EP0847675B1 - Schwingungswandler - Google Patents
Schwingungswandler Download PDFInfo
- Publication number
- EP0847675B1 EP0847675B1 EP96929393A EP96929393A EP0847675B1 EP 0847675 B1 EP0847675 B1 EP 0847675B1 EP 96929393 A EP96929393 A EP 96929393A EP 96929393 A EP96929393 A EP 96929393A EP 0847675 B1 EP0847675 B1 EP 0847675B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- panel
- transducer
- motor coil
- fastener
- vibration transducer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005452 bending Methods 0.000 claims description 13
- 230000000712 assembly Effects 0.000 claims description 10
- 238000000429 assembly Methods 0.000 claims description 10
- 230000000295 complement effect Effects 0.000 claims description 7
- 125000006850 spacer group Chemical group 0.000 claims description 5
- 239000000463 material Substances 0.000 description 16
- 239000004033 plastic Substances 0.000 description 13
- 229920003023 plastic Polymers 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 239000011162 core material Substances 0.000 description 9
- 239000000853 adhesive Substances 0.000 description 6
- 238000013016 damping Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 239000011888 foil Substances 0.000 description 4
- 239000000123 paper Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 241000264877 Hippospongia communis Species 0.000 description 3
- 229920000271 Kevlar® Polymers 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- 239000004761 kevlar Substances 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 229920000784 Nomex Polymers 0.000 description 2
- 239000004964 aerogel Substances 0.000 description 2
- 239000012792 core layer Substances 0.000 description 2
- 238000009432 framing Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000004763 nomex Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 229920002799 BoPET Polymers 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- MWCLLHOVUTZFKS-UHFFFAOYSA-N Methyl cyanoacrylate Chemical compound COC(=O)C(=C)C#N MWCLLHOVUTZFKS-UHFFFAOYSA-N 0.000 description 1
- 239000005041 Mylar™ Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- LDVVMCZRFWMZSG-UHFFFAOYSA-N captan Chemical compound C1C=CCC2C(=O)N(SC(Cl)(Cl)Cl)C(=O)C21 LDVVMCZRFWMZSG-UHFFFAOYSA-N 0.000 description 1
- -1 card Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000005520 electrodynamics Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011151 fibre-reinforced plastic Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000006261 foam material Substances 0.000 description 1
- 229920001821 foam rubber Polymers 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000011101 paper laminate Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000012858 resilient material Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R9/00—Transducers of moving-coil, moving-strip, or moving-wire type
- H04R9/02—Details
- H04R9/025—Magnetic circuit
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R9/00—Transducers of moving-coil, moving-strip, or moving-wire type
- H04R9/06—Loudspeakers
- H04R9/066—Loudspeakers using the principle of inertia
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R7/00—Diaphragms for electromechanical transducers; Cones
- H04R7/02—Diaphragms for electromechanical transducers; Cones characterised by the construction
- H04R7/04—Plane diaphragms
- H04R7/045—Plane diaphragms using the distributed mode principle, i.e. whereby the acoustic radiation is emanated from uniformly distributed free bending wave vibration induced in a stiff panel and not from pistonic motion
Definitions
- the invention relates to transducers and more particularly to vibration transducers for loudspeakers comprising panel-form acoustic radiating elements.
- US-A-4,506,117 of MULTIPHONIE discloses an electroacoustic transducer comprising an inertial mass adapted to be attached rigidly by its base plate to a panel to be vibrated.
- Embodiments of the present invention use members of nature, structure and configuration achievable generally and/or specifically by implementing teachings of our co-pending PCT publication No. WO97/09842 of even date herewith.
- Such members thus have capability to sustain and propagate input vibrational energy by bending waves in operative area(s) extending transversely of thickness often but not necessarily to edges of the member(s); are configured with or without anisotropy of bending stiffness to have resonant mode vibration components distributed over said area(s) beneficially for acoustic coupling with ambient air; and have predetermined preferential locations or sites within said area for transducer means, particularly operationally active or moving part(s) thereof effective in relation to acoustic vibrational activity in said area(s) and signals, usually electrical, corresponding to acoustic content of such vibrational activity.
- This invention is particularly concerned with active acoustic devices in the form of loudspeakers.
- Members as above are herein called distributed mode acoustic radiators and are intended to be characterised as in the above PCT application and/or otherwise as specifically provided herein.
