EP0847665B1 - Paneelförmige lautsprecher - Google Patents
Paneelförmige lautsprecher Download PDFInfo
- Publication number
- EP0847665B1 EP0847665B1 EP96929403A EP96929403A EP0847665B1 EP 0847665 B1 EP0847665 B1 EP 0847665B1 EP 96929403 A EP96929403 A EP 96929403A EP 96929403 A EP96929403 A EP 96929403A EP 0847665 B1 EP0847665 B1 EP 0847665B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- panel
- radiator
- transducer
- loudspeaker according
- form loudspeaker
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000725 suspension Substances 0.000 claims description 10
- 238000005452 bending Methods 0.000 claims description 9
- 230000001413 cellular effect Effects 0.000 claims description 5
- 230000008878 coupling Effects 0.000 claims description 3
- 238000010168 coupling process Methods 0.000 claims description 3
- 238000005859 coupling reaction Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 description 16
- 239000011162 core material Substances 0.000 description 10
- 239000004033 plastic Substances 0.000 description 10
- 229920003023 plastic Polymers 0.000 description 10
- 239000002184 metal Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000000853 adhesive Substances 0.000 description 6
- 238000013016 damping Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 239000011888 foil Substances 0.000 description 4
- 239000000123 paper Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 241000264877 Hippospongia communis Species 0.000 description 3
- 229920000271 Kevlar® Polymers 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 230000005520 electrodynamics Effects 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- 239000004761 kevlar Substances 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 229920000784 Nomex Polymers 0.000 description 2
- 239000004964 aerogel Substances 0.000 description 2
- 239000012792 core layer Substances 0.000 description 2
- 238000009432 framing Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000004763 nomex Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 229920002799 BoPET Polymers 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- MWCLLHOVUTZFKS-UHFFFAOYSA-N Methyl cyanoacrylate Chemical compound COC(=O)C(=C)C#N MWCLLHOVUTZFKS-UHFFFAOYSA-N 0.000 description 1
- 239000005041 Mylar™ Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- LDVVMCZRFWMZSG-UHFFFAOYSA-N captan Chemical compound C1C=CCC2C(=O)N(SC(Cl)(Cl)Cl)C(=O)C21 LDVVMCZRFWMZSG-UHFFFAOYSA-N 0.000 description 1
- -1 card Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011151 fibre-reinforced plastic Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000006261 foam material Substances 0.000 description 1
- 229920001821 foam rubber Polymers 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000011101 paper laminate Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000012858 resilient material Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R7/00—Diaphragms for electromechanical transducers; Cones
- H04R7/02—Diaphragms for electromechanical transducers; Cones characterised by the construction
- H04R7/04—Plane diaphragms
- H04R7/045—Plane diaphragms using the distributed mode principle, i.e. whereby the acoustic radiation is emanated from uniformly distributed free bending wave vibration induced in a stiff panel and not from pistonic motion
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R1/00—Details of transducers, loudspeakers or microphones
- H04R1/20—Arrangements for obtaining desired frequency or directional characteristics
- H04R1/22—Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only
- H04R1/26—Spatial arrangements of separate transducers responsive to two or more frequency ranges
Definitions
- the invention relates to loudspeakers and more particularly to loudspeakers comprising panel-form acoustic radiating elements.
- Embodiments of the present invention use members of nature, structure and configuration achievable generally and/or specifically by implementing teachings of our co-pending PCT publication No. WO97/09842 of even date herewith.
- Such members thus have capability to sustain and propagate input vibrational energy by bending waves in operative area(s) extending transversely of thickness often but not necessarily to edges of the member(s); are configured with or without anisotropy of bending stiffness to have resonant mode vibration components distributed over said area(s) beneficially for acoustic coupling with ambient air; and have predetermined preferential locations or sites within said area for transducer means, particularly operationally active or moving part(s) thereof effective in relation to acoustic vibrational activity in said area(s) and signals, usually electrical, corresponding to acoustic content of such vibrational activity.
- This invention is particularly concerned with active acoustic devices in the form of loudspeakers.
- Members as above are herein called distributed mode acoustic radiators and are intended to be characterised as in the above PCT application and/or otherwise as specifically provided herein.
