EP0848161A2 - Induktives Spulenzündsystem für einen Motor - Google Patents

Induktives Spulenzündsystem für einen Motor Download PDF

Info

Publication number
EP0848161A2
EP0848161A2 EP97117835A EP97117835A EP0848161A2 EP 0848161 A2 EP0848161 A2 EP 0848161A2 EP 97117835 A EP97117835 A EP 97117835A EP 97117835 A EP97117835 A EP 97117835A EP 0848161 A2 EP0848161 A2 EP 0848161A2
Authority
EP
European Patent Office
Prior art keywords
ignition system
inductive coil
primary winding
ignition
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97117835A
Other languages
English (en)
French (fr)
Other versions
EP0848161B1 (de
EP0848161A3 (de
Inventor
Ulrich Bentel
Helmut Schmied
Thomas Capouschek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0848161A2 publication Critical patent/EP0848161A2/de
Publication of EP0848161A3 publication Critical patent/EP0848161A3/de
Application granted granted Critical
Publication of EP0848161B1 publication Critical patent/EP0848161B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current

Definitions

  • the invention relates to an inductive coil ignition system for an engine with at least one ignition coil, the one powered by a voltage source, primary winding having two connections and a secondary winding which also has two connections includes.
  • Inductive coil ignition systems for engines, in particular Automotive engines are well known.
  • Ignition coil used in such systems has one Primary winding on periodically with a primary current is applied. This current is used for Build up a magnetic field in the coil that acts as an energy storage should serve. At the desired ignition point the primary current is interrupted. The in Magnetic field stored energy then ensures a steep rise in voltage on the secondary winding with the result of a flashover in the spark plug and a correspondingly steep rise of the secondary current.
  • the one stored in the coil magnetic energy flows continuously as electrical Energy in the sparks.
  • the ion current measuring method Since the ion current measuring method has expired Requires ignition sparks, it is in the known Ignition systems where the secondary current is slow subsides, cannot be used. For example, to record the tendency of an engine to knock rather, other more complex measuring systems are necessary.
  • the inductive coil ignition system with the features of claim 1 has the advantage that enables the use of an ion current measuring method, so that an affordable overall solution is achievable. Because a parallel to the primary winding arranged switching device to one predeterminable time the two connections of the Primary winding electrically connects, the magnetic Energy in the coil through the primary winding degraded so that the secondary current drops abruptly. Due to this drop in power goes out the ignition spark, so that immediately afterwards an ion current measurement is possible. That parallel to the primary winding arranged switching element is about a control input from one in a special Control circuit generated control signal driven.
  • FIG. 1 shows an inductive coil ignition system 1, which is used to control a spark plug 3, the for example assigned to a cylinder of a motor vehicle engine is.
  • Essential part of such Coil ignition system is a coil 5, the one Has primary winding 7 and a secondary winding 9.
  • a connection side 11 of the primary winding 7 is on the positive pole of a DC voltage source, preferably one battery connected, the other Terminal 13 to the collector of a transistor T2, whose emitter is grounded.
  • the transistor T2 is preferably a triple Darlington transistor.
  • the base of the transistor An ignition signal A is applied to T2.
  • Terminal 15 of the secondary winding 9 On the secondary side of the coil 5 is a first one Terminal 15 of the secondary winding 9 with one pole connected to the spark plug, the other pole of which is grounded lies.
  • the Anode is connected to ground.
  • a switching element is parallel to the primary winding 7 19, for example a thyristor, whose one terminal 21 with the terminal 13 and whose second connection 23 with the first connection 11 of the primary winding is connected.
  • One Control input 25 of the switching element 19 becomes a control signal supplied by a control circuit 27 is generated.
  • the control circuit 27 is controlled via a control signal B.
