EP0847665B1 - Paneelförmige lautsprecher - Google Patents

Paneelförmige lautsprecher Download PDF

Info

Publication number
EP0847665B1
EP0847665B1 EP96929403A EP96929403A EP0847665B1 EP 0847665 B1 EP0847665 B1 EP 0847665B1 EP 96929403 A EP96929403 A EP 96929403A EP 96929403 A EP96929403 A EP 96929403A EP 0847665 B1 EP0847665 B1 EP 0847665B1
Authority
EP
European Patent Office
Prior art keywords
panel
radiator
transducer
loudspeaker according
form loudspeaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96929403A
Other languages
English (en)
French (fr)
Other versions
EP0847665A1 (de
Inventor
Henry Azima
Martin Colloms
Neil Harris
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NVF Tech Ltd
Original Assignee
New Transducers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34865248&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0847665(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from GBGB9517918.0A external-priority patent/GB9517918D0/en
Priority claimed from GBGB9522281.6A external-priority patent/GB9522281D0/en
Priority claimed from GBGB9606836.6A external-priority patent/GB9606836D0/en
Application filed by New Transducers Ltd filed Critical New Transducers Ltd
Publication of EP0847665A1 publication Critical patent/EP0847665A1/de
Application granted granted Critical
Publication of EP0847665B1 publication Critical patent/EP0847665B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • H04R7/045Plane diaphragms using the distributed mode principle, i.e. whereby the acoustic radiation is emanated from uniformly distributed free bending wave vibration induced in a stiff panel and not from pistonic motion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/26Spatial arrangements of separate transducers responsive to two or more frequency ranges

Definitions

  • the invention relates to loudspeakers and more particularly to loudspeakers comprising panel-form acoustic radiating elements.
  • Embodiments of the present invention use members of nature, structure and configuration achievable generally and/or specifically by implementing teachings of our co-pending PCT publication No. WO97/09842 of even date herewith.
  • Such members thus have capability to sustain and propagate input vibrational energy by bending waves in operative area(s) extending transversely of thickness often but not necessarily to edges of the member(s); are configured with or without anisotropy of bending stiffness to have resonant mode vibration components distributed over said area(s) beneficially for acoustic coupling with ambient air; and have predetermined preferential locations or sites within said area for transducer means, particularly operationally active or moving part(s) thereof effective in relation to acoustic vibrational activity in said area(s) and signals, usually electrical, corresponding to acoustic content of such vibrational activity.
  • This invention is particularly concerned with active acoustic devices in the form of loudspeakers.
  • Members as above are herein called distributed mode acoustic radiators and are intended to be characterised as in the above PCT application and/or otherwise as specifically provided herein.
  • the invention is a panel-form loudspeaker having a member comprising a stiff lightweight panel having capability to sustain and propagate input vibrational energy by bending waves in at least one operative area extending transversely of thickness to have resonant mode vibration components distributed over said at least one area and have predetermined preferential locations or sites within said area for transducer means and having first and second transducers mounted on said member at two of said locations or sites to vibrate the member to cause it to resonate forming an acoustic radiator which provides an acoustic output when resonating.
  • the first and second transducers may be adapted to operate in different frequency ranges.
  • the radiator may have a cellular core sandwiched between skins.
  • the loudspeaker may comprise a frame supporting the radiator, and a resilient suspension by which the radiator is attached to the frame.
  • the frame may surround the radiator, and the suspension may be attached to the edge of the radiator.
  • the first and second transducers may be mounted wholly and exclusively on the radiator.
  • One of the transducers may be electromagnetic.
  • One of the transducers may be piezo-electric.
  • the panel-form loudspeaker may comprise a second member having capability to sustain and propagate input vibrational energy by bending waves in at least one operative area extending transversely of