- the invention is a panel-form loudspeaker having a member comprising a stiff lightweight panel having capability to sustain and propagate input vibrational energy by bending waves in at least one operative area extending transversely of thickness to have resonant mode vibration components distributed over said at least one area and have predetermined preferential locations or sites within said area for transducer means and having first and second transducers mounted on said member at two of said locations or sites to vibrate the member to cause it to resonate forming an acoustic radiator which provides an acoustic output when resonating.
- the first and second transducers may be adapted to operate in different frequency ranges.
- the radiator may have a cellular core sandwiched between skins.
- the loudspeaker may comprise a frame supporting the radiator, and a resilient suspension by which the radiator is attached to the frame.
- the frame may surround the radiator, and the suspension may be attached to the edge of the radiator.
- the first and second transducers may be mounted wholly and exclusively on the radiator.
- One of the transducers may be electromagnetic.
- One of the transducers may be piezo-electric.
- the panel-form loudspeaker may comprise a second member having capability to sustain and propagate input vibrational energy by bending waves in at least one operative area extending transversely of thickness to have resonant mode vibration components distributed over said at least one area and have predetermined preferential locations or sites within said area for transducer means and having a transducer mounted on said member at one of said locations or sites to vibrate the member to cause it to resonate forming an acoustic radiator which provides an acoustic output when resonating, the second member being mounted on or in the first said member, and a resilient suspension coupling the first and second members.
- the second member may be mounted in an aperture in the first member.
- the second transducer may be mounted wholly and exclusively on the second member.
- a panel-form loudspeaker (81) of the kind described and claimed in our co-pending International application No. WO97/09842 of even date herewith comprising a rectangular frame (1) carrying a resilient suspension (3) round its inner periphery which supports a distributed mode sound radiating panel (2).
- a transducer (9) e.g as described in detail with reference to our co-pending International publication Nos. WO97/09859, WO97/09861, WO97/09858 even date herewith, is mounted wholly and exclusively on or in the panel (2) at a predetermined location defined by dimensions x and y , the position of which location is calculated as described in our co-pending International publication No. WO97/09842 of even date herewith, to launch bending waves into the panel to cause the panel to resonate to radiate an acoustic output.
- the transducer (9) is driven by a signal amplifier (10), e.g. an audio amplifier, connected to the transducer by conductors (28).
- a signal amplifier (10) e.g. an audio amplifier
- Amplifier loading and power requirements can be entirely normal, similar to conventional cone type speakers, sensitivity being of the order of 86 - 88dB/watt under room loaded conditions.
- Amplifier load impedance is largely resistive at 6 ohms, power handling 20-80 watts. Where the panel core and/or skins are of metal, they may be made to act as a heat sink for the transducer to remove heat from the motor coil of the transducer and thus improve power handling.
- Figures 2 a and 2 b are partial typical cross-sections through the loudspeaker (81) of Figure 1.
- Figure 2 a shows that the frame (1), surround (3) and panel (2) are connected together by respective adhesive-bonded joints (20).
- Suitable materials for the frame include lightweight framing, e.g. picture framing of extruded metal e.g. aluminium alloy or plastics.
- Suitable surround materials include resilient materials such as foam rubber and foam plastics.
- Suitable adhesives for the joints (20) include epoxy, acrylic and cyano-acrylate etc. adhesives.
- Figure 2 b illustrates, to an enlarged scale, that the panel (2) is a rigid lightweight panel having a core (22) e.g. of a rigid plastics foam (97) e.g. cross linked polyvinylchloride or a cellular matrix (98) i.e. a honeycomb matrix of metal foil, plastics or the like, with the cells extending transversely to the plane of the panel, and enclosed by opposed skins (21) e.g. of paper, card, plastics or metal foil or sheet.
- the skins are of plastics, they may be reinforced with fibres e.g. of carbon, glass, Kevlar (RTM) or the like in a manner known per se to increase their modulus.
- RTM Kevlar
- Envisaged skin layer materials and reinforcements thus include carbon, glass, Kevlar (RTM), Nomex (RTM) i.e. aramid etc. fibres in various lays and weaves, as well as paper, bonded paper laminates, melamine, and various synthetic plastics films of high modulus, such as Mylar (RTM), Kaptan (RTM), polycarbonate, phenolic, polyester or related plastics, and fibre reinforced plastics, etc. and metal sheet or foil.