  • An ion current measuring device 31 is assigned to the secondary side of the coil 5 and measures an ion current flowing over the candle after the ignition spark has gone out. On the basis of this measured value, it is possible to draw conclusions about the combustion process.
  • the ion current measuring device comprises a series circuit comprising a measuring resistor R M and a diode D2, the anode of this diode being connected to the resistor.
  • the other terminal of the measuring resistor R M is connected to a measuring voltage U M , while the cathode of the diode D2 is in electrical connection with the second terminal 17 of the secondary winding 9.
  • the voltage drop across the measuring resistor R M is fed to a measuring amplifier, preferably an operational amplifier, which generates a difference signal S and feeds it to an evaluation device.
  • a measuring amplifier preferably an operational amplifier
  • the ignition signal A is set to a voltage level "1" (for example 5 V) at a time t1, with the result that the transistor T2 becomes conductive.
  • a primary current I prim thus flows . of the battery voltage U bat via the primary winding 7 and the collector-emitter connection of the transistor 2 to ground. Due to the inductance of the coil 5, the current I prim increases. exponentially.
  • This primary current I prim. serves to build up a magnetic field in the coil 5, which is to provide the energy necessary for the ignition.
  • the ignition signal A is set to the potential “0” (for example 0 V).
  • the transistor T2 falls back into the blocking state with the result that the primary current can no longer flow to ground. As can be clearly seen from the diagram, it falls back to the value 0.
  • the control signal B having a "1" level is set to a "0" level at a time t2.
  • the control circuit 27 switches the switching element 19 into the conductive state via the control input 25. This creates an electrical connection between the two terminals 11, 13 of the primary winding 7, so that a further reduction of the magnetic energy stored in the coil via the primary current I prim. he follows. In the diagram according to Figure 2 it can be seen that the primary current I prim. has risen significantly at time t2 and slowly decays over time until the stored magnetic energy has dropped to the value 0.
  • the secondary current drops I sec. to the value 0.
  • a measuring voltage U M is switched on in the ion current measuring device, which generates a current flowing via the measuring resistor R M , the diode D2, the secondary winding 9 and the candle 3.
  • the level of this ion current depends in particular on the combustion conditions within the cylinder assigned to the candle 3.
  • the current value itself can be determined by tapping the voltage drop occurring at the measuring resistor R M.
  • FIG. 3 shows an ignition system consisting of several Ignition coils is built. Such systems are used in multi-cylinder engines, whereby For example, an ignition coil is assigned to each cylinder is.
  • the ion current measuring device 31 is in each case with all connections 17 of the secondary windings 9 of the Coil ignition systems 1.1 to 1.3 connected so that structural savings have also been achieved here.
  • coil ignition systems can be build up more than those shown in Figure 3 have three individual coils.
  • the coils themselves can as single spark or double spark coils be trained.
  • the control circuit 27 comprises a transistor T1, the emitter of which is connected to ground.
  • the collector of the transistor T1 is connected to the battery voltage U bat via a parallel circuit comprising a resistor R1 and an RC element.
  • the RC element consists of a resistor R2 and a capacitor C1, one connection of the capacitor being connected to the collector.
  • the control signal to be supplied to the control connection 25 is tapped at a node 29 between the resistor R2 and the capacitor C1.
  • control circuit it is possible in the control circuit to provide a transistor for the switching element, the base of which is supplied with a control signal becomes.
  • the emitter of the transistor is grounded, while the collector is connected in parallel from a resistor and an RC element to the positive tension.
  • the control signal for the switching element is then at the connection node of resistor and capacitor of the RC element tapped.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