- the invention is a vibration transducer for exciting a member having a face and having capability to sustain and propagate input vibrational energy by bending waves in at least one operative area extending transversely of thickness to have resonant mode vibration components distributed over said at least one area and have predetermined preferential locations or sites within said area for transducer means and having a transducer mounted on said member at one of said locations or sites to vibrate the member to cause it to resonate forming an acoustic radiator which provides an acoustic output when resonating, comprising a motor coil assembly having a coil rigidly fixed to a tubular member, the motor coil assembly being adapted to be fixed to the said face of the member, and a magnet assembly having opposed disc-like pole pieces, the periphery of one of which pole pieces is arranged to be disposed within and adjacent to the motor coil assembly, and the periphery of the other of which pole pieces is formed with a surrounding flange adapted to surround and to be disposed adjacent to the motor coil assembly, and wherein the
- Fixing means may be provided to secure the magnet assembly to the member.
- the fixing means may comprise a fastener adapted to engage in a cavity in the member.
- the fastener may comprise a spacer for spacing the peripheries of the pole pieces from the said member.
- the vibration transducer may comprise complementary motor coil assemblies and magnet assemblies adapted for mounting on opposed faces of the said member, and means tying the centres of the magnet assemblies together for push/pull operation.
- the fastener may have heads at opposite ends and adapted to engage the respective magnet assemblies, the fastener comprising a pair of interengaging screw-threaded portions, and spacer means adapted for disposition adjacent to the fastener and adapted for sandwiching between the respective magnet assemblies and the opposed faces of the said member.
- the invention is a loudspeaker characterised by a member having capability to sustain and propagate input vibrational energy by bending waves in at least one operative area extending transversely of thickness to have resonant mode vibration components distributed over said at least one area and have predetermined preferential locations or sites within said area for transducer means and having a vibration transducer as described above mounted on said member at one of said locations or sites to vibrate the member to cause it to resonate forming an acoustic radiator which provides an acoustic output when resonating.
- a panel-form loudspeaker (81) of the kind described and claimed in our co-pending International publication No. WO97/09842 of even date herewith comprising a rectangular frame (1) carrying a resilient suspension (3) round its inner periphery which supports a distributed mode sound radiating panel (2).
- a transducer (9) e.g as described in detail with reference to our co-pending International publication Nos. WO97/09859, WO97/09861, WO97/09858 of even date herewith, is mounted wholly and exclusively on or in the panel (2) at a predetermined location defined by dimensions x and y , the position of which location is calculated as described in our co-pending International publication No. W097/09842 of even date herewith, to launch bending waves into the panel to cause the panel to resonate to radiate an acoustic output.
- the transducer (9) is driven by a signal amplifier (10), e.g. an audio amplifier, connected to the transducer by conductors (28).
- a signal amplifier (10) e.g. an audio amplifier
- Amplifier loading and power requirements can be entirely normal, similar to conventional cone type speakers, sensitivity being of the order of 86 - 88dB/watt under room loaded conditions.
- Amplifier load impedance is largely resistive at 6 ohms, power handling 20-80 watts. Where the panel core and/or skins are of metal, they may be made to act as a heat sink for the transducer to remove heat from the motor coil of the transducer and thus improve power handling.
- Figures 2 a and 2 b are partial typical cross-sections through the loudspeaker (81) of Figure 1.
- Figure 2 a shows that the frame (1), surround (3) and panel (2) are connected together by respective adhesive-bonded joints (20).
- Suitable materials for the frame include lightweight framing, e.g. picture framing of extruded metal e.g. aluminium alloy or plastics.
- Suitable surround materials include resilient materials such as foam rubber and foam plastics.
- Suitable adhesives for the joints (20) include epoxy, acrylic and cyano-acrylate etc. adhesives.
- Figure 2 b illustrates, to an enlarged scale, that the panel (2) is a rigid lightweight panel having a core (22) e.g. of a rigid plastics foam (97) e.g. cross linked polyvinylchloride or a cellular matrix (98) i.e. a honeycomb matrix of metal foil, plastics or the like, with the cells extending transversely to the plane of the panel, and enclosed by opposed skins (21) e.g. of paper, card, plastics or metal foil or sheet.
- the skins are of plastics, they may be reinforced with fibres e.g. of carbon, glass, Kevlar (RTM) or the like in a manner known per se to increase their modulus.
- RTM Kevlar
- Envisaged skin layer materials and reinforcements thus include carbon, glass, Kevlar (RTM), Nomex (RTM) i.e. aramid etc. fibres in various lays and weaves, as well as paper, bonded paper laminates, melamine, and various synthetic plastics films of high modulus, such as Mylar (RTM), Kaptan (RTM), polycarbonate, phenolic, polyester or related plastics, and fibre reinforced plastics, etc. and metal sheet or foil.