- Investigation of the Vectra grade of liquid crystal polymer thermoplastics shows that they may be useful for the injection moulding of ultra thin skins or shells of smaller size, say up to around 30cm diameter. This material self forms an orientated crystal structure in the direction of injection, a preferred orientation for the good propagation of treble energy from the driving point to the panel perimeter.
- thermoplastics allow for the mould tooling to carry location and registration features such as grooves or rings for the accurate location of transducer parts e.g. the motor coil, and the magnet suspension. Additional with some weaker core materials it is calculated that it would be advantageous to increase the skin thickness locally e.g. in an area or annulus up to 150% of the transducer diameter, to reinforce that area and beneficially couple vibration energy into the panel. High frequency response will be improved with the softer foam materials by this means.
- Envisaged core layer materials include fabricated honeycombs or corrugations of aluminium alloy sheet or foil, or Kevlar (RTM), Nomex (RTM), plain or bonded papers, and various synthetic plastics films, as well as expanded or foamed plastics or pulp materials, even aerogel metals if of suitably low density.
- Some suitable core layer materials effectively exhibit usable self-skinning in their manufacture and/or otherwise have enough inherent stiffness for use without lamination between skin layers.
- a high performance cellular core material is known under the trade name 'Rohacell' which may be suitable as a radiator panel and which is without skins. In practical terms, the aim is for an overall lightness and stiffness suited to a particular purpose, specifically including optimising contributions from core and skin layers and transitions between them.
- piezo and electro dynamic transducers have negligible electromagnetic radiation or stray magnet fields.
- Conventional speakers have a large magnetic field, up to 1 metre distant unless specific compensation counter measures are taken.
- electrical connection can be made to the conductive parts of an appropriate DML panel or an electrically conductive foam or similar interface may be used for the edge mounting.
- the suspension (3) may damp the edges of the panel (2) to prevent excessive edge movement of the panel. Additionally or alternatively, further damping may be applied, e.g. as patches, bonded to the panel in selected positions to damp excessive movement to distribute resonance equally over the panel.
- the patches may be of bitumen-based material, as commonly used in conventional loudspeaker enclosures or may be of a resilient or rigid polymeric sheet material. Some materials, notably paper and card, and some cores may be self-damping. Where desired, the damping may be increased in the construction of the panels by employing resiliently setting, rather than rigid setting adhesives.
- Effective said selective damping includes specific application to the panel including its sheet material of means permanently associated therewith. Edges and corners can be particularly significant for dominant and less dispersed low frequency vibration modes of panels hereof. Edge-wise fixing of damping means can usefully lead to a panel with its said sheet material fully framed, though their corners can often be relatively free, say for desired extension to lower frequency operation. Attachment can be by adhesive or self-adhesive materials. Other forms of useful damping, particularly in terms of more subtle effects and/or mid- and higher frequencies can be by way of suitable mass or masses affixed to the sheet material at predetermined effective medial localised positions of said area.
- An acoustic panel as described above is bidirectional.
- the sound energy from the back is not strongly phase related to that from the front. Consequently there is the benefit of overall summation of acoustic power in the room, sound energy of uniform frequency distribution, reduced reflective and standing wave effects and with the advantage of superior reproduction of the natural space and ambience in the reproduced sound recordings.
- FIG 3 illustrates a panel-form loudspeaker (81) generally similar to that shown in Figures 1 and 2 and in which the distributed mode panel (2) is formed with a generally rectangular aperture (82) within its boundaries in which is mounted a second distributed mode sound radiating panel (4) with a resilient suspension (3) interposed between the respective panels.
- the panel (4) is constructed in the same manner as the panel (2), e.g. with a central core (22) separating skins (21).
- the panel (4) is driven by its own transducer (9) mounted wholly and exclusively on or in the panel (4) at a predetermined location to produce a high frequency acoustic output, while the panel (2) is driven by a separate transducer (9) to produce an acoustic output of lower frequency, so that the loudspeaker can readily encompass the whole acoustic spectrum.
- a separate transducer 9
- Such an arrangement may be useful if losses in the material of the panel tend to attenuate high frequencies.
- More than one transducer may be mounted on each or one of the panel to improve performance.
- Figure 4 illustrates how a distributed mode panel (2) according to the present invention, and for example of the kind shown in Figures 1 and 2, can be driven to resonate by a pair (70,71) of transducers (9).