Die Erfindung betrifft ein induktives Spulenzündsystem für einen Motor, mit zumindest einer Zündspule, die eine von einer Spannungsquelle gespeiste, zwei Anschlüsse aufweisende Primärwicklung und eine ebenfalls zwei Anschlüsse aufweisende Sekundärwicklung umfaßt. Es zeichnet sich dadurch aus, daß eine Schaltvorrichtung (19) vorgesehen ist, die parallel zur Primärwicklung (7) angeordnet ist und abhängig von einem Steuersignal die beiden Anschlüsse (11,13) der Primärwicklung (7) verbindet, und des weiteren eine Ansteuerschaltung (27) zur Erzeugung des Steuersignals. <IMAGE>

Description

Stand der Technik
Die Erfindung betrifft ein induktives Spulenzündsystem für einen Motor, mit zumindest einer Zündspule, die eine von einer Spannungsquelle gespeiste, zwei Anschlüsse aufweisende Primärwicklung und eine ebenfalls zwei Anschlüsse aufweisende Sekundärwicklung umfaßt.
Induktive Spulenzündsysteme für Motoren, insbesondere Kfz-Motoren sind allgemein bekannt. Die in solchen Systemen eingesetzte Zündspule weist eine Primärwicklung auf, die periodisch mit einem Primärstrom beaufschlagt wird. Dieser Strom dient zum Aufbau eines Magnetfelds in der Spule, das als Energiespeicher dienen soll. Zum gewünschten Zündzeitpunkt wird der Primärstrom unterbrochen. Die im Magnetfeld gespeicherte Energie sorgt dann für einen steilen Anstieg der Spannung an der Sekundärwicklung mit dem Ergebnis eines Funkenüberschlags in der Zündkerze und einem entsprechend steilen Anstieg des Sekundärstroms. Die in der Spule gespeicherte magnetische Energie fließt stetig als elektrische Energie in den Funken ab.
Bei modernen Zündsystemen besteht heutzutage die Forderung, möglichst genau verbrennungsspezifische Parameter zu messen und anhand dessen die Zündung zu optimieren. Ein aus dem Stand der Technik bekanntes Verfahren zur Ermittlung solcher Verbrennungsparameter ist in dem Ionenstrom-Meßverfahren zu sehen.
Da das Ionenstrom-Meßverfahren einen erloschenen Zündfunken erfordert, ist es bei den bekannten Zündsystemen, bei denen der Sekundärstrom langsam abklingt, nicht einsetzbar. Zur Erfassung beispielsweise der Klopfneigung eines Motors sind vielmehr andere aufwendigere Meßsysteme notwendig.
Vorteile der Erfindung
Das induktive Spulenzündsystem mit den Merkmalen des Anspruchs 1 hat demgegenüber den Vorteil, daß es den Einsatz eines Ionenstrom-Meßverfahrens ermöglicht, so daß eine kostengünstige Gesamtlösung erreichbar ist. Dadurch, daß eine parallel zur Primärwicklung angeordnete Schaltvorrichtung zu einem vorbestimmbaren Zeitpunkt die beiden Anschlüsse der Primärwicklung elektrisch verbindet, wird die magnetische Energie in der Spule über die Primärwicklung abgebaut, so daß der Sekundärstrom abrupt abfällt. Bedingt durch diesen Stromabfall erlischt der Zündfunke, so daß unmittelbar danach eine Ionenstrom-Messung möglich ist. Das parallel zur Primärwicklung angeordnete Schaltelement wird über einen Steuereingang von einem in einer speziellen Ansteuerschaltung erzeugten Steuersignal angesteuert.
Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den übrigen Unteransprüchen.
Zeichnungen
Die Erfindung wird nun anhand von Ausführungsbeispielen mit Bezug auf die Zeichnungen näher beschrieben. Dabei zeigen:
Figur 1
ein Schaltbild eines induktiven Spulen zündsystems mit einer Ionenstrom-Meßvorrichtung;
Figur 2
ein Diagramm der Spannungs- und Stromverläufe, und
Figur 3
ein zweites Ausführungsbeispiel eines induktiven Spulenzündsystems.
Ausführungsbeispiele
Figur 1 zeigt ein induktives Spulenzündsystem 1, das zur Ansteuerung einer Zündkerze 3 dient, die beispielsweise einem Zylinder eines Kfz-Motors zugeordnet ist. Wesentlicher Bestandteil eines solchen Spulenzündsystems ist eine Spule 5, die eine Primärwicklung 7 und eine Sekundärwicklung 9 aufweist. Eine Anschlußseite 11 der Primärwicklung 7 ist an den Pluspol einer Gleichspannungsquelle, vorzugsweise einer Batterie angeschlossen, der andere Anschluß 13 an den Kollektor eines Transistors T2, dessen Emitter an Masse liegt. Bei dem Transistor T2 handelt es sich vorzugsweise um einen 3-fach-Darlington-Transistor. Die Basis des Transistors T2 wird mit einem Zündsignal A beaufschlagt.
