cyano, carboxy, C ⁇ -C 4 -alkyl, C 4 haloalkyl, carbonyl, C ⁇ -C 4 alkoxy, di (C ⁇ -C (C -C 4 alkoxy!) 4- alkyl) amino, -CC 6 -haloalkyl and / or phenyl, which if desired in turn one to three halogen atoms, nitro, carboxy, C ⁇ -C 4 alkyl, -C-C 4 haloalkyl and / or ( C ⁇ ⁇ C 4 alkoxy) carbonyl groups, and wherein the methylene, ethylene or propane-1, 3-diyl chain can also carry a hydroxy, amino or C
  • R 5 , R 6 independently of one another -ZR 8 , hydrogen, -CC 6 alkyl, Ci-C ⁇ haloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 haloalkenyl, C 2 -C 6 alkynyl , C 2 -C 6 haloalkynyl, C 3 -C8 cycloalkyl, which is a carbonyl or May contain thiocarbonyl ring member, phenyl or 3- to 7-membered heterocyclyl, which may contain a carbonyl or thiocarbonyl ring member, the cycloalkyl rings, the phenyl ring and the heterocyclic rings being unsubstituted or carrying one to four substituents can, in each case selected from the group be ⁇ standing from halogen, cyano, nitro, amino, hydroxy, carboxy, C ⁇ -C 4 -alkyl, C 4 haloalkyl, C ⁇ -C
  • R 7 is hydrogen, C ⁇ -C 6 alkyl, C ⁇ -C 6 halogen.alkyl, C 2 -C 6 alkenyl, C 2 -C 6 haloalkenyl, C 2 -C 6 alkynyl, C 2 -C 6 - Haloalkynyl, C 3 -C 8 cycloalkyl, phenyl or phenyl-C ⁇ -C 4 alkyl;
  • Z methylene which may be unsubstituted or carry one or two substituents, each selected from the
  • R ⁇ hydrogen, nitro, cyano, halogen, -OR 9 , -N (R 9 ) R 10 , -N (R 9 ) -OR 10 , -SR 9 , -SO-R 9 , -S0 2 -R 9 , -S0 2 -OR 9 , -S0 2 -N (R 9 ) R 10 , -CO-R 9 , -C ( NOR n ) -R 9 , -CO-OR 9 , -CO-SR 9 , -CO -N ⁇ R 9 ) R 10 or -CO-N (R 9 ) -OR 10 ;
  • R 9 , R 10 independently of one another are hydrogen, C ⁇ -C 6 -alkyl, C ⁇ -C 6 -haloalkyl, C 2 -C 6 -alkenyl, C 2 -C 6 -haloalkenyl, C 2 -C 6 -alkynyl, C 2 - C 6 -haloalkynyl, C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkyl-C ⁇ -C 4 -alkyl, phenyl, phenyl-C ⁇ -C 4 -alkyl or 3- to 7-membered heterocyclyl or heterocyclyl-C ⁇ -C 4 alkyl, where the cycloalkyl and heterocyclic rings can each contain a carbonyl or thiocarbonyl ring member, and wherein the cycloalkyl, phenyl and heterocyclyl rings can be unsubstituted or can carry one to four substituents, each selected from
  • R 11 is hydrogen, C ⁇ -C 6 alkyl, C ⁇ -C 6 haloalkyl, C 2 -C 6 alkenyl, CT-Cö-haloalkenyl, C 2 -C 6 alkynyl, C 2 -C6 haloalkynyl, C 3 - Ca-cycloalkyl, phenyl or phenyl-C ⁇ -C 4 alkyl;
  • the invention also relates to the use of compounds I as herbicides and / or for desiccation and / or defolitior. of plants, herbicidal agents and agents for desiccation and / or
  • JP-A 02/300 173 describes herbicidally active phenylpyrazoles of the formula Ila
  • R a is hydrogen, cyano, halogen, lower alkyl or lower alkoxycarbonyl and R b is, inter alia, hydrogen, cyano, halogen or, if appropriate, lower alkyl substituted by halogen.
  • R 2 represents chlorine, bromine or iodine
  • R 3 represents C ⁇ -C 4 alkyl or C 3 -C 4 haloalkyl
  • X ⁇ R 4 represents hydrogen
  • R 2 represents hydrogen
  • R 3 represents chlorine, bromine or iodine
  • R 2 for hydrogen, R 3 for cyano and R 4 for chlorine, bromine, iodine, methoxy, difluoromethoxy, trifluoromethoxy or nitro represent a selection from the very broad teaching of compounds of WO 94/05153 which are herbicidally active and regulate plant growth represents.
  • JP-A 03/163 063 describes 3-nenylpyrazoi derivatives of the formula IIb
  • R c and R d are, inter alia, lower haloalkyl and each R e, inter alia, halogen or lower (halogen) alkyl, described as herbicides.
  • R c and / or R d haloalkyl cannot be found in this document.
  • R c was finally restricted to hydroxyl, mercapto, lower (halogen) alkoxy or lower (halogen) alkylthio and R d to hydrogen or halogen.
  • EP-A-0 353 674 are certain insecticides, acaricides and nematicides, for their preparation as precursors i.a. also - with a suitable choice of the substituents - some pyrazoles of the type of compounds I come into consideration.
  • JP 01/190 670 and JP 63/112 566 for the preparation of 4 (3H) -pyrimidinone derivatives, which are said to have an insecticidal, acaricidal, nematicidal and fungicidal activity; in EP-A-0 310 386 for the production of 4-aryl-5-carbamoyl-1,4-dihydropyridines, which are said to have an antagonistic effect on certain pharmaceuticals;
  • the object of the present invention was to provide new 3-phenylpyrazoles with which it is possible to specifically control undesired plants better than before.
  • the task also extended to the provision of new desiccant / defoliant connections.
  • herbicidal compositions which contain the compounds I and have a very good herbicidal action. We have also found processes for the preparation of these compositions and processes for combating undesirable vegetation with the compounds I.
  • compounds I are also suitable for the desiccation / defoliation of plant parts, for which crop plants such as cotton, potato, rapeseed, sunflower, soybean or field beans, in particular cotton, come into consideration.
  • crops plants such as cotton, potato, rapeseed, sunflower, soybean or field beans, in particular cotton
  • agents for the desiccation and / or defoliation of plants, methods for producing these agents and methods for the desiccation and / or defoliation of plants with the compounds I have been found.
  • the compounds of the formula I can contain one or more centers of chirality and are then present as mixtures of enantiomers or diastereomers.
  • the invention relates both to the pure enantiomers or diastereomers and to their mixtures.
  • organic Molecular parts - like the meaning halogen - are collective terms for individual enumeration of the individual group members. All carbon chains, ie all alkyl, haloalkyl, alkenyl, haloalkenyl and alkynyl parts can be straight-chain or branched.
  • Halogenated substituents preferably carry one to five identical or different halogen atoms. Halogen is fluorine, chlorine, bromine or iodine.
  • C ⁇ -C 4 -haloalkyl and the halogenal ⁇ Yl parts of (C ⁇ -C 4 -haloalkyl) carbonyl and (C: -C 4 -haloalkyl) carbonyloxy for: a C ⁇ -C 4 -alkyl radical as mentioned above, which is partially or completely substituted by fluorine, chlorine, bromine and / or iodine, e.g.
  • - C ⁇ -C 6 alkyl for: C ⁇ -C 4 alkyl as mentioned above, and for example n-pentyl, 1-methylbutyl, 2-methylbutyl, 3-methyibutyl, 2, 2-dimethylpropyl, 1-ethylpropyl, n-hexyl , 1, 1-dimethylpropyl, 1, 2-dimethylpropyl, 1-methyipentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1, 1-dimethylbutyl, 1, 2-dimethylbutyl, 1, 3-dimethylbutyl, 2nd , 2-dimethylbutyl,
  • Cx-C ß -haloalkyl for: a -CC 6 -alkyl radical as mentioned above, which is partially or completely substituted by fluorine, chlorine, bromine and / or iodine, for example one of the radicals mentioned under C ⁇ -C 4 -haloalkyl and for 5-fluoro-1-pentyl, 5-chloro-1-pentyl, 5-bromo-1-pentyl,
  • Phenyl-C ⁇ -C 4 alkyl for: benzyl, 1-phenylethyl, 2-phenylethyl, 1-phenylprop-l-yl, 2-phenylprop-l-yl, 3-phenylprop-l-yl, 1-phenylbut-l -yl, 2-phenylbut-l-yl, 3-phenylbut-l-yl, 4-phenylbut-l-yI, i-phenylbut-2-yI, 2-phenylbut-2-yl, 3-phenylbut-2-yl , 3-phenylbut-2-yl, 4-phenylbut-2-yl, 1- (phenylmethyl) -eth-l-yl, 1- (phenylmethyl) -1- (methyl) -eth-1-yl or 1- ( Phenylmethyl) prop-1-yl, preferably benzyl or 2-phenylethyl;
  • Heterocyclyl-C ⁇ -C 4 -alkyl for: heterocycylmethyl, 1-heterocyclic-ethyl, 2-heterocyclyl-ethyl, L-heterocyclyl-prop-1-yl, 2-heterocyclyl-prop-l-yl, 3-heterocyclyl- prop-l-yl, 1-heterocyclic-but-1-yl, 2-heterocyclyl-but-l-yl, 3-heterocyclyl-but-l-yl, 4-heterocyclyl-but-l-yl, l- Heterocyclyl-but-2-yl, 2-heterocyclyl-but-2-yl, 3-heterocyclyl-but-2-yl, 3-heterocyclic-but-2-yl, 4-heterocyclyl-but-2-yl, 1- (heterocyclylmethyl) -eth-l-yl, 1- (heterocyc
  • - C ⁇ -C 4 alkoxy for: methoxy, ethoxy, n-propoxy, 1-methylethoxy, n-butoxy, 1-methylpropoxy, 2-methylpropoxy or 1, 1-dimethylethoxy, preferably for methoxy, ethoxy or 1-methylethoxy ;
  • C ⁇ -C 4 haloalkoxy for: a C ⁇ -C 4 alkoxy radical as mentioned above which is partially or completely substituted by fluorine, chlorine, bromine and / or iodine, for example chloromethoxy, dichloromethoxy, trichloromethoxy, fluoromethoxy, difluoromethoxy, Trifluoromethoxy, chlorofluoromethoxy, dichlorofluoromethoxy, chlorodifluoromethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2-bromoethoxy, 2-iodoethoxy, 2, 2-difluoroethoxy, 2, 2, 2-trifluoroethoxy, 2-chloro-2-fluoroethoxy, 2- Chloro-2, 2-difluoroethoxy, 2, 2-dichloro-2-fluoroethoxy, 2, 2, 2-trichloroethoxy, petafluoroethoxy, 2-fluoropropoxy, 3-fluoropropoxy,
  • C ⁇ -C 6 alkylthio for: methylthio, ethylthio, n-propylthio, 1-methylethylthio, n-butylthio, 1-methylpropylthio, 2-methylpropylthio or 1, 1-dimethylethylthio, preferably for methylthio or ethylthio;
  • C ⁇ -C 4 -alkoxy-C ⁇ -C 4 -alkyl for: C ⁇ -C 4 -alkoxy - as mentioned above - substituted C ⁇ -C 4 -alkyl, e.g. for methoxymethyl, ethoxymethyl, n-propoxymethyl, (1 -Methyl- ethoxy) methyl, n-butoxymethyl, (1-methylpropoxy) methyl, (2-methylpropoxy) methyl, (1, 1-dimethylethoxy) methyl,
  • C ⁇ -C 4 -Alkylthio-C 1 -C 4 -alkyl for: C C-C 4 -alkylthio - as mentioned above - substituted C ⁇ -C 4 -alkyl, e.g.
  • (C ⁇ -C 4 -alkoxy) carbonyl for: methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl, 1-methylethoxycarbonyl, n-butoxycarbonyl, 1-methylpropoxycarbonyl, 2-methylpropoxycarbonyl or 1, 1-dimethylethoxycarbonyl, preferably for methoxycarbonyl or ethoxycarbonyl;
  • C ⁇ -C 4 -alkoxy carbonyl - as mentioned above - substituted C ⁇ -C 4 -alkyl, e.g. for methoxycarbonyl-methyl, ethoxycarbonyl-methyl, n-propoxycarbony1-methyl, (1-methylethoxycarbonyl) methyl, n-butoxycarbonylmethyl, (1-methylpropoxy ⁇ carbonyl) methyl, (2-methylpropoxycarbonyl) methyl, (1, 1-dimethylethoxycarbonyl) methyl, 1- (methoxycarbonyl) ethyl, 1- (ethoxycarbonyl) ethyl, 1- (n- Propoxycarbonyl) ethyl,
  • C ⁇ -C 4 alkylsulfonyl for: methylsulfonyl, ethylsulfonyl, n-propylsulfonyl, 1-methylethylsulfonyl, n-butylsulfonyl, 1-methylpropylsulfonyl, 2-methylpropylsulfonyl or 1, 1-dimethylethylsulfonyl, preferably for methylsulfonyl or ethylsulfonyl;
  • C ⁇ -C 4 haloalkylsulfonyl for: a C ⁇ -C 4 alkylsulfonyl radical - as mentioned above - which is partially or completely substituted by fluorine, chlorine, bromine and / or iodine, for example chloromethylsulfonyl, dichloromethylsulfonyl, trichloromethylsulfonyl, fluoromethylsulfonylsulfonyl, difluor , Trifluoromethylsulfonyl, chlorofluoromethylsulfonyl, dichlorofluoromethylsulfonyl, chlorodifluoromethylsulfonyl, 2-fluoroethylsulfonyl, 2-chloroethylsulfonyl, 2-bromoethylsulfonyl, 2-iodoethylsulfonyl, 2,2-difluoroethyls
  • C ⁇ -C 4 alkylamino for: methylamino, ethylamino, n-propylamino, 1-methylethylamino, n-butylamino, 1-methylpropylamino,
  • Di- (C ⁇ -C 4 -alkyl) amino for: N, N-dimethylamino, N, N-diethylamino, N, N-dipropylamino, N, N-di- (1-methylethyl) amino,
  • C 2 -C 6 alkenyl for: vinyl, prop-1-en-l-yl, allyl, 1-methylethenyl, 1-buten-l-yl, l-buten-2-yl, l-buten-3 -yl,
  • 2-buten-1-yl 1-methyl-prop-1-en-1-yl, 2-methyl-prop-1-en-1-yl, 1-methyl-prop-2-en-1-yl, 2-methyl-prop-2-en-l-yl, n-penten-1-yl, n-penten-2-yl, n-penten-3-yl, n-penten-4-yl, 1-methyl but-l-en-l-yl, 2-methyl-but-l-en-l-yl, 3-methyl-but-1-en-l-yl, l-methyl-but-2-en-l- yl, 2-methyl-but-2-en-1-yi, 3-methyl-but-2-en-l-yl, l-methyl-but-3-en-l-yl, 2-methyl-but- 3-en-l-yl, 3-methyl-but-3-en-l-yl, 1, 1-dimethyl-prop-2-en-l-yl, 1, 2-dimethyl-prop-l-en- l-yl, 1,2-
  • C 2 -Cg haloalkenyl for: C 2 -C 6 aikenyl as mentioned above, which is partially or completely substituted by fluorine, chlorine and / or bromine, for example 2-chlorovinyl,
  • C 2 -C 6 alkynyl for: ethynyl and C 3 -C 6 ⁇ alkynyl such as prop-1-in-l-yl, prop-2-in-l-yl, n-but-1-in-l-yl, n-but-l-in-3-yl, n-but-l-in-4-yl, n-3ut-2-in-l-yl, n-pent-1-in-l-yl, n- Pent-l-in-3-yl, r.-pent-l-in-4-yl, n-pent-l-in-5-yl, n-pent-2-in-l-yl, r.- Pent-2-yn-4-yl, n-pent-2-yn-5-yl, 3-methyl-but-l-yn-3-yi, 3-methyl-but-l-yn-4-yl, n-hex-1-in-yl, n-hex
  • C 2 -C 6 -Halogenalkynyl for: C 2 -C 6 -Alkir.yl as mentioned above, which is partially or completely substituted by fluorine, chlorine and / or bromine, for example 1,1-difluoroprop-2-yne -l-yl, 1,1-difluorobut-2-in-1-yl, 4-fluorobut-2-in 1-yl, 4-chlorobut-2-in-l-yl, 5-fluoropent-3-in-l-yl or 6-fluorohex-4-in-l-yl, preferably C 3 - or C 4 -haloalkynyl
  • C 3 -C 8 cycloalkyl for: cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl;
  • C 3 -C a -cycloalkyl which contains a carbonyl or thiocarbonyl ring member, for example for cyclobutanone-2-yl, cyclobutanone-3-yl, cyclopentanone-2-yl, cyclopentanone-3-yl, cyclohexanone-2- yl, cyclohexanon-4-yl, cycloheptanon-2-yl, cyclooctanon-2-yl, cyclobutanthion-2-yl, cyclobutanthion-3 -yl, cyclopentanethion-2-yl, cyclopentanthion-3 -yl, cyclohexanthion-2- yl, cyclohexanthion-4-yl, cycloheptanthion-2-yl or cyclooctanethion-2-yl, preferably for cyclopentanone-2-yl or cyclohex
  • C 3 -C 8 -cycloalkyl-C ⁇ -C 4 -alkyl for: cyclopropylmethyl, 1-cyclopropyl-ethyl, 2-cyclopropyl-ethyl, 1-cyclopropyi-prop-l-yl, 2-cyclopropyl-prop-l- yl, 3-cyclopropyl-prop-l-yl, 1-cyclopropyl-but-1-yl, 2-cyclopropyl-but-l-yl, 3-cyclopropyl-but-1-yl, 4-cyclopropyl-but- l-yl, l-cyclopropyl-but-2-yl, 2-cyclopropyl-but-2-yl, 3-cyclopropyl-but-2-yl, 3-cyclopropyl-but-2-yl, 4-cyclopropyl- but-2-yl, 1- (cyclopropylmethyl) -eth-l-yl, 1- (cyclopropylmethyl) -1-
  • C 3 -C 8 cycloalkyl-C ⁇ -C 4 alkyl which contains a carbonyl or thiocarbonyl ring member, for example for cyclobutanon-2-ylmethyl, cyclobutanon-3-ylmethyl, cyclopentanon-2-ylmethyI, cyclopentanone -3-ylmethyl, cyclohexanon-2-ylmethyl, cyclohexanone-4-ylmethyl, cycloheptanon-2-ylmethyl, cyclooctanon-2-ylmethyl, cyclobutanthion-2-ylmethyl, cyclobutanthion-3-ylmethyl, cyclopentanthion-2-ylmethyl , Cyclopentanthion-3-ylmethyl, Cyclohexanthion-2-ylmethyI, Cyclohexanthion-4-ylmethyl, Cycloheptanthion-2-ylmethyI, Cyclooctanthion-2
  • 3- to 7-membered heterocyclyl includes both saturated, partially or completely unsaturated and aromatic heterocycles having one to three heteroatoms, selected from a group consisting of one to three nitrogen atoms, one or two oxygen atoms and one or two sulfur atoms understand.
  • iperazin-l-yl piperazin-2-yl, piperazin-3-yl, hexahydro-1 , 3, 5-triazin-l-yl, hexahydro-1, 3, 5-triazin-2-yl, oxepan-2-yl, oxepan-3-yl, oxepan-4-yl, thiepan-2-yl, thiepan -3-yl, thiepan-4-yl, 1,3-dioxepan-2-yl, 1,3-dioxepan-4-yl, 1,3-dioxepan-5-yl, 1,3-dioxepan-6-yl , 1,3-dithiepan-2-yl, 1,3-dithiepan-2-yl, 1,3-dithiepan-2-yl, 1,4-dioxepan-2-yl , 1,4-dioxepan-2-yl , 1,4-dio
  • unsaturated heterocycles which can contain a carbonyl or thiocarbonyl ring member are:
  • heteroaromatics the 5- and 6-membered ones are preferred, e.g.
  • Furyl such as 2-furyl and 3-furyl, thienyl such as 2-thienyl and 3-thienyl, pyrrolyl such as 2-pyrrolyl and 3-? Yrrolyl, isoxazolyl such as 3-isoxazolyl, 4-isoxazolyl and 5-isoxazolyl, isothiazolyl such as 3-isothiazolyl , 4-isothiazolyl and 5-isothiazolyl, pyrazolyl such as 3-pyrazolyl, 4-pyrazolyl and 5-pyrazolyl, oxazolyl such as
  • 2-oxazolyl 4-oxazolyl and 5-oxazolyl
  • thiazolyl such as 2-thiazolyl
  • 4-thiazolyl and 5-thiazolyl imidazolyl such as 2-imidazolyl and 4-imidazolyl, oxadiazolyl such as 1, 2, 4-oxadiazol-3-yl,
  • triazolyl such as 1, 2, 4-triazol-l-yl, 1, 2, 4-triazol-3-yl and 1, 2, 4-triazol-4-yl
  • Pyridinyl such as 2-pyridinyl, 3-pyridinyl and 4-pyridinyl
  • pyridazinyl such as 3-pyridazinyl and 4-pyridazinyl
  • pyrimidinyl such as 2-pyrimidinyl, 4-pyrimidinyl and 5-pyrimidinyl, furthermore 2-pyrazinyl,
  • R 1 C ⁇ -C 4 alkyl, especially methyl
  • R 2 is hydrogen, fluorine or chlorine
  • R 3 cyano, halogen or trifluoromethyl, especially chlorine
  • R 4 is hydrogen, nitro, cyano, halogen, -0-X 2 -R 5 , -0-CO-X : -R 5 ,
  • X 1 is a chemical bond or an ethene-1,2-diyl, methylene or ethylene chain, which in each case can be unsubstituted or can carry a halogen or Cx-C 4 alkyl substituent,
  • X 2 , X 3 independently of one another are a chemical bond or a metr.ylene or ethylene chain, each of which may be unsubstituted or bear one or two of the following substituents: halogen, cyano, C ⁇ -C 4 -alkyl and / or C x -C 4 haloalkyl,
  • R 5 , R 6 independently of one another -ZR 8 , hydrogen, C ⁇ -C 4 -alkyl, C ⁇ -C 4 -haloalkyl, C 2 -C 4 -alkenyl, C 2 -C 4 -haloalkenyl, C 2 -C 4 -alkynyl C 3 -C 8 cycloalkyl, which can contain a carbonyl or thiocarbonyl ring member, phenyl or 3- to 7-membered heterocyclicl, which can contain a carbonyl or thiocarbonyl ring member, where the cycloalkyl rings, the phenyl ring and the heterocyclic rings can be unsubstituted or can carry one or two substituents, each selected from the group consisting of halogen, nitro, amino, hydroxy, carboxy, C ⁇ -C 4 -alkyl, C ⁇ -C 4 haloalkyl, C ⁇ -C 4 alkoxy, C ⁇ -C 4
  • -ZR 8 hydrogen, C ⁇ -C 4 alkyl, C ⁇ -C 4 haloalkyl, C 2 -C 4 alkenyl, C 2 -C 4 haloalkenyl, C 2 -C 4 alkynyl or phenyl, that can be unsubstituted or can carry one or two substituents, selected from the group consisting of halogen, nitro, amino, hydroxy, carboxy, C ⁇ -C 4 alkyl, C ⁇ -C 4 haloalkyl, C ⁇ -C 4 alkoxy, C ⁇ -C; haloalkoxy and (C ⁇ -C 4 alkoxy) carbonyl;
  • R 7 is hydrogen or C ⁇ -C 4 alkyl
  • C ⁇ -C 4 -alkoxy-C ⁇ -C 4 -alkyl, -C-C 4 -alkylthio-C ⁇ -C 4 -alkyl or (C ⁇ -C 4 -alkoxy) carbonyl-C ⁇ -C 4 -alkyl may be substituted
  • R 9 , R 10 independently of one another hydrogen, C ⁇ -C 6 alkyl, C ⁇ -C 6 haloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 haloalkenyl, C 2 -C 6 alkynyl, C ; -C 6 haloalkynyl, C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkyl-C: -C 4 alkyl or phenyl, in particular hydrogen or C ⁇ -C 6 alkyl;
  • R 11 is hydrogen or C ⁇ -C 4 alkyl.
  • Ia.120 -CH C (Br) -CO-N (CH 3 ) -CH 2 -CO-OCH :.
  • Ia.124 -CH C (CN) -CO-NH-CH 2 -CO-OCH 3
  • the substituted 4, 5-di (trifluoromethyl) pyrazoles of the formula I can be obtained in various ways, in particular by one of the following processes:
  • AI) precursor Manufacture of Benzoeklad-hydra ⁇ oni ⁇ the III in manner known per se by conversion of benzaldehydes VII in hydrazones VIII and subsequent halogenation of VIII ⁇ see FIG. e.g.?. Wolkoff, Can. J. Chem. 5J . , 1333 (1975) and W. Fliege et al., Chem. Ber. 117, 1194 (1984) ⁇ :
  • Suitable halogenating agents are preferably chlorine, bromine, N-chlorosuccinimide and N-bromosuccinimide.
  • the reaction is usually carried out in an inert organic solvent / diluent, e.g. an ether such as diethyl ether, methyl tert. -butyl ether and tetrahydrofuran, a lower alcohol such as methanol and ethanol, a carboxylic acid such as acetic acid, an aprotic solvent such as acetonitrile and dimethylformamide or in a mixture of such solvents.
  • an inert organic solvent / diluent e.g. an ether such as diethyl ether, methyl tert. -butyl ether and tetrahydrofuran
  • a lower alcohol such as methanol and ethanol
  • a carboxylic acid such as acetic acid
  • an aprotic solvent such as acetonitrile and dimethylformamide or in a mixture of such solvents.
  • Hydrazine derivative and halogenating agent are generally used in approximately equimolar amounts or - in order to obtain the most complete possible conversion of the respective starting compound - in excess, up to about 5 times the molar amount, based on the amount of VII or VIII.
  • process products III can also be obtained as acid addition salts III-H ⁇ , where ⁇ is in particular halide, carboxylate or sulfate.
  • L stands for a common leaving group, e.g. for halide, carboxylate, mesylate, p-tolyl sulfonate (tosylate) or trifluoromethanesulfonate (triflate).
  • an inert organic solvent / diluent e.g. in an aromatic hydrocarbon such as n-hexane and toluene, an ether such as diethyl ether, methyl tert. -butyl ether and tetrahydrofuran, an ester such as ethyl acetate, or in an aprotic solvent such as acetonitrile and dimethylformamide.
  • Suitable bases are, for example, alkali and alkaline earth metal hydroxides, alkali and alkaline earth metal bicarbonates, alkali and alkaline earth metal carbonates and tertiary amines such as triethylamine and pyridine.
  • the reaction is generally carried out between the melting and boiling point of the reaction mixture, in particular at (-50) to 50 ° C.
  • Hexafluoro-2-butyne or IV are generally used in about an equimolar amount or in excess, up to about 5 times the molar amount, based on the amount of III.
  • nitric acid in different concentrations, also concentrated and fuming nitric acid, mixtures of sulfuric acid and nitric acid, acetyl nitrates and alkyl nitrates.
  • the reaction can be carried out either in a solvent-free manner in an excess of the nitrating reagent or in an inert solvent or diluent, water, mineral acids, organic acids, halogenated hydrocarbons such as metrylene chloride, anhydrides such as acetic anhydride and miscr. ⁇ ns of these solvents are suitable.
  • the reaction temperature is normally from (- 100) to 200 ° C, preferably at (- 30) to 50 ° C.
  • the reduction can be carried out with a metal such as iron, zinc or tin under acidic reaction conditions or with a complex hydride such as lithium aluminum hydride and sodium borohydride, the solvent being - depending on the chosen reducing agent - for example water,
  • Alcohols such as methanol, ethanol and isopropanol or ethers such as diethyl ether, methyl tert-butyl ether, dioxane, tetrahydrofuran and ethylene glycol dimethyl ether can be considered.
  • the amount of acid is not critical. In order to reduce the starting compound as completely as possible, it is expedient to use at least an equivalent amount of acid.
  • the reaction temperature is generally from (-30) to 200 ° C., preferably from 0 to 80 ° C.
  • the reaction mixture is usually diluted with water and the product by filtration, crystallization or extraction with a solvent which is largely immiscible with water, e.g. with ethyl acetate, diethyl ether or methylene chloride. If desired, the product can then be cleaned as usual.
  • Suitable catalysts for this purpose are, for example, Raney nickel, palladium on carbon, palladium oxide, platinum and platinum oxide, a catalyst quantity of 0.05 to 10.0 mol%, based on the compound to be reduced, generally being sufficient.
  • the procedure is either solvent-free or in an inert solvent or diluent, for example in acetic acid, a mixture of acetic acid and water, ethyl acetate, ethanol or ir. Toluene.
  • reaction solution can be worked up to the product in the customary manner.
  • the hydrogenation can be carried out at normal pressure or under elevated pressure.
  • a nitrite such as sodium nitrite and potassium nitrite.
  • a copper (I) salt such as copper (I) cyanide, chloride, bromide and iodide, or with an alkali metal salt solution.
  • an aqueous acid preferably sulfuric acid.
  • the addition of a copper (II) salt such as copper (II) sulfate can have an advantageous effect on the course of the reaction.
  • Halogen sulfonyl is normally obtained by reacting the diazonium salt with hydrogen sulfide, an alkali metal sulfide, a dialkyl disulfide such as dimethyl disulfide, or with sulfur dioxide.
  • Meerwein arylation is usually the reaction of the diazonium salts with alkenes or alkynes.
  • the alkene or alkyne is preferably used in excess, up to about 3000 mol%, based on the amount of the diazonium salt.
  • the reactions of the diazonium salt described above can z.3. in water, in aqueous hydrochloric acid or hydrobromic acid, in a ketone such as acetone, diethyl ketone and methyl ethyl ketone, in a nitrile such as acetonitrile, in an ether such as dioxane and tetrahydrofuran or in an alcohol such as methanol and ethanol.
  • reaction temperatures are normally from (- 30) to + 50 ° C. All reactants are preferably used in approximately stoichiometric amounts, but an excess of one or the other component, up to approximately 3000 mol%, can also be advantageous.
  • Usable reducing agents are e.g. 3. Transition metals such as iron, zinc and tin (see, for example, "The Chemistry of the Thiol Group", Jörn Wiley, 1974, p. 216).
  • Halosulfonation can be carried out without solvent in excess sulfonating reagent or in an inert solvent / diluent, e.g. in a halogenated hydrocarbon, an ether, an alkyl nitrile or a mineral acid.
  • Chlorosulfonic acid is both the preferred reagent and solvent.
  • the reaction temperature is usually between 0 ° C and the boiling point of the reaction mixture.
  • the reaction mixture is mixed with water, for example, after which the product can be isolated as usual.
  • Suitable solvents are organic acids, inorganic acids, aliphatic or aromatic hydrocarbons, which can be halogenated, and ethers, sulfides, sulfoxides and sulfones.
  • halogenating agents are chlorine, bromine, N-bromosuccinimide, N-chlorosuccinimide or sulfuryl chloride.
  • a radical initiator for example an organic peroxide such as dibenzoyl peroxide or an azo compound such as azobisisobutyronitrile, or irradiation with light can have an advantageous effect on the course of the reaction.
  • the reaction temperature is normally from (- 100) to 200 ° C, especially at 10 to 100 ° C or the boiling point of the reaction mixture.
  • R 4 -0-X _2 -R 5. -0-CO-X 2 -R 5 , -N (X 2 -R 5 ) (X 3 -R 6 ), -N (X : -R 5 ) ( -0-X 3 -R 6 ), -SX 2 -R 5 !
  • the nucleophile used is either the corresponding alcohols, thiols, carboxylic acids or amines, in which case the reaction is preferably carried out in the presence of a 3ase (for example an alkali metal or alkaline earth metal hydroxide or an alkali metal or alkaline earth metal carbonate), or those obtained by reaction of the alcohols, thiols, Carboxylic acids or amines with a base (for example an alkali metal hydride) of alkali metal salts of these compounds.
  • a 3ase for example an alkali metal or alkaline earth metal hydroxide or an alkali metal or alkaline earth metal carbonate
  • a base for example an alkali metal hydride
  • Aprotic organic solvents e.g. Tetrahydrofuran, dimethylformamide, dimethyl sulfoxide, or hydrocarbons such as toluene and n-hexane.
  • the reaction is carried out at a temperature between the melting point and the boiling point of the reaction mixture, preferably at 0 to 100 ° C.
  • the reaction temperature is usually 0 to 120 ° C.
  • Dimethyl sulfoxide for example, is suitable as a solvent.
  • the olefination is preferably carried out by the Wittig method or one of its modifications, with phosphorylides, phosphonium salts and Phosphonates come into consideration, or by aldol condensation.
  • alkali metal alkyls such as n-butyllithium
  • alkali metal hydrides and alcoholates such as sodium hydride, sodium ethanolate and potassium tert. butanolate
  • alkali metal and alkaline earth metal hydroxides such as calcium hydroxide
  • reaction temperature is (-40) to 150 ° C.
  • phosphonium salts, phosphonates or phosphorylides required as reactants are known or can be prepared in a manner known per se ⁇ cf. for this e.g. Houben-Weyl, Methods of Organic Chemistry, Vol. El, pp. 636ff. and Vol. E2, pp. 345ff., Georg Thieme Verlag Stuttgart 1982; Chem. Ber. JL5, 3993 (1962) ⁇ .
  • reaction mixtures are generally worked up in a manner known per se. Unless stated otherwise in the processes described above, the valuable products are obtained e.g. after dilution of the reaction solution with water by filtration, crystallization or solvent extraction, or by removing the solvent, distributing the residue in a mixture of water and a suitable organic solvent and working up the organic phase onto the product.
  • the substituted 4, 5-di (trifluoromethyl ⁇ pyrazoles I can be obtained in the preparation as isomer mixtures, which, however, if desired, can be separated into the largely pure isomers by the customary methods such as crystallization or chromatography, including on an optically active adsorbate Pure optically active isomers can advantageously be prepared from corresponding optically active starting products.
  • Agricultural salts of the compounds I can be formed by reaction with a base of the corresponding cation, preferably an alkali metal hydroxide or hydride, or by reaction with an acid of the corresponding anion, preferably hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid or nitric acid become.
  • a base of the corresponding cation preferably an alkali metal hydroxide or hydride
  • an acid of the corresponding anion preferably hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid or nitric acid become.
  • Salts of I can also be prepared in a conventional manner by salting the corresponding alkali metal salt, as can ammonium, phosphonium, sulfonium and sulfoxonium salts using ammonia, phosphonium, sulfonium or sulfoxonium hydroxides.
  • the compounds I and their agriculturally useful salts are suitable - both as isomer mixtures and in the form of the pure isomers - as herbicides.
  • the herbicidal compositions containing I control vegetation very well on non-cultivated areas, particularly when high amounts are applied. In crops such as wheat, rice, corn, soybeans and cotton, they act against weeds and harmful grasses without significantly damaging the crop plants. This effect occurs especially at low application rates.
  • crops such as wheat, rice, corn, soybeans and cotton
  • crops such as wheat, rice, corn, soybeans and cotton
  • crops such as wheat, rice, corn, soybeans and cotton
  • crops such as wheat, rice, corn, soybeans and cotton
  • they act against weeds and harmful grasses without significantly damaging the crop plants. This effect occurs especially at low application rates.
  • the compounds I or herbicidal compositions comprising them can also be used in a further number of crop plants for eliminating undesired plants.
  • the following crops can be considered, for example:
  • the compounds Z can also be used in crops which are tolerant to the action of herbicides by breeding, including genetic engineering methods.
  • substituted 4, 5-di (trifluoro methyl ⁇ ) pyrazoles I are also suitable for the desiccation and / or defoliation of plants.
  • desiccants are particularly suitable for drying out the above-ground parts of crops such as potatoes, rapeseed, sunflower and soybeans. This allows completely mechanical harvesting of these important crop plants is made possible.
  • the compounds I or the compositions comprising them can be, for example, in the form of directly spraying aqueous solutions, powders, suspensions, and also high-strength aqueous, oily or other suspensions or dispersions, emulsions, oil dispersions, pastes, dusting agents, strains. shaking or granules by spraying, atomizing, stowing, scattering or pouring can be used.
  • the application information is based on the intended use; in each case they should ensure the finest possible distribution of the substances according to the invention.
  • Suitable inert Hiifsstoffe come in wesent__cner m 3etracht Mineralolfr forcing of medium to ro ⁇ e r - boiling point such as kerosene and diesel oil, furthermore coal tar oils of vegetable sow.e or animal origin, aliphatic, cycliscne ur. ⁇ aromati ⁇ specific hydrocarbons, for example paraffins , Letrahydronaphthalm, alkylated naphthalene and its derivatives, alkylated benzenes and their derivatives, alcohols such as methanol, etranol, propanol, butanol and cyclohexanol, ketones such as cyclohexanone, strongly polar solvents, for example nurses such as N-methylpyrroli ⁇ o- .t ⁇ water.
  • Aqueous use forms can be prepared from emulsion concentrates, suspensions, pastes, wettable powders or water-dispersible granules by adding water.
  • the SUD stamps as such or dissolved in a oil or solvent can be homogenized in water by means of wetting agents, adhesives, dispersants or solvents. However, it can also consist of an active substance, wetting agents, adhesives, dispersants or emulsifiers and possibly
  • Solvent or 01 existing concentrates are prepared, which smc suitable for dilution with water.
  • alkali, alkaline earth, ammonium salts of aromatic sulfonic acids e.g. Lignin-,
  • Powders, materials for broadcasting and dusts can be prepared by mixing or grinding the active substances together with a solid carrier.
  • Granules e.g. Coated, impregnated and homogeneous granules can be produced by binding the active ingredients to solid carriers.
  • Solid carriers are mineral soils such as silica, silica gels, silicates, talc, kaolin, limestone, lime, chalk, bolus, loess, clay, dolomite and diatomaceous earth, calcium and magnesium sulfate, magnesium oxide, ground plastics, fertilizers such as ammonium sulfate, ammonium phosphate and ammonium nitrate, ureas and vegetable products such as cereal flour, tree rind, wood and nutshell flour, cellulose powder or other solid carriers.
  • the concentrations of the active ingredients I in the ready-to-use preparations can be varied over a wide range.
  • the formulations contain about 0.001 to 98% by weight, preferably 0.01 to 95% by weight.
  • the active ingredients are used in a purity of 90% to 100%, preferably 95% to 100% (according to the NMR spectrum).
  • Benzene 10 parts by weight of the adduct of 8 to 10 moles of ethylene oxide in 1 mole of oleic acid-N-monoethanolamide, 5 parts by weight of calcium salt of dodecylbenzenesulfonic acid and 5 parts by weight of the adduct of 40 moles of ethylene oxide in 1 mole of castor oil.
  • an aqueous dispersion is obtained which contains 0.02% by weight of the active ingredient.
  • Dissolved mixture which consists of 70 parts by weight of cyclohexanone, 20 parts by weight of ethoxylated isooctylphenol and 10 parts by weight of ethoxylated castor oil.
  • the mixture can then be diluted with water to the desired active ingredient concentration.
  • a stable emulsion concentrate is obtained.
  • VIII. 1 part by weight of compound no. Ic.298 is in a
  • the active ingredients I or the herbicidal compositions can be applied pre- or post-emergence. If the active ingredients are less compatible with certain crop plants, application techniques can be used in which the herbicidal compositions are sprayed with the aid of sprayers in such a way that the leaves of the sensitive crop plants are not hit as far as possible, while the active ingredients are applied to the leaves of undesirable plants growing below them or the uncovered floor area (post-directed, lay-by).
  • the application rates of active ingredient I are 0.001 to 3.0, preferably 0.01 to 1.0 kg / ha of active substance (a.S.) depending on the control target, the season, the target plants and the growth stage.
  • the substituted 4, 5 -di (trifluoro methyl) pyrazoles I mixed other herbicidal or growth-regulating active compound groups and applied in common ⁇ sam with numerous representatives.
  • 1,2, 4-thiadiazoles, 1, 3, 4-thiadiazoles, amides, aminophosphoric acid and their derivatives, aminotriazoles, anilides, aryloxy- / heteroaryloxyalkanoic acids and their derivatives, benzoic acid and their derivatives come as mixing partners.
  • Benzothiadiazinones 2- (hetaroyl / aroyl) -1, 3-cyclohexanediones, heteroaryl aryl ketones, benzylisoxazolidinones, meta-CF 3 -phenyl derivatives, carbamates, quinolinecarboxylic acid and their derivatives, chloroacetanilides, cyclohexan-1, 3- dione derivatives, diazines, dichloropropionic acid and their derivatives, dihydrobenzofurans, dihydrofuran-3-ones, dinitroanilines, dinitrophenols, diphenyl ethers, dipyridyls, halocarboxylic acids and their derivatives, ureas, 3-phenyluracils, imidazoles, phenidylolinones, N 3, 4, 5, 6-tetrahydrophthalimides, oxadiazoles, oxiranes, phenols, aryloxy and heteroaryloxyphenoxy
  • the herbicidal activity of the substituted 4, 5-di (trifluoromethyl) pyrazoles I was demonstrated by the following greenhouse tests: Plastic flower pots with loamy sand with about 3.0% humus as substrate served as culture vessels. The seeds of the test plants were sown separately according to species.
  • the active ingredients suspended or emulsified in water were applied directly after sowing by means of finely distributing nozzles.
  • the vessels were sprinkled lightly to promote germination and growth, and then covered with transparent plastic hoods until the plants had grown. This cover causes the test plants to germinate evenly, provided that this has not been impaired by the active ingredients.
  • test plants For the purpose of post-emergence treatment, the test plants, depending on the growth habit, were first grown to a height of 3 to 15 cm and only then treated with the active ingredients suspended or emulsified in water. For this purpose, the test plants were either sown directly and grown in the same containers or they were first grown separately as seedlings and transplanted into the test containers a few days before the treatment.
  • the application rate for post-emergence treatment was 0.5 kg / ha a.S. (active substance).
  • the plants were kept at temperatures of 10 - 25 ° C or 20 - 35 ° C depending on the species.
  • the trial period lasted 2 to 4 weeks. During this time, the plants were cared for and their response to the individual treatments was evaluated.
  • Evaluation was carried out on a scale from 0 to 100. 100 means no emergence of the plants or complete destruction of at least the aerial parts and 0 means no damage or normal growth.
  • the plants used in the greenhouse experiments are composed of the following types:
  • compound no. Ia.062 showed a very good herbicidal action against the abovementioned broad-leaf plants in the post-emergence process.
  • the young cotton plants were treated to runoff with aqueous preparations of the active ingredients (with addition of 0.15% by weight of the fatty alcohol alkoxylate Plurafac LF 700, based on the spray mixture).
  • the amount of water applied was around 1000 l / ha. After 13 days, the number of leaves thrown off and the degree of defoliation in% were determined.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