- the smaller one of the transducers (70) is a high frequency piezo transducer, e.g. of the kind shown in Figure 7, and the larger one of the transducers (71) is of the electrodynamic kind, e.g. as shown in our co-pending International publication Nos. WO97/09859, WO97/09861, WO97/09858.
- the transducers (70,71) are driven by an amplifier (10) coupled in parallel to the respective transducers with the interposition of a step-up transformer (72) and matching resistance (73) in the line to the piezo transducer in view of its relatively high voltage requirement. If desired more than one transducer (70) and/or transducer (71) may be provided to improve the performance.
- Figure 5 illustrates how a distributed mode panel (2) according to the present invention, e.g. of the kind shown in Figures 1 and 2, can be driven by a pair (70,74) of transducers (9), the transducer (70) being a high frequency piezo-electric transducer e.g. of the kind shown in Figure 7 and the transducer (74) being a low frequency piezo-electric transducer of the kind shown in our co-pending International publication No. WO97/09861.
- Reference (75) indicates that the transducer (74) is weighted with a mass to increase its inertia.
- the transducers (70,74) are driven by an amplifier (10) to which they are connected in parallel, with resistors (78) interposed to provide a frequency dividing network. If desired more than one transducer (70) and/or transducer (74) may be provided to improve the performance.
- Figure 6 illustrates how a distributed mode panel (2) according to the present invention, e.g. of the kind shown in Figures 1 and 2, can be driven by a pair (68,69) of electrodynamic transducers, e.g. of the kinds shown in our co-pending International publication Nos. WO97/09859, WO97/09861, WO97/09858.
- the transducer (68) is intended as a high frequency driver and is thus of low inductance, whereas the transducer (69) is intended as a low frequency driver and is of high inductance.
- the transducers (68,69) are driven in parallel by an amplifier (10) with a capacitor (77) in the line to the transducer (68) to act as a frequency divider to pass most of the high frequency signal to the transducer (68). If desired more than one transducer (68) and/or transducer (69) may be provided to improve the performance.
- Figure 7 shows a transducer (9) for a distributed mode panel (2) in the form of a crystalline disc-like piezo bender (27) mounted on a disc (118), e.g. of brass, which is bonded to a face of the panel (2), e.g. by an adhesive bond (20).
- a transducer (9) for a distributed mode panel (2) in the form of a crystalline disc-like piezo bender (27) mounted on a disc (118), e.g. of brass, which is bonded to a face of the panel (2), e.g. by an adhesive bond (20).
- a transducer (9) via leads (28) will cause the piezo disc (27) to bend and thus locally resiliently deform the panel (2) to launch bending waves into the panel.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Otolaryngology (AREA)
- Multimedia (AREA)
- Piezo-Electric Transducers For Audible Bands (AREA)
- Diaphragms For Electromechanical Transducers (AREA)
- Holo Graphy (AREA)
- Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)
- Transducers For Ultrasonic Waves (AREA)
Claims (11)
- Paneelförmiger Lautsprecher (81) mit einem Bauteil (2), das ein steifes leichtes Paneel mit der Fähigkeit aufweist, eingespeiste Schwingungsenergie aufrechtzuerhalten und durch Biegewellen in zumindest einer wirksamen Fläche fortzupflanzen, die quer zur Dicke verläuft, um Resonanzmoden-Schwingungskomponenten über die zumindest eine Fläche zu verteilen mit vorbestimmten bevorzugten Orten oder Stellen innerhalb der Fläche für Wandlereinrichtungen (9), und mit ersten und zweiten Wandlern (9), die auf dem Bauteil an zwei der Orte oder Stellen angebracht sind, um das Bauteil in Schwingung zu versetzen, um es in Resonanz treten zu lassen, wobei ein akustischer Strahler geschaffen wird, der ein akustisches Ausgangssignal liefert, wenn er in Resonanz schwingt.
- Paneelförmiger Lautsprecher nach Anspruch 1, dadurch gekennzeichnet, daß die ersten und zweiten Wandler (9) dafür ausgelegt sind, in verschiedenen Frequenzbereichen zu arbeiten.
- Paneelförmiger Lautsprecher nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, daß der Strahler einen zwischen Häuten (21) sandwichartig aufgenommenen zellularen Kern (22) hat.