- Investigation of the Vectra grade of liquid crystal polymer thermoplastics shows that they may be useful for the injection moulding of ultra thin skins or shells of smaller size, say up to around 30cm diameter. This material self forms an orientated crystal structure in the direction of injection, a preferred orientation for the good propagation of treble energy from the driving point to the panel perimeter.
- thermoplastics allow for the mould tooling to carry location and registration features such as grooves or rings for the accurate location of transducer parts e.g. the motor coil, and the magnet suspension. Additional with some weaker core materials it is calculated that it would be advantageous to increase the skin thickness locally e.g. in an area or annulus up to 150% of the transducer diameter, to reinforce that area and beneficially couple vibration energy into the panel. High frequency response will be improved with the softer foam materials by this means.
- Envisaged core layer materials include fabricated honeycombs or corrugations of aluminium alloy sheet or foil, or Kevlar (RTM), Nomex (RTM), plain or bonded papers, and various synthetic plastics films, as well as expanded or foamed plastics or pulp materials, even aerogel metals if of suitably low density.
- Some suitable core layer materials effectively exhibit usable self-skinning in their manufacture and/or otherwise have enough inherent stiffness for use without lamination between skin layers.
- a high performance cellular core material is known under the trade name 'Rohacell' which may be suitable as a radiator panel and which is without skins. In practical terms, the aim is for an overall lightness and stiffness suited to a particular purpose, specifically including optimising contributions from core and skin layers and transitions between them.
- piezo and electro dynamic transducers have negligible electromagnetic radiation or stray magnet fields.
- Conventional speakers have a large magnetic field, up to 1 metre distant unless specific compensation counter measures are taken.
- electrical connection can be made to the conductive parts of an appropriate DML panel or an electrically conductive foam or similar interface may be used for the edge mounting.
- the suspension (3) may damp the edges of the panel (2) to prevent excessive edge movement of the panel. Additionally or alternatively, further damping may be applied, e.g. as patches, bonded to the panel in selected positions to damp excessive movement to distribute resonance equally over the panel.
- the patches may be of bitumen-based material, as commonly used in conventional loudspeaker enclosures or may be of a resilient or rigid polymeric sheet material. Some materials, notably paper and card, and some cores may be self-damping. Where desired, the damping may be increased in the construction of the panels by employing resiliently setting, rather than rigid setting adhesives.
- Effective said selective damping includes specific application to the panel including its sheet material of means permanently associated therewith. Edges and corners can be particularly significant for dominant and less dispersed low frequency vibration modes of panels hereof. Edge-wise fixing of damping means can usefully lead to a panel with its said sheet material fully framed, though their corners can often be relatively free, say for desired extension to lower frequency operation. Attachment can be by adhesive or self-adhesive materials. Other forms of useful damping, particularly in terms of more subtle effects and/or mid- and higher frequencies can be by way of suitable mass or masses affixed to the sheet material at predetermined effective medial localised positions of said area.
- An acoustic panel as described above is bidirectional.
- the sound energy from the back is not strongly phase related to that from the front. Consequently there is the benefit of overall summation of acoustic power in the room, sound energy of uniform frequency distribution, reduced reflective and standing wave effects and with the advantage of superior reproduction of the natural space and ambience in the reproduced sound recordings.
- Figure 3 illustrates an embodiment of transducer (9) for launching bending waves into a rigid lightweight distributed mode radiator panel (2), e.g. of the kind shown in Figures 1 and 2 comprising a core (22) enclosed by opposed skins (21), to cause the panel to resonate.
- a rigid lightweight distributed mode radiator panel (2) e.g. of the kind shown in Figures 1 and 2 comprising a core (22) enclosed by opposed skins (21), to cause the panel to resonate.
- the transducer comprises a coil (13) rigidly fixed, e.g. by means of an adhesive, on the outside of a coil former (18) which is rigidly bonded to a surface skin (21) of the radiator panel (2), e.g. by means of an epoxy adhesive bond (16).
- a magnet (15) is enclosed by a pair of poles (14), one of which is disc-like and is disposed with its periphery close to the interior of the coil former (18), and the other of which has a peripheral flange (90) arranged to surround the coil (13).
- the magnet assembly including the magnet (15) and poles (14) is mounted on the panel (2) by means of a fixing (93), e.g. of metal or hard plastics, which passes through a cavity (29) extending through the panel (2).