Substituierte 4,5-Di(trifluormethyl)pyrazole (I) und deren Salze, wobei R1 = C1-C4-Alkyl, C1-C4-Halogenalkyl; R2 = H, Halogen; R3 = CN, Halogen, C¿1?-C4-Alkyl, C1-C4-Halogenalkyl; R?4¿ = H, NO¿2?, CN, Halogen, -O-X?2-R5¿, -O-CO-X?2-R5, -N(X2-R5)(X3-R6), -N(X2-R5)-SO¿2-X3-R6, -N(SO¿2?-X?2-R5)(SO¿2-X?3-R6), -N(X2-R5)(CO-X3-R6), -N(X2-R5)(O-X3-R6), -S-X2-R5, -SO-X2-R5, -SO¿2-X?2-R5, -SO¿2-O-X?2-R5, -SO¿2-N(X?2-R5)(X3-R6¿), -CO-X2-R5, -C(=NOR?7)-X2-R5¿, -CO-O-X2-R5, -CO-S-X2-R5, -CO-N(X?2-R5)(X3-R6¿) oder -CO-N(X?2-R5)(O-X3-R6); X1, X2, X3¿ = chemische Bindung oder Ethen-1,2-diyl-, Methylen-, Ethylen- oder Propan-1,3-diyl-Kette, die 1 oder 2 Substituenten tragen kann: Halogen, CN, COOH, C¿1?-C4-Alkyl, C1-C4-Halogenalkyl, C1-C4-Alkoxycarbonyl, C1-C4-Alkoxy, Di-(C1-C4-Alkyl)amino, C1-C6-Halogenalkyl und/oder geg. subst. Phenyl, wobei die Methylen-, Ethylen- oder Propan-1,3-diyl-Kette außerdem einen Hydroxy-, Amino- oder C1-C4-Alkylamino-Rest tragen kann; Verwendung: als Herbizide; zur Desikkation/Defoliation von Pflanzen.