- Paneelförmiger Lautsprecher nach Anspruch 3, gekennzeichnet durch einen den Strahler (2) haltenden Rahmen (1) und durch eine federnde Aufhängung (3), durch die der Strahler am Rahmen befestigt ist.
- Paneelförmiger Lautsprecher nach Anspruch 4, dadurch gekennzeichnet, daß der Rahmen (1) den Strahler umgibt, und dadurch, daß die Aufhängung am Rand des Strahlers befestigt ist.
- Paneelförmiger Lautsprecher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die ersten und zweiten Wandler (9) ganz und ausschließlich auf dem Strahler angebracht sind.
- Paneelförmiger Lautsprecher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß einer der Wandler elektromagnetisch ist.
- Paneelförmiger Lautsprecher nach Anspruch 7, dadurch gekennzeichnet, daß einer der Lautsprecher piezoelektrisch ist.
- Paneelförmiger Lautsprecher nach einem der vorhergehenden Ansprüche, gekennzeichnet durch ein zweites Bauteil (4) mit der Fähigkeit, eingespeiste Schwingungsenergie aufrechtzuerhalten und durch Biegewellen in zumindest einer wirksamen Fläche fortzupflanzen, die quer zur Dicke verläuft, um Resonanzmoden-Schwingungskomponenten über die zumindest eine Fläche zu verteilen mit vorbestimmten bevorzugten Orten oder Stellen innerhalb der Fläche für Wandlereinrichtungen, und mit einem Wandler (9), der auf dem Bauteil (4) an einem der Orte oder Stellen angebracht ist, um das Bauteil in Schwingung zu versetzen, um es in Resonanz treten zu lassen, wobei ein akustischer Strahler geschaffen wird, der ein akustisches Ausgangssignal liefert, wenn er in Resonanz schwingt, das zweite Bauteil (4) auf oder in dem ersten Bauteil (2) angebracht ist und eine federnde Aufhängung (3) die ersten und zweiten Bauteile (2, 4) koppelt.
- Paneelförmiger Lautsprecher nach Anspruch 9, dadurch gekennzeichnet, daß das zweite Bauteil (4) in einer Öffnung (82) im ersten Bauteil (2) angebracht ist.
- Paneelförmiger Lautsprecher nach Anspruch 9 oder Anspruch 10, dadurch gekennzeichnet, daß der zweite Wandler ganz und ausschließlich auf dem Bauteil (4) angebracht ist.
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB9517918.0A GB9517918D0 (en) | 1995-09-02 | 1995-09-02 | Acoustic device |
GB9517918 | 1995-09-02 | ||
GBGB9522281.6A GB9522281D0 (en) | 1995-10-31 | 1995-10-31 | Acoustic device |
GB9522281 | 1995-10-31 | ||
GBGB9606836.6A GB9606836D0 (en) | 1996-03-30 | 1996-03-30 | Acoustic device |
GB9606836 | 1996-03-30 | ||
PCT/GB1996/002162 WO1997009846A1 (en) | 1995-09-02 | 1996-09-02 | Panel-form loudspeakers |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0847665A1 EP0847665A1 (de) | 1998-06-17 |
EP0847665B1 true EP0847665B1 (de) | 1999-04-21 |
Family
ID=34865248
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96929403A Expired - Lifetime EP0847665B1 (de) | 1995-09-02 | 1996-09-02 | Paneelförmige lautsprecher |
Country Status (13)
Country | Link |
---|---|
EP (1) | EP0847665B1 (de) |
JP (1) | JPH11512257A (de) |
CN (1) | CN1195458A (de) |
AT (1) | ATE179296T1 (de) |
AU (1) | AU703122B2 (de) |
CA (1) | CA2230461A1 (de) |
DE (1) | DE69602203T2 (de) |
DK (1) | DK0847665T3 (de) |
EA (1) | EA001720B1 (de) |
ES (1) | ES2132953T3 (de) |
HK (1) | HK1008649A1 (de) |
RO (1) | RO119045B1 (de) |
WO (1) | WO1997009846A1 (de) |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0953275A1 (de) * | 1996-12-20 | 1999-11-03 | NCT Group, Inc. | Elektroakustischer wandler mit schwingplatten |
GB9709959D0 (en) * | 1997-05-15 | 1997-07-09 | New Transducers Ltd | Panel-form loudspeakers |
US6278790B1 (en) | 1997-11-11 | 2001-08-21 | Nct Group, Inc. | Electroacoustic transducers comprising vibrating panels |
IL140304A0 (en) | 1998-06-22 | 2002-02-10 | Slab Technology Ltd | Loudspeakers |
JP3512087B2 (ja) | 1999-06-15 | 2004-03-29 | 日本電気株式会社 | パネルスピーカ |
TW511391B (en) | 2000-01-24 | 2002-11-21 | New Transducers Ltd | Transducer |
US7151837B2 (en) | 2000-01-27 | 2006-12-19 | New Transducers Limited | Loudspeaker |
US6865277B2 (en) | 2000-01-27 | 2005-03-08 | New Transducers Limited | Passenger vehicle |