- the fixing (93) comprises a complementary pair of threaded members (91,92) each having heads (95), one of which heads bears against an outer face of the transducer (9) and the other of which heads bear against a face of the panel (2) on the side of the panel opposite to that on which the transducer is mounted.
- a spacer (127) is trapped between the transducer (9) and the panel (2) to space the transducer from the panel.
- the transducer (9) of Figure 3 operates by locally resiliently bending the panel between the fixing (93) and the former (18) when an acoustic signal is applied to the transducer to launch bending waves into the panel to cause it to resonate.
- the transducer arrangement (9) of Figure 4 is similar to that described in Figure 3, except that in this embodiment the transducer comprises complementary push/pull drivers of the kind shown in Figure 3 disposed on opposite sides of the panel.
- a fixing member (93) is arranged to pass through an aperture (29) in the panel (2) to tie the two transducers together and to the panel.
- the fixing member (93) comprises opposed generally complementary parts each formed with a head (95) which are clamped against the axial extremities of the respective pair of transducers (9) to couple the drivers together.
- the complementary parts of the fixing member (93) are secured together by complementary screw-threaded portions (94,96).
- the fixing member may be of any suitable material e.g. plastics or metal.
- the transducer device (9) is rigidly clamped to the panel (2) by means of rigid pads (19), e.g. of hard plastics, positioned between the panel and the poles (14) adjacent to the aperture (29), whereby the transducer works to launch bending waves into the panel by local resilient bending of the panel between the pads and the coil former (18).
- rigid pads (19) e.g. of hard plastics
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Apparatuses For Generation Of Mechanical Vibrations (AREA)
- Audible-Bandwidth Dynamoelectric Transducers Other Than Pickups (AREA)
- Transducers For Ultrasonic Waves (AREA)
- Surgical Instruments (AREA)
- Diaphragms For Electromechanical Transducers (AREA)
- Reciprocating, Oscillating Or Vibrating Motors (AREA)
- Electrophonic Musical Instruments (AREA)
- Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
Claims (7)
- Schwingungswandler (9) zum Erregen eines Bauteils (2) mit einer Seite und der Fähigkeit, eingespeiste Schwingungsenergie aufrechtzuerhalten und durch Biegewellen in zumindest einer wirksamen Fläche fortzupflanzen, die quer zur Dicke verläuft, um Resonanzmoden-Schwingungskomponenten über die zumindest eine Fläche zu verteilen mit vorbestimmten bevorzugten Orten oder Stellen innerhalb der Fläche für Wandlereinrichtungen, und mit dem Wandler, der auf dem Bauteil an einem der Orte oder Stellen angebracht ist, um das Bauteil in Schwingung zu versetzen, um es in Resonanz treten zu lassen, wobei ein akustischer Strahler geschaffen wird, der ein akustisches Ausgangssignal liefert, wenn er in Resonanz schwingt, mit weiterhin einem Motorspulenaufbau (13, 18) mit einer Spule (13), die an einem rohrförmigen Bauteil (18) fest angebracht ist, wobei der Motorspulenaufbau an der Seite des Bauteils (2) befestigt werden kann, und einem Magnetaufbau (15) mit gegenüberliegenden scheibenartigen Polstücken (14), von denen der Umfang eines der Polstücke so angeordnet ist, daß er innerhalb des Motorspulenaufbaus und diesem benachbart liegt, und der Umfang des anderen Polstücks mit einem umgebenden Flansch (90) ausgebildet ist, der dafür ausgelegt ist, den Motorspulenaufbau zu umgeben und diesem benachbart angeordnet zu werden, und worin der Magnetaufbau bei seiner Mitte am in Schwingung zu versetzenden Bauteil (2) befestigt werden kann.
- Schwingungswandler nach Anspruch 1, gekennzeichnet durch eine Befestigungseinrichtung (93), um den Magnetaufbau (15) am Bauteil (2) zu befestigen.
- Schwingungswandler nach Anspruch 2, dadurch gekennzeichnet, daß die Befestigungseinrichtung (93) ein mechanisches Verbindungselement (91, 92) aufweist, das in einen Hohlraum (29) in dem Bauteil (2) eingreifen kann.
- Schwingungswandler nach Anspruch 3, dadurch gekennzeichnet, daß das mechanische Verbindungselement (91, 92) einen Abstandshalter (127) zum Beabstanden der Umfange der Polstücke (14) von dem Bauteil (2) aufweist.