Auf der Sekundärseite der Spule 5 ist ein erster Anschluß 15 der Sekundärwicklung 9 mit einem Pol der Zündkerze verbunden, deren anderer Pol an Masse liegt.
An den zweiten Anschluß 17 der Sekundärwicklung 9 ist eine Kathode einer Diode D1 angeschlossen, deren Anode mit Masse verbunden ist.
Parallel zu der Primärwicklung 7 ist ein Schaltelement 19, beispielsweise ein Thyristor vorgesehen, dessen einer Anschluß 21 mit dem Anschluß 13 und dessen zweiter Anschluß 23 mit dem ersten Anschluß 11 der Primärwicklung verbunden ist. Einem Steuereingang 25 des Schaltelements 19 wird ein Ansteuersignal zugeführt, das von einer Ansteuerschaltung 27 erzeugt wird.
Die Steuerung der Ansteuerschaltung 27 erfolgt über ein Steuersignal B.
Der Sekundärseite der Spule 5 ist eine Ionenstrom-Meßvorrichtung 31 zugeordnet, die einen über die Kerze fließenden Ionenstrom nach Erlöschen des Zündfunkens mißt. Anhand dieses Meßwerts ist es möglich, Rückschlüsse auf den Ablauf der Verbrennung zu ziehen. Die Ionenstrom-Meßvorrichtung umfaßt eine Reihenschaltung aus einem Meßwiderstand RM und einer Diode D2, wobei die Anode dieser Diode mit dem Widerstand verbunden ist. Der andere Anschluß des Meßwiderstands RM ist an eine Meßspannung UM angeschlossen, während die Kathode der Diode D2 mit dem zweiten Anschluß 17 der Sekundärwicklung 9 in elektrischer Verbindung steht. Die an dem Meßwiderstand RM abfallende Spannung wird einem Meßverstärker, vorzugsweise einem Operationsverstärker zugeführt, der ein Differenzsignal S erzeugt und einer Auswerteeinrichtung zuführt. Für den Einsatz der Ionenstrom-Meßvorrichtung ist es wichtig, daß der durch das Magnetfeld der Spule erzeugte Sekundärstrom auf Null abgesunken und damit der Zündfunken erloschen ist. Solange ein Zündfunken existiert, ist eine Ionenstrom-Messung nicht möglich.
Anhand der Spannungs- und Stromdiagramme in Figur 2 soll nun die Funktion des induktiven Spulenzündsystems 1 erläutert werden.
Wie bei den aus dem Stand der Technik bekannten induktiven Spulenzündsystemen wird das Zündsignal A zu einem Zeitpunkt t1 auf einen Spannungspegel "1" (beispielsweise 5 V) gesetzt, mit der Folge, daß der Transistor T2 leitend wird. Damit fließt ein Primärstrom Iprim. von der Batteriespannung Ubat über die Primärwicklung 7 und die Kollektor-Emitter-Verbindung des Transistors 2 zur Masse. Aufgrund der Induktivität der Spule 5 steigt der Strom Iprim. exponentiell an. Dieser Primärstrom Iprim. dient dazu, ein magnetisches Feld in der Spule 5 aufzubauen, das die für die Zündung notwendige Energie liefern soll. Zu einem gewünschten Zündzeitpunkt tZ wird das Zündsignal A auf das Potential "0" (beispielsweise 0 V) gesetzt. Der Transistor T2 fällt zurück in den sperrenden Zustand mit der Folge, daß der Primärstrom nicht mehr zur Masse abfließen kann. Wie aus dem Diagramm deutlich zu erkennen, fällt er auf den Wert 0 zurück.
Dieser Stromabfall in der Primärwicklung führt zu einer Induktion einer sehr großen Spannung in der Sekundärwicklung 9. Sobald die Spannung ausreichend groß ist, entsteht ein Zündfunke in der Zündkerze 3 bei gleichzeitigem steilen Anstieg des Sekundärstroms Isek., wie in Figur 2 zu erkennen. Die in der Spule gespeicherte magnetische Energie wird nun in elektrische Energie umgewandelt, so daß weiterhin ein Sekundärstrom über die Kerze zur Masse fließt, wobei der Stromwert über der Zeit abnimmt.
Nach einer definierbaren Zeitdauer tFunke wird zu einem Zeitpunkt t2 das einen "1" Pegel aufweisende Steuersignal B auf einen "0" Pegel gesetzt. Damit wird von der Ansteuerschaltung 27 das Schaltelement 19 über den Steuereingang 25 in den leitenden Zustand geschaltet. Damit wird eine elektrische Verbindung zwischen den beiden Anschlüssen 11, 13 der Primärwicklung 7 geschaffen, so daß ein weiterer Abbau der in der Spule gespeicherten magnetischen Energie über den Primärstrom Iprim. erfolgt. Im Diagramm gemäß Figur 2 ist zu erkennen, daß der Primärstrom Iprim. zum Zeitpunkt t2 deutlich angestiegen ist und langsam über die Zeit abklingt, bis die gespeicherte magnetische Energie auf den Wert 0 abgesunken ist.
Gleichzeitig mit dem Fließen eines Primärstroms Iprim. zum Zeitpunkt t2 fällt der Sekundärstrom Isek. auf den Wert 0 ab.