US6839444B2 (en) | 2000-11-30 | 2005-01-04 | New Transducers Limited | Loudspeakers |
GB0029098D0 (en) * | 2000-11-30 | 2001-01-10 | New Transducers Ltd | Vibration transducer |
US10848118B2 (en) | 2004-08-10 | 2020-11-24 | Bongiovi Acoustics Llc | System and method for digital signal processing |
US10158337B2 (en) | 2004-08-10 | 2018-12-18 | Bongiovi Acoustics Llc | System and method for digital signal processing |
US8284955B2 (en) | 2006-02-07 | 2012-10-09 | Bongiovi Acoustics Llc | System and method for digital signal processing |
US11431312B2 (en) | 2004-08-10 | 2022-08-30 | Bongiovi Acoustics Llc | System and method for digital signal processing |
TW200706049A (en) * | 2005-05-12 | 2007-02-01 | Kenwood Corp | Screen speaker system |
JP2006319626A (ja) * | 2005-05-12 | 2006-11-24 | Kenwood Corp | スクリーンスピーカシステム |
DE102005029977A1 (de) * | 2005-06-28 | 2007-01-11 | Robert Bosch Gmbh | Vorrichtung mit einem adaptiven Biegewandler zur Abgabe eines Signaltons |
US10848867B2 (en) | 2006-02-07 | 2020-11-24 | Bongiovi Acoustics Llc | System and method for digital signal processing |
US11202161B2 (en) | 2006-02-07 | 2021-12-14 | Bongiovi Acoustics Llc | System, method, and apparatus for generating and digitally processing a head related audio transfer function |
US10701505B2 (en) | 2006-02-07 | 2020-06-30 | Bongiovi Acoustics Llc. | System, method, and apparatus for generating and digitally processing a head related audio transfer function |
US9615189B2 (en) | 2014-08-08 | 2017-04-04 | Bongiovi Acoustics Llc | Artificial ear apparatus and associated methods for generating a head related audio transfer function |
US10069471B2 (en) | 2006-02-07 | 2018-09-04 | Bongiovi Acoustics Llc | System and method for digital signal processing |
US8189851B2 (en) | 2009-03-06 | 2012-05-29 | Emo Labs, Inc. | Optically clear diaphragm for an acoustic transducer and method for making same |
GB2504691B (en) * | 2012-08-06 | 2015-01-28 | Jaguar Land Rover Ltd | Audio apparatus and method |
WO2014144084A1 (en) | 2013-03-15 | 2014-09-18 | Emo Labs, Inc. | Acoustic transducers with releasable diaphragm |
US9264004B2 (en) | 2013-06-12 | 2016-02-16 | Bongiovi Acoustics Llc | System and method for narrow bandwidth digital signal processing |
US9883318B2 (en) | 2013-06-12 | 2018-01-30 | Bongiovi Acoustics Llc | System and method for stereo field enhancement in two-channel audio systems |
USD743376S1 (en) * | 2013-06-25 | 2015-11-17 | Lg Electronics Inc. | Speaker |
US20150010173A1 (en) * | 2013-07-05 | 2015-01-08 | Qualcomm Incorporated | Apparatus and method for providing a frequency response for audio signals |
US9906858B2 (en) | 2013-10-22 | 2018-02-27 | Bongiovi Acoustics Llc | System and method for digital signal processing |
USD733678S1 (en) | 2013-12-27 | 2015-07-07 | Emo Labs, Inc. | Audio speaker |
USD741835S1 (en) | 2013-12-27 | 2015-10-27 | Emo Labs, Inc. | Speaker |
USD748072S1 (en) | 2014-03-14 | 2016-01-26 | Emo Labs, Inc. | Sound bar audio speaker |
US10820883B2 (en) | 2014-04-16 | 2020-11-03 | Bongiovi Acoustics Llc | Noise reduction assembly for auscultation of a body |
US10639000B2 (en) | 2014-04-16 | 2020-05-05 | Bongiovi Acoustics Llc | Device for wide-band auscultation |
US9615813B2 (en) | 2014-04-16 | 2017-04-11 | Bongiovi Acoustics Llc. | Device for wide-band auscultation |
US9564146B2 (en) | 2014-08-01 | 2017-02-07 | Bongiovi Acoustics Llc | System and method for digital signal processing in deep diving environment |
US9638672B2 (en) | 2015-03-06 | 2017-05-02 | Bongiovi Acoustics Llc | System and method for acquiring acoustic information from a resonating body |
WO2017087495A1 (en) | 2015-11-16 | 2017-05-26 | Bongiovi Acoustics Llc | Surface acoustic transducer |
US9621994B1 (en) | 2015-11-16 | 2017-04-11 | Bongiovi Acoustics Llc | Surface acoustic transducer |
CN106658318A (zh) * | 2017-01-20 | 2017-05-10 | 瑞声科技(南京)有限公司 | 振动发声系统 |
EP3776528A4 (de) | 2018-04-11 | 2022-01-05 | Bongiovi Acoustics LLC | Audioverstärktes gehörschutzsystem |