- Schwingungswandler nach einem der vorhergehenden Ansprüche, gekennzeichnet durch komplementäre Motorspulenanordnungen (13, 18) und Magnetanordnungen (15), die zum Anbringen an gegenüberliegenden Seiten des Bauteils (2) ausgelegt sind, und durch eine Einrichtung (93), die die Mitten der Magnetanordnungen (15) für einen Gegentaktbetrieb verbindet.
- Schwingungswandler nach Anspruch 5, dadurch gekennzeichnet, daß das mechanische Verbindungselement (91, 92) Köpfe (95) an gegenüberliegenden Enden aufweist und dafür ausgelegt ist, in die jeweiligen Magnetanordnungen einzugreifen, wobei das mechanische Verbindungselement (91, 92) ein Paar ineinandergreifende Schraubgewindeteile (94, 96) aufweist, und durch eine Abstandshaltereinrichtung (19), die für eine dem mechanischen Verbindungselement benachbarte Anordnung und zum sandwichartigen Anordnen zwischen den jeweiligen Magnetanordnungen und den gegenüberliegenden Seiten des Bauteils (2) ausgelegt ist.
- Lautsprecher (81), gekennzeichnet durch ein Bauteil (2) mit der Fähigkeit, eingespeiste Schwingungsenergie aufrechtzuerhalten und durch Biegewellen in zumindest einer wirksamen Fläche fortzupflanzen, die quer zur Dicke verläuft, um Resonanzmoden-Schwingungskomponenten über die zumindest eine Fläche zu verteilen mit vorbestimmten bevorzugten Orten oder Stellen innerhalb der Fläche für Wandlereinrichtungen, und mit einem Schwingungswandler (9) nach einem der vorhergehenden Ansprüche, der auf den Bauteil (2) an einem der Orte oder Stellen angebracht ist, um das Bauteil in Schwingung zu versetzen, um es in Resonanz treten zu lassen, wobei ein akustischer Strahler geschaffen wird, der ein akustisches Ausgangssignal liefert, wenn er in Resonanz schwingt.
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB9517918.0A GB9517918D0 (en) | 1995-09-02 | 1995-09-02 | Acoustic device |
GB9517918 | 1995-09-02 | ||
GBGB9522281.6A GB9522281D0 (en) | 1995-10-31 | 1995-10-31 | Acoustic device |
GB9522281 | 1995-10-31 | ||
GBGB9606836.6A GB9606836D0 (en) | 1996-03-30 | 1996-03-30 | Acoustic device |
GB9606836 | 1996-03-30 | ||
PCT/GB1996/002148 WO1997009858A1 (en) | 1995-09-02 | 1996-09-02 | Vibration transducers |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0847675A1 EP0847675A1 (de) | 1998-06-17 |
EP0847675B1 true EP0847675B1 (de) | 1999-03-10 |
Family
ID=34865240
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96929393A Expired - Lifetime EP0847675B1 (de) | 1995-09-02 | 1996-09-02 | Schwingungswandler |
Country Status (20)
Country | Link |
---|---|
EP (1) | EP0847675B1 (de) |
JP (1) | JPH11512252A (de) |
AT (1) | ATE177583T1 (de) |
AU (1) | AU703061B2 (de) |
BR (1) | BR9610440A (de) |
CA (1) | CA2229856A1 (de) |
CZ (2) | CZ57698A3 (de) |
DE (1) | DE69601734T2 (de) |
DK (1) | DK0847675T3 (de) |
EA (1) | EA000376B1 (de) |
ES (1) | ES2131956T3 (de) |
HK (1) | HK1008639A1 (de) |
HU (1) | HUP9802389A2 (de) |
IL (1) | IL123371A (de) |
NZ (1) | NZ316550A (de) |
PL (1) | PL325284A1 (de) |
RO (1) | RO119055B1 (de) |
SK (1) | SK25698A3 (de) |
TR (1) | TR199800369T1 (de) |
WO (1) | WO1997009858A1 (de) |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6324294B1 (en) | 1996-09-03 | 2001-11-27 | New Transducers Limited | Passenger vehicles incorporating loudspeakers comprising panel-form acoustic radiating elements |
GB9705979D0 (en) * | 1997-03-22 | 1997-05-07 | New Transducers Ltd | Passenger vehicles |
GB9709438D0 (en) * | 1997-05-10 | 1997-07-02 | New Transducers Ltd | Loudspeaker transducer |
GB9714050D0 (en) | 1997-07-03 | 1997-09-10 | New Transducers Ltd | Panel-form loudspeakers |
DE19821861A1 (de) * | 1998-05-15 | 1999-11-18 | Nokia Deutschland Gmbh | Vorrichtung zur dynamischen Anregung von Plattenlautsprechern |
IL140304A0 (en) | 1998-06-22 | 2002-02-10 | Slab Technology Ltd | Loudspeakers |
US6304435B1 (en) | 1998-11-12 | 2001-10-16 | Acer Incorporated | Laptop computer with flat panel speakers |
EP1206897A2 (de) | 1999-07-23 | 2002-05-22 | Digital Sonics, Llc | Plattenförmiger lautsprecher |