Es ergibt sich also, daß bereits nach einer kurzen Zeitdauer tfunke der Sekundärstrom auf 0 abgesunken und damit eine Ionenstrom-Messung möglich ist. Hierzu wird kurz nach dem Zeitpunkt t2 eine Meßspannung UM in der Ionenstrom-Meßvorrichtung eingeschaltet, die einen über den Meßwiderstand RM, die Diode D2, die Sekundärwicklung 9 und die Kerze 3 fließenden Strom erzeugt. Die Höhe dieses Ionenstroms hängt insbesondere von den Verbrennungsverhältnissen innerhalb des der Kerze 3 zugeordneten Zylinders ab. Der Stromwert selbst läßt sich durch Abgreifen des an dem Meßwiderstand RM entstehenden Spannungsabfalls bestimmen.
Anhand des gemessenen Ionenstroms läßt sich beispielsweise beurteilen, ob die Verbrennung zu früh stattgefunden hat mit der sich daraus ergebenden Gefahr des Klopfens. Ebenfalls ist es möglich, festzustellen, ob überhaupt eine Verbrennung stattgefunden hat. Die gemessenen Werte fließen dann beispielsweise in die Neubestimmung der Zündwinkel und die Diagnose des Zündsystems ein.
Figur 3 läßt ein Zündsystem erkennen, das aus mehreren Zündspulen aufgebaut ist. Derartige Systeme werden in mehrzylindrigen Motoren eingesetzt, wobei beispielsweise jedem Zylinder eine Zündspule zugeordnet ist.
Die gestrichelt umrandeten Einzelsysteme 1.1, 1.2 und 1.3 entsprechen in ihrem Aufbau und ihrer Funktionsweise dem Zündsystem gemäß Figur 1, weshalb auf eine nochmalige Beschreibung der mit gleichen Bezugszeichen gekennzeichneten Teile verzichtet wird.
Von Bedeutung ist jedoch, daß für die in Figur 3 gezeigten drei Zündspulensysteme 1.1 bis 1.3 lediglich eine Ansteuerschaltung 27 mit einem Schaltelement 19 und eine Ionenstrom-Meßvorrichtung 31 vorgesehen sind. Die Anschlüsse 13 der drei Spulen 5 sind über jeweils eine Diode 35 mit dem Anschluß 21 des Schaltelements verbunden, wobei jeweils die Anode einer Diode 35 am Anschluß 13 liegt. Diese Verschaltung ermöglicht eine sehr kostengünstige Realisierung eines induktiven Spulenzündsystems auch bei mehrzylindrigen Motoren, da nur ein Schaltelement und eine Ansteuerschaltung 27 notwendig sind.
Die Ionenstrom-Meßvorrichtung 31 ist jeweils mit allen Anschlüssen 17 der Sekundärwicklungen 9 der Spulenzündsysteme 1.1 bis 1.3 verbunden, so daß auch hier bauliche Einsparungen realisiert sind.
Selbstverständlich lassen sich Spulenzündsysteme aufbauen, die mehr als die in Figur 3 gezeigten drei Einzelspulen aufweisen. Die Spulen selbst können als Einzelfunken- oder als Doppelfunkenspulen ausgebildet sein.
Bei der schaltungstechnischen Realisierung ist es möglich, als Schaltelement einen IGBT (insulated gate bipolar transistor) oder einen Thyristor zu verwenden, dessen Ermitter beziehungsweise Kathode an einer mit einer positiven Spannung beaufschlagten Anschlußseite der Primärwicklung und der Kollektor beziehungsweise die Anode an der anderen Anschlußseite der Primärwicklung angeschlossen ist. Der Steuereingang des IGBT's beziehungsweise des Thyristors wird mit einem Ansteuersignal beaufschlagt, das von einer Ansteuerschaltung geliefert wird. Die Verwendung eines Thyristors als Schaltelement ermöglicht einen einfachen und kostengünstigen Aufbau. Bei einer solchen schaltungstechnischen Realisierung umfaßt die Ansteuerschaltung 27 einen Transistor T1, dessen Emitter mit Masse verbunden ist. Der Kollektor des Transistors T1 ist über eine Parallelschaltung aus einem Widerstand R1 und einem RC-Glied mit der Batteriespannung Ubat verbunden. Das RC-Glied besteht aus einem Widerstand R2 und einem Kondensator C1, wobei ein Anschluß des Kondensators mit dem Kollektor verbunden ist. Das dem Steueranschluß 25 zuzuführende Steuersignal wird an einem Knoten 29 zwischen Widerstand R2 und Kondensator C1 abgegriffen.
Letztendlich ist es möglich, in der Ansteuerschaltung für das Schaltelement einen Transistor vorzusehen, dessen Basis ein Steuersignal zugeführt wird. Der Emitter des Transistors ist an Masse gelegt, während der Kollektor über eine Parallelschaltung aus einem Widerstand und einem RC-Glied an die positive Spannung gelegt ist. Das Ansteuersignal für das Schaltelement wird dann am Verbindungsknoten von Widerstand und Kondensator des RC-Glieds abgegriffen.