WO2020028833A1 (en) | 2018-08-02 | 2020-02-06 | Bongiovi Acoustics Llc | System, method, and apparatus for generating and digitally processing a head related audio transfer function |
GB2597988B (en) * | 2020-08-13 | 2024-11-06 | Full Stack Acoustic Ltd | Loudspeaker apparatus, Loudspeaker system, display panel and systems thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3247925A (en) * | 1962-03-08 | 1966-04-26 | Lord Corp | Loudspeaker |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5748153Y2 (de) * | 1977-11-26 | 1982-10-22 | ||
DE3172790D1 (en) * | 1980-12-19 | 1985-12-05 | Nissan Motor | Speaker for automotive vehicle audio system |
US4751419A (en) * | 1986-12-10 | 1988-06-14 | Nitto Incorporated | Piezoelectric oscillation assembly including several individual piezoelectric oscillation devices having a common oscillation plate member |
US5025474A (en) * | 1987-09-29 | 1991-06-18 | Matsushita Electric Industrial Co., Ltd. | Speaker system with image projection screen |
US4997058A (en) * | 1989-10-02 | 1991-03-05 | Bertagni Jose J | Sound transducer |
DE69106712T2 (de) * | 1990-08-04 | 1995-06-08 | Secr Defence Brit | Paneelförmiger lautsprecher. |
-
1996
- 1996-09-02 ES ES96929403T patent/ES2132953T3/es not_active Expired - Lifetime
- 1996-09-02 RO RO98-00641A patent/RO119045B1/ro unknown
- 1996-09-02 EP EP96929403A patent/EP0847665B1/de not_active Expired - Lifetime
- 1996-09-02 CA CA002230461A patent/CA2230461A1/en not_active Abandoned
- 1996-09-02 AU AU68818/96A patent/AU703122B2/en not_active Ceased
- 1996-09-02 CN CN96196710.2A patent/CN1195458A/zh active Pending
- 1996-09-02 EA EA199800172A patent/EA001720B1/ru not_active IP Right Cessation
- 1996-09-02 DE DE69602203T patent/DE69602203T2/de not_active Expired - Fee Related
- 1996-09-02 DK DK96929403T patent/DK0847665T3/da active
- 1996-09-02 WO PCT/GB1996/002162 patent/WO1997009846A1/en not_active Application Discontinuation
- 1996-09-02 AT AT96929403T patent/ATE179296T1/de not_active IP Right Cessation
- 1996-09-02 JP JP9510963A patent/JPH11512257A/ja active Pending
-
1998
- 1998-07-28 HK HK98109454A patent/HK1008649A1/xx not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3247925A (en) * | 1962-03-08 | 1966-04-26 | Lord Corp | Loudspeaker |
Also Published As
Publication number | Publication date |
---|---|
EA001720B1 (ru) | 2001-08-27 |
DE69602203T2 (de) | 1999-09-16 |
CA2230461A1 (en) | 1997-03-13 |
WO1997009846A1 (en) | 1997-03-13 |
CN1195458A (zh) | 1998-10-07 |
EA199800172A1 (ru) | 1998-10-29 |
EP0847665A1 (de) | 1998-06-17 |
RO119045B1 (ro) | 2004-02-27 |
AU703122B2 (en) | 1999-03-18 |
ATE179296T1 (de) | 1999-05-15 |
JPH11512257A (ja) | 1999-10-19 |
ES2132953T3 (es) | 1999-08-16 |
HK1008649A1 (en) | 1999-05-14 |
AU6881896A (en) | 1997-03-27 |
DE69602203D1 (de) | 1999-05-27 |
DK0847665T3 (da) | 1999-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0847665B1 (de) | Paneelförmige lautsprecher | |
US6031926A (en) | Panel-form loudspeakers | |
US6188775B1 (en) | Panel-form loudspeakers | |
AU703061B2 (en) | Vibration transducers | |
US6198831B1 (en) | Panel-form loudspeakers | |
AU703198B2 (en) | Inertial vibration transducers | |
EP0847676B1 (de) | Inertial-schwingungswandler | |
AU702920B2 (en) | Loudspeakers comprising panel-form acoustic radiating elements | |
EP0847669B1 (de) | Bildschirm mit lautsprechern | |
EP0847671B1 (de) | Personalcomputer mit lautsprechern | |
EP0847664B1 (de) | Lautsprecher mit paneelförmigen akustischen abstrahlelementen | |
EP0847668B1 (de) | Lautsprecher mit paneelförmigen schallausstrahlenden elementen | |
EP0847672B1 (de) | Verpackung | |
US6327369B1 (en) | Loudspeakers comprising panel-form acoustic radiating elements | |
EP0847666B1 (de) | Paneelförmige lautsprecher | |