SE516270C2 (sv) * | 2000-03-09 | 2001-12-10 | Osseofon Ab | Elektromagnetisk vibrator |
SE514929C2 (sv) * | 2000-06-02 | 2001-05-21 | P & B Res Ab | Vibrator för benförankrade samt benledningshörapparater |
SE514930C2 (sv) * | 2000-06-02 | 2001-05-21 | P & B Res Ab | Vibrator för benförankrade samt benledningshörapparater |
US7548854B2 (en) | 2002-01-31 | 2009-06-16 | Awi Licensing Company | Architectural sound enhancement with pre-filtered masking sound |
SE522164C2 (sv) * | 2002-05-10 | 2004-01-20 | Osseofon Ab | Anordning vid elektromagnetisk vibrator |
US7471801B2 (en) | 2002-05-10 | 2008-12-30 | Osseofon Ab | Device for the generation of or monitoring of vibrations |
US7447322B2 (en) | 2004-01-13 | 2008-11-04 | Brookstone Purchasing, Inc. | Speaker having a transparent panel |
US10158337B2 (en) | 2004-08-10 | 2018-12-18 | Bongiovi Acoustics Llc | System and method for digital signal processing |
US10848118B2 (en) | 2004-08-10 | 2020-11-24 | Bongiovi Acoustics Llc | System and method for digital signal processing |
US11431312B2 (en) | 2004-08-10 | 2022-08-30 | Bongiovi Acoustics Llc | System and method for digital signal processing |
US8284955B2 (en) | 2006-02-07 | 2012-10-09 | Bongiovi Acoustics Llc | System and method for digital signal processing |
TW200629959A (en) * | 2004-09-22 | 2006-08-16 | Citizen Electronics | Electro-dynamic exciter |
US11202161B2 (en) | 2006-02-07 | 2021-12-14 | Bongiovi Acoustics Llc | System, method, and apparatus for generating and digitally processing a head related audio transfer function |
US10069471B2 (en) | 2006-02-07 | 2018-09-04 | Bongiovi Acoustics Llc | System and method for digital signal processing |
US10701505B2 (en) | 2006-02-07 | 2020-06-30 | Bongiovi Acoustics Llc. | System, method, and apparatus for generating and digitally processing a head related audio transfer function |
US10848867B2 (en) | 2006-02-07 | 2020-11-24 | Bongiovi Acoustics Llc | System and method for digital signal processing |
US9615189B2 (en) | 2014-08-08 | 2017-04-04 | Bongiovi Acoustics Llc | Artificial ear apparatus and associated methods for generating a head related audio transfer function |
JP5254958B2 (ja) | 2006-05-17 | 2013-08-07 | アメリカン・ダイ・ソース・インコーポレーテッド | 平版印刷版コーティング用新規材料、それを含有する平版印刷版およびコーティング、調製方法ならびに使用 |
ES2413195B1 (es) * | 2010-02-10 | 2014-05-21 | Fco. Javier Porras Vila | Altavoz-generador electrico |
US9883318B2 (en) | 2013-06-12 | 2018-01-30 | Bongiovi Acoustics Llc | System and method for stereo field enhancement in two-channel audio systems |
US9264004B2 (en) | 2013-06-12 | 2016-02-16 | Bongiovi Acoustics Llc | System and method for narrow bandwidth digital signal processing |
US9154862B2 (en) | 2013-06-27 | 2015-10-06 | The Boeing Company | Flat panel loudspeaker system |
US9014413B2 (en) | 2013-08-21 | 2015-04-21 | The Boeing Company | Dual coil loudspeaker system |
US9906858B2 (en) | 2013-10-22 | 2018-02-27 | Bongiovi Acoustics Llc | System and method for digital signal processing |
US10639000B2 (en) | 2014-04-16 | 2020-05-05 | Bongiovi Acoustics Llc | Device for wide-band auscultation |
US9615813B2 (en) | 2014-04-16 | 2017-04-11 | Bongiovi Acoustics Llc. | Device for wide-band auscultation |
US10820883B2 (en) | 2014-04-16 | 2020-11-03 | Bongiovi Acoustics Llc | Noise reduction assembly for auscultation of a body |
US9564146B2 (en) | 2014-08-01 | 2017-02-07 | Bongiovi Acoustics Llc | System and method for digital signal processing in deep diving environment |
US9638672B2 (en) | 2015-03-06 | 2017-05-02 | Bongiovi Acoustics Llc | System and method for acquiring acoustic information from a resonating body |
US9621994B1 (en) | 2015-11-16 | 2017-04-11 | Bongiovi Acoustics Llc | Surface acoustic transducer |
WO2017087495A1 (en) | 2015-11-16 | 2017-05-26 | Bongiovi Acoustics Llc | Surface acoustic transducer |
EP3776528A4 (de) | 2018-04-11 | 2022-01-05 | Bongiovi Acoustics LLC | Audioverstärktes gehörschutzsystem |