Claims (10)

  1. Induktives Spulenzündsystem für einen Motor, mit zumindest einer Zündspule, die eine von einer Spannungsquelle gespeiste, zwei Anschlüsse aufweisende Primärwicklung und eine ebenfalls zwei Anschlüsse aufweisende Sekundärwicklung umfaßt, gekennzeichnet durch eine Schaltvorrichtung (19), die parallel zur Primärwicklung (7) angeordnet ist und abhängig von einem Steuersignal die beiden Anschlüsse (11,13) der Primärwicklung (7) verbindet, und eine Ansteuerschaltung (27) zur Erzeugung des Steuersignals.
  2. Induktives Spulenzündsystem nach Anspruch 1, dadurch gekennzeichnet, daß die Ansteuerschaltung (27) das für die Schaltvorrichtung (19) erforderliche Ansteuersignal erzeugt und einen Steuereingang (B) aufweist, über den die Ansteuerschaltung (27) getriggert wird.
  3. Induktives Spulenzündsystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Primärwicklung (7) über einen Darlingten-Transistor (T2) mit der Spannungsquelle (Ubat) verbindbar ist.
  4. Induktives Spulenzündsystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Sekundärwicklung (9) mit einem Anschluß über die Zündkerze (3) an Masse und mit einem zweiten Anschluß (17) über eine Diode (D1) an Masse liegt.
  5. Induktives Spulenzündsystem nach Anspruch 5, dadurch gekennzeichnet, daß an den zweiten Anschluß (17) der Sekundärwicklung (9) eine Ionenstrom-Meßvorrichtung (31) angeschlossen ist.
  6. Induktives Spulenzündsystem nach Anspruch 5, dadurch gekennzeichnet, daß die Ionenstrom-Meßvorrichtung (31) eine Reihenschaltung aus einer Diode (D2) und einem Strommeßwiderstand (RM) aufweist, deren eines Ende an der Sekundärwicklung und dessen anderes Ende an einer Meßspannung (UM) angeschlossen ist.
  7. Induktives Spulenzündsystem nach Anspruch 6, dadurch gekennzeichnet, daß eine am Meßwiderstand (RM) abfallende Spannung von einem Meßverstärker abgreifbar ist.
  8. Induktives Spulenzündsystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß bei einem mehrzylindrigen Motor entsprechend mehrere Zündspulen (5) vorgesehen sind, und daß die Schaltvorrichtung (19) allen Zündspulen (5) zugeordnet ist.
  9. Induktives Spulenzündsystem nach Anspruch 8, dadurch gekennzeichnet, daß der zweite Anschluß (13) jeder Primärwicklung (7) über eine Diode (35) mit der Anschluß (21) des Schaltelements (19) verbunden ist.
  10. Induktives Spulenzündsystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Zündspule (5) als Einzelfunken- oder als Doppelfunkenspule ausgebildet ist.
EP97117835A 1996-12-16 1997-10-15 Induktives Spulenzündsystem für einen Motor Expired - Lifetime EP0848161B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19652267A DE19652267A1 (de) 1996-12-16 1996-12-16 Induktives Spulenzündsystem für einen Motor
DE19652267 1996-12-16

Publications (3)

Publication Number Publication Date
EP0848161A2 true EP0848161A2 (de) 1998-06-17
EP0848161A3 EP0848161A3 (de) 1999-12-08
EP0848161B1 EP0848161B1 (de) 2003-06-11

Family

ID=7814858

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97117835A Expired - Lifetime EP0848161B1 (de) 1996-12-16 1997-10-15 Induktives Spulenzündsystem für einen Motor

Country Status (3)

Country Link
US (1) US5970965A (de)
EP (1) EP0848161B1 (de)
DE (2) DE19652267A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000025021A1 (de) * 1998-10-26 2000-05-04 Robert Bosch Gmbh Verfahren und vorrichtung zur energieregelung an zündsystemen mit primärseitigem kurzschlussschalter
WO2000075505A1 (en) * 1999-06-09 2000-12-14 Cummins Engine Company, Inc. System for controlling ignition energy of an internal combustion engine
WO2001006567A1 (de) * 1999-07-20 2001-01-25 Robert Bosch Gmbh Bidirektionales halbleiterbauelement
EP1063426A3 (de) * 1999-06-25 2002-11-20 Ngk Spark Plug Co., Ltd Zündeinheit für innere Brennkraftmaschine