US6404894B1 (en) | Packaging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19980318 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL PAYMENT 980318;LT PAYMENT 980318;LV PAYMENT 980318;SI PAYMENT 980318 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 19980701 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: NEW TRANSDUCERS LIMITED |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL PAYMENT 19980318;LT PAYMENT 19980318;LV PAYMENT 19980318;SI PAYMENT 19980318 |
|
LTIE | Lt: invalidation of european patent or patent extension | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19990421 Ref country code: LI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19990421 Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990421 Ref country code: CH Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19990421 |
|
REF | Corresponds to: |
Ref document number: 179296 Country of ref document: AT Date of ref document: 19990515 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
ITF | It: translation for a ep patent filed | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 69602203 Country of ref document: DE Date of ref document: 19990527 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2132953 Country of ref document: ES Kind code of ref document: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990902 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 19990709 Ref country code: CH Ref legal event code: PL |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
26 | Opposition filed |
Opponent name: INTERESSENGEMEINSCHAFT FUER RUNDFUNKSCHUTZRECHTE G Effective date: 20000118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000331 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: INTERESSENGEMEINSCHAFT FUER RUNDFUNKSCHUTZRECHTE G |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: NEW TRANSDUCERS LIMITED |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: NEW TRANSDUCERS LIMITED |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20020808 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20020812 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20020813 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20020815 Year of fee payment: 7 Ref country code: FI Payment date: 20020815 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20020822 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20020827 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20020903 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20020910 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 20020919 Year of fee payment: 7 |
|
PLBP | Opposition withdrawn |
Free format text: ORIGINAL CODE: 0009264 |
|
PLBL | Opposition procedure terminated |
Free format text: ORIGINAL CODE: EPIDOS OPPC |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20030815 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030902 Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030902 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030902 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030903 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030930 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030930 |
|
PLBM | Termination of opposition procedure: date of legal effect published |
Free format text: ORIGINAL CODE: 0009276 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: OPPOSITION PROCEDURE CLOSED |
|
27C | Opposition proceedings terminated |
Effective date: 20030707 |
|
NLR2 | Nl: decision of opposition |
Effective date: 20030707 |
|
BERE | Be: lapsed |
Owner name: *NEW TRANSDUCERS LTD Effective date: 20030930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040401 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040401 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040528 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20040401 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: MM4A Free format text: LAPSE DUE TO NON-PAYMENT OF FEES Effective date: 20040331 Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040902 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20030903 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20040902 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050902 |