Description

SUBSTITUIERTE 4, 5-DI (TRIFLU0RMETHYL)PYRAZ0LE UND IHRE VERWNDUNG ALS HERBIZIDE UND ZUR DESIKKATION/DEFOLIATION VON PFLANZEN
Beschreibung
Die vorl iegende Erf indung betrif f t neue subs ti tuierte 4 , 5 -Di ( tri ¬ f luormethyl ) pyrazole der Formel I
in der die Variablen f olgende Bedeutunger. haben :
R1 Cι-C4-Alkyl oder C1-C4 -Halogenalkyl ;
R2 Wasserstof f oder Halogen ;
R3 Cyano , Halogen , Cι-C4 -Alkyl oder Cι-C4 -Kalogenalkyl ;
R4 Wasserstoff, Nitro, Cyano, Halogen, -0-X2-R5, -0-CO-X2-R5,
-N(X2-R5) (X3-R6) , -N(X2-RS) -S02-X3-R6, -N(S02-X2-R5) (S02-X3-R6) , -N(X2-R5) (CO-X3-R6) , -N(X2-R5) (0-X3-R6) , -S-X2-R5, -SO-X2-R5, -S02-X2-R5, -S02-0-X2-R5, -S02-N(X2-R5) (X3-Rδ) , -CO-X2-R5, -C (=NOR7) -X2-R5, -CO-0-X2-R5, -CO-S-X2-Rs, -CO-N(X2-R5) (X3-R6) oder -CO-N(X2-R5) (0-X3-R6) ;
X1, X2, X3 unabhängig voneinander eine chemische Bindung oder eine Ethen-1, 2-diyl-, Methylen-, Ethylen- oder Propan-1, 3-diyl-Kette, die jeweils unsubsti¬ tuiert sein oder einen oder zwei der folgenden Substituenten tragen kann: Halogen, Cyano, Carboxy, Cι-C4-Alkyl, Cι-C4-Halogenalkyl, (C!-C4-Alkoxy) carbonyl, Cι-C4-Alkoxy, Di- (Cι-C4-Alkyl) amino, Cι-C6-Halogenalkyl und/oder Phenyl, das gewünschtenfalls seinerseits ein bis drei Halogenatome, Nitro-, Carboxy-, Cχ-C4-Alkyl-, Cι-C4-Halogenalkyl- und/oder (Cι~C4-Alkoxy) carbonylgruppen tragen kann, und wobei die Methylen-, Ethylen- oder Propan-1, 3-diyl-Kette außerdem einen Hydroxy-, Amino- oder Cι-C4-Alkylamino-Rest tragen kann;
R5, R6 unabhängig voneinander -Z-R8, Wasserstoff, Cι-C6-Alkyl, Ci-Cό-Halogenalkyl, C2-C6-Alkenyl, C2-C6-Halogenalkenyl, C2-C6-Alkinyl, C2-C6-Halogenalkinyl, C3-C8-Cycloalkyl, das ein Carbonyl- oder Thiocarbonyl-Ringglied enthalten kann, Phenyl oder 3- bis 7-gliedriges Heterocyclyl, das ein Carbonyl- oder Thio¬ carbonyl-Ringglied enthalten kann, wobei die Cycloalkylringe, der Phenylring und die Hetero- cyclylringe unsubstituiert sein oder ein bis vier Substituen¬ ten tragen können, jeweils ausgewählt aus der Gruppe be¬ stehend aus Halogen, Cyano, Nitro, Amino, Hydroxy, Carboxy, Cι-C4-Alkyl, Cι-C4-Halogenalkyl, Cι-C4-Alkoxy, Cχ-C4-Halogen- alkoxy, Cχ-C4-Alkylthio, Cχ-C4-Haiogenalkylthio, Cχ-C4-Alkyl- sulfonyl, Cχ-C4-Halogenalkylsulfonyl, (Cχ-C4-Alkyl) carbonyl, (Cχ-C4-Alkoxy) carbonyl, (Cχ-C4-Halogenaikyl)carbonyl, (Cχ-C4-Alkyl) carbonyloxy, (Cχ-C4-Haloger.aikyl) carbonyloxy und Di- (Cχ-C4-Alkyl) amino;
R7 Wasserstoff, Cχ-C6-Alkyl, Cχ-C6-Haloger.alkyl, C2-C6-Alkenyl, C2-C6-Halogenalkenyl, C2-C6-Alkinyl, C2-C6-Halogenalkinyl, C3-C8-Cycloalkyl, Phenyl oder Phenyl-Cχ-C4-alkyi;
Z Methylen, das unsubstituiert sein oder einen oder zwei Substituenten tragen kann, jeweils ausgewählt aus der
Gruppe bestehend aus Cχ-C4-Alkyl, Cχ-C4-Alkoxy-Cι-C4-alkyl, Cχ-C4-Alkylthio-Cχ-C4-alkyl, (Cχ-C4-Alkoxy) carbonyl-Cχ-C4-alkyl und Phenyl-Cχ-C4-alkyl, wobei der Phenylring unsubstituiert sein oder seinerseits ein ein bis drei Reste tragen kann, jeweils ausgewählt aus der Gruppe bestehend aus Halogen, Cyano, Nitro, Carboxy, Cχ-C4-Alkyl, C:-C4-Halogenalkyl und (Cχ-C4-Alkoxy) carbonyl;
Rθ Wasserstoff, Nitro, Cyano, Halogen, -OR9, -N(R9)R10, -N(R9)-OR10, -SR9, -SO-R9, -S02-R9, -S02-OR9, -S02-N(R9)R10, -CO-R9, -C(=NORn)-R9, -CO-OR9, -CO-SR9, -CO-N{R9)R10 oder -CO-N(R9) -OR10;
R9, R10 unabhängig voneinander Wasserstoff, Cχ-C6-Alkyl, Cχ-C6-Halogenalkyl, C2-C6-Alkenyl, C2-C6-Halogenalkenyl, C2-C6-Alkinyl, C2-C6-Halogenalkinyl, C3-C8-Cycloalkyl, C3-C8-Cycloalkyl-Cχ-C4-alkyl , Phenyl, Phenyl-Cι-C4-alkyl oder 3- bis 7-gliedriges Heterocyclyl oder Heterocyclyl-Cχ-C4-alkyl, wobei die Cycloalkyl- und Hetero- cyclylringe jeweils ein Carbonyl- oder Thiocarbonyl-Ringglied enthalten können, und wobei die Cycloalkyl-, Phenyl- und Heterocyclylringe unsubstituiert sein oder ein bis vier Substituenten tragen können, jeweils ausgewählt aus der Gruppe bestehend aus Halogen, Cyano, Nitro, Amino, Hydroxy, Carboxy, Cχ-C4-Alkyl, Cχ-C4-Halogenalkyl, Cχ-C4-Alkoxy, Cχ-C4-Halogenalkoxy, Cχ-C4-Alkylthio, Cχ-C4-Halogenalkylthio, Cι-C4-Alkylsulfonyl, Cχ-C4-Halogenalkylsulfonyl, (Cχ-C4-Alkyl)carbonyl, (Cχ-C4-Halogenalkyl)carbonyl, (Cχ-C4-Alkoxy)carbonyl, (Cχ-C4-Alkyl)carbonyloxy, (C1-C4-Halogenalkyl)carbonyloxy und Di- (Cχ-C4-Alkyl)amino;
R11 Wasserstoff, Cχ-C6-Alkyl, Cχ-C6-Halogenalkyl, C2-C6-Alkenyl, CT-Cö-Halogenalkenyl, C2-C6-Alkinyl, C2-C6-Halogenalkinyl, C3-Ca-Cycloalkyl, Phenyl oder Phenyl-Cχ-C4-alkyl;
sowie die landwirtschaftlich brauchbaren Salze der Verbindungen I.
Außerdem betrifft die Erfindung die Verwendung von Verbindungen I als Herbizide und/oder zur Desikkation und/oder Defolitatior. von Pflanzen, herbizide Mittel und Mittel zur Desikkation und/oder
Defoliation von Pflanzen, welche die Verbindungen I als wirksame Substanzen enthalten,
Verfahren zur Herstellung der Verbindungen I und von herbiziden Mitteln und Mitteln zur Desikkation und/oder
Defoliation von Pflanzen unter Verwendung der Verbindungen I, sowie
Verfahren zur Bekämpfung von unerwünschtem Pfianzenwuchs und zur Desikkation und/oder Defoliation von Pflanzen mit den Verbindungen I.
In der JP-A 02/300 173 werden herbizid wirksame Phenylpyrazole der Formel Ila beschrieben
(Halogen ) 0 - 4 Ra
Niederalkyl wobei
Ra für Wasserstoff, Cyano, Halogen, Niederalkyl oder Nieder- alkoxycarbonyl und Rb u.a. für Wasserstoff, Cyano, Halogen oder gegebenfalis durch Halogen substituiertes Niederalkyl stehen.
Einige der Verbindungen der Formel I mit R1 = Cχ-C4-Alkyl, bei denen entweder
R2 für Chlor, Brom oder Iod, R3 für Cχ-C4-Alkyl oder C3-C4-Halogenalkyl und X^R4 für Wasserstoff stehen, oder R2 für Wasserstoff, R3 für Chlor, Brom oder Iod und R4 für Wasserstoff, Halogen, Cyano, Hydroxy, -0-CO-CH3, Formyl, -CH=NOR7, -CO-0-X2-R5, -CO-N(X2-R5) (X3-R6) oder -CO-N(X2-R5) (0-X3-R6) stehen, oder
R2 für Wasserstoff, R3 für Cyano und R4 für Chlor, Brom, Iod, Methoxy, Difluormethoxy, Trifluormethoxy oder Nitro stehen, stellen eine Auswahl aus der sehr breiten Lehre herbizid wirk¬ samer und das Pflanzenwachstum regulierender Verbindungen der WO 94/05153 dar.
Außerdem fallen einige der 4 , 5-Di (trifluormethyl )pyrazole I mit R2 = Halogen formal unter die allgemeine Formel der in der priori tätsälteren WO 96/15115 als Herbizide gelehrten 3 -Phenylpyrazole .
Des weiteren werden in JP-A 03/163 063 3-?nenylpyrazoi-Derivate der Formel Ilb
verschiedene Reste wobei Rc und Rd u.a. für Niederhalogenalkyl und jedes Re u.a. für Halogen oder Nieder (halogen) alkyl stehen, als Herbizide beschrieben. Einzelverbindungen mit Rc und/oder Rd = Halogenalkyl sind dieser Schrift jedoch nicht zu entnehmen. In der Nachanmeldung EP-A-0 361 114 wurden schließlich Rc auf Hydroxyl, Mercapto, Nieder (halogen) alkoxy oder Nieder (halogen) - alkylthio und Rd auf Wasserstoff oder Halogen beschränkt.
Gegenstand der EP-A-0 289 919, EP-A 353 571 und der
EP-A-0 353 674 sind bestimmte Insektizide, Akarizide und Nematizide, zu deren Herstellung als Vorprodukte u.a. auch - bei geeigneter Wahl der Substituenten - einige Pyrazole vom Typ der Verbindungen I in Betracht kommen .
Weitere Pyrazol-Zwischenprodukte, unter deren allgemeine Formel bei geeigneter Wahl der Substituenten formal auch 3-Phenyl- pyrazole vom Typ der Verbindungen I fallen, dienen
- in der JP 01/190 670 und der JP 63/112 566 zur Herstellung von 4 (3H) -Pyrimidinon-Derivaten, denen eine insektizide, akarizide, nematizide und fungizide Wirkung zugeschrieben wird; in der EP-A-0 310 386 zur Herstellung von 4-Aryl-5-carbamoyl- 1, 4-dihydropyridinen, denen eine antagonistische Wirkung auf bestimmte Pharmaka zugeschrieben wird;
- in der älteren DE-A 195 00 439 zur Herstellung von Thiocar- bonsäureamiden, die als Herbizide gelehrt werden.
Schließlich wird in der WO 95/06036 ein Verfahren zur Herstellung von Pyrazol und seinen Derivaten ausgeführt. Unter die sehr allgemeinen Restedefinitionen fallen formal auch 3-Phenylpyrazole vom Typ der Verbindungen I.
Da die herbiziden Eigenschaften der bisr.er bekannten herbizid wirksamen 3-Phenylpyrazole bezüglich der Scnadpflanzen nicht immer völlig befriedigend sind, lagen der vorliegenden Erfindung neue 3-Phenylpyrazole als Aufgabe zugrur.ce, mit denen sich unerwünschte Pflanzen besser als bisher gezielt bekämpfen lassen. Die Aufgabe erstreckte sich auch auf die Bereitstellung neuer desikkant/defoliant wirksamer Verbindungen.
Demgemäß wurden die vorliegenden substituierten 4, 5-Di (trifluor¬ methyl)pyrazole der Formel I gefunden.
Ferner wurden herbizide Mittel gefunden, die die Verbindungen I enthalten und eine sehr gute herbizide Wirkung besitzen. Außerdem wurden Verfahren zur Herstellung dieser Mittel und Verfahren zur Bekämpfung von unerwünschtem Pflanzenwucr.s mit den Verbindungen I gefunden.
Des weiteren wurde gefunden, daß die Veroindungen I auch zur Desikkation/Defoliation von Pflanzenteiien geeignet sind, wofür Kulturpflanzen wie Baumwolle, Kartoffel, Raps, Sonnenblume, Sojabohne oder Ackerbohnen, insbesondere Baumwolle, in Betracht kommen. Diesbezüglich wurden Mittel zur Desikkation und/oder Defoliation von Pflanzen, Verfahren zur Herstellung dieser Mittel und Verfahren zur Desikkation und/oder Defoliation von Pflanzen mit den Verbindungen I gefunden.
Die Verbindungen der Formel I können je nach Substitutionsmuster ein oder mehrere Chiralitätszentren enthalten und liegen dann als Enantiomeren- oder Diastereomerengemische vor. Gegenstand der Erfindung sind sowohl die reinen Enantiomeren oder Diastereomeren als auch deren Gemische.
Die bei der Definition der Substituenten R1, R3, R5, R6, R7 und R9 bis R11 oder als Reste an Cycloalkyl-, Phenyl- oder hetero¬ cyclischen Ringen oder an X1 bis X3 und Z genannten organischen Molekülteile stellen - wie die Bedeutung Halogen - Sammelbegriffe für individuelle Aufzählungen der einzelnen Gruppenmitglieder dar. Sämtliche Kohlenstoffketten, also alle Alkyl-, Halogen¬ alkyl-, Alkenyl-, Halogenalkenyl- und Alkinyl-Teile können gerad- kettig oder verzweigt sein. Halogenierte Substituenten tragen vorzugsweise ein bis fünf gleiche oder verschiedene Kalogenatome. Die Bedeutung Halogen steht jeweils für Fluor, Chlor, Brom oder Iod.
Ferner stehen beispielsweise:
Cχ-C4-Alkyl sowie die Alkyl-Teile vor. (C:-C4-Alkyl) carbonyl und (Cχ-C4-Alkyl) carbonyloxy für: Methyl, Ethyl, n-Propyl, 1-Methylethyl, n-Butyl, l-Methylprop\ 1 , 2-Methylpropyl und 1, 1-Dimethylethyl;
Cχ-C4-Halogenalkyl sowie die Halogenal.<yl-Teile von (Cχ-C4-Halogenalkyl) carbonyl und (C:-C4-Halogenalkyl) carbonyl¬ oxy für: einen Cχ-C4-Alkylrest wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert iεt, also z.B. Chlormethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl, 2-Fluorethyl, 2-Chlorethyl, 2-Bromethyl, 2-Iodethyl, 2, 2-Difluorethyl, 2, 2, 2-Trifluoretπyl, 2-Chlor-2-fluorethyl, 2-Chlor-2, 2-difluorethyl , 2, 2-Dichlor-2-fluorethyl, 2, 2, 2-Trichlorethyl, Petafluorethyl, 2-Fluorpropyl, 3-Fluor- propyl, 2, 2-Difluorpropyl, 2 , 3-Difluorpropyl , 2-Chlorpropyl , 3-Chlorpropyl, 2 , 3-Dichlorpropyl, 2-3rompropyl, 3-Brompropyl , 3, 3, 3-Trifluorpropyl, 3, 3, 3-Trichlorpropyl, 2, 2, 3, 3, 3-Penta- fluorpropyl, Heptafluorpropyl, 1- (Fluormethyl) -2-fluorethyl, 1- (Chlormethyl) -2-chlorethyl, 1- (Brommethyl) -2-bromethyl, 4-Fluorbutyl, 4-Chlorbutyl, 4-Brombutyl und Nonafluorbutyl;
- Cχ-C6-Alkyl für: Cχ-C4-Alkyl wie vorstehend genannt, sowie z.B. n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methyibutyl, 2, 2-Dimethylpropyl, 1-Ethylpropyl, n-Hexyl, 1 , 1-Dimethyl- propyl, 1, 2-Dimethylpropyl, 1-Methyipentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1, 1-Dimethylbutyl, 1, 2-Dimethylbutyl, 1, 3-Dimethylbutyl, 2 , 2-Dimethylbutyl,
2, 3-Dimethylbutyl, 3 , 3-Dimethylbutyl , 1-Ξthylbutyl, 2-Ethyl- butyl, 1, 1, 2-Trimethylpropyl, 1, 2 , 2-Trimethylpropyl, 1-Ethyl-l-methylpropyl oder l-Ethyl-2-methylpropyl, vorzugs¬ weise Methyl, Ethyl, n-Propyl, 1-Methylethyl, n-Butyl, 1, 1-Dimethylethyl, n-Pentyl oder n-Hexyl; Cx-Cß-Halogenalkyl für: einen Cι-C6-Alkylrest wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. einen der unter Cχ-C4-Halogenalkyl genannten Reste sowie für 5-Fluor-1-pentyl, 5-Chlor-1-pentyl, 5-Brom-1-pentyl, 5-Iod-1-pentyl,
5, 5, 5-Trichlor-l-penyl, Undecafluorpentyl, 6-Fluor-1-hexyl, 6-Chlor-1-hexyl, 6-Brom-1-hexyl, 6-Iod-1-hexyl, 6,6,6-Tri- chlor-1-hexyl oder Dodecafluorhexyl;
- Phenyl-Cχ-C4-alkyl für: Benzyl, 1-Phenylethyl, 2-Phenylethyl, 1-Phenylprop-l-yl, 2-Phenylprop-l-yl, 3-Phenylprop-l-yl, 1-Phenylbut-l-yl, 2-Phenylbut-l-yl, 3-Phenylbut-l-yl, 4-Phenylbut-l-yI, i-Phenylbut-2-yI, 2-Phenylbut-2-yl, 3-Phenylbut-2-yl, 3-Phenylbut-2-yl, 4-Phenylbut-2-yl, 1- (Phenylmethyl) -eth-l-yl, 1- (Phenylmethyl) -1- (methyl) -eth- 1-yl oder 1- (Phenylmethyl) -prop-1-yl, vorzugsweise Benzyl oder 2-Phenylethyl;
Heterocyclyl-Cχ-C4-alkyl für: Heterocyciylmethyl, 1-Hetero- cyclyl-ethyl, 2-Heterocyclyl-ethyl, L-Heterocyclyl-prop-1-yl, 2-Heterocyclyl-prop-l-yl, 3-Heterocyclyl-prop-l-yl, 1-Hetero- cyclyl-but-1-yl, 2-Heterocyclyl-but-l-yl, 3-Heterocyclyl- but-l-yl, 4-Heterocyclyl-but-l-yl, l-Heterocyclyl-but-2-yl, 2-Heterocyclyl-but-2-yI, 3-Heterocyclyl-but-2-yi, 3-Hetero- cyclyl-but-2-yl, 4-Heterocyclyl-but-2-yl, 1- (Heterocyclyl- methyl)-eth-l-yl, 1- (Heterocyciylmethyl)-1- (methyl) -eth-l-yl oder 1- (Heterocyciylmethyl) -prop-1-yl, vorzugsweise Hetero¬ cyciylmethyl oder 2-Heterocyclyl-ethyl;
- Cχ-C4-Alkoxy für: Methoxy, Ethoxy, n-Propoxy, 1-Methylethoxy, n-Butoxy, 1-Methylpropoxy, 2-Methylpropoxy oder 1, 1-Dimethyl- ethoxy, vorzugsweise für Methoxy, Ethoxy oder 1-Methylethoxy;
Cχ-C4-Halogenalkoxy für: einen Cχ-C4-Aikoxyrest wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. Chlormethoxy, Dichlormethoxy, Trichlormethoxy, Fluormethoxy, Difluormeth- oxy, Trifluormethoxy, Chlorfluormethoxy, Dichlorfluormethoxy, Chlordifluormethoxy, 2-Fluorethoxy, 2-Chlorethoxy, 2-Brom- ethoxy, 2-Iodethoxy, 2, 2-Difluorethoxy, 2, 2, 2-Trifluorethoxy, 2-Chlor-2-fluorethoxy, 2-Chlor-2, 2-difluorethoxy, 2, 2-Dichlor-2-fluorethoxy, 2, 2, 2-Trichlorethoxy, Petafluor¬ ethoxy, 2-Fluorpropoxy, 3-Fluorpropoxy, 2,2-Difluorpropoxy, 2,3-Difluorpropoxy, 2-Chlorpropoxy, 3-Chlorpropoxy, 2,3-Di- chlorpropoxy, 2-Brompropoxy, 3-Brompropoxy, 3,3,3-Trifluor¬ propoxy, 3,3,3-Trichlorpropoxy, 2,2, 3,3, 3-Pentafluorpropoxy, Heptafluorpropoxy, 1- (Fluormethyl)-2-fluorethoxy, 1- (Chlor- methyl) -2-chlorethoxy, 1- (Brommethyl) -2-bromethoxy, 4-Fluor- butoxy, 4-Chlorbutoxy, 4-Brombutoxy oder Nonafluorbutoxy, vorzugsweise für Difluormethoxy, Trifluormethoxy, Dichlor- fluormethoxy, Chlordifluormethoxy oder 2, 2, 2 -Trifluorethoxy;
Cχ-C6-Alkylthio für: Methylthio, Ethylthio, n-Propylthio, 1-Methylethylthio, n-Butylthio, 1-Methylpropylthio, 2-Methyl- propylthio oder 1, 1-Dimethylethylthio, vorzugsweise für Methylthio oder Ethylthio;
Cι-C4-Alkoxy-Cχ-C4-alkyl für: durch Cχ-C4-Alkoxy - wie vor¬ stehend genannt - substituiertes Cχ-C4-Alkyl, also z.B. für Methoxymethyl, Ethoxymethyl, n-Propoxymethyl, (1-Methyl- ethoxy)methyl, n-Butoxymethyl, (1-Methylpropoxy)methyl, (2-Methylpropoxy)methyl, (1, 1-Dimethylethoxy)methyl,
2- (Methoxy) ethyl, 2- (Ethoxy) ethyl, 2- (n-Propoxy) ethyl, 2- (1-Methylethoxy) ethyl, 2- (n-Butoxy) ethyl, 2-(l-Methyl- propoxy) ethyl, 2- (2-Methylpropoxy) ethyl, 2- (1, 1-Dimethyl- ethoxy) ethyl, 2- (Methoxy) propyl, 2- (Etnoxy) propyl, 2- (n-Propoxy)propyl, 2- (1-Methylethoxy) propyl ,
2- (n-Butoxy) propyl, 2- (1-Methylpropoxy)propyl, 2-(2-Methyl- propoxy) propyl, 2- (1, 1-Dimethylethoxy)propyl, 3- (Methoxy)propyl, 3- (Ethoxy)propyl, 3- (n-Propoxy)propyl, 3- (1-Methylethoxy)propyl, 3- (n-Butoxy)propyl, 3-(l-Methyl- propoxy)propyl, 3- (2-Methylpropoxy)propyl, 3- (1, 1-Dimethyl- ethoxy)propyl, 2- (Methoxy)butyl, 2- (Ethoxy)butyl, 2-(n-Prop- oxy)butyl, 2- (1-Methylethoxy)butyl, 2- (n-Butoxy)butyl, 2- (1-Methylpropoxy)butyl, 2- (2-Methylpropoxy)butyl, 2- (1, 1-Dimethylethoxy)butyl, 3- (Metnoxy)butyl , 3- (Ethoxy)butyl, 3- (n-Propoxy)butyl, 3- (1-Methylethoxy)butyl, 3- (n-Butoxy)butyl, 3- (1-Methylpropoxy)butyl, 3-(2-Methyl- propoxy)butyl, 3- (1, 1-Dimethylethoxy)butyl, 4- (Methoxy)butyl, 4- (Ethoxy)butyl, 4- (n-Propoxy)butyl, 4- (l-Methylethoxy)butyl, 4- (n-Butoxy)butyl, 4- (1-Methylpropoxy)butyl, 4-(2-Methyl- propoxy)butyl oder 4- (1, 1-Dimethylethoxy)butyl, vorzugsweise für Methoxymethyl, Ethoxymethyl, 2-Methoxyethyl oder 2-Ethoxyethyl;
Cχ-C4-Alkylthio-C1-C4-alkyl für: durch Cχ-C4-Alkylthio - wie vorstehend genannt - substituiertes Cχ-C4-Alkyl, also z.B. für Methylthiomethyl, Ethylthiomethyl, n-Propylthiomethyl , (1-Methylethylthio)methyl, n-Butylthiomethyl, (1-Methyl- propylthio)methyl, (2-Methylpropylthio)methyl, (1, 1-Dιmethyl- ethylthio)methyl, 2- (Methylthio)ethyl, 2- (Ethylthio)ethyl, 2- (n-Propylthio) ethyl, 2- (1-Methylethylthio) ethyl, 2- (n-Butylthio)ethyl, 2- (1-Methylpropylthio) ethyl, 2- (2-Methylpropylthio) ethyl, 2- (1, 1-Dimethylethylthio) ethyl, 2- (Methylthio)propyl, 2- (Ethylthio)propyl, 2- (n-Propylthio) - propyl, 2- (1-Methylethylthio)propyl, 2- (n-Butylthio)propyl, 2- (1-Methylpropylthio)propyl, 2- (2-Methylpropylthio)propyl, 2- (1, 1-Dimethylethylthio)propyl, 3- (Methylthio)propyl, 3- (Ethylthio)propyl, 3- (n-Propylthio)propyl, 3-(i-Methyl- ethylthio)propyl, 3- (n-Butylthio)propyl, 3- (1-Methylpropyl- thio)propyl, 3- (2-Methylpropylthio)propyl, 3- (1, 1-Dimethyl- ethylthio)propyl, 2-(Methylthio)butyl, 2- (Ethylthio)butyl, 2- (n-Propylthio)butyl, 2- (1-Methylethylthio)butyl, 2- (n-Butylthio)butyl, 2- (l-Methylpropylthio)butyl,
2- (2-Methylpropylthio)butyl, 2- (1, 1-Dimethylethylthio)butyl, 3- (Methylthio)butyl, 3- (Ethylthio)butyl, 3- (n-Propylthio) - butyl, 3- (l-Methylethylthio)butyl, 3- (n-Butylthio)butyl, 3- (l-Methylpropylthio)butyl, 3- (2-Methylpropylthio)butyl, 3- (1, l-Dimethylethylthio)butyl, 4- (Methylthio)butyl,
4- (Ethylthio)butyl, 4- (n-Propylthio)butyl, 4- (1-Methylethyl- thio)butyl, 4- (n-Butylthio)butyl, 4- (1-Methylpropylthio) - butyl, 4- (2-Methylpropylthio)butyl oder 4- (1, 1-Dimethylethyl- thio)butyl, vorzugsweise Methylthiomethyl, Ethylthiomethyl, 2-Methylthioethyl oder 2-Ethylthioethyl;
(Cχ-C4-Alkoxy) carbonyl für: Methoxycarbonyl, Ethoxycarbonyl, n-Propoxycarbonyl, 1-Methylethoxycarbonyl, n-Butoxycarbonyl, 1-Methylpropoxycarbonyl, 2-Methylpropoxycarbonyl oder 1, 1-Dimethylethoxycarbonyl, vorzugsweise für Methoxycarbonyl oder Ethoxycarbonyl;
(Cχ-C4-Alkoxy) carbonyl-Cχ-C4-alkyl für: durch
(Cχ-C4-Alkoxy)carbonyl - wie vorstehend genannt - substituier- tes Cχ-C4-Alkyl, also z.B. für Methoxycarbonyl-methyl, Ethoxy- carbonyl-methyl, n-Propoxycarbony1-methyl, (1-Methylethoxy- carbonyl)methyl, n-Butoxycarbonylmethyl, (1-Methylpropoxy¬ carbonyl)methyl, (2-Methylpropoxycarbonyl)methyl, (1, 1-Dimethylethoxycarbonyl)methyl, 1- (Methoxycarbonyl)ethyl, 1- (Ethoxycarbonyl)ethyl, 1- (n-Propoxycarbonyl)ethyl,
1- (1-Methylethoxycarbonyl)ethyl, 1- (n-Butoxycarbonyl)ethyl, 2- (Methoxycarbonyl)ethyl, 2- (Ethoxycarbonyl)ethyl, 2- (n-Propoxycarbonyl)ethyl, 2- (1-Methylethoxycarbonyl)ethyl, 2- (n-Butoxycarbonyl)ethyl, 2- (1-Methylpropoxycarbonyl)ethyl, 2- (2-Methylpropoxycarbonyl)ethyl, 2- (1, 1-Dimethylethoxy- carbonyl)ethyl, 2- (Methoxycarbonyl)propyl, 2- (Ethoxy¬ carbonyl)propyl, 2- (n-Propoxycarbonyl)propyl, 2-(l-Methyl- ethoxycarbonyl)propyl, 2- (n-Butoxycarbonyl)propyl, 2- (1-Methylpropoxycarbonyl)propyl, 2- (2-Methylpropoxy- carbonyl)propyl, 2- (1, 1-Dimethylethoxycarbonyl)propyl, 3- (Methoxycarbonyl)propyl, 3- (Ethoxycarbonyl)propyl, 3- (n-Propoxycarbonyl)propyl, 3- (1-Methylethoxycarbonyl) - propyl, 3- (n-Butoxycarbonyl)propyl, 3- (1-Methylpropoxy¬ carbonyl)propyl, 3- (2-Methylpropoxycarbony1)propyl, 3- (1, 1-Dimethylethoxycarbonyl)propyl, 2-(Methoxycarbonyl) - butyl, 2- (Ethoxycarbonyl)butyl, 2- (n-Propoxycarbonyl)butyl, 2- (1-Methylethoxycarbonyl)butyl, 2- (n-Butoxycarbonyl)butyl, 2- (1-Methylpropoxycarbonyl)butyl, 2- (2-Methylpropoxy- carbonyl)butyl, 2- (1, 1-Dimethylethoxycarbonyl)butyl, 3- (Meth¬ oxycarbonyl)butyl, 3- (Ethoxycarbonyl)butyl, 3- (n-Propoxy¬ carbonyl)butyl, 3- (1-Methylethoxycarbonyl)butyl, 3- (n-Butoxy- carbonyl)butyl, 3-(1-Methylpropoxycarbonyl)butyl,