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19624530A1 (de) * 1996-06-20 1998-01-02 Bosch Gmbh Robert Schaltungsanordnung einer Zündendstufe, insbesondere für eine Zündschaltung eines Kraftfahrzeugs
DE19839868C1 (de) * 1998-09-02 2000-02-10 Stiebel Eltron Gmbh & Co Kg Verfahren und Schaltung zum Erfassen des Luft-Kraftstoff-Verhältnisses einer Verbrennungsphase einer Verbrennungskraftmaschine
DE19845400A1 (de) * 1998-10-02 1999-12-16 Daimler Chrysler Ag Hochspannungstransistorspulenzündung mit Stromregeleinrichtung und Ionenstrommesseinrichtung
JP4462747B2 (ja) * 2000-10-31 2010-05-12 日本特殊陶業株式会社 内燃機関用点火装置
JP4528469B2 (ja) * 2000-12-21 2010-08-18 日本特殊陶業株式会社 内燃機関用点火装置
DE10155972A1 (de) * 2001-11-14 2003-05-22 Bosch Gmbh Robert Zündanlage und Verfahren zum Betreiben einer Zündanlage
SE536577C2 (sv) 2012-04-13 2014-03-04 Sem Ab Tändsystem innefattande en mätanordning anordnad att ge mätsignaler till en förbränningsmotors styrsystem
KR102557707B1 (ko) * 2015-08-14 2023-07-19 보드 오브 트러스티즈 오브 미시건 스테이트 유니버시티 제1 인덕턴스의 단락에 의한 스파크 플러그 코일의 이온화 검출기
JP6342026B1 (ja) * 2017-02-14 2018-06-13 三菱電機株式会社 内燃機関の燃焼状態検出装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1599619A (en) 1977-06-10 1981-10-07 Marchal Equip Auto High tension distributing device
US4406273A (en) 1980-05-29 1983-09-27 Nippon Soken, Inc. Ignition system for internal combustion engine
US5220903A (en) 1990-12-01 1993-06-22 Telefunken Electronic Gmbh Electronic ignition system
DE19502403A1 (de) 1994-01-26 1995-07-27 Breed Automotive Tech Gas erzeugende Masse für Kraftfahrzeug-Airbags
EP0826881A2 (de) 1996-09-03 1998-03-04 Toyota Jidosha Kabushiki Kaisha Zündvorrichtung für eine Brennkraftmaschine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4270509A (en) * 1978-03-10 1981-06-02 Briggs & Stratton Corporation Breakerless ignition system
US5207208A (en) * 1991-09-06 1993-05-04 Combustion Electromagnetics Inc. Integrated converter high power CD ignition
JPH05149229A (ja) * 1991-11-26 1993-06-15 Mitsubishi Electric Corp 内燃機関のイオン電流検出装置
US5337716A (en) * 1992-02-04 1994-08-16 Mitsubishi Denki Kabushiki Kaisha Control apparatus for internal combustion engine
EP0806566B1 (de) * 1992-09-11 2002-04-03 Ngk Spark Plug Co., Ltd Fehlzündungsdetektor mit verschiedenen Methoden bei hoher und niedriger Motorgeschwindigkeit
FR2712934B1 (fr) * 1993-11-22 1996-01-26 Marelli Autronica Procédé et dispositif d'allumage à bobine, pour moteur à allumage commandé.
JP3192541B2 (ja) * 1994-01-28 2001-07-30 三菱電機株式会社 内燃機関用失火検出回路
DE19524541C1 (de) * 1995-07-05 1996-12-05 Telefunken Microelectron Schaltungsanordnung zur Ionenstrommessung im Verbrennungsraum einer Brennkraftmaschine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1599619A (en) 1977-06-10 1981-10-07 Marchal Equip Auto High tension distributing device
US4406273A (en) 1980-05-29 1983-09-27 Nippon Soken, Inc. Ignition system for internal combustion engine
US5220903A (en) 1990-12-01 1993-06-22 Telefunken Electronic Gmbh Electronic ignition system
DE19502403A1 (de) 1994-01-26 1995-07-27 Breed Automotive Tech Gas erzeugende Masse für Kraftfahrzeug-Airbags
EP0826881A2 (de) 1996-09-03 1998-03-04 Toyota Jidosha Kabushiki Kaisha Zündvorrichtung für eine Brennkraftmaschine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000025021A1 (de) * 1998-10-26 2000-05-04 Robert Bosch Gmbh Verfahren und vorrichtung zur energieregelung an zündsystemen mit primärseitigem kurzschlussschalter
US6298837B1 (en) 1998-10-26 2001-10-09 Robert Bosch Gmbh Method and device for regulating power in ignition systems with a primary-side short-circuiting switch
WO2000075505A1 (en) * 1999-06-09 2000-12-14 Cummins Engine Company, Inc. System for controlling ignition energy of an internal combustion engine
EP1063426A3 (de) * 1999-06-25 2002-11-20 Ngk Spark Plug Co., Ltd Zündeinheit für innere Brennkraftmaschine
US6526953B1 (en) 1999-06-25 2003-03-04 Ngk Spark Plug Co., Ltd. Ignition unit for internal combustion engine
WO2001006567A1 (de) * 1999-07-20 2001-01-25 Robert Bosch Gmbh Bidirektionales halbleiterbauelement
US6777748B1 (en) 1999-07-20 2004-08-17 Robert Bosch Gmbh Bi-directional semiconductor component