WO2020028833A1 (en) | 2018-08-02 | 2020-02-06 | Bongiovi Acoustics Llc | System, method, and apparatus for generating and digitally processing a head related audio transfer function |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5164916A (en) * | 1974-12-02 | 1976-06-04 | Matsushita Electric Ind Co Ltd | Supiika |
DE2819615A1 (de) * | 1978-05-05 | 1979-11-08 | Messerschmitt Boelkow Blohm | Verfahren zur erzielung gleichmaessiger schallverteilungseigenschaften |
CH645227A5 (fr) * | 1981-12-22 | 1984-09-14 | Multiphonie Sa | Transducteur electro-acoustique. |
JPS60259100A (ja) * | 1984-06-06 | 1985-12-21 | Yoshiro Nakamatsu | 隔離独立複数流体支持振動装置 |
US4914750A (en) * | 1987-07-13 | 1990-04-03 | Avm Hess, Inc. | Sound transducer |
DE69106712T2 (de) * | 1990-08-04 | 1995-06-08 | Secr Defence Brit | Paneelförmiger lautsprecher. |
-
1996
- 1996-09-02 WO PCT/GB1996/002148 patent/WO1997009858A1/en not_active Application Discontinuation
- 1996-09-02 AT AT96929393T patent/ATE177583T1/de not_active IP Right Cessation
- 1996-09-02 DK DK96929393T patent/DK0847675T3/da active
- 1996-09-02 DE DE69601734T patent/DE69601734T2/de not_active Expired - Fee Related
- 1996-09-02 CA CA002229856A patent/CA2229856A1/en not_active Abandoned
- 1996-09-02 PL PL96325284A patent/PL325284A1/xx unknown
- 1996-09-02 CZ CZ98576A patent/CZ57698A3/cs unknown
- 1996-09-02 TR TR1998/00369T patent/TR199800369T1/xx unknown
- 1996-09-02 CZ CZ98575A patent/CZ57598A3/cs unknown
- 1996-09-02 SK SK256-98A patent/SK25698A3/sk unknown
- 1996-09-02 RO RO98-00632A patent/RO119055B1/ro unknown
- 1996-09-02 AU AU68808/96A patent/AU703061B2/en not_active Ceased
- 1996-09-02 BR BR9610440A patent/BR9610440A/pt unknown
- 1996-09-02 JP JP9510951A patent/JPH11512252A/ja active Pending
- 1996-09-02 ES ES96929393T patent/ES2131956T3/es not_active Expired - Lifetime
- 1996-09-02 IL IL12337196A patent/IL123371A/en not_active IP Right Cessation
- 1996-09-02 EP EP96929393A patent/EP0847675B1/de not_active Expired - Lifetime
- 1996-09-02 EA EA199800248A patent/EA000376B1/ru not_active IP Right Cessation
- 1996-09-02 HU HU9802389A patent/HUP9802389A2/hu unknown
- 1996-09-02 NZ NZ316550A patent/NZ316550A/xx unknown
-
1998
- 1998-07-28 HK HK98109441A patent/HK1008639A1/xx not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
EA199800248A1 (ru) | 1998-10-29 |
NZ316550A (en) | 1998-10-28 |
WO1997009858A1 (en) | 1997-03-13 |
IL123371A (en) | 2001-07-24 |
EA000376B1 (ru) | 1999-06-24 |
EP0847675A1 (de) | 1998-06-17 |
CZ57598A3 (cs) | 1998-07-15 |
PL325284A1 (en) | 1998-07-20 |
SK25698A3 (en) | 1998-09-09 |
CA2229856A1 (en) | 1997-03-13 |
HK1008639A1 (en) | 1999-05-14 |
BR9610440A (pt) | 1999-02-17 |
IL123371A0 (en) | 1998-09-24 |
HUP9802389A2 (hu) | 1999-02-01 |
AU703061B2 (en) | 1999-03-11 |
AU6880896A (en) | 1997-03-27 |
CZ57698A3 (cs) | 1998-11-11 |
JPH11512252A (ja) | 1999-10-19 |
DE69601734T2 (de) | 1999-09-16 |
ATE177583T1 (de) | 1999-03-15 |
DK0847675T3 (da) | 1999-09-27 |
ES2131956T3 (es) | 1999-08-01 |
TR199800369T1 (xx) | 1998-05-21 |
DE69601734D1 (de) | 1999-04-15 |
RO119055B1 (ro) | 2004-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0847675B1 (de) | Schwingungswandler | |
US6151402A (en) | Vibration transducers | |
EP0847676B1 (de) | Inertial-schwingungswandler | |
EP0847677B1 (de) | Inertial schwingungswandler | |
US6751333B1 (en) | Inertial vibration transducers | |
EP0847665B1 (de) | Paneelförmige lautsprecher | |
US6192136B1 (en) | Inertial vibration transducers | |
US6031926A (en) | Panel-form loudspeakers | |
EP0847659B1 (de) | Lautsprecher mit plattenförmigen abstrahlelementen | |
EP0847669B1 (de) | Bildschirm mit lautsprechern | |
EP0847664B1 (de) | Lautsprecher mit paneelförmigen akustischen abstrahlelementen | |
EP0847668B1 (de) | Lautsprecher mit paneelförmigen schallausstrahlenden elementen | |
EP0847672B1 (de) | Verpackung | |
US6327369B1 (en) | Loudspeakers comprising panel-form acoustic radiating elements | |
EP0847666B1 (de) | Paneelförmige lautsprecher | |