3- (2-Methylpropoxycarbonyl)butyl, 3- (1, 1-Dimethylethoxy- carbonyl)butyl, 4- (Methoxycarbonyl)butyl, 4- (Ethoxy¬ carbonyl)butyl, 4- (n-Propoxycarbonyl)butyl, 4-(l-Methyl- ethoxycarbonyl)butyl, 4- (n-Butoxycarbonyl)butyl, 4-(l-Methyl- propoxycarbonyl)butyl, 4- (2-Methylpropoxycarbonyl)butyl oder 4- (1, 1-Dimethylethoxycarbonyl)butyl, vorzugsweise für Meth¬ oxycarbonylmethyl, Ethoxycarbonylmethyl, 1- (Methoxy¬ carbonyl)ethyl oder 1- (Ethoxycarbonyl)ethyl;
Cχ-C4-Alkylsulfonyl für: Methylsulfonyl, Ethylsulfonyl, n-Propylsulfonyl, 1-Methylethylsulfonyl, n-Butylsulfonyl, 1-Methylpropylsulfonyl, 2-Methylpropylsulfonyl oder 1, 1-Dimethylethylsulfonyl, vorzugsweise für Methylsulfonyl oder Ethylsulfonyl;
Cχ-C4-Halogenalkylsulfonyl für: einen Cχ-C4-Alkylsulfonylrest - wie vorstehend genannt - der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. Chlormethylsulfonyl, Dichlormethylsulfonyl, Trichlor- methylsulfonyl, Fluormethylsulfonyl, Difluormethylsulfonyl, Trifluormethylsulfonyl, Chlorfluormethylsulfonyl, Dichlor- fluormethylsulfonyl, Chlordifluormethylsulfonyl, 2-Fluor- ethylsulfonyl, 2-Chlorethylsulfonyl, 2-Bromethylsulfonyl, 2-Iodethylsulfonyl, 2,2-Difluorethylsulfonyl, 2,2,2-Tri- fluorethylsulfonyl, 2-Chlor-2-fluorethylsulfonyl, 2-Chlor- 2, 2-difluorethylsulfonyl, 2, 2-Dichlor-2-fluorethylsulfonyl, 2, 2, 2-Trichlorethylsulfonyl, Petafluorethylsulfonyl, 2-Fluor- propylsulfonyl, 3-Fluorpropylsulfonyl, 2, 2-Difluorpropyl- sulfonyl, 2, 3-Difluorpropylsulfonyl, 2-Chlorpropylsulfonyl, 3-Chlorpropylsulfonyl, 2, 3-Dichlorpropylsulfonyl, 2-Brom- propylsulfonyl, 3-Brompropylsulfonyl, 3,3, 3-Trifluorpropyl- sulfonyl, 3, 3, 3-Trichlorpropylsulfonyl, 2, 2, 3, 3,3-Pentafluor¬ propylsulfonyl, Heptafluorpropylsulfonyl, 1- (Fluormethyl) - 2-fluorethylsulfonyl, 1- (Chlormethyl) -2-chlorethylsulfonyl, 1- (Brommethyl) -2-bromethylsulfonyl, 4-Fluorbutylsulfonyl, 4-Chlorbutylsulfonyl, 4-Brombutylsulfonyl oder Nonafluor- butylsulfonyl, vorzugsweise für Chlormethylsulfonyl, Tri- fluormethylsulfonyl oder 2, 2 , 2 -Trifluorethylsulfonyl,-
Cχ-C4-Alkylamino für: Methylamino, Ethylamino, n-Propylamino, 1-Methylethylamino, n-Butylamino, 1-Methylpropylamino,
2-Methylpropylamino und 1, 1-Dimethylethylamino, vorzugsweise für Methylamino und Ethylamino;
Di- (Cχ-C4-alkyl) amino für: N,N-Dimethylamino, N,N-Diethyl- amino, N,N-Dipropylamino, N,N-Di- (1-methylethyl) amino,
N,N-Dibutylamino, N,N-Di- (1-methylpropyl) amino, N,N-Di- (2- methylpropyl)amino, N,N-Di- (1, 1-dimethylethyl) amino, N-Ξthyl- N-methylamino, N-Methyl-N-propylamino, N-Methyl-N- (1-methyl - ethyl) amino, N-Butyl-N-methylamino, N-Methyl-N- (1-methyl- propyl) amino, N-Methyl-N- (2-methylpropyl) amino, N-(l, 1-Di¬ methylethyl) -N-methylamino, N-Ethyl-N-propylamino, N-Ethyl- N- (1-methylethyl) amino, N-Butyl-N-ethylamino, N-Ξthyl-N- (1- methylpropyl)amino, N-Ethyl-N- (2-methylpropyl) amino, N-Ξthyl-N- (1 , 1-dimethylethyl)amino, N- (1-Methylethyl) -N- propylamino, N-Butyl-N-propylamino, N- (1-Methylpropyl) -N- propylamino, N- (2-Methylpropyl) -N-propylamino, N-(l, 1-Di¬ methylethyl) -N-propylamino, N-Butyl-N- (1-methyiethyl) amino, N- (1-Methylethyl) -N- (1-methylpropyl) amino, N- (1-Methyl- ethyl) -N- (2-methylpropyl)amino, N- (1, 1-Dimethylethyl) - N- (I-methylethyl) amino, N-Butyl-N- (1-methylpropyl) amino, N-Butyl-N- (2-methylpropyl) amino, N-Butyl-N- (1, 1-dimethyl¬ ethyl) amino, N- (1-Methylpropyl) -N- (2-methylpropyl) amino, N- (1, 1-Dimethylethyl) -N- (1-methylpropy1) amino oder N- (1, 1-Dimethylethyl) -N- (2-methylpropyl) amino, vorzugsweise für N,N-Di-methylamino oder N,N-Diethylamino;
C2-C6-Alkenyl für: Vinyl, Prop-1-en-l-yl, Allyl, 1-Methyl- ethenyl, 1-Buten-l-yl, l-Buten-2-yl, l-Buten-3-yl,
2 -Buten-1-yl, 1-Methyl-prop-l-en-l-yl, 2-MethyI-prop-l-en- 1-yl, l-Methyl-prop-2-en-l-yl, 2-Methyl-prop-2-en-l-yl, n-Penten-1-yl, n-Penten-2-yl, n-Penten-3-yl, n-Penten-4-yl, 1-Methyl-but-l-en-l-yl, 2-Methyl-but-l-en-l-yl, 3-Methyl- but-1-en-l-yl, l-Methyl-but-2-en-l-yl , 2-Methyl-but-2-en- 1-yi, 3-Methyl-but-2-en-l-yl, l-Methyl-but-3-en-l-yl, 2-Methyl-but-3-en-l-yl, 3-Methyl-but-3-en-l-yl, 1, 1-Dimethyl- prop-2-en-l-yl, 1, 2-Dimethyl-prop-l-en-l-yl, 1, 2-Dimethyl- prop-2-en-l-yl, l-Ethyl-prop-l-en-2-yl, l-Ethyl-prop-2-en- 1-yl, n-Hex-1-en-l-yl, n-Hex-2-en-l-yl, n-Hex-3-en-l-yl , n-Hex-4-en-l-yl, n-Hex-5-en-l-yl, 1-Methyl-pent-l-en-l-yl, 2-Methyl-pent-l-en-l-yl, 3-Methyl-pent-l-en-l-yl, 4-Methyl- pent-1-en-l-yl, l-Methyl-pent-2-en-l-yl, 2-Methyl-pent-2-en- 1-yl, 3-Methyl-pent-2-en-l-yl, 4-Methyl-pent-2-en-l-yl, l-Methyl-pent-3-en-l-yl, 2-Methyl-pent-3-en-l-yl, 3-Methyl- pent-3-en-l-yl, 4-Methyl-pent-3-en-l-yl, l-Methyl-pent-4-en- 1-yl, 2-Methyl-pent-4-en-l-yl , 3-Methyl-pent-4-en-l-yl , 4-Methyl-pent-4-en-l-yl, 1, l-DimethyI-but-2-en-l-yi , 1,1-Di- methyl-but-3-en-l-yl, 1, 2-Dimethyl-but-l-en-l-yl, 1,2-Di- methyl-but-2-en-l-yl, 1, 2-Dimethyl-but-3-en-l-yl, 1,3-Di- methyl-but-1-en-l-yl , 1 , 3-Dimethyl-but-2-en-l-yl, 1,3-Di- methyl-but-3-en-l-yl, 2 , 2-Dimethyl-but-3-en-l-yi, 2,3-Di- methyl-but-1-en-l-yl, 2 , 3-Dimethyl-but-2-en-l-yl, 2,3-Di- methyl-but-3-en-l-yl, 3 , 3-Dimethyl-but-l-en-l-yl, 3,3-Di- methyl-but-2-en-l-yl, l-Ξthyl-but-1-er.-l-yl , l-Ethyl-but-2- en-l-yl, l-Ethyl-but-3-en-l-yl, 2-Ethyi-but-l-en-l-yl, 2-Ethyl-but-2-en-l-yl, 2-Ethyl-but-3-en-l-yl, 1,1,2-Tri- methyl-prop-2-en-l-yl , l-Ethyl-l-methyl-prop-2-en-i-yl , l-Ethyl-2-methyl-prop-l-en-l-yl oder l-Ethyl-2-methyl- prop-2-en-l-yl ;
C2-Cg-Halogenalkenyl für: C2-C6-Aikenyl wie vorstehend genannt, das partiell oder vollständig durch Fluor, Chlor und/oder Brom substituiert ist, also z.B. 2-Chlorvinyl,
2-Chlorallyl, 3-Chlorallyl, 2 , 3-Dichlorallyl, 3,3-Dichlor- allyl, 2, 3, 3-Trichlorallyl, 2 , 3-Dichlorbut-2-enyl, 2-Brom- allyl, 3-Bromallyl, 2, 3-Dibromallyl, 3 , 3-Dibromallyl, 2, 3, 3-Tribromallyl und 2, 3-Dibrombut-2-enyl, vorzugsweise für C3- oder C4-Halogenalkenyl,-
C2-C6-Alkinyl für: Ethinyl und C3-C6~Alkinyl wie Prop-1-in-l-yl, Prop-2-in-l-yl , n-But-1-in-l-yl , n-But-l-in-3-yl, n-But-l-in-4-yl, n-3ut-2-in-l-yl , n-Pent-1-in-l-yl, n-Pent-l-in-3-yl, r.-Pent-l-in-4-yl, n-Pent-l-in-5-yl, n-Pent-2-in-l-yl, r.-Pent-2-in-4-yl, n-Pent-2-in-5-yl, 3-Methyl-but-l-in-3-yi, 3-Methyl- but-l-in-4-yl, n-Hex-1-in-l-yl, n-Hex-l-in-3-yl , n-Hex-l-in-4-yl, n-Hex-l-in-5-yl, n-Hex-l-in-6-yl, n-Hex-2-in-l-yl, n-Hex-2-in-4-yl, n-Hex-2-in-5-yl, n-Hex-2-in-6-yl, n-Hex-3-in-l-yl, n-Hex-3-in-2-yl, 3-Methyl-pent-l-in-l-yl, 3-Methyl-pent-l-in-3-yi, 3-Methyl-pent-l-in-4-yl, 3-Methyl-per.t-I-in-5-yl, 4-Methyl-pent-l-in-l-yl, 4-Methyl-pent-2-in-4-yl oder 4-Methyl-pent-2-in-5-yl, vorzugsweise für Prop-2-in-l-yl;
C2-C6-Halogenalkinyl für: C2-C6-Alkir.yl wie vorstehend genannt, das partiell oder vollständig durch Fluor, Chlor und/oder Brom substituiert ist, also z.B. 1,1-Difluor- prop-2-in-l-yl, 1, 1-Difluorbut-2- in-1-yl, 4 -Fluorbut-2-in- 1-yl, 4-Chlorbut-2-in-l-yl, 5-Fluorpent-3 -in-l-yl oder 6-Fluorhex-4-in-l-yl, vorzugsweise C3- oder C4-Halogenalkinyl
C3-C8-Cycloalkyl für: Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl oder Cyclooctyl;
C3-Ca-Cycloalkyl, das ein Carbonyl- oder Thiocarbonyl-Ring¬ glied enthält, z.B. für Cyclobutanon-2 -yl, Cyclobutanon-3-yl, Cyclopentanon-2-yl, Cyclopentanon-3 -yl, Cyclohexanon-2-yl, Cyclohexanon-4-yl, Cycloheptanon-2-yl, Cyclooctanon-2-yl, Cyclobutanthion-2-yl, Cyclobutanthion-3 -yl, Cyclopentan- thion-2-yl, Cyclopentanthion-3 -yl, Cyclohexanthion-2-yl, Cyclohexanthion-4-yl, Cycloheptanthion-2 -yl oder Cyclooctan- thion-2-yl, vorzugsweise für Cyclopentanon-2 -yl oder Cyclo- hexanon-2-yl;
C3-C8-Cycloalkyl-Cχ-C4-alkyl für: Cyclopropylmethyl, 1-Cyclo- propyl-ethyi, 2-Cyclopropyl-ethyl, 1-Cyclopropyi-prop-l-yl, 2-Cyclopropyl-prop-l-yl, 3-Cyclopropyl-prop-l-yl, 1-Cycio- propyl-but-1-yl, 2-Cyclopropyl-but-l-yl, 3-CycIopropyl-but- 1-yl, 4-Cyclopropyl-but-l-yl, l-Cyclopropyl-but-2-yl, 2-Cyclopropyl-but-2-yl, 3-Cyclopropyl-but-2-yl, 3-Cyclo- propyl-but-2-yl, 4-Cyclopropyl-but-2-yl, 1- (Cyclopropyl- methyl) -eth-l-yl, 1- (Cyclopropylmethyl) -1- (methyl) -eth-l-yl, 1- (Cyclopropylmethyl)-prop-1-yl, Cyclobutylmethyl, 1-Cyclo- butyl-ethyl, 2-Cyclobutyl-ethyl , 1-Cyclobutyl-prop-l-yl , 2-Cyclobutyl-prop-l-yl, 3-Cyclobutyl-prop-l-yl, 1-Cyclobutyl- but-l-yl, 2-Cyclobutyl-but-l-yl, 3-Cyclobutyl-but-l-yl, 4-Cyclobutyl-but-l-yl, l-Cyclobutyl-but-2-yI, 2-Cyclobutyl- but-2-yl, 3-Cyclobutyl-but-2-yl, 3-Cyclobutyl-but-2-yl, 4-Cyclobutyl-but-2-yl, 1- (Cyclobutylmethyl) -eth-l-yl, 1- (Cyclobutylmethyl) -1- (methyl) -eth-l-yl, 1- (Cyclobutyl¬ methyl) -prop-1-yl, Cyclopentylmethyl, 1-Cyclopentyl-ethyl, 2-Cyclopentyl-ethyl, 1-Cyclopentyl-prop-l-yl, 2-Cyclopentyl- prop-1-yl, 3-Cyclopentyl-prop-l-yl, 1-Cyclopentyi-but-l-yl, 2-Cyclopentyl-but-l-yl, 3-Cyclopentyl-but-l-yl, 4-Cyclo- pentyl-but-1-yl, l-Cyclopentyl-but-2-yl, 2-Cyclopentyl- but-2-yl, 3-Cyclopentyl-but-2-yl, 3-Cyclopentyi-but-2-yl, 4-Cyclopentyl-but-2-yl, 1- (Cyclopentylmethyl) -eth-l-yl , 1- (Cyclopentylmethyl) -1- (methyl) -eth-l-yl, 1- (Cyclopentyl - methyl)-prop-1-yl, Cyclohexylmethyl, 1-Cyclohexyl-ethyl, 2-Cyclohexyl-ethyl, 1-Cyclohexyl-prop-l-yl, 2-Cyclohexyl- prop-1-yl, 3-Cyclohexyl-prop-l-yl, 1-Cyclohexyl-but-l-yl, 2-Cyclohexyl-but-l-yl, 3-Cyclohexyl-but-l-yl, 4-Cyclohexyl- but-l-yl, l-Cyclohexyl-but-2-yl, 2-Cyclohexyl-but-2-yl,
3-Cyclohexyl-but-2-yl, 3-Cyclohexyl-but-2-yl, 4-Cyclohexyl- but-2-yl, 1- (Cyclohexylmethyl) -eth-l-yl, 1- (Cyclohexyl- methyl) -1- (methyl) -eth-l-yl, 1- (Cyclohexylmethyl) -prop-1-yl, Cycloheptylmethyl, 1-Cycloheptyl-ethyl , 2-Cycloheptyl-ethyl, 1-Cycloheptyl-prop-l-yl, 2-Cycloheptyl-prop-l-yl, 3-Cyclo- heptyl-prop-1-yl, 1-Cycloheptyl-but-i-yl, 2-Cycloheptyl- but-l-yl, 3-Cycloheptyl-but-l-yl, 4-Cycloheptyl-but-l-yl, l-Cycloheptyl-but-2-yl, 2-Cycloheptyl-but-2-yl, 3-Cyclo- heptyl-but-2-yl, 3-Cycloheptyl-but-2-yl, 4-Cycloheptyl- but-2-yl, 1- (Cycloheptylmethyl) -eth-l-yl, 1- (Cycloheptyl- methyl)-l- (methyl) -eth-l-yl, 1- (Cycloheptylmethyl) -prop-1-yl, Cyclooctylmethyl, 1-Cyclooctyl-ethyl, 2-Cyclooctyl-ethyl,
1-Cyclooctyl-prop-l-yl, 2-CyclooctyI-prop-l-yl , 3-Cyclooctyl- prop-1-yl, 1-Cyclooctyl-but-l-yl, 2-Cyclooctyl-but-l-yl, 3-Cyclooctyl-but-l-yl, 4-Cyclooctyl-out-l-yl, 1-Cyclooctyl- but-2-yl, 2-Cyclooctyl-but-2-yl, 3-Cyclooctyl-but-2-yl , 3-Cyclooctyl-but-2-yl, 4-Cyclooctyi-o„t-2-yl, 1- (Cyclooctyl - methyl) -eth-l-yl, 1- (Cyclooctylmethyl ) -1- (methyl) -eth-l-yl oder 1- (Cyclooctylmethyl) -prop-1-yi , vorzugsweise für Cyclo- propylmethyl, Cyclobutylmethyl, Cyclopentylmethyl oder Cyclo¬ hexylmethyl;
C3-C8-Cycloalkyl-Cχ-C4-alkyl, das ein Carbonyl- oder Thio¬ carbonyl-Ringglied enthält, z.B. für Cyclobutanon-2-ylmethyl, Cyclobutanon-3-ylmethyl, Cyclopentanon-2-ylmethyI , Cyclo- pentanon-3-ylmethyl, Cyclohexanon-2-ylmethy1, Cyclohexanon- 4-ylmethyl, Cycloheptanon-2-ylmethyl , Cyclooctanon-2-yl- methyl, Cyclobutanthion-2-ylmethyl, Cyclobutanthion-3-yl- methyl, Cyclopentanthion-2-ylmethyl , Cyclopentanthion-3-yl- methyl, Cyclohexanthion-2-ylmethyI, Cyclohexanthion-4-yl- methyl, Cycloheptanthion-2-ylmethyI , Cyclooctanthion-2-yl - methyl, 1- (Cyclobutanon-2-yl) ethyl, 1- (Cyclobutanon-3-yl) - ethyl, 1- (Cyclopentanon-2-yl) ethyl, 1- (Cyclopentanon-3-yl) - ethyl, 1- (Cyclohexanon-2-yl) ethyl , 1- (Cyclohexanon-4-yl) - ethyl, 1- (Cycloheptanon-2-yl) ethyl, 1- (Cyclooctanon-2-yl) - ethyl, 1- (Cyclobutanthion-2-yl) ethyl, 1- (Cyclobutanthion-3- yl) ethyl, 1- (Cyclopentanthion-2-yl) ethyl , 1- (Cyclopentan- thion-3-yI)ethyl, 1- (Cyclohexanthion-2-yl) ethyl, l-(Cyclo- hexanthion-4-yl) ethyl, 1- (Cycloheptanthion-2-yl) ethyl, 1- (Cyclooctanthion-2-yl) ethyl, 2- (Cyclobutanon-2-yl)ethyl, 2- (Cyclobutanon-3-yl) ethyl, 2- (Cyclopentanon-2-yl) ethyl, 2- (Cyclopentanon-3-yl) ethyl, 2- (Cycionexanon-2-yl) ethyl, 2- (Cyclohexanon-4-yl) ethyl, 2- (Cycloheptanon-2-yl) ethyl, 2- (Cyclooctanon-2-yl) ethyl, 2- (Cyclobutanthion-2-yl) ethyl, 2- (Cyclobutanthion-3-yl) ethyl, 2- (Cyclopentanthion-2-yl) - ethyl, 2- (Cyclopentanthion-3-yl) ethyl, 2- (Cyclohexanthion- 2-yl)ethyi, 2- (Cyclohexanthion-4-yl) ethyl , 2- (Cycloheptan- thion-2-yl) ethyl, 2- (Cyclooctanthion-2-yl) ethyl, 3-(Cyclo- butanon-2-yl)propyl, 3- (Cyclobutanon-3-yl)propyl, 3- (Cyclo- pentanon-2-yl)propyl, 3- (Cyclopentanon-3-yl)propyl, 3- (Cyclo¬ hexanon-2-yl)propyl, 3- (Cyclohexanon-4-yl)propyl, 3-{Cyclo- heptanon-2-yl)propyl, 3- (Cyclooctanon-2-yl)propyl, 3-(Cyclo- butanthion-2-yl)propyl, 3- (Cyclobutanthion-3-yl)propyl, 3- (Cyclopentanthion-2-yl)propyl, 3- (Cyclopentanthion-3-yl) - propyl, 3- (Cyclohexanthion-2-yl)propyl, 3- (Cyclohexanthion- 4-yl)propyl, 3- (Cycloheptanthion-2-yl)propyl, 3- (Cyclooctan- thion-2-yl)propyl, 4- (Cyclobutanon-2-yl)butyl, 4-(Cyclo- butanon-3-yl)butyl, 4- (Cyclopentanon-2-yl)butyl, 4- (Cyclo- pentanon-3-yl)butyl, 4- (Cyclohexanon-2-yl)butyl, 4-(Cyclo- hexanon-4-yl)butyl, 4- (Cycloheptanon-2-yl)butyl, 4-(Cyclo- octanon-2-yl)butyl, 4- (Cyclobutanthion-2-yl)butyl, 4-(Cyclo- butanthion-3-yl)butyl, 4- (Cyclopentanthion-2-yl)butyl, 4- (Cyclopentanthion-3-yl)butyl, 4- (Cyciohexanthion-2-yl) - butyl, 4- (Cyclohexanthion-4-yl)butyl, 4- (Cycloheptanthion- 2-yl)butyl oder 4- (Cyclooctanthion-2-yI)butyl, vorzugsweise für Cyclopentanon-2-ylmethyl, Cyclohexanon-2-ylmethyl, 2- (Cyclopentanon-2-yl) ethyl oder 2- (Cyclohexanon-2-yl)ethyl;
Unter 3- bis 7-gliedrigem Heterocyclyl sind sowohl gesättigte, partiell oder vollständig ungesättigte als auch aromatische Heterocyclen mit ein bis drei Heteroatomen, ausgewählt aus einer Gruppe bestehend aus ein bis drei Stickstoffatomen, - einem oder zwei Sauerstoff- und einem oder zwei Schwefelatomen, zu verstehen.
Beispiele für gesättigte Heterocyclen, die ein Carbonyl- oder Thiocarbonyl-Ringglied enthalten können, sind:
Oxiranyl, Thiiranyl, Aziridin-1-yl, Aziridin-2-yl, Diaziridin-1-yl, Diaziridin-3-yl, Oxetan-2-yl, Oxetan-3-yl, Thietan-2-yl, Thietan-3-yl, Azetidin-1-yl, Azetidin-2-yl, Azetidin-3-yl, Tetrahydrofuran-2-yl, Tetrahydrofuran-3-yl, Tetra- hydrothiophen-2-yl, Tetrahydrothiophen-3-yl, Pyrrolidin-1-yl, Pyrrolidin-2-yl, Pyrrolidin-3-yl, 1, 3-Dioxolan-2-yl, 1, 3-Dioxolan-4-yl, 1, 3-Oxathiolan-2-yl, 1, 3-Oxathiolan-4-yl, 1, 3-Oxathiolan-5-yl, 1,3-Oxazolidin-2-yl, 1, 3-Oxazolidin-3-yl, 1, 3-Oxazolidin-4-yl, 1,3-Oxazolidin-5-yi, 1, 2-Oxazolidin-2-yl, 1, 2-Oxazolidin-3-yl, 1, 2-Oxazolidin-4-yl, 1, 2-Oxazolidin-5-yl, 1, 3-Dithiolan-2-yl, 1, 3-Dithiolan-4-yl, Pyrrolidin-1-yl, Pyrrolidin-2-yl, Pyrrolidin-5-yl, Tetrahydropyrazol-1-yl, Tetra- hydropyrazol-3-yl, Tetrahydropyrazol-4-yl, Tetrahydropyran-2-yl, Tetrahydropyran-3-yl, Tetrahydropyran-4-yi, Tetrahydrothio- pyran-2-yl, Tetrahydrothiopyran-3-yl, Tetrahydropyran-4-yl,
Piperidin-1-yl, Piperidin-2-yl, Piperidin-3-yl, Piperidin-4-yl, 1, 3-Dioxan-2-yl, 1, 3-Dioxan-4-yl, 1, 3-Dioxan-5-yl, 1,4-Dioxan- 2-yl, 1, 3-Oxathian-2-yl, 1, 3-Oxathian-4-yl , 1, 3-Oxathian-5-yl, 1, 3-Oxathian-6-yl, 1, 4-Oxathian-2-yl, 1, 4-Oxathian-3-yl, Morpholin-2-yl, Morpholin-3-yl, Morpholin-4-yl, Hexahydro- pyridazin-1-yl, Hexahydropyridazin-3-yl, Hexahydropyridazin-4-yl, Hexahydropyrimidin-1-yl, Hexahydropyrimiάin-2-yl, Hexahydro- pyrimidin-4-yl, Hexahydropyrimidin-5-yl, ?iperazin-l-yl, Piperazin-2-yl , Piperazin-3-yl, Hexahydro-1, 3, 5-triazin-l-yl, Hexahydro-1, 3, 5-triazin-2-yl, Oxepan-2-yl, Oxepan-3-yl, Oxepan-4-yl, Thiepan-2-yl, Thiepan-3-yl, Thiepan-4-yl, 1, 3-Dioxepan-2-yl, 1, 3-Dioxepan-4-yl, 1, 3-Dioxepan-5-yl, 1, 3-Dioxepan-6-yl, 1, 3-Dithiepan-2-yl, 1, 3-Dithiepan-2-yI, 1, 3-Dithiepan-2-yl, 1, 3-Dithiepan-2-yl , 1 , 4-Dioxepan-2-yl, 1, 4-Dioxepan-7-yl, Hexahydroazepin-1-yl, Hexahydroazepin-2-yl, Hexahydroazepin-3-yl, Hexahydroazepin-4-yl , Hexahydro-1, 3- diazepin-1-yl, Hexahydro-1, 3-diazepin-2-yl , Hexahydro-1 , 3- diazepin-4-yl, Hexahydro-1, 4-diazepin-l-yl und Hexahydro-1, 4- diazepin-2-yl;
Beispiele für ungesättigte Heterocyclen, die ein Carbonyl- oder Thiocarbonyl-Ringglied enthalten können, sind:
Dihydrofuran-2 -yl, 1, 2-Oxazolin-3 -yl, 1, 2 -Oxazoiin- 5-yl, 1, 3-Oxazoiin-2 -yl;
Unter den Heteroaromaten sind die 5- und 6-gliedrigen bevorzugt, also z.B.
Furyl wie 2-Furyl und 3-Furyl, Thienyl wie 2-Thienyl und 3-Thienyl, Pyrrolyl wie 2-Pyrrolyl und 3-?yrrolyl, Isoxazolyl wie 3-Isoxazolyl, 4-Isoxazolyl und 5-Isoxazolyl , Isothiazolyl wie 3-Isothiazolyl, 4-Isothiazolyl und 5-Isothiazolyl, Pyrazolyl wie 3-Pyrazolyl, 4-Pyrazolyl und 5-Pyrazolyl, Oxazolyl wie
2-Oxazolyl, 4-Oxazolyl und 5-Oxazolyl, Thiazolyl wie 2-Thiazolyl,
4-Thiazolyl und 5-Thiazolyl, Imidazolyl wie 2-Imidazolyl und 4-Imidazolyl, Oxadiazolyl wie 1, 2 , 4-Oxadiazol-3-yl,
1, 2, 4-Oxadiazol-5-yl und 1, 3 , 4-Oxadiazol-2-yl, Thiadiazolyl wie l,2,4-Thiadiazol-3-yl, 1, 2, 4-Thiadiazol-5-yI und
1, 3, 4-Thiadiazol-2-yl, Triazolyl wie 1, 2 , 4-Triazol-l-yl, 1, 2, 4-Triazol-3-yl und 1, 2, 4-Triazol-4-yl , Pyridinyl wie 2-Pyridinyl, 3-Pyridinyl und 4-Pyridinyl, Pyridazinyl wie 3-Pyridazinyl und 4-Pyridazinyl, Pyrimidinyl wie 2-Pyrimidinyl, 4-Pyrimidinyl und 5-Pyrimidinyl, des weiteren 2-Pyrazinyl,
1, 3, 5-Triazin-2-yl und 1, 2 , 4-Triazin-3-yl, insbesondere Pyridyl, Pyrimidyl, Furanyl und Thienyl. Im Hinblick auf die Verwendung der substituierten 4, 5-Di (tri¬ fluormethyl)pyrazole I als Herbizide sind diejenigen Verbindungen I bevorzugt, bei denen die Substituenten folgende Bedeutung haben, und zwar jeweils für sich allein oder in Kombination:
R1 Cχ-C4-Alkyl, insbesondere Methyl;
R2 Wasserstoff, Fluor oder Chlor;
R3 Cyano, Halogen oder Trifluormethyl, insbesondere Chlor;
R4 Wasserstoff, Nitro, Cyano, Halogen, -0-X2-R5, -0-CO-X:-R5,
-N(X2-R5) (X3-R6) , -N(X2-R5) -S02-X3-Rb, -N(S02-X2-RB) (S02-X3-Rb) , -N(X2-R5) (C0-X3-R6) , -S-X2-R5, -SO-X:-R5, -S02-X:-R5, -S02-0-X2-R5, -S02-N(X2-R5) (X3-R6) , -C (=NOR7) -X2-R5, -CO-0-X2-R5 oder -CO-N(X2-R5) (X3-R6) ,
insbesondere Wasserstoff, Nitro, Halogen, -N(X:-R5) (X3-Rb) , -N(X2-R5)-S02-X3-R6, -N(S02-X2-R5) (S02-X3-R6) , -N(X2-R5) (C0-X3-R6) , -S-X2-R5, -SO-X2-R=, -S0;-X2-R5, -S02-0-X2-Rs, -S02-N(X2-R5) (X3-R6) , -CO-0-X2-R5 oder -CO-N(X2-R5) (X3-R6) ;
X1 eine chemische Bindung oder eine Ethen- 1, 2 -diyl - , Methylen- oder Ethylen-Kette, die jeweils unsubstituiert sein oder einen Halogen- oder Cx-C4 -Alkyl-Substituenten tragen kann,
insbesondere eine chemische Bindung, -CH2-CH(Halogen) - oder -CH=C(Halogen) - ;
X2, X3 unabhängig voneinander eine chemische Bindung oder eine Metr.ylen- oder Ethylen- Kette, die jeweils unsubstituiert sein oder einen oder zwei der folgenden Substituenten tragen kann: Halogen, Cyano, Cχ-C4-Alkyl und/oder Cx-C4-Halogenalkyl,
insbesondere eine chemische Bindung oder eine Methylen-Kette;
R5, R6 unabhängig voneinander -Z-R8, Wasserstoff, Cχ-C4-Alkyl, Cι-C4-Halogenalkyl, C2-C4-Alkenyl , C2-C4-Halogenalkenyl, C2-C4-Alkinyl, C3-C8-Cycloalkyl, das ein Carbonyl- oder Thiocarbonyl-Ring¬ glied enthalten kann, Phenyl oder 3- bis 7-gliedriges Hetero¬ cyclyl, das ein Carbonyl- oder Thiocarbonyl-Ringglied enthal- ten kann, wobei die Cycloalkylringe, der Phenylring und die Heterocy- clylringe unsubstituiert sein oder ein oder zwei Substituen¬ ten tragen können, jeweils ausgewählt aus der Gruppe beste¬ hend aus Halogen, Nitro, Amino, Hydroxy, Carboxy, Cχ-C4-Alkyl, Cχ-C4-Halogenalkyl, Cχ-C4-Alkoxy, Cχ-C4-Halogenalkoxy und (Cχ-C4-Alkoxy) carbonyl,
insbesondere -Z-R8, Wasserstoff, Cχ-C4-Alkyl, Cχ-C4-Halogen- alkyl, C2-C4-Alkenyl, C2-C4-Halogenalkenyl , C2-C4 -Alkinyl oder Phenyl, das unsubstituiert sein oder ein oder zwei Substi¬ tuenten tragen kann, ausgewählt aus der Gruppe bestehend aus Halogen, Nitro, Amino, Hydroxy, Carboxy, Cχ-C4-Alkyl, Cχ-C4-Halogenalkyl, Cχ-C4-Alkoxy, Cχ-C;-Halogenalkoxy und (Cχ-C4-Alkoxy) carbonyl;
ganz besonders bevorzugt sind Wasserstoff, Cχ-C4-Alkyl, Cχ-C4-Halogenalkyl, C2-C4-Alkenyl oder C: -C4 -Alkinyl;
R7 Wasserstoff oder Cχ-C4-Alkyl;
Z Methylen, das unsubstituiert oder durch C:-C4-Alkyl,
Cχ-C4-Alkoxy-Cχ-C4-alkyl, Cι-C4-Alkylthio-Cι-C4-alkyl oder (Cχ-C4-Alkoxy) carbonyl-Cχ-C4-alkyl substituiert sein kann,
insbesondere Methylen oder durch Cχ-C4-Alkyl substituiertes Methylen;