Also Published As

Publication number Publication date
DE59710262D1 (de) 2003-07-17
US5970965A (en) 1999-10-26
DE19652267A1 (de) 1998-06-18
EP0848161B1 (de) 2003-06-11
EP0848161A3 (de) 1999-12-08

Similar Documents

Publication Publication Date Title
EP0790408B1 (de) Schaltungsanordnung zur Ionenstrommessung in Zündvorrichtungen für Brennkraftmaschinen
DE19502402C2 (de) Verbrennungsaussetzer-Abtastschaltung für eine Brennkraftmaschine
DE19601353C2 (de) Verbrennungszustandserfassungsvorrichtung für eine Brennkraftmaschine mit innerer Verbrennung
EP0752582B1 (de) Schaltungsanordnung zur Ionenstrommessung
EP0848161B1 (de) Induktives Spulenzündsystem für einen Motor
DE19647138C2 (de) Verbrennungszustand-Detektorgerät für einen Verbrennungsmotor
EP0282732B1 (de) Schaltungsanordnung zur Auswertung der Signale eines induktiven Messwertaufnehmers
DE19514633A1 (de) Vorrichtung zur Erfassung von Fehlzündungen in einer Brennkraftmaschine
DE69936426T2 (de) Sensor für das Ermitteln des Zündungstromes und des Ionenstromes im Zündungssekundärstromkreis
EP0953109B1 (de) Zündvorrichtung mit ionenstrom-messeinrichtung
WO2000067379A2 (de) Verfahren und vorrichtung zur open-load-diagnose einer schaltstufe
DE3706786C1 (en) Device for monitoring at least two electrical loads in motor vehicles
DE4239803C2 (de) Ionisationsstromdetektoreinrichtung für eine Brennkraftmaschine
WO2008116750A1 (de) Verfahren zum erfassen einer elektrischen potentialdifferenz an einer piezoelektrischen aktoreinheit und schaltungsanordnung zur durchführung des verfahrens
DE2736576C2 (de) Zündanlage mit einer mechanisch nicht bewegten Hochspannungsverteilung für Brennkraftmaschinen
EP0484357A1 (de) Vollelektronische zündeinrichtung für eine brennkraftmaschine
DE4305197C2 (de) Zündvorrichtung für einen Mehrzylindermotor
DE3931947A1 (de) Zuendvorrichtung fuer brennkraftmaschinen
DE3806649C2 (de)
DE1952604A1 (de) Schaltungsanordnung zur Abgabe von Impulsen
EP0502549B1 (de) Verfahren und Vorrichtung zur Zündüberwachung einer Zündanlage
DE3321795A1 (de) Elektrischer signalgeber mit einem hallgenerator
DE3908696A1 (de) Ueberwachungsschaltung fuer das zuendsystem einer brennkraftmaschine
DE2510000B2 (de) Elektronisches Zündsystem für eine Brennkraftmaschine
EP0615580B1 (de) Zündanlage mit variabler primärspannungsbegrenzung und fehlerdiagnose

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 20000608

AKX Designation fees paid

Free format text: DE FR GB SE

TPAD Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOS TIPA

17Q First examination report despatched

Effective date: 20020604

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59710262

Country of ref document: DE

Date of ref document: 20030717

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031006

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040312

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20051004

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20051019

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20051024

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061016

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20061221

Year of fee payment: 10

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20061015

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080501