US6519349B1 (en) | Loudspeaker |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19980318 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL PAYMENT 980318;LT PAYMENT 980318;LV PAYMENT 980318;SI PAYMENT 980318 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
17Q | First examination report despatched |
Effective date: 19980708 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL PAYMENT 980318;LT PAYMENT 980318;LV PAYMENT 980318;SI PAYMENT 980318 |
|
LTIE | Lt: invalidation of european patent or patent extension | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19990310 Ref country code: LI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19990310 Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990310 Ref country code: CH Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19990310 |
|
REF | Corresponds to: |
Ref document number: 177583 Country of ref document: AT Date of ref document: 19990315 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 69601734 Country of ref document: DE Date of ref document: 19990415 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2131956 Country of ref document: ES Kind code of ref document: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990902 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 19990609 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
26 | Opposition filed |
Opponent name: INTERESSENGEMEINSCHAFT FUER RUNDFUNKSCHUTZRECHTE G Effective date: 19991210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000331 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: INTERESSENGEMEINSCHAFT |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: NEW TRANSDUCERS LIMITED |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: NEW TRANSDUCERS LIMITED |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20020808 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20020812 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20020813 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20020815 Year of fee payment: 7 Ref country code: FI Payment date: 20020815 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20020822 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20020827 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20020903 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20020910 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 20020919 Year of fee payment: 7 |
|
PLBP | Opposition withdrawn |
Free format text: ORIGINAL CODE: 0009264 |
|
PLBL | Opposition procedure terminated |
Free format text: ORIGINAL CODE: EPIDOS OPPC |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20030815 Year of fee payment: 8 |
|
PLBM | Termination of opposition procedure: date of legal effect published |
Free format text: ORIGINAL CODE: 0009276 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: OPPOSITION PROCEDURE CLOSED |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030902 Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030902 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030902 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030903 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030930 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030930 |
|
27C | Opposition proceedings terminated |
Effective date: 20030529 |
|
NLR2 | Nl: decision of opposition |
Effective date: 20030529 |
|
BERE | Be: lapsed |
Owner name: *NEW TRANSDUCERS LTD Effective date: 20030930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040401 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040401 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040528 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20040401 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: MM4A Free format text: LAPSE DUE TO NON-PAYMENT OF FEES Effective date: 20040331 Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040902 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20030903 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20040902 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050902 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230520 |