RS Nitro, Cyano, -OR9, -N(R9)R10, -SR9, -S02-R9, -CO-R9,
-C (=NOR1:L) -R5, -CO-OR9, -CO-N(R9)R10 oder -CO-N(R9) -OR10,
insbesondere -OR9, -N(R9)R10, -SR9 oder -CO-OR9; ganz besonders bevorzugt ist -CO-OR9;
R9, R10 unabhängig voneinander Wasserstoff, Cχ-C6-Alkyl, Cχ-C6-Halogenalkyl, C2-C6-Alkenyl, C2-C6-Halogenalkenyl, C2-C6-Alkinyl , C;-C6-Halogenalkinyl , C3-C8-Cycloalkyl, C3-C8-Cycloalkyl-C:-C4-alkyl oder Phenyl, insbesondere Wasserstoff oder Cχ-C6-Alkyl;
R11 Wasserstoff oder Cχ-C4-Alkyl.
Ganz besonders bevorzugt sind die in der folgenden Tabelle 1 auf¬ geführten Verbindungen Ia ( = I mit R1 = Methyl; R2 = Wasserstoff; R3 = Chlor) : Tabelle 1
Nr. -Xx-R4
Ia.033 -CH2-NH-OH la.034 -CH2-N(CH3)-OCH3 la.035 -SH la.036 -SCH3 la.037 -CH2-ΞCH3 la.038 -SO-CH3
Ia.039 -S02-CH3 la.040 -S02-OH la.041 -S02-OCH3 la.042 -S02-NH2 la.043 -S02~NH-CH3
Ia.044 -S02-N(CH3)2 la.045 -CHO la.046 -CO-CH3 la.047 -CO- (2-Methoxycarbonylpyrrolicin-l-yl)
Ia.048 -CH(=N-OH) la.049 -CH(=N-OCH3) la.050 -CO-OH la.051 -CO-OCH3 la.052 -CO-OC2H5
Ia.053 -CO-OCH(CH3) 2 la.054 -CO-OCH2-CO-OCH3 la.055 -CO-O-Cyclopentyl la.056 -CO-O-Phenyl
Ia.057 -CO-OCH2-Phenyl la.058 -CO-OCH2- (2-Oxiranyl) la.059 -CO-O- (3-Acetoxytetrahydrofuran -4-yl)
Ia.060 -CO-OCH2- (Morpholin-4-yl)
Ia.061 -CH2-CH(Cl)-CO-OCH3
Ia.062 -CH2-CH(Cl)-CO-OC2H5 la.063 -CH2-CH(Cl) -CO-OC (CH3) 3
Ia.064 -CH2-CH(Cl)-CO-OCH2-CO-OCH3 la.065 -CH2-CH(Br)-CO-OCH3 la.066 -CH2-CH(Br) -CO-OC2H5 la.067 -CH2-CH(Br) -CO-OC (CH3) 3 la.068 -CH2-CH(Br)-CO-OCH2-CO-OCH3
Ia.069 -CH2-CH(CN) -CO-OCH3
Ia.070 -CH2-CH(CN)-CO-OC2H5 Nr. -χ!-R4
Ia.071 -CH2-CH(CN) -CO-OC (CH3) 3
Ia.072 -CH2-CH(CN)-CO-OCH2-CO-OCH3
Ia.073 -CH2-CH(OH) -CO-OCH3
Ia.074 -CH2-CH(OH) -CO-OC2H5 la.075 -CH2-CH(OH)-CO-OC(CH3)3
Ia.076 -CH2-CH(OH) -CO-OCH2-CO-OCH3 la.077 -CH=C(Cl)-CO-OCH3
Ia.078 -CH=C(Cl)-CO-OC2H5 la.079 -CH=C(C1) -CO-OC(CH3) 3
Ia.080 -CH=C (Cl)-CO-OCH2-CO-OCH3 la.081 -CH=C(Br)-CO-OCH3 la.082 -CH=C(Br)-CO-OC2H5 la.083 -CH=C(Br) -CO-OC(CH3) 3 la.084 -CH=C(Br) -CO-OCH2-CO-OCH3 la.085 -CH=C(CN)-CO-OCH3
Ia.086 -CH=C(CN)-CO-OC2H5 la.087 -CH=C (CN) -CO-OC(CH3) 3 la.088 -CH=C (CN) -CO-OCH2-CO-OCH3 la.089 -CO-SCH3 la.090 -CO-SC2H5 la.091 -CO-NH2 la.092 -CO-NH-CH3 la.093 -CO-N(CH3)2 la.094 -CO-NH-CH2-CO-OCH3
Ia.095 -CO-N(CH3) -CH2-CO-OCH3
Ia.096 -CH2-CH(C1)-C0-NH2
Ia.097 -CH2-CH(C1)-C0-NH-CH3
Ia.098 -CH2-CH(Cl) -CO-N (CH3) 2 la.099 -CH2-CH(Cl)-CO-NH-CH2-CO-OCH3 la.100 -CH2-CH(C1)-C0-N(CH3) -CH2-CO- OCH3
Ia.101 -CH2-CH(Br)-CO-NH2
Ia.102 -CH2-CH(Br)-CO-NH-CH3
Ia.103 -CH2-CH(Br) -CO-N(CH3) 2 la.104 -CH2-CH(Br) -CO-NH-CH2-CO-OCH3 la.105 -CH2-CH(Br)-CO-N(CH3) -CH2~CO- OCH3 la.106 -CH2-CH(CN)-CO-NH2 la.107 -CH2-CH(CN)-CO-NH-CH3
Ia.108 -CH2-CH(CN) -CO-N(CH3) 2
Ia.109 -CH2-CH(CN) -CO-NH-CH2-CO-OCH3 Nr. -Xx-R4
Ia.110 -CH2-CH(CN) -CO-N(CH3) -CH2-CO-OCH3
Ia.lll -CH=C(Cl)-CO-NH2
5 Ia.112 -CH=C(Cl)-CO-NH-CH3
Ia.113 -CH=C(C1)-C0-N(CH3 ) 2 la.114 -CH=C (Cl) -CO-NH-CH2-CO-OCH3 la.115 -CH=C(Cl) -CO-N(CH3) -CH2-CO-OCH3 la.116 -CH=C(Br)-CO-NH2
10
Ia.117 -CH=C (Br) -CO-NH-CH3 la.118 -CH=C (Br) -CO-NH (CH3) 2
Ia.119 -CH=C (Br) -CO-NH-CH2-CO-OCH3
Ia.120 -CH=C(Br) -CO-N(CH3) -CH2-CO-OCH:.
15 la.121 -CH=C(CN)-CO-NH2 la.122 -CH=C (CN) -CO-NH-CH3 la.123 -CH=C (CN) -CO-N(CH3) 2
Ia.124 -CH=C (CN) -CO-NH-CH2-CO-OCH3
20 la.125 -CH=C(CN)-CO-N(CH3) -CH2-CO-OCH3
Ia.126 -CO-NH-OH
Ia.127 -CO-N(CH3)-OCH3
Ia.128 -OC2H5
Ia.129 -0~n-C3H7
25 la.130 -0-n-C4H9 la.131 -OCH2-CH(CH3)2 la.132 -OCH(CH3) -C2H5 la.133 -OC(CH3)3
30 la.134 -OCH2-CH=CH2 la.135 -OCH2-CH=CH-CH3 la.136 -OCH2-CH2-CH=CH2
Ia.137 -OCH(CH3)-CH=CH2
35 la.138 -OCH2-OCH3 la.139 -OCH2-CH2-OCH3
Ia.140 -OCH2-CN la.141 -OCH2-CH2F
40 la.142 -OCH2-CF3 la.143 -0CH2-CH2C1 la.144 -OCH2-CO-OC2H5 la.145 -OCH2-CO-N(CH3)2
Ia.146 -OCH(CH3)-CO-OCH3
-iς
Ia.147 -OCH(CH3)-CO-OC2H5
Ia.148 -OCH(CH3)-CO-N(CH3 ) 2 Nr. -X^R4
Ia.149 -O-Cyclobutyl
Ia.150 -O-Cyclohexyl la.151 -OCH2-Cyclobutyl
Ia.152 -OCH2-Cyclopentyl la.153 -OCH2-Cyclohexyl
Ia.154 -0-CO-C2H5
Ia.155 -0-CO-n-C3H7
Ia.156 -0-CO-n-C4H9
Ia.157 -0-CO-CH(CH3)2
Ia.158 -0-CO-CH2-CH(CH3)2
Ia.159 -0-CO-CH(CH3)-C2H5
Ia.160 -0-CO-C(CH3)3
Ia.161 -0-CO-CH2Cl
Ia.162 -0-CO-CH2-OCH3
Ia.163 -O-CO-Cyclobutyl
Ia.164 -O-CO-Cyclopentyl
Ia.165 -O-CO-Cyclohexyl
Ia.166 -O-CO-Phenyl
Ia.167 -NH-C2H5
Ia.168 -N(C2H5)2
Ia.169 -NH-n-C3H7
Ia.170 -N(n-C3H7)2
Ia.171 -NH-n-C4H9
Ia.172 -N(n-C4H9 ) 2
Ia.173 -NH-CH(CH3)2 la.174 -N(CH(CH3 ) 2 ) 2
Ia.175 -NH-CH2-CH(CH3)2
Ia.176 -N(CH2-CH(CH3)2)2
Ia.177 -NH-CH2-CH=CH2 la.178 -N(CH2-CH=CH2)2
Ia.179 -NH-CH2-C≡CH
Ia.180 -N(CH2-C≡CH)2 la.181 -NH-CO-C2H5 la.182 -NH-CO-n-C3H7 la.183 -NH-CO-n-C4H9 la.184 -NH-CO-CH(CH3)2
Ia.185 -NH-CO-CH2-CH(CH3)2
Ia.186 -NH-CO-CH(CH3) -C2H5
Ia.187 -NH-CO-C(CH3)3 Nr. -X1-R4
Ia.188 -NH-C0-CH2C1 la.189 -NH-C0-CH2-0CH3 la.190 -NH-CO-Cyclobutyl la.191 -NH-CO-Cyclopentyl
Ia.192 -NH-CO-Cyclohexyl la.193 -NH-CO-Phenyl la.194 -N(S02-C2H5)2 la.195 -NH-S02-C2H5 la.196 -N(S02-n-C3H7)2 la.197 -NH-S02-n-C3H7 la.198 -N(S02-n-C4Hq)2 la.199 -NH-S02-n-C4H9
Ia.200 -N(S02-CH(CH3)2)2
Ia.20l -NH-S02-CH(CH3)2
Ia.202 -N(S02-CH2-CH(CH3)2)2
Ia.203 -NH-S02-CH2-CH CH3)2
Ia.204 -N(S02-CH2C1)2 la.205 -NH-S02-CH2C1 la.206 -N(S02-CH2C1)2 la.207 -NH-S02-CH2C1
Ia.208 -N(S02-Phenyl)2 la.209 -NH-S02-Phenyl la.210 -N(S02-CH2-Phenyl)2 la.211 -NH- S02 -CH2 - Phenyl la.212 -SC2H5 la.213 -S-n-C3H7 la.214 -S-n-C4H9 la.215 -SCH(CH3)2 la.216 -SCH2-CH(CH3)2 la.217 -SCH(CH3) -C2H5 la.218 -SC(CH3)3 la.219 -SCH2-CH=CH2
Ia.220 -SCH2-CH=CH-CH3
Ia.221 -SCH2-CH2-CH=CH2 la.222 -SCH(CH3) -CH=CH2 la.223 -SCH2-C≡CH
Ia.224 -SCH(CH3) -C≡CH la.225 -SCH2-0CH3 la.226 -SCH2-CH2-OCH3 Nr. -Xi-R4
Ia.227 -SCH2-CN
Ia.228 -SCH2~CH2F
Ia.229 -SCH2-CF3
Ia.230 -SCH2-CH2C1
Ia.231 -SCH2-CO-OCH3
Ia.232 -SCH2-CO-OC2H5
Ia.233 -SCH2-CO-N(CH3)2
Ia.234 -SCH(CH3) -CO-OCH3
Ia.235 -SCH(CH3) -CO-OC2H5
Ia.236 -SCH(CH3) -CO-N(CH3)2 la.237 -S-Cyclobutyl
Ia.238 -S-Cyclopentyl
Ia.239 -S-Cyclohexyl
Ia.240 -SCH2-Cyclobutyl
Ia.241 -SCH2-Cyclopentyl
Ia.242 -SCH2-Cyclohexyl la.243 -SCH2-Phenyl la.244 -S-CO-CH3
Ia.245 -S-CO-C2H5
Ia.246 -S-CO-n-C3H7 la.247 -S-CO-n-C4H9 la.248 -S-CO-CH(CH3)2 la.249 -S-CO-CH2-CH(CH3)2 la.250 -S-CO-CH(CH3)-C2H5 la.251 -S-CO-C(CH3)3 la.252 -S-C0-CH2C1 la.253 -S-CO-CH2-OCH3 la.254 -S-CO-Cyclobutyl la.255 -S-CO-Cyclopentyl la.256 -S-CO-Cyclohexyl la.257 -S-CO-Phenyl la.258 -SO-C2H5 la.259 -SO-n-C3H7 la.260 -SO-n-C4H9 la.261 -SO-CH(CH3)2
Ia.262 -SO-CK2-CH(CH3)2 la.263 -SO-CH(CH3)-C2H5
Ia.264 -SO-C(CH3)3
Ia.265 -SO-CH2-CH=CH2 Nr. -χ!-R4
Ia.305 -CO-C2H5
Ia.306 -CO-n-C3H7 la.307 -CO-n-C4H9
Ia.308 -CO-CH(CH3)2
Ia.309 -CO-CH2-CH(CH3)2 la.310 -CO-CH(CH3) -CH2-CH3
Ia.311 -CO-C(CH3)3 la.312 -C0-CH2C1
Ia.313 -CO-Cyclobutyl la.314 -CO-Cyclopentyl la.315 -CO-Cyclohexyl la.316 -CO-Phenyl
Ia.317 -CH(=N-OC2H5)
Ia.318 -CH(=N-0-n-C3H7) la.319 -CH(=N-0-n-C4H9) la.320 -CH[=N-OCH(CH3)2]
Ia.32I -CH[=N-OCH2-CH(CH3)2] la.322 -CH[=N-OCH (CH3) -C2H5] la.323 -CH[=N-OC(CH3)3]
Ia.224 -CH(=N-OCH2-OCH3)
Ia.325 -CH(=N-0-Cyclobuty1) la.326 -CH(=N-0-Cyclopentyl) la.327 -CH(=N-0-Cyclohexyl) la.328 -CH(=N-0-Phenyl) la.329 -CH(=N-OCH2-Phenyl) la.330 -CO-0-n-C3H7 la.331 -C0-0-n-C4H9 la.332 -CO-OCH2-CH(CH3)2 la.333 -CO-OCH(CH3) -CH2-CH3
Ia.334 -CO-OC (CH3)3
Ia.335 -CO-OCH2-CH=CH2
Ia.336 -CO-OCH2-CH=CH-CH3
Ia.337 -CO-OCH2-CH2-CH=CH2
Ia.338 -CO-OCH(CH3) -CH=CH2
Ia.339 -CO-OCH2-C≡CH la.340 -CO-OCH(CH3)-C≡CH
Ia.341 -CO-OCH2-CH2-OCH3
Ia.342 -CO-OCH2-CN
Ia.343 -CO-OCH2-CH2F Nr. -χ!-R4
Ia.383 -CH2-CH (CN) -CO-0-n-C3H7
Ia.384 -CH2-CH (CN) -CO-0-n-C4H9 la.385 -CH2"CH (CN) -CO-OCH (CH3 ) 2 la.386 -CH2-CH (CN) -CO-OCH2-CH (CH3 ) 2 la.387 -CH2-CH (CN) -CO-OCH (CH3 ) -C2H5 la.388 -CH2-CH (CN) -CO-OCH2-CH=CH2 la.389 -CH2-CH(CN)-CO-OCH2-C≡CH la.390 -CH2-CH (CN) -CO-OCH2-CO-OC2H5 la.391 -CH2-CH (CN) -CO-OCH2-CO-N (CH3 ) : la.392 -CH2-CH(CN) -CO-OCH (CH3) -CO-OCH3 la.393 -CH2-CH(CN) -CO-OCH (CH3)-CO-OC:H5 la.394 -CH2-CH(CN) -CO-OCH (CH3) -CO-N(CH3) 2 la.395 -CH=C(Cl)-CO-OH la.396 -CH=C (Cl ) -CO-0-n-C3H7 la.397 -CH=C (Cl ) -CO-0-n-C4H9 la.398 -CH=C (Cl ) -CO-OCH (CH3 ) 2 la.399 -CH=C (CI ) -CO-OCH2-CH ( CH3 ) 2 la.400 -CH=C (Cl ) -CO-OCH (CH3 ) -C2H5 la.401 -CH=C (Cl ) -CO-OCH2-CH=CH2 la.402 -CH=C(Cl)-CO-OCH2-C≡CH la.403 -CH=C (Cl ) -CO-OCH2-CO-OC2H5 la.404 -CH=C ( Cl ) -CO-OCH2 -CO-N ( CH3 ) 2
Ia.405 -CH=C ( Cl ) -CO-OCH (CH3 ) -CO-OCH3 la.406 -CH=C ( Cl ) -CO-OCH (CH3 ) -CO-OC2K5
Ia.407 -CH=C ( Cl ) -CO-OCH (CH3 ) -CO-N (CH3 ) 2
Ia.408 -CH=C(Br)-CO-OH la.409 -CH=C (Br) -CO-0-n-C3H7 la.410 -CH=C (Br) -CO-0-n-C4H9 la.411 -CH=C (Br ) -CO-OCH (CH3 ) 2 la.412 -CH=C (Br ) -CO-OCH2-CH (CH3) 2 la.413 -CH=C (Br) -CO-OCH (CH3 ) -C2H5 la.414 -CH=C (Br) -CO-OCH2-CH=CH2 la.415 -CH=C (Br) -CO-OCH2-C≡CH la.416 -CH=C (Br) -CO-OCH2-CO-OC2H5 la.417 -CH=C ( Br ) -CO-OCH2-CO-N ( CH3 ) 2 la.418 -CH=C (Br) -CO-OCH (CH3 ) -CO-OCH3
Ia.419 -CH=C (Br) -CO-OCH (CH3 ) -CO-OC2H5 la.420 -CH=C (Br) -CO-OCH (CH3 ) -CO-N (CK3) 2 la.421 -CH=C(CN)-CO-OH
Des weiteren sind die 4, 5-Di (trifluormethyl)pyrazole der Formeln Ib und lc besonders bevorzugt, insbesondere
die Verbindungen Ib.001 - Ib.616, die sich von den entspre- chenden Verbindungen Ia.001 - Ia.616 lediglich dadurch unter¬ scheiden, daß R2 für Fluor steht:
- die Verbindungen Ic.001 - Ic.616, die sich von den entspre¬ chenden Verbindungen Ia.001 - Ia.6i6 lediglich dadurch untei scheiden, daß R2 für Chlor steht:
Die substituierten 4, 5-Di (trifluormethyl)pyrazole der Formel I sind auf verschiedene Weise erhältlich, insbesondere nach einem der folgenden Verfahren:
A) 1,3-dipolare Cycloaddition von Nitriliminen
A.I) Vorstufe: Herstellung von Benzoesäurehalogenid-hydra∑oni den III auf an sich bekannte Weise durch Überführung von Benzaldehyden VII in Hydrazone VIII und anschließender Halogenierung von VIII {vgl. z.B. ?. Wolkoff, Can. J. Chem. 5J., 1333 (1975) und W. Fliege et al., Chem. Ber. 117. 1194 (1984)}:
VI I VI I I
I Halogenierung Ha i
III (Hai = Chlor oder Brom)
Ais Halogenierungsmittel kommen vorzugsweise Chlor, Brom, N-Chlorsuccinimid und N-Bromsuccinimid in Betracht.
Die Reaktionsführung erfolgt üblicherweise in einem iner¬ ten organischen Losungs-/Verdünnungsmittel , z.B. einem Ether wie Diethylether, Methyl - tert . -butylether und Tetrahydrofuran, einem niederen Alkohol wie Methanol und Ethanol, einer Carbonsäure wie Essigsäure, einem aprotischen Solvens wie Acetonitril und Dimethylformamid oder in einem Gemisch derartiger Lösungsmittel.
In der Regel arbeitet man zwischen Schmelz- und Siede¬ temperatur der Reaktionsmischung, insbesondere bei (-50) bis 50°C.
Hydrazinderivat und Halogenierungsmittel werden allgemein ca. äquimolar oder - um einen möglichst vollständigen Umsatz der jeweiligen Ausgangsverbindung zu erhalten - im Überschuß, bis etwa zur 5fachen molaren Menge, bezogen auf die Menge an VII bzw. VIII, eingesetzt.
Die Verfahrensprodukte III können gewünschtenfalls auch als Säureadditionssalze III-HΨ, wobei Ψ insbesondere für Halogenid, Carboxylat oder Sulfat steht, erhalten werden.
A.2) Umsetzung der Benzoesäurehalogenid-hydrazonide III mit Hexafluor-2 -butin oder einem Hexafluorbutenderivat IV in Gegenwart einer Base:
III
Base
L steht für eine übliche Abgangsgruppe, z.B. für Haloge- nid, Carboxylat, Mesylat, p-Tolylsulfonat (Tosylat) oder Trifluormethansulfonat (Triflat) .
Üblicherweise arbeitet man in einem inerten organischen Losungs-/Verdünnungsmitte1, z.B. in einem aromatischen Kohlenwasserstoff wie n-Hexan und Toluol, einem Ether wie Diethylether, Methyl-tert. -butylether und Tetrahydro- furan, einem Ester wie Ethylacetat, oder in einem aprotischen Solvens wie Acetonitril und Dimethylformamid.
Geeignete Basen sind beispielsweise Alkali- und Erd¬ alkalimetallhydroxide, Alkali- und Erdalkalimetall- hydrogencarbonate, Alkali- und Ξrdalkalimetallcarbonate sowie tertiäre Amine wie Triethylamin und Pyridin.
Die Reaktionsführung erfolgt in der Regel zwischen dem Schmelz- und Siedepunkt der Reaktionsmischung, ins- besondere bei (-50) bis 50°C.
Hexafluor-2-butin oder IV werden allgemein in etwa aquimolarer Menge oder im Überschuß, bis etwa zur 5facher, molaren Menge, bezogen auf die Menge an III, eingesetzt.
Für eine weitgehend vollständige Umsetzung von III mit Hexafluor-2-butin empfiehlt sich die Verwendung von min¬ destens einem Äquivalent an Base; für eine weitgehend vollständige Umsetzung von III mit IV ist dagegen der Einsatz von mindestens zwei Äquivalenten Base, bezogen auf die Menge an III, empfehlenswert. Setzt man die Base im Überschuß ein, so erfolgt dies üblicherweise bis zur 5fachen molaren Menge, bezogen auf die Menge an III. B) Reaktionen am Phenylring
B.l) Nitrierung von 4 , 5-Di (trifluormethyl)pyrazolen I, bei denen X1-R4 für Wasserstoff steht, und Umsetzung der Verfahrensprodukte zu weiteren Verbindungen der Formel I
Als Nitrierungs-Reagenzien kommer. oeispielsweise Sal¬ petersäure in unterschiedlicher Konzentration, auch kon¬ zentrierte und rauchende Salpetersäure, Mischungen von Schwefelsäure und Salpetersäure, Acetylnitrate und Alkyl nitrate in Betracht.
Die Reaktion kann entweder lösur.gsrrittelfrei in einem Überschuß des Nitrier-Reagenzes oder in einem inerten Losungs- oder Verdünnungsmittel durcngeführt werden, wobei z.B. Wasser, Mineralsäuren, organische Säuren, Halogenkonlenwasserstoffe wie Metr.ylenchlorid, Anhydride wie Essigsäureanhydrid und Miscr.^ngen dieser Solventien geeignet sind.
Ausgangsverbindung I (-X1-R4 = H) und Nitrier-Reagenz werden zweckmäßigerweise in etwa äquimolaren Mengen ein¬ gesetzt; zur Optimierung des Umsatzes an Ausgansverbin¬ dung kann es jedoch vorteilhaft sein, das Nitrier-Reagenz im Überschuß zu verwenden, bis etwa zur lOfachen molaren Menge. Bei der Reaktionsführung onne Lösungsmittel im Nitrier-Reagenz liegt dieses in einem noch größeren Über¬ schuß vor.
Die Reaktionstemperatur liegt normalerweise bei (- 100) bis 200°C, bevorzugt bei (- 30) bis 50°C.
Die Verfahrensprodukte mit -X1-R4 = N02 können dann zu
Verbindungen I mit -X1-R4 = Amino oder -NHOH reduziert werden:
Reduktion I {-X^R4 = N02} *• {-Xi-R4 = NH2, NHOH} Die Reduktion kann mit einem Metall wie Eisen, Zink oder Zinn unter sauren Reaktionsbedingungen oder mit einem komplexen Hydrid wie Lithiumaluminiumhydrid und Natrium¬ borhydrid erfolgen, wobei als Lösungsmittel - in Abhän- gigkeit vom gewählten Reduktionsmittel - z.B. Wasser,
Alkohole wie Methanol, Ethanol und Isopropanol oder Ether wie Diethylether, Methyl-tert.-butylether, Dioxan, Tetra¬ hydrofuran und Ethylenglykoldimethylether, in Betracht kommen.
Bei der Reduktion mit einem Metall arbeitet man vorzugs¬ weise lösungsmittelfrei in einer anorganischen Säure, insbesondere in konzentrierter oder verdünnter Salzsäure, oder in einer organischen Saure wie Essigsäure. Es ist aber auch möglich, der Säure ein inertes Lösungsmittel, z.B. eines der vorstehend genannten, zuzumischen.
Die Ausgangsverbindung I (-X1-R4 = NO:) und das Reduk¬ tionsmittel werden zweckmäßigerweise in etwa äquimolaren Mengen eingesetzt; zur Optimierung des Reaktionsverlaufes kann es jedoch vorteilhaft sein, eine der beiden Kompo¬ nenten im Überschuß zu verwenden, bis etwa zur lOfachen molaren Menge.
Die Menge an Säure ist nicht kritisch. Um die Ausgangs¬ verbindung möglichst vollständig zu reduzieren verwendet man zweckmäßigerweise mindestens eine äquivalente Menge an Säure.
Die Reaktionstemperatur liegt im allgemeinen bei (-30) bis 200°C, bevorzugt bei 0 bis 80°C.
Zur Aufarbeitung wird die Reaktionsmischung üblicherweise mit Wasser verdünnt und das Produkt durch Filtration, Kristallisation oder Extraktion mit einem Lösungsmittel, das mit Wasser weitgehend unmischbar ist, z.B. mit Essig- säureethylester, Diethylether oder Methylenchlorid, iso¬ liert. Gewünschtenfalls kann das Produkt anschließend wie üblich gereinigt werden.
Die Nitrogruppe der Verbindungen I mit -Xi-R4 = Nitro kann auch katalytisch mittels Wasserstoff hydriert wer¬ den. Hierfür geeignete Katalysatoren sind beispielsweise Raney-Nickel, Palladium auf Kohle, Palladiumoxid, Platin und Platinoxid, wobei im allgemeinen eine Katalysator¬ menge von 0,05 bis 10,0 mol-%, bezogen auf die zu reduzierende Verbindung, ausreichend ist. Man arbeitet entweder lösungsmittelfrei oder in einem inerten Losungs- oder Verdünnungsmittel, z.B. in Essig¬ säure, einem Gemisch aus Essigsäure und Wasser, Essig- säureethylester, Ethanol oder ir. Toluol.
Nach Abtrennen des Katalysators kann die Reaktionslösung wie üblich auf das Produkt hin aufgearbeitet werden.
Die Hydrierung kann bei Normaldruck oder unter erhöhtem Druck durchgeführt werden.
Die Aminogruppe kann anschließend in üblicher Weise diazo- tiert werden. Aus den Diazoniumsalze.-. sind dann Verbindungen I zugänglich mit - -X1-R4 = Cyano oder Halogen {zur Sandmeyer-Reaktion vgl. beispielsweise Houben-Weyl, Methoden der Organischen Chemie, Georg Thieme Verlag Stuttgart, Bd. 5/4, 4. Auf¬ lage 1960, S. 438ff .} , -X^'-R4 = Hydroxy {zur Phenolverkochung vgl. beispiels- weise Org. Synth. Coil. Vol. 3 (1955) , S. 130} ,
-X1-R4 = Mercapto oder Cx-C6 -Alkylthio {vgl. hierzu beispielsweise Houben-Weyl, Methoden der Organischen Chemie, Georg Thieme Verlag Stuttgart, Bd. Ξll 1984, S. 43 und 176} , - -X1-R4 = Halogensulfonyl {vgl. hierzu beispielsweise Houben-Weyl, Methoden der Organischen Chemie, Georg Thieme Verlag Stuttgart, Bd. Eil 1984, S. 1069f.}, -Xi-R4 = z.B. -CH2-CH (Halogen) -CO-0-X2-R5, -CH=C (Kalo¬ gen) -CO-0-X2-R5 {allgemein handelt es sich hierbei um Produkte einer Meerwein-Arylierung; vgl. hierzu bei¬ spielsweise CS. Rondestredt, Org. React. H, 189 (1960) und H.P. Doyle et al., J. Org. Cr.em. 42, 2431 (1977)} :
2-R5,
Im allgemeinen erhält man das Diazoniumsalz auf an sich bekannte Weise durch Umsetzung von I mit -xi-R4 = Amino in einer wäßrigen Säurelösung, z.B. in Salzsäure, Brom¬ wasserstoffsäure oder Schwefelsäure, mit einem Nitrit wie Natriumnitrit und Kaliumnitrit. Es besteht aber auch die Möglichkeit, wasserfrei, z.B. in Chlorwasserstoff haltigem Eisessig, in absolutem Alkohol, in Dioxan oder Tetrahydrofuran, in Acetonitril oder in Aceton zu arbeiten und hierbei die Ausgangsverbindung (I mit -X1-R4 = NH2) mit einem Saipetrigsäureester wie tert. -Butylnitrit und Isopentylnitrit zu behandeln.
Die Überführung des so erhaltenen Diazoniumsalzes in die entsprechende Verbindung I mit -X1-R4 = Cyano, Chlor, Brom oder Iod erfolgt besonders bevorzugt durch Behandeln mit einer Lösung oder Suspension eines Kupfer (I) salzes wie Kupfer(I)cyanid, -chlorid, -bromid und iodid, oder mit einer Alkalimetallsalz-Lösung.
Die Überführung des so erhaltenen Diazoniumsalzes in die entsprechende Verbindung I mit -X:-R4 = Hydroxyl erfolgt zweckmäßigerweise durch Behandeln mit einer wässriger Säure, bevorzugt Schwefelsäure. Hierbei kann sich der Zusatz eines Kupfer (II) salzes wie Kupfer (II) sulfat vor- teilhaft auf den Reaktionsverlauf auswirken.
Im allgemeinen arbeitet man bei 0 bis 100CC, vorzugsweise bei der Siedetemperatur des Reaktionsgemisches.
Verbindungen I mit -X1-R4 = Mercapto, Cχ-Cό-Alkylthio oder
Halogensulfonyl erhält man normalerweise durch Umsetzung des Diazoniumsalzes mit Schwefelwasserstoff, einem Alkalimetallsulfid, einem Dialkyldisulfid wie Dimethyl - disulfid, oder mit Schwefeldioxid.
Bei der Meerwein-Arylierung handelt es sich üblicherweise um die Umetzung der Diazoniumsalze mit Alkenen oder Alkinen. Das Alken oder Alkin wird dabei vorzugsweise im Überschuß, bis etwa 3000 mol-%, bezogen auf die Menge des Diazoniumsalzes, eingesetzt.
Die vorstehend beschriebenen Umsetzungen des Diazonium¬ salzes können z.3. in Wasser, in wässriger Salzsäure oder Bromwasserstoffsäure, in einem Keton wie Aceton, Diethyi - keton und Methylethylketon, in einem Nitril wie Aceto¬ nitril, in einem Ether wie Dioxan und Tetrahydrofuran oder in einem Alkohol wie Methanol und Ethanol erfolgen.
Sofern nicht bei den einzelnen Umsetzungen anders angege- ben liegen die Reaktionstemperaturen normalerweise bei (- 30) bis + 50°C. Bevorzugt werden alle Reaktionspartner in etwa stöchio- metrischen Mengen eingesetzt, jedoch kann auch ein Überschuß der einen oder anderen Komponente, bis etwa 3000 mol-%, von Vorteil sein.
Die Verbindungen I mit -X1-R4 = Mercapto sind auch durch Reduktion der entsprechenden Verbindungen I mit -X:-R4 = Halogensulfonyl erhältlich:
Reduktion
I {-χl-R4 SOτHaioσen] {-χ!-R4 SH]
Brauchbare Reduktionsmittel sine z.3. Übergangsmetalle wie Eisen, Zink und Zinn (vgl. hierzu beispielsweise "The Chemistry of the Thiol Group", Jörn Wiley, 1974, S. 216) .
B.2) Halosulfonierung von 4 , 5 -Di (trifluormethyl)pyrazoien I, bei denen -X1-R4 für Wasserstoff steht:
I {-Xl-R4 = H} I { -R4 = SO- ilogen}
Die Halosulfonierung kann ohne Lösungsmittel in einem Überschuß an Sulfonierungsreagent oder in einem inerten Lösungs-/Verdünnungsmittel, z.B. in einem halogenierten Kohlenwasserstoff, einem Ether, einem Alkylnitril oder einer Mineralsäure durchgeführt werden.
Chlorsulfonsäure stellt sowohl des bevorzugte Reagenz als auch Lösungsmittel dar.
Das Sulfonierungsreagenz wird normalerweise in einem leichten Unterschuß (bis etwa 95 mol-%) oder in einem Überschuß von der 1- bis 5facher. molaren Menge, bezogen auf die Ausgangsverbindung I (mit -X^R4 = H) eingesetzt. Arbeitet man ohne inertes Lösungsmittel, so kann auch ein noch größerer Überschuß zweckmäßig sein.
Die Reaktionstemperatur liegt normalerweise zwischen 0°C und dem Siedepunkt des Reaktionsgemisches. Zur Aufarbeitung wird die Reaktionsmischung z.B. mit Wasser versetzt, wonach sich das Produkt wie üblich isolieren läßt.
B.3) Halogenierung von 4, 5-Di (trifluormethyl)pyrazolen I, bei denen -X1-R4 für Methyl steht, und Umsetzung der Verfahrensprodukte zu weiteren Verbindungen der Formel I:
(Halogen)
{ . γl - τ^l = CH(Haloσen)
Beispiele für geeignete Lösungsmittel sind organische Säuren, anorganische Säuren, aliphatische oder aromati¬ sche Kohlenwasserstoffe, die halogeniert sein können, sowie Ether, Sulfide, Sulfoxide und Sulfone.
Als Halogenierungsmittel kommen beispielsweise Chlor, Brom, N-Bromsuccinimide, N-Chlorsuccinimide oder Sulfurylchlorid in Betracht. Je nach Ausgangsverbindung und Halogenierungsmittel kann der Zusatz eines Radikal- Starters, beispielsweise eines organischen Peroxides wie Dibenzoylperoxid oder einer Azoverbindung wie Azobisiso- butyronitril, oder Bestrahlung mit Licht vorteilhaft auf den Reaktionsverlauf wirken.
Die Menge an Halogenierungsmittel ist nicht kritisch. Sowohl unterstöchiometrische Mengen als auch große Überschüsse an Halogenierungsmittel, bezogen auf die zu halogenierende Verbindung I (mit -X1-R4 = Methyl) , sind möglich.
Bei Verwendung eines Radikalstarters ist üblicherweise eine katalytische Menge davon ausreichend. Die Reaktionstemperatur liegt normalerweise bei (- 100) bis 200 °C, vornehmlich bei 10 bis 100°C oder dem Siede¬ punkt des Reaktionsgemisches.
Diejenigen Halogenierungsprodukte I mit -X1-R4 = -CH2-Halogen lassen sich in einer nucleophilen S'ubstitutionsreaktion in ihre entsprechenden Ether, Thioether, Ester, Amine oder Hydroxylamine überführen:
{ - χ! - R4 = CH2 - Hal ogen } I fX 1 = -CHi-;
R4= -0-X_2-R5.-0-CO-X2-R5, -N(X2-R5)(X3-R6), -N(X:-R5)(-0-X3-R6), -S-X2-R5!
Als Nucleophil werwendet man entweder die entsprechenden Alkohole, Thiole, Carbonsäuren oder Amine, wobei dann vorzugsweise in Gegenwart einer 3ase (z.B. eines Alkali¬ oder Erdalkalimetallhydroxids oder eines Alkali- oder Erdalkalimetallcarbonats) gearbeitet wird, oder man verwendet die durch Reaktion der Alkohole, Thiole, Carbonsäuren oder Amine mit einer Base (z.B. einem Alkalimetallhydrid) erhaltenen Alkalimetallsalze dieser Verbindungen.
Als Lösungsmittel kommen vor allem aprotische organische Solventien, z.B. Tetrahydrofuran, Dimethylformamid, Dimethylsulfoxid, oder Kohlenwasserstoffe wie Toluol und n-Hexan, in Betracht.
Die Reaktionsführung erfolgt bei einer Temperatur zwischen dem Schmelz- und dem Siedepunkt des Reaktions - gemisches, vorzugsweise bei 0 bis 100°C.
Diejenigen Halogenierungsprodukte I mit -X1-R4 = -CH (Halogen) - können zu den entsprechenden Aldehyden (I mit -X1-R4 = CHO) hydrolysiert werden. Letztere wiederum sind dann zu Verbindungen I mit -X1-R4 = COOH oxidierbar: Hydrolyse
I {-Xi-R4 = CH(Halogen) 2}
E {-Xx-R4 = CHO}
Die Hydrolyse der Verbindungen I mit -Xx-R4 = Dihalogen- methyl erfolgt vorzugsweise unter sauren Bedingungen, insbesondere lösungsmittelfrei in Salzsäure, Essigsäure, Ameisensäure oder Schwefelsäure, oder auch in einer wäßrigen Lösung einer der genannten Säuren, z.B. in einer Mischung aus Essigsäure und Wasser (beispielsweise 3:1) .
Die Reaktionstemperatur liegt normalerweise bei 0 bis 120°C.
Die Oxidation der Hydrolyseproduxte I mit -Xx-R4 = Formyl zu den entsprechenden Carbonsäuren kann auf an sich be¬ kannte Weise erfolgen, z.B. nach Kornblum (siehe hierzu insbesondere die Seiten 179 bis 181 des Bandes "Methods for the Oxidation of Organic Compounds" von A.H. Haines,
Academic Press 1988, in der Serie "Best Synthetic Methods") .
Als Lösungsmittel ist beispielsweise Dimethylsulfoxid geeignet.
Die Verbindungen I mit -X1-R4 = Formyl lassen sich auch auf an sich bekannte Weise zu Verbindungen I mit X'- = unsubsti¬ tuiertes oder substituiertes Ethen-1 , 2-diyl definieren:
-Xvii-RDd4 -= Olefinierun^g . I_ {,x,,-- = (,un), sub, sti.t.ui.ertes
Die Olefinierung erfolgt vorzugsweise nach der Methode von Wittig oder einer ihrer Modifikationen, wobei als Reaktionspartner Phosphorylide, Phosphoniumsalze und Phosphonate in Betracht kommen, oder durch Aldolkonden- sation.
Bei Verwendung eines Phosphoniumsalzes oder eines Phosphonats empfiehlt es sich, in Gegenwart einer Base zu arbeiten, wobei Alkalimetallalkyle wie n-Butyllithium, Alkalimetallhydride und -alkoholate wie Natriumhydrid, Natriumethanolat und Kalium-tert . -butanolat, sowie Alkalimetall- und Erdalkalimetallr.ydroxide wie Calcium- hydroxid, besonders gut geeignet sind.
Für eine vollständige Umsetzung wercen alle Reaktions- partner in etwa stόchiometrische- Verhältnis eingesetzt; bevorzugt verwendet man jedoch einer Überschuß an Phosphorverbindung und/oder Base o:s etwa 10 mol-%, bezogen auf die Ausgangsverbindung (I mit -X1-R4 = Formyl) .
Im allgemeinen liegt die Reaktionstemperatur bei (-40) bis 150°C.
Die 4, 5-Di (trifluormethyl)pyrazole Z nt -Xx-R4 = Formyl können auf an sich bekannte Weise in Verbindungen I mit -X1-R4 = -CO-X2-R5 übergeführt werden, beispielsweise durch Umsetzung mit einer geeigneten Organometallverbmdung Me-X2-R5 - wobei Me vorzugsweise für Lithium oder Magnesium steht - und anschließender Oxidation der hierbei erhaltenen Alkohole (vgl. z.B. J. March, Advanced Organic Chemistry, 3rd ed., John Wiley, New York 1985, S. 816ff. .r.d 1057ff.) .
Die Verbindungen I mit -X1-R4 = -CO-X--R3 können ihrerseits in einer Reaktion nach Wittig weiter umgesetzt werden.
Die als Reaktionspartner benötigten Phosphoniumsalze, Phosphonate oder Phosphorylide sind bekannt oder lassen sich auf an sich bekannte Weise darstellen {vgl. hierzu z.B. Houben-Weyl, Methoden der Organischen Chemie, Bd. El, S. 636ff. und Bd. E2, S. 345ff., Georg Thieme Verlag Stuttgart 1982; Chem. Ber. JL5, 3993 (1962)}.
Weitere Möglichkeiten zur Darstellung anderer 4, 5-Di (tri¬ fluormethyl)pyrazole I aus Verbindungen I mit -Xx-R4 - Formyl schließen die an sich bekannte Aldolkondensation ein, sowie Kondensationε-Reaktionen nach Knoevenagel oder Perkin. Ge- eignete Bedingungen für diese Verfahren sind beispielsweise in Nielson, Org. React. 16., lff (1968) {Aldolkondensation} Org. React. 1_5_, 204ff . (1967) {Kondensation nach Knoevenagel} und Johnson, Org. React. 1, 210ff. (1942) {Kondensation nach Perkin} zu entnehmen.
Allgemein können die Verbindungen I mit -X^R4 = -CO-X2-R5 auch auf an sich bekannte Weise in ihre entsprechenden Oxime übergeführt werden {vgl. hierzu beispielsweise Houben-Weyl, Methoden der Organischen Chemie, Georg Thieme Verlag Stutt- gart Bd. 10/4, 4. Auflage 19 :
-X:-R4 = -C(=NOR7) -X2-R5}
B.4) Synthese von Ethern, Thioethern, Aminen, Estern, Amiden, Sulfonamiden, Thioestern und Hydroxamsäureestern:
4, 5-Di (trifluormethyl)pyrazole I, bei denen R4 Hydroxy, Amino, -NH-X2-R5, Hydroxylamine -N(X2-R5) -OH, -NH-0-X2-R5, Mercapto, Halogensulfonyl, -C (=NOH) -X2-R5 oder Carboxy bedeu¬ tet, können auf an sich bekannte Weise mittels Alkylierung, Acylierung, Sulfonierung, Veresterung oder Amidierung in die entsprechenden Ether {I mit R4 = -0-X:-R5} , Ester {I mit R4 = -0-C0-X2-R5} , Amine {I mit R4 = -N (X2-R5) (X3-R6) } , Amide {I mit R5 = -N(X2-R5) -CO-X3-Rό} , Sulfonamide {I mit R4 = -N(X2-R5)-S02-X3-R6 oder -N(S02-X2-R5) (S02-X3-R6) } , Hydroxyl¬ amine {I mit R4 = -N(X2-R5) (0-X3-R6) } , Thioether {I mit R4 = -S-X2-R5} , Sulfonsäurederivate [ Z mit R4 = -S02-X2-R5, -S02-0-X2-R5 oder -S02-N(X2-R5) (X3-R6) } , Oxime (I mit R4 = -C (=N0R7) -X2-R5} oder Carbonsäurederivate (I mit R4 = -C0-0-X2-R5, -C0-S-X2-R5, -CO-N(X2-R5) (X3-R6) , -CO-N(X2-R5) (0-X3-R6) } übergeführt werden.
Derartige Umsetzungen werden beispielsweise in Houben-Weyl, Methoden der Organischen Chemie, Georg Thieme Verlag Stutt¬ gart (Bd. E16d, S. 1241ff.; Bd. 6/ia, 4. Auflage 1980, S. 262ff.; Bd. 8, 4. Auflage 1952, S. 471ff., 516ff., 655ff und S. 686ff.; Bd. 6/3, 4. Auflage 1965, S. 10ff.; Bd. 9,
4. Auflage 1955, S. 103ff., 227ff., 343ff., 530ff., 659ff., 745ff. und S. 753ff.; Bd. E5, S. 934ff., 941ff. und
5. 1148ff.) beschrieben. Sofern nicht anders angegeben werden alle vorstehend beschriebe¬ nen Verfahren zweckmäßigerweise bei Atmosphärendruck oder unter dem Eigendruck des jeweiligen Reaktionsgemisches vorgenommen.
Die Aufarbeitung der Reaktionsgemische erfolgt in der Regel auf an sich bekannte Weise. Sofern nicht bei den vorstehend beschrie¬ benen Verfahren etwas anderes angegeben ist erhält man die Wert- produkte z.B. nach Verdünnen der Reaktionslösung mit Wasser durch Filtration, Kristallisation oder Lösungsmittelextraktion, oder durch Entfernen des Lösungsmittels, Verteilen des Rückstandes in einem Gemisch aus Wasser und einem geeigneten organischen Lösungsmittel und Aufarbeiten der organischen Phase auf das Produkt hin.
Die substituierten 4, 5-Di (trifluormethyl ■ pyrazole I können bei der Herstellung als Isomerengemische anfallen, die jedoch gewünschtenfalls nach den hierfür üblichen Methoden wie Kristal¬ lisation oder Chromatographie, auch an einem optisch aktiven Ad- sorbat, in die weitgehend reinen Isomeren getrennt werden können. Reine optisch aktive Isomere lassen sich vorteilhaft aus entspre¬ chenden optisch aktiven Ausgangsprodukten herstellen.
Landwirtschaftlich brauchbare Salze der Verbindungen I können durch Reaktion mit einer Base des entprecnenden Kations, Vorzugs- weise einem Alkalimetallhydroxid oder -hydrid, oder durch Reak¬ tion mit einer Säure des entprechenden Anions, vorzugsweise der Chlorwasserstoffsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure oder Salpetersäure, gebildet werden.
Salze von I, deren Metallion kein Alkalimetallion ist, können auch durch Umsalzen des entsprechenden Alkalimetallsalzes in üb¬ licher Weise hergestellt werden, ebenso Ammonium-, Phosphonium-, Sulfonium- und Sulfoxoniumsalze mittels Ammoniak, Phosphonium-, Sulfonium- oder Sulfoxoniumhydroxiden.
Die Verbindungen I und deren landwirtschaftlich brauchbaren Salze eignen sich - sowohl als Isomerengemische als auch in Form der reinen Isomeren - als Herbizide. Die I enthaltenden herbiziden Mittel bekämpfen Pflanzenwuchs auf Nichtkulturflächen sehr gut, besonders bei hohen Aufwandmengen. In Kulturen wie Weizen, Reis, Mais, Soja und Baumwolle wirken sie gegen Unkräuter und Schad¬ gräser, ohne die Kulturpflanzen nennenswert zu schädigen. Dieser Effekt tritt vor allem bei niedrigen Aufwandmengen auf. Unter Berücksichtigung der Vielseitigkeit der Applikationsmetho¬ den können die Verbindungen I bzw. sie enthaltenden herbiziden Mittel noch in einer weiteren Zahl von Kulturpflanzen zur Besei¬ tigung unerwünschter Pflanzen eingesetzt werden. In Betracht kom- men beispielsweise folgende Kulturen:
Allium cepa, Ananas comosus, Arachis hypogaea, Asparagus officinalis, Beta vulgaris spec. altissirra, Beta vulgaris spec. rapa, Brassica napus var. napus, Brassica napus var. napobrassica, Brassica rapa var. silvestris, Camellia sinensis, Carthamus tinctorius, Carya illinoinensis, Citrus limon, Citruε sinensis, Coffea arabica (Coffea canephora, Coffea liberica) , Cucumis sativus, Cynodon dactylon, Daucus carota, Elaeis guineensis, Fragaria vesca, Glycine max, Gossypium hirsutum, (Gossypium arboreum, Gossypium herbaceu-, Gossypium vitifolium) , Helianthus annuus, Hevea brasiliensis, Hordeum vulgäre, Kumulus lupulus, Ipomoea batatas, Juglans regia, Lens culinaris, Linum usitatissimum, Lycopersicon lycopersicur, Malus spec, Manihot esculenta, Medicago sativa, Musa spec, ::icotiana tabacum (N.ru- stica) , Olea europaea, Oryza sativa , Pr.aseolus iunatus, Phaseolus vulgaris, Picea abies, Pinus spec, Pisum sativum, Prunus avium, Prunus persica, Pyrus communis, Ribes sylvestre, Ricinus communis, Saccharum officinarum, Seeale cereale, Solanum tuberosum, Sorghum bicolor (s. vulgäre) , Theobroma cacao, Trifo- lium pratense, Triticum aestivum, Triticum durum, Vicia faba, Vitis vinifera und Zea mays.
Darüber hinaus können die Verbindungen Z auch in Kulturen, die durch Züchtung einschließlich gentechnisener Methoden gegen die Wirkung von Herbiziden tolerant sind, verwendet werden.
Des weiteren eignen sich die substituierten 4 , 5-Di (trifluor¬ methyl)pyrazole I auch zur Desikkation und/oder Defoliation von Pflanzen.
Als Desikkantien eignen sie sich insbesondere zur Austrocknung der oberirdischen Teile von Kulturpflanzen wie Kartoffel, Raps, Sonnenblume und Sojabohne. Damit wird ein vollständig mechani¬ sches Beernten dieser wichtigen Kulturpflanzen ermöglicht.
Von wirtschaftlichem Interesse ist ferner die Ernteerleichterung, die durch das zeitlich konzentrierte Abfallen oder Vermindern der Haftfestigkeit am Baum bei Zitrusfrüchten, Oliven oder bei ande¬ ren Arten und Sorten von Kern-, Stein- und Schalenobst ermöglicht wird. Derselbe Mechanismus, das heißt die Förderung der Ausbil- düng von Trenngewebe zwischen Frucht- oder Blatt- und Sproßteil der Pflanzen ist auch für em gut kontrollierbares Entblättern von Nutzpflanzen, insbesondere Baumwolle, wesentlich.
Außerdem fuhrt die Verkürzung des Zeitintervalls, in dem die em- zelnen Baumwollpflanzen reif werden, zu einer erhöhten Faser- qualität nach der Ernte.
Die Verbindungen I bzw. die sie enthaltenden Mittel können beispielsweise in Form von direkt verspr-ioaren wäßrigen Losun- gen, Pulvern, Suspensionen, auch hochprozentigen wäßrigen, öligen oder sonstigen Suspensionen oder Dispers.onen, Emulsionen, Öldispersionen, Pasten, Staubemitteln, Stre-rütteln oαer Granula¬ ten durch Versprühen, Vernebeln, Verstaue-, Verstreuen oder Gie¬ ßen angewendet werden. Die Anwendungεfor~e- richten sich nacn den Verwendungszwecken; sie sollten m jeαe" Fall möglichst d.e fein¬ ste Verteilung der erfindungsgemaßen W_r-:stoffe gewährleisten.
Als inerte Hiifsstoffe kommen im wesent__cner m 3etracht: Mineralolfraktionen von mittlerem bis r.o~er- Siedepunkt wie Kero- sin und Dieselöl, ferner Kohlenteerole sow.e Ole pflanzlichen oder tierischen Ursprungs, aliphatische, cycliscne ur.α aromati¬ sche Kohlenwasserstoffe, z.B. Paraffine, letrahydronaphthalm, alkylierte Naphthalme und deren Derivate, alkylierte Benzole und deren Derivate, Alkohole wie Methanol, Etranol, Propanol, Butanol und Cyclohexanol, Ketone wie Cyclohexanon stark polare Lösungs¬ mittel, z.B. Amme wie N-Methylpyrroliαo- .tα Wasser.
Wäßrige Anwendungsformen können aus Emulsionskonzentraten, Sus¬ pensionen, Pasten, netzbaren Pulvern oder wasserdispergierbaren Granulaten durcn Zusatz von Wasser bereitet werden. Z-r Herstel¬ lung von Emulsionen, Pasten oder Oldispers-onen können die SUD- stanzen als solche oder in einem 01 oder Losungsmittel gelost, mittels Netz-, Haft-, Dispergier- oder Enlgiermittel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz, Netz-, Haft-, Dispergier- oder Emulgiemttel und eventuell
Losungsmittel oder 01 bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet smc.
Als oberflächenaktive Stoffe kommen die Alκal.-, Erdalkali-, Ammoniumsalze von aromatischen Sulfonsäuren, z.B. Lignin-,
Phenol-, Naphthalin- und Dibutylnaphthalmsulfonsäure, sowie von Fettsauren, Alkyl- und Alkylarylsulfonaten, Alkyl-, Laurylether- und Fettalkoholsulfaten, sowie Salze sulfatierter Hexa-, Hepta- und Octadecanolen sowie von Fettalkoholglyκolether, Kondensa- tionsprodukte von sulfoniertem Naphthalin und seiner Derivate mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalinsulfonsäuren mit Phenol und Formaldehyd, Polyoxy- ethylenoctylphenolether, ethoxyliertes Isooctyl-, Octyl- oder Nonylphenol, Alkylphenyl-, Tributylphenylpolyglykolether, Alkyl- arylpolyetheralkohole, Isotridecylalkohol, Fettalkoholethylen- oxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylen- oder Polyoxypropylenalkylether, Laurylalkoholpolyglykoletheracetat, Sorbitester, Lignin-Sulfitablaugen oder Methylcellulose in Be¬ tracht.
Pulver-, Streu- und Stäubemittel können durch Mischen oder ge- meinsames Vermählen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.
Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate können durch Bindung der Wirkstoffe an feste Trägerstoffe herge- stellt werden. Feste Trägerstoffe sind Mineralerden wie Kiesel¬ säuren, Kieselgele, Silikate, Talkum, Kaolin, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit und Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemit¬ tel wie Ammoniumsulfat, Ammoniumphosphat und Ammoniumnitrat, Harnstoffe und pflanzliche Produkte wie Getreidemehl, Baumrin¬ den-, Holz- und Nußschalenmehl, Cellulosepulver oder andere feste Trägerstoffe.
Die Konzentrationen der Wirkstoffe I in den anwendungsfertigen Zubereitungen können in weiten Bereichen variiert werden. Im allgemeinen enthalten die Formulierungen etwa 0,001 bis 98 Gew. -%, vorzugsweise 0,01 bis 95 Gew.-%. Die Wirkstoffe werden dabei in einer Reinheit von 90 % bis 100 %, vorzugsweise 95 % bis 100 % (nach NMR-Spektrum) eingesetzt.
Die folgenden Formulierungsbeispiele verdeutlichen die Herstel¬ lung solcher Zubereitungen:
I. 20 Gewichtsteile der Verbindung Nr. Ia.062 werden in einer Mischung gelöst, die aus 80 Gewichtsteilen alkyliertem
Benzol, 10 Gewichtsteilen des Anlagerungsproduktes von 8 bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-N-monoethanolamid, 5 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure und 5 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Ausgießen und feines Verteilen der Lösung in 100000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew. -% des Wirkstoffs enthält.
II. 20 Gewichtsteile der Verbindung Nr. Ia.027 werden in einer Mischung gelöst, die aus 40 Gewichtsteilen Cyclohexanon, 30 Gewichtsteilen Isobutanol, 20 Gewichtsteilen des Anlage- rungsproduktes von 7 Mol Ethylenoxid an 1 Mol Isooctyl - phenol und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Rizinusöl besteht. Durch Ein¬ gießen und feines Verteilen der Losung in 100000 Gewichts - teilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew. -% des Wirkstoffs enthält.
III. 20 Gewichtsteile des Wirkstoffs Nr. Ia.028 werden in einer Mischung gelost, die aus 25 Gewichtsteilen Cyclohexanon, 65 Gewichtsteilen einer Mineralolfra<tion vom Siedepunkt 210 bis 280°C und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol R_cinusol besteht. Durch Eingießen und feines Verteilen der Losung in 100000 Gewichtsteilen Wasser erhalt man e_ne wäßrige Dispersion, die 0,02 Gew. -% des Wirkstoffs enthalt.
IV. 20 Gewichtsteile des Wirkstoffs Nr. Ia.078 werden mit 3 Gewichtsteilen des Natriumsalzes der Diisooutyl- naphthalm-α-sulfonsäure, 17 Gewichtsteilen des Natπum- salzes einer Ligninsulfonsäure aus einer Sulfit-Ablauge und 60 Gewichtsteilen pulverformigem Kieselsäuregel gut ver¬ mischt und in einer Hammermuhle vermählen. Durch feines Verteilen der Mischung in 20000 Gewichtsteilen Wasser ent¬ halt man eine Spritzbruhe, die 0,1 Gew. -% des Wirkstoffs enthält.
V. 3 Gewichtsteile des Wirkstoffs Nr. Ib.062 werden mit
97 Gewichtsteilen feinteiligem Kaolin vermischt. Man erhalt auf diese Weise ein Stäubemittel, das 3 Gew. -% des Wirk- Stoffs enthält.
VI. 20 Gewichtsteile des Wirkstoffs Nr. Ic.223 werden mit
2 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure, 8 Gewichtsteilen Fettalkohol-polyglykolether, 2 Gewichts- teilen Natriumsalz eines Phenol-Harnstoff-Formaldehyd-Kon¬ densates und 68 Gewichtsteilen eines paraffmiscnen Mine¬ ralöls innig vermischt. Man erhalt eine stabile olige Dis¬ persion.
VII. 1 Gewichtsteil der Verbindung Nr. Ic.231 wird in einer
Mischung gelöst, die aus 70 Gewichtsteilen Cyclohexanon, 20 Gewichtsteilen ethoxyliertem Isooctylphenol und 10 Gewichtsteilen ethoxyliertem Rizinusöl besteht. An¬ schließend kann die Mischung mit Wasser auf die gewünschte Wirkstoffkonzentration verdünnt werden. Man erhält ein sta¬ biles Emulsionskonzentrat. VIII. 1 Gewichtsteil der Verbindung Nr. Ic.298 wird in einer
Mischung gelöst, die aus 80 Gewichtsteilen Cyclohexan und 20 Gewichtsteilen Wettol® EM 31 (= nichtionischer Emulgator auf der Basis von ethoxyliertem Rizinusöl; BASF AG) be- steht. Danach kann mit Wasser auf die gewünschte Wirkstoff - konzentration verdünnt werden. Man erhält ein stabiles Emulsionskonzentrat.
Die Applikation der Wirkstoffe I bzw. der herbiziden Mittel kann im Vorauflauf- oder im Nachauflaufverfahren erfolgen. Sind die Wirkstoffe für gewisse Kulturpflanzen weniger verträglich, so können Ausbringungstechniken angewandt werden, bei welchen die herbiziden Mittel mit Hilfe der Spritzgeräte so gespritzt werden, daß die Blätter der empfindlichen Kulturpflanzen nach Möglichkeit nicht getroffen werden, während die Wirkstoffe auf die Blätter darunter wachsender unerwünschter Pflanzen oder die unbedeckte Bodenfläche gelangen (post-directed, lay-by) .
Die Aufwandmengen an Wirkstoff I betragen je nach Bekämpfungs- ziel, Jahreszeit, Zielpflanzen und Wachstumsstadium 0,001 bis 3,0, vorzugsweise 0,01 bis 1,0 kg/ha aktive Substanz (a.S.) .
Zur Verbreiterung des Wirkungsspektrums und zur Erzielung syn¬ ergistischer Effekte können die substituierten 4 , 5 -Di (trifluor- methyl)pyrazole I mit zahlreichen Vertretern anderer herbizider oder wachstumsregulierender Wirkstoffgruppen gemischt und gemein¬ sam ausgebracht werden. Beispielsweise kommen als Mischungs- partner 1,2, 4-Thiadiazole, 1, 3 , 4-Thiadiazole, Amide, Amino- phosphorsäure und deren Derivate, Aminotriazole, Anilide, Aryl - oxy-/Heteroaryloxyalkansäuren und deren Derivate, Benzoesaure und deren Derivate, Benzothiadiazinone, 2- (Hetaroyl/ Aroyl) -1, 3-cyclohexandione, Heteroaryl-Aryl-Ketone, Benzylisox- azolidinone, meta-CF3-Phenylderivate, Carbamate, Chinolincarbon- säure und deren Derivate, Chloracetanilide, Cyclohexan-1, 3-dion- derivate, Diazine, Dichlorpropionsäure und deren Derivate, Di- hydrobenzofurane, Dihydrofuran-3-one, Dinitroaniline, Dinitro- phenole, Diphenylether, Dipyridyle, Halogencarbonsäuren und deren Derivate, Harnstoffe, 3-Phenyluracile, Imidazole, Imidazolinone, N-Phenyl-3, 4 , 5, 6-tetrahydrophthalimide, Oxadiazole, Oxirane, Phenole, Aryloxy- und Heteroaryloxyphenoxypropionsäureester, Phenylessigsäure und deren Derivate, 2-?henylpropionsäure und deren Derivate, Pyrazole, Phenylpyrazole, Pyridazine, Pyridincarbonsäure und deren Derivate, Pyrimidylether, Sulfon- amide, Sulfonylharnstoffe, Triazine, Tria∑inone, Triazolinone, Triazolcarboxamide und Uracile in Betracht. Außerdem kann es von Nutzen sein, die Verbindungen I allein oder in Kombination mit anderen Herbiziden auch noch mit weiteren Pflanzenschutzmitteln gemischt, gemeinsam auszubringen, beispielsweise mit Mitteln zur Bekämpfung von Schädlingen oder phytopathogenen Pilzen bzw. Bakterien. Von Interesse ist ferner die Mischbarkeit mit Mineralsalzlösungen, welche zur Behebung von Ernährungs- und Spurenelementmängeln eingesetzt werden. Es können auch nichtphytotoxische Öle und Ölkonzentrate zugesetzt werden.
Herstellungsbeispiele
Beispiel 1
3- (4-Chlorphenyl) -1-methyl-4 , 5-di (trifl_ormethyl ) -IK-pyrazol (Nr. Ia.001)
1. Stufe: 4-Chlorbenzaldehyd- (N-methyl) hydrazon
Zu einer Lösung von 18,4 g (0,4 mol) Metr.ylr.ydrazin in 100 ml Ethanol wurden 56,2 g (0,4 mol) 4-ChloroenzaIdehyd getropft. Da- nach erhitzte man 4 Stunden auf Rückflu3temperatur. Nach Abkühlen des Reaktionsgemisches wurde eingeengt. Der. Rüchstand nahm man in Methyl-tert.-butylether auf. Die Etherphase wurde schließlich mit Wasser gewaschen, über Magnesiumsulfat getrocknet und dann ein¬ geengt. Ausbeute: 97 %. iH-NMR (250 MHz, in CDC13) : δ [ppm] = 2,92 und 2,95 (2s, zusammen 3H) , 5,67 (s,lH), 7,14-7,50 (m, 5H) .
2. Stufe: 4-Chlorbenzoesäurebromid- (N-methyl) hydrazonid
zu einer Lösung von 10 g (0,06 mol) 4-Chlorbenzaldehyd- (N- methyl) hydrazon in 50 ml Essigsäure und 20 ml Acetonitril wurden bei (-5) bis (-7)°C 9,5 g (0,06 mol) Brom getropft. Nach 3 Stunden Rühren trennte man das ausgefällte Produkt ab und wusch es mit wenig Pentan. Ausbeute: 61 %. -H-NMR (270 MHz, in CDCI3) : δ [ppm] = 3,30 (s,3H) , 7,44 (d,2H) , 7,90 (s,lH), 7,92 (d, 2H) .
3. Stufe: 3- (4-Chlorphenyl) -1-methyl-4 , 5-di (trifluormethyl ) -1K- pyrazol (Nr. Ia.001)
In eine auf (-70) °C gekühlte Suspension von 9 g (36 mmol) 4-Chlorbenzoesäurebromid- (N-methyl) hydrazonid in 100 ml Toluol wurden bei Temperaturen von unterhalb (-50)°C 5,7 g (41 mmol) gasförmiges Hexafluor-2-butin eingeleitet. Anschließend erwärmte man auf (-25)°C und tropfte bei dieser Temperatur 8,4 g (83 mmol) Triethylamin zu. Nach 2 Stunden Rühren bei dieser Temperatur und noch 16 Std. bei ca. 20°C wurde mit Wasser gewaschen, über Magnesiumsulfat getrocknet und schließlich eingeengt. Ausbeute: 75 %.
Beispiel 2 3- (4-Chlor-3-nitrophenyl) -l-methyl-4, 5-di (trifluormethyl) -1H- pyrazol (Nr. Ia.003)
Zu 100 ml konzentrierter Salpetersäure wurden bei (-40)°C 9 g (27 mmol) 3- (4-Chlorphenyl)-l-methyl-4, 5-di (trifluormethyl) -1H- pyrazol gegeben, wonach man 2 Stunden bei dieser Temperatur rührte. Die danach auf 0°C erwärmte Lösung wurde mit Eiswasser versetzt. Anschließend extrahierte man das Produkt mit Methyl- tert.-butylether. Die organische Phase wurde mit Wasser gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Ausbeute: 97 %.
Beispiel 3
3- (3-Amino-4-chlorphenyl) -l-methyl-4 , 5-di (trifluormethyl) -1H- pyrazol (Nr. Ia.023)
Zu einer auf Rückflußtemperatur erhitzten Mischung aus 4,5 g (80 mmol) Eisenpulver und 30 ml Eisessig wurde eine Lösung von 10 g (26 mmol) 3- (4-Chlor-3-nitrophenyl) -l-methyl-4, 5-di (tri- fluormethyl) -lH-pyrazol in 50 ml Methanol getropft. Nach 3 Stun- den rühren goß man auf 100 ml Wasser. Dann wurden 100 ml Ethyl¬ acetat zu der Mischung gegeben. Anschließend trennte man den Feststoffanteil ab und wusch ihn mit Ethylacetat. Von den ver¬ einigten Filtraten wurde die organische Phase abgetrennt, mit Wasser gewaschen, über Magnesiumsulfat getrocknet und schließlich eingeengt. Ausbeute: 94 %.
Beispiel 4
3- (4-Chlor-3- (N-propargyl) aminophenyl) -l-methyl-4, 5-di (trifluor¬ methyl)-IH-pyrazol (Nr. Ia.179)
Zu einer Lösung von 2 g (5,8 mmol) 3- (3-Amino-4-chiorphenyl) - l-methyl-4, 5-di (trifluormethyl)-lH-pyrazol in 20 ml Dimethyl¬ formamid wurden 1,6 g (12 mmol) Kaliumcarbonat und 1,4 g (12 mmol) 3-Brompropin gegeben, wonach man 7 Stunden bei 65°C rührte. Anschließend wurde die Reaktionsmischung auf 100 ml Wasser gegossen. Dann extrahierte man das Produkt mit Ethyl¬ acetat. Die organische Phase wurde über Magnesiumsulfat getrock¬ net und schließlich eingeengt. Die Reinigung des Rohprodukts erfolgte mittels praparativer MPLC an Kieselgel (Eluent: Cyclo- hexan/Ethylacetat = 4:1). Ausbeute: 9 %. 56
Beispiel 5
2-Chlor-3- (2-chlor-5- (l-methyl-4 , 5-di (trifluormethyl) -1H- pyrazol-3-yl)phenylpropionsäureethylester (Nr. Ia.062)
Zu einer Lösung von 0,4 g (3,9 mmol) tert. -Butylnitrit in 100 ml Acetonitril wurden bei 0°C 7,8 g (78 mmol) Acrylsäureethylester und 0,45 g (3,4 mmol) Kupfer (II) chlorid gegeben. Danach tropfte man eine Lösung von 0,9 g (9,4 mmol) 3- (3-Amino-4-chlorphenyl) -1- methyl-4, 5-di (trifluormethyl) -lH-pyrazol in 50 ml Acetonitril zu. Nach 3 Stunden Rühren wurde eingeengt, wonach man den Rückstand mit Ethylacetat versetzte. Die organische Phase wurde dann mit Wasser gewaschen, über Magnesiumsulfat getrocknet und schließlich eingeengt. Die Reinigung des Rohprodukts erfolgte mittels Kiesel - gelchromatographie (Eluent: Cyclohexan/Essigester = 10:1) . Ausbeute: 33 %.
Beispiel 6
3- (4-Chlor-2-fluorphenyl) -l-methyl-4, 5-di (trifluormethyl) -1H- pyrazol (Nr. Ib.001)
1. Stufe: 4-Chlor-2-fluorbenzaldehyd- (N-methyl) hydrazon
Zu einer Lösung von 19 g (0,12 mol) 4-Chlor-2-fluorbenzaldehyd in 120 ml Ethanol wurden 5,5 g (0,12 mol) Methylhydrazin gegeben. Nach 1 Stunde engte man ein und versetzte den Rückstand anschlie¬ ßend mit Ethylacetat. Die organische Phase wurde mit Wasser gewaschen, über Magnesiumsulfat getrocknet und schließlich ein¬ geengt. Ausbeute: 94 %. XH-NMR (270 MHz, in CDCI3): δ [ppm] = 2,9^ und 2,99 (2s, zusammen 3H) , 5,70 und 5,90 (2s, zusammen IH) , 7,08 (m,2H) , 7,48 und 7,58 (2s, zusammen IH) , 7,73 und 7,77 (2t, zusammen IH) .
2. Stufe: 4-Chlor-2-fluorbenzoesäurebromid- (N-methyl)hydrazonid
Zu einer auf (-15) °C gekühlten Lösung von 15 g (80 mmol)
4-Chlor-2-fluorbenzaldehyd- (N-methyl)hydrazon in 60 ml Essig¬ säure, 30 ml Acetonitril und 30 ml Tetrahydrofuran wurden 12,9 g (80 mmol) Brom gegeben. Nach 1 Stunde Rühren trennte man das entstandene, feste Produkt ab und wusch es mit wenig n-Hexan. Ausbeute: 58 %. iH-NMR ( 270 MHz , in CDCI 3 ) : δ [ppm] = 3 , 24 ( s , 3 H ) , 7 , 20 ( m , 2 H ) , 7 , 57 ( t . lH ) . 3. Stufe: 3- (4-Chlor-2-fluorphenyl) -l-methyl-4, 5-di (trifluor¬ methyl) -lH-pyrazol (Nr. Ib.001)
In eine auf (-70) °C gekühlte Lösung von 12 g (45 mmol) 4-Chlor- 5 2-fluorbenzoesäurebromid-(N-methyl)hydrazonid in 200 ml Toluol wurden 9,1 g (56 mmol) Hexafluor-2-butin eingeleitet. Dann er¬ wärmte man auf (-30)°C und tropfte 14 g (138 mmol) Triethylamin in das Reaktionsgemisch. Anschließend rührte man, bis sich die Mischung auf ca. 20°C erwärmt hatte, und versetzte sie dann mit 10 200 ml Wasser. Nach Trennung der Phasen wurde die organische Phase abgetrennt, mit ges. wäßriger Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und schließlich ein¬ geengt. Ausbeute: 68 %.
15 Beispiel 7
3- (4-Chlor-2-fluor-5-nitrophenyl) -l-methyl-4, 5-di (trifluor¬ methyl)-lH-pyrazol (Nr. Ib.003)
Zu 90 ml konzentrierter Salpetersäure wurden bei (-40)°C 10,5 g 0 (30 mmol) 3- (4-Chlor-2-fluorphenyl)-l-methyl-4, 5-di (trifluor¬ methyl) -lH-pyrazoi gegeben, wonach man 1 Std. rührte. Dann wurde die Mischung in 0,8 1 Ξiswasser eingerührt. Anschließend extra¬ hierte man das Wertprodukt mit Dichlormethan. Die organische Phase wurde über Magnesiumsulfat getrocknet und schließlich ein- 5 geengt. Ausbeute: 59 %.
Beispiel 8
3- ( 5-Amino-4-chlor-2-f luorphenyl ) - l-methyl-4 , 5-di ( trif luor¬ methyl ) -lH-pyrazol (Nr . Ib . 023 ) 0
4,6 g (83 mmol) Eisenpulver, 14 ml Eisessig und 30 ml Ethanol wurden auf 70-75°C erhitzt und mit 7 g (17 mmol) 3- (4-Chlor- 2-fluor-5-nitrophenyl) -l-methyl-4, 5-di (trifluormethyl) -lH-pyrazoi versetzt. Nach 2 Stunden Rühren bei Rückflußtemperatur versetzte 5 man die Mischung mit 100 ml Ethylacetat. Dann filtrierte man über Kieselgur, wonach das Filtrat mit ges. wäßiger Natriumhydrogen- carbonat-Lösung gewaschen, über Magnesiumsulfat getrocknet und schließlich eingeengt wurde. Die Reinigung des Rückstands er¬ folgte mittels Kieselgelchromatographie (Eluens: Hexan/Etylacetat 0 = 4:1) . Ausbeute: 22 %.
5 Be ispiel 9
3- (4-Chlor-2-fluor-5- (di (methylsulfonyl) )aminophenyl) -1-methyl-
4, 5-di (trifluormethyl) -lH-pyrazol (Nr. Ib.027)
Zu einer Lösung von 1,2 g (3,3 mmol) 3- ( 5-Amir.o-4-chior-2-fluor¬ phenyl) -l-methyl-4 , 5-di (trifluormethyl) -lH-pyrazol in 30 ml Tetrahydrofuran wurden nacheinander l g (10 mmol) Triethylamin und 0,8 g (6,6 mmol) Methansulfonsäurechlorid gegeben. Anschlie¬ ßend rührte man 16 Stunden, wonach die Reaktionsmischung ein- geengt wurde. Den Rückstand versetzte man mit Wasser und Ethyl¬ acetat. Die abgetrennte organische Phase wurde mit Wasser und ges. wäßriger Natriumchlorid-Lösung gewaschen, über Magnesium¬ sulfat getrocknet und schließlich eingeengt. Ausbeute: quanti¬ tativ.
Beispiel 10
3- (4-Chlor-2-fluor-5- (methylsulfonyl ) aminophenyl) -1-methy1-
4, 5-di (trifluormethyl) -lH-pyrazol (Nr. Io.028)
Zu einer Lösung von 1,2 g (2,3 mmol) 3- (4-Chlor-2-fluor-5-
(di (methylsulfonyl) ) aminophenyl) -l-methyl-4 , 5-di (trifluormethyl) - lH-pyrazol in 100 ml Methanol wurden 0,31 g (4,6 mmol) Kalium¬ hydroxid gegeben Dann rührte man 30 Minuten, wonach die Reak¬ tionsmischung eingeengt wurde. Den Rückstand versetzte man mit Wasser und Ethylacetat, wonach die organische Phase abgetrennt, mit Wasser und ges. wäßriger Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und schließlich eingeengt wurde. Die Reinigung des Rückstands erfolgte durch Umkristallisation aus Ethylacetat/Hexan. Ausbeute: 59 %.
Beispiel 11
3- (2 , 4-Dichlorphenyl) -l-methyl-4, 5-di (trifluormethyl) -lH-pyrazol
(Nr. Ic.001)
1. Stufe: 2, 4-Dichlorbenzaldehyd- (N-methyl ) hydrazon
263 g (5,7 mol) Methylhydrazin wurden mit einer Lösung von 200 g (1,14 mol) 2, 4-Dichlorbenzaldehyd in 1,2 1 Ethanol versetzt. Nach 48 Stunden Rühren filtrierte man den geringen Feststoffanteil ab und engte dann ein. Ausbeute: quantitativ. iH-NMR (250 MHz, in CDC13) : δ [ppm] = 2,99 und 3,01 (2s, zusammen 3H), 5,90 (S,1H), 7,18 (dd, IH) , 7,32 (d,lH), 7,71 (s,lH), 7,82 (d,lH) . 2. Stufe: 2, 4-Dichlorbenzoesäurebromid- (N-methyl)hydrazonid
Zu einer auf (-15)°C gekühlten Lösung von 20,5 g (0,10 mol) 2, 4-Dichlorbenzaldehyd- (N-methyl)hydrazon in 76 ml Essigsäure, 38 ml Acetonitril und 38 ml Tetrahydrofuran gab man 16,2 g (0,10 mol) Brom. Nach 1 Stunde Rühren wurde das feste Produkt abgetrennt und mit wenig Hexan gewaschen. Ausbeute: 88 %. !H-NMR (270 MHz, in CDC13): δ [ppm] = 3,29 (s,3H), 7,36 (dd, IH) , 7,45 (m,2H) , 8, 10 (s,lH) .
Stufe: 3- (2, 4-Dichlorphenyl) -l-methyl-4, 5-di (trifluormethyl) IH-pyrazol (Nr. Ic.001)
In eine auf (-70)°C gekühlte Lösung von 25 g (89 mmol) 2,4-Di- chlorbenzoesäurebromid- (N-methyl)hydrazonid in 350 ml Toluol wur¬ den 17,3 g (106 mmol) Hexafluor-2-butin eingeleitet. Anschließend erwärmte man auf (-30) °C und tropfte 27 g (0,27 mol) Triethylamin zu. Danach rührte man, bis sich die Mischung auf ca. 20°C erwärmt hatte, und versetzte sie dann mit 350 ml Wasser. Die organische Phase wurde abgetrennt, mit ges. wäßriger Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und schließlich ein¬ geengt. Ausbeute: 70 %.
Beispiel 12 3- (2 , 4-Dichlor-5-nitrophenyl) -l-methyl-4, 5-di (trifluormethyl) -1H- pyrazol (Nr. Ic.003)
Zu 250 ml konzentrierter Salpetersäure wurden bei (-30) °C 21 g (58 mmol) 3- (2, 4-Dichlorphenyl) -l-methyl-4, 5-di (trifluormethyl)- lH-pyrazol gegeben, wonach man 1 Stunde bei (-10)°C rührte. An¬ schließend wurde die Lösung in 1,2 1 Eiswasser eingerührt. Dann extrahierte man das Produkt mit Dichlormethan. Die organische Phase wurde über Magnesiumsulfat getrocknet und eingeengt. Ausbeute: 50 %.
Beispiel 13
3- (5-Amino-2 , 4-dichlorphenyl) -l-methyl-4 , 5-di (trifluormethyl) -IH- pyrazol (Nr. Ic.023)
8 g (0,14 mol) Eisenpulver, 53 ml Eisessig und 24 ml Ethanol wurden auf 70°C erhitzt und mit 11,7 g (29 mmol) 3- (2, 4-Dichlor-5- nitrophenyl) -l-methyl-4, 5-di (trifluormethyl) -lH-pyrazol versetzt. Nach 2 Stunden Rühren bei Rückflußtemperatur versetzte man die Mischung mit 200 ml Ethylacetat. Danach filtrierte man über Kieselgur. Das Filtrat wurde eingeengt. Ausbeute: quantitativ. Beispiel 14
3- (2, 4-Dichlor-5-methylthiophenyl) -l-methyl-4, 5-di (trifluor¬ methyl) -lH-pyrazol (Nr. Ic.036)
Zu einer Lösung von 2 g (5,3 mmol) 3- (5-Amino-2 , 4-dichlor- phenyl) -l-methyl-4, 5-di (trifluormethyl) -IH-pyrazol in 30 ml Dichlormethan wurden 1,5 g (16 mmol) Dimethyldisulfid und 5,3 g (52 mmol) tert.-Butylnitrit gegeben. Anschließend rührte man 16 Stunden, wonach die Reaktionsmischung mit Wasser und verd. Natronlauge gewaschen, über Magnesiumsulfat getrocknet und schließlich eingeengt wurde. Die Reinigung des Rückstands er¬ folgte mittels Kieselgelchromatographie (Ξluens : Hexan/Etylacetat = 4:1) . Ausbeute: 37 %.
Beispiel 15
2-Chior-3- (2, 4-dichlor-5-(l-methyl-4, 5-di (trifluormethyl) -1H- pyrazol-3-yl)phenylacrylsäureethylester (Nr. lc.078)
Zu einer Lösung von 10,9 g (111 mmol) Propiolsäureetnylester, 0,8 g (5,8 mmol) Kupfer (II) chlorid und 0,6 g (5,6 mmol) tert.- Butylnitrit in 50 ml Acetonitril wurde eine Lösung von 2 g (5,3 mmol) 3- (5-Amino-2, 4-dichlorphenyl) -l-methyl-4, 5-di (tri - fluormethyl) -IH-pyrazol in 50 ml Acetonitril getropft. Nach 16 Stunden Rühren verdünnte man mit 200 ml Methyl-tert .-butyl- ether, wonach die Mischung mit verd. Salzsäure und ges. wäßriger Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und schließlich eingeengt wurde. Die Reinigung des Rückstands erfolgte mittels Kieselgelchromatographie (Ξluens: Hexan/Etyl¬ acetat = 9:1). Ausbeute: 19 %.
In den folgenden Tabellen 2 bis 4 sind neben den vorstehend beschriebenen Verbindungen noch weitere substituierte 4, 5-Di (tri fluormethyl)pyrazole I aufgeführt, die in analoger Weise herge¬ stellt wurden oder herstellbar sind:
Tabelle 2
H la (
Tabelle 3
Tabelle 4
Anwendungsbeispiele (herbizide Wirksamkeil
Die herbizide Wirkung der substituierten 4 , 5-Di (trifluormethyl) pyrazole I ließ sich durch die folgenden Gewächshausversuche zeigen: Als Kulturgefäße dienten Plastikblumentöpfe mit lehmigem Sand mit etwa 3,0 % Humus als Substrat. Die Samen der Testpflanzen wurden nach Arten getrennt eingesät.
Bei Vorauflaufbehandlung wurden die in Wasser suspendierten oder emulgierten Wirkstoffe direkt nach Einsaat mittels fein ver¬ teilender Düsen aufgebracht. Die Gefäße wurden leicht beregnet, um Keimung und Wachstum zu fördern, und anschließend mit durch¬ sichtigen Plastikhauben abgedeckt, bis die Pflanzen angewachsen waren. Diese Abdeckung bewirkt ein gleichmäßiges Keimen der Test- pflanzen, sofern dies nicht durch die Wirkstoffe beeinträchtigt wurde.
Zum Zweck der Nachauflaufbehandlung wurden die Testpflanzen je nach Wuchsform erst bis zu einer Wuchshöhe von 3 bis 15 cm ange¬ zogen und erst dann mit den in Wasser suspendierten oder emul¬ gierten Wirkstoffen behandelt. Die Testpflanzen wurden dafür ent¬ weder direkt gesät und in den gleichen Gefäßen aufgezogen oder sie wurden erst als Keimpflanzen getrennt angezogen und einige Tage vor der Behandlung in die Versuchsgefäße verpflanzt. Die Aufwandmenge für die Nachauflaufbehandlung betrug 0,5 kg/ha a.S. (aktive Substanz) .
Die Pflanzen wurden artenspezifisch bei Temperaturen von 10 - 25°C bzw. 20 - 35°C gehalten. Die Versuchsperiode erstreckte sich über 2 bis 4 Wochen. Während dieser Zeit wurden die Pflanzen gepflegt, und ihre Reaktion auf die einzelnen Behandlungen wurde ausgewer¬ tet.
Bewertet wurde nach einer Skala von 0 bis 100. Dabei bedeutet 100 kein Aufgang der Pflanzen bzw. völlige Zerstörung zumindest der oberirdischen Teile und 0 keine Schädigung oder normaler Wachs¬ tumsverlauf.
Die in den Gewächshausversuchen verwendeten Pflanzen setzten sich aus folgenden Arten zusammen:
Bei einer Aufwandmenge von 0,5 kg/ha a.S. zeigte die Verbindung Nr. Ia.062 im Nachauflaufverfahren eine sehr gute herbizide Wirkung gegen die o.g. breitblättigen Pflanzen.
Anwendungsbeispiele (desikkative/defliante Wirksamkeit)
Als Testpflanzen dienten junge, 4-blättrige (ohne Keimblätter) Baumwollpflanzen, die unter Gewächshausbedingungen angezogen wurden (rei. Luftfeuchtigkeit 50 bis 70 %; Tag-/Nachttemperatur 27/20°C) .
Die jungen Baumwollpflanzen wurden tropfnaß mit wässrigen Auf¬ bereitungen der Wirkstoffe (unter Zusatz von 0,15 Gew.-% des Fettalkoholalkoxylats Plurafac LF 700, bezogen auf die Spritz - brühe) blattbehandelt. Die ausgebrachte Wassermenge betrug um¬ gerechnet 1000 1/ha. Nach 13 Tagen wurde die Anzahl der abge¬ worfenen Blätter und der Grad der Entblätterung in % bestimmt.
Bei den unbehandelten Kontrollpflanzen trat kein Blattfall auf.

Claims

Patentansprüche
Substituierte 4, 5-Di (trifluormethyl)pyrazole der Formel I
in der die Variablen folgende Bedeutungen haben:
R1 Cχ-C4-Alkyl oder Cχ-C4-Halogenalkyl ,-
R2 Wasserstoff oder Halogen;
R3 Cyano, Halogen, Cχ-C4-Alkyl oder Cχ-C4-Halogenalkyl;
R4 Wasserstoff, Nitro, Cyano, Halogen, -0-X2-R5,
-0-CO-X2-R5, -N(X2-R5) (X3-R6) , -N (X2-R5) -S02-X3-R6, -N(S02-X2~R5) (S02-X3-R6) , -N(X2-R5) (CO-X3-R6) , -N(X2-R5) (0-X3-R6) , -S-X2-R5, -SO-X2-R5, -S02-X2-R5, -S02-0-X2-R5, -S02-N(X2-R5) (X3-R6) , -CO-X2-R5, -C(=N0R7)-X2-R5, -C0-0-X2-R5, -C0-S-X2-R5,
-CO-N(X2-R5) (X3-R6) Oder -CO-N(X2-R5) (0-X3-R6) ;
X1, X2, X3 unabhängig voneinander eine chemische Bindung oder eine Ethen-1, 2-diyl-, Methylen-, Ethylen- oder Propan-i, 3-diyl-Kette, die jeweils unsubstituiert sein oder einen oder zwei der folgenden Substituenten tragen kann: Halogen, Cyano, Carboxy, Cχ-C4-Alkyl, Cχ-C4-Halogenalkyl, (Cχ-C4-Alkoxy)carbonyl, Cχ-C4-Alkoxy, Di- (Cχ-C4-Alkyl) amino, Cχ-C6-Halogenalkyl und/oder Phenyl, das gewünschtenfalls seinerseits ein bis drei Halogen¬ atome, Nitro-, Carboxy-, Cχ-C4-Alkyl-, Cχ-C4-Halogenalkyl- und/oder (Cχ-C4-Alkoxy) carbonylgruppen tragen kann,
und wobei die Methylen-, Ethylen- oder Propan-1, 3-diyl- Kette außerdem einen Hydroxy-, Amino- oder Cχ-C4-Alkyl- amino-Rest tragen kann;
R5, R6 unabhängig voneinander -Z-R8, Wasserstoff, Cχ-C6-Alkyl, Cχ-C6-Halogenalkyl, C2-C6-Alkenyl, C2-C6-Halogenalkenyl, C2-C6-Alkinyl, C2-C6-Halogenalkinyl, C3-C8-Cycloalkyl, das ein Carbonyl- oder Thiocarbonyl-Ringglied enthalten kann, Phenyl oder 3- bis 7-gliedriges Heterocyclyl, das ein Carbonyl- oder Thiocarbonyl-Ringglied enthalten kann, wobei die Cycloalkylringe, der Phenylring und die Hetero- cyclylringe unsubstituiert sein oder ein bis vier
Substituenten tragen können, jeweils ausgewählt aus der Gruppe bestehend aus Halogen, Cyano, Nitro, Amino, Hydroxy, Carboxy, Cχ-C4-Alkyl, Cχ-C4-Halogenalkyl, Cχ-C4-Alkoxy, Cχ-C4-Halogenalkoxy, Cχ-C4-Alkylthio, Cχ-C4-Halogenalkylthio, Cχ-C4-Alkylsulfonyl,
Cχ-C4-Halogenalkylsulfonyl, (Cχ-C4-Alkyl) carbonyl , (Cχ-C4-Alkoxy) carbonyl, (Cχ-C4-Halogenalkyl) carbonyl, (Cχ-C4-Alkyl) carbonyloxy, (Cχ-C4-Halogenalkyl) carbonyloxy und Di- (Cχ-C4-Alkyl) amino;
R7 Wasserstoff, Cχ-C6-Alkyl, Cχ-C6-Kalogenalkyl,
C2-C6-Alkenyl, C2-C6-Halogenalkeny1 , C2-C6-Alkinyl , C2-C6 _Halogenalkinyl, C3-Cs-Cycioalkyl , Phenyl oder Phenyl-Cχ-C4-alkyl,-
Z Methylen, das unsubstituiert sein oder einen oder zwei Substituenten tragen kann, jeweils ausgewählt aus der Gruppe bestehend aus Cχ-C4-Alkyl, Cχ-C4-Alk- oxy-Cχ-C4-alkyl, Cx-C4-AIky1thio-Cχ-C4-alkyl, (Cι-C4-Alkoxy)carbonyl-Cχ-C4-alkyl und Phenyl-Cχ-C4-alkyl, wobei der Phenylring unsubstituiert sein oder seinerseits ein ein bis drei Reste tragen kann, jeweils ausgewählt aus der Gruppe bestehend aus Halogen, Cyano, Nitro, Carboxy, Cχ-C4-Alkyl, Cχ-C4-Halogenalkyl und (Cχ-C4-Alkoxy) carbonyl;
R8 Wasserstoff, Nitro, Cyano, Halogen, -OR9, -N(R9)R10,
-N(R9)-OR10, -SR9, -SO-R9, -S02-R9, -S02-OR9, -S02~N (R9)R10, -CO-R9, -C(=NORu) -R9, -CO-OR9, -CO-SR9, -CO-N(R9)R10 oder -CO-N(R9) -OR10;
R9, R10 unabhängig voneinander
Wasserstoff, Cχ-C6-Alkyl, Cχ-C6-Halogenalkyl , C2-C6-Alkenyl , C2-C6-HalogenalkenyI, C2-C6-Alkinyl , C2-C6-HaIogenalkinyl, C3-C8-Cycloalkyl , C3-Cθ-Cyclo- alkyl-Cχ-C4-alkyl, Phenyl, Phenyl-Cχ-C4-alkyl oder 3- bis 7-gliedriges Heterocyclyl oder Heterocyclyl-Cχ-C4-alkyl , wobei die Cycloalkyl- und Heterocyclylringe jeweils ein Carbonyl- oder Thiocarbonyl-Ringglied enthalten können, und wobei die Cycloalkyl-, Phenyl- und Heterocyclylringe unsubstituiert sein oder ein bis vier Substituenten tra¬ gen können, jeweils ausgewählt aus der Gruppe bestehend aus Halogen, Cyano, Nitro, Ammo, Hydroxy, Carboxy, Cχ-C4-Alkyl, Cχ-C4-Halogenalkyl, Cχ-C4-Alkoxy, Cχ-C4-Halogenalkoxy, Cχ-C4-Alkylthιo, Cχ-C4-Halogenalkyl- thio, Cχ-C4-Alkylsulfonyl, Cχ-C4-Halogenalkylsulfonyl, (Cχ-C4-Alkyl) carbonyl, (Cχ-C4-Halogenalkyl)carbonyl,
(Cχ-C4-Alkoxy) carbonyl, (Cχ-C4-Alkyl)carbonyloxy, (Cχ-C4-Halogenalkyl)carbonyloxy und Di- (Cχ-C4-Alkyl)ammo;
R11 Wasserstoff, Cχ-C6-Alkyl, Cχ-C6-Halogenalkyl, C2-C6-Alkenyl, C2-Cb-Halogenalkenyl, C2-Cδ-AIkιnyl, C2-C6-Halogenalkmyl, C3-C8-Cycloalkyl , Phenyl oαer Phenyl-Cχ-C4-alkyl;
sowie die landwirtschaftlich brauchbaren Saize der Verbmαungen I.
2. Verwendung von substituierten 4, 5-Di (trifluormethyl) - pyrazolen I und der deren lanαwirtschaftlich brauchbaren Salzen, gemäß Anspruch 1, als Herbizide oder zur Desιkκanon/ Defoliation von Pflanzen.
3. Herbizides Mittel, enthaltend eine nerbizid wirksame Menge mindestens eines suostituierten 4, 5-Di (trifluormethyl) - pyrazols der Formel I oder eines landwirtschaftlich orauch- baren Salzes von I, gemäß Anspruch 1, und mindestens einen inerten flussigen und/oder fester Tragerstoff sowie ge¬ wünschtenfalls mindestens einen ooerflachenaktiven Stoff.
4. Mittel zur Desikkation und/oder Defoliation von Pflanzen, enthaltend eme desikkant und/oder αefoliant wirksame Menge mindestens eines substituierten 4, 5-Di (trifluormethyl) - pyrazols der Formel I oder eines landwirtschaftlich brauch¬ baren Salzes von I, gemäß Anspruch 1, und mindestens einen inerten flussigen und/oder festen Tragerstoff sowie ge- wunschtenfalls mindestens einen oberflächenaktiven Stoff.
5. Verfahren zur Herstellung von herbizid wirksamen Mitteln, dadurch gekennzeichnet, daß man eine herbizid wirksame Menge mindestens eines substituierten 4, 5-Di (trifluormethyl) - pyrazols der Formel I oder eines landwirtschaftlich brauch¬ baren Salzes von I, gemäß Anspruch 1, und mindestens einen inerten flüssigen und/oder festen Tragerstoff sowie ge- wunscntenfalls mindestens einen oberflächenaktiven Stoff mischt.
6. Verfahren zur Herstellung von desikkant und/oder defoliant wirksamen Mitteln, dadurch gekennzeichnet, daß man eine desikkant und/oder defoliant wirksame Menge mindestens eines substituierten 4, 5-Di (trifluormethyl)pyrazols der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I, gemäß Anspruch 1, und mindestens einen inerten flussigen und/oder festen Trägerstoff sowie gewünschtenfalls mindestens einen oberflächenaktiven Stoff mischt.
7. Verfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs, dadurch gekennzeichnet, daß man eine herbizid wirksame Menge mindestens eines substituierten 4, 5-Di (trifluormethyl) - pyrazols der Formel I oder eines landwirtschaftlich brauch¬ baren Salzes von I, gemäß Anspruch 1, auf Pflanzen, deren Lebensraum oder auf Saatgut eιnwirκen läßt.
8. Verfahren zur Desikkation und/oder Defoliation von Pflanzen, dadurch gekennzeichnet, daß man eine desikkant und/oder defoliant wirksame Menge mindestens eines substituierten 4, 5-Di (trifluormethyl)pyrazols der Formel I oder eines land¬ wirtschaftlich brauchbaren Salzes von I, gemäß Anspruch 1, auf Pflanzen einwirken läßt.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß man Baumwolle behandelt.
10. Verfahren zur Herstellung von substituierten 4, 5-Di (trifluor¬ methyl)pyrazolen der Formel I, gemäß Anspruch 1, dadurch gekennzeichnet, daß man ein Saurehalogenid-hydrazonid III
Hai
r Brom) oder dessen Säureadditionssalz in Gegenwart einer Base mit Hexafluor-2-butin oder einem Hexafluorbutenderivat der For¬ mel IV
F3C CH = C(L) CF3 IV, wobei L für eine übliche Abgangsgruppe steht, umsetzt.
EP96937209A 1995-10-26 1996-10-22 Substituierte 4,5-di(trifluormethyl)pyrazole und ihre verwendung als herbizide und zur desikkation/defoliation von pflanzen Withdrawn EP0862558A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19539835 1995-10-26
DE19539835 1995-10-26
PCT/EP1996/004580 WO1997015559A1 (de) 1995-10-26 1996-10-22 Substituierte 4,5-di(trifluormethyl)pyrazole und ihre verwendung als herbizide und zur desikkation/defoliation von pflanzen

Publications (1)

Publication Number Publication Date
EP0862558A1 true EP0862558A1 (de) 1998-09-09

Family

ID=7775813

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96937209A Withdrawn EP0862558A1 (de) 1995-10-26 1996-10-22 Substituierte 4,5-di(trifluormethyl)pyrazole und ihre verwendung als herbizide und zur desikkation/defoliation von pflanzen

Country Status (5)

Country Link
US (1) US6054412A (de)
EP (1) EP0862558A1 (de)
JP (1) JPH11515009A (de)
CA (1) CA2233214A1 (de)
WO (1) WO1997015559A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2266392A1 (en) * 1996-09-19 1998-03-26 Basf Aktiengesellschaft 1-sulfonyl-3-phenylpyrazoles and their use as herbicides and for desiccating or defoliating plants
JP4699358B2 (ja) * 2003-04-08 2011-06-08 ビーエーエスエフ ソシエタス・ヨーロピア 除草剤又は乾燥性及び/若しくは落葉性化合物としてのベンゼンスルホンアミド誘導体
TW200736225A (en) * 2006-01-16 2007-10-01 Sankyo Agro Co Ltd A (3-sulfur substituted phenyl) pyrazole derivative
EP2532240A3 (de) 2007-04-03 2013-03-13 E. I. du Pont de Nemours and Company Substituierte Benzenfungizide

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2829289A1 (de) * 1978-07-04 1980-01-24 Basf Ag Pyrazolaetherderivate
KR930004672B1 (ko) * 1988-08-31 1993-06-03 니혼 노야꾸 가부시끼가이샤 3-치환 페닐피라졸 유도체 또는 이의 염 및 이의 제조방법, 이의 용도 및 이의 사용 방법
KR950703280A (ko) * 1992-09-09 1995-09-20 미리암 디.메코너헤이 제초성 벤젠 화합물(Herbicidal Benzene Compounds)
GB9422667D0 (en) * 1994-11-10 1995-01-04 Zeneca Ltd Herbicides
US5675017A (en) * 1995-06-07 1997-10-07 Monsanto Company Herbicidal substituted 3-aryl-pyrazoles
US5672715A (en) * 1995-06-07 1997-09-30 Monsanto Company Herbicidal substituted 3-aryl-pyrazoles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9715559A1 *

Also Published As

Publication number Publication date
CA2233214A1 (en) 1997-05-01
JPH11515009A (ja) 1999-12-21
US6054412A (en) 2000-04-25
WO1997015559A1 (de) 1997-05-01

Similar Documents

Publication Publication Date Title
EP1556346A1 (de) 1-phenylpyrrolidin-2-on-3-carboxamide
WO1999010327A1 (de) 2-benzoyl-cyclohexan-1,3-dione als herbizide
WO1999007697A1 (de) Substituierte 4-benzoyl-pyrazole
WO1999007688A1 (de) 2-benzoyl-cyclohexan-1,3-dione
WO1999010328A1 (de) Heterocyclisch substituierte 4-benzoyl-pyrazole als herbizide
DE19755926A1 (de) Herbizide 3-(Benzazol-4-yl)pyrimidindion-Derivate
EP0944623B1 (de) Substituierte pyrazol-3-ylbenzazole
EP0862558A1 (de) Substituierte 4,5-di(trifluormethyl)pyrazole und ihre verwendung als herbizide und zur desikkation/defoliation von pflanzen
WO2001068644A1 (de) Verfahren zur herstellung von 7-(pyrazol-3-yl)benzoxazolen
EP1076660B1 (de) Substituierte (4-brompyrazol-3-yl)benzazole
WO1998012182A1 (de) 1-sulfonyl-3-phenylpyrazole und ihre verwendung als herbizide und zur desikkation/defoliation von pflanzen
EP0802905A1 (de) Substituierte 2-phenylpyridine als herbizide
EP0915853B1 (de) Substituierte 3-phenylpyrazole
EP0836593B1 (de) 5-pyrazolylbenzosäure-derivate als herbizide
WO1999007702A1 (de) Substituierte herbizide tetrazolinoncarbonsäureamide
WO2002006233A1 (de) 1-aryl-4-halogenalkyl-2(1h)-pyridone und ihre verwendung als herbizide
EP0937046A2 (de) Substituierte 3-benzylpyrazole und ihre verwendung als herbizide und zur senkung des blutzuckergehaltes
EP0998472A1 (de) Substituierte 2-(benzaryl)pyridine
EP1289970A1 (de) 3-arylisothiazole und ihre anwendung als herbizide
EP1244635A2 (de) 4-aryl-1-difluormethoxyimidazole und deren verwendung als herbizide
WO2001004096A2 (de) N-cycloalkyl-3-alkenylbenzoyl-pyrazole-derivate als herbizide
WO2001019820A1 (de) Substituierte pyrazol-3-ylbenzoxazinone

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980324

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI

RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB LI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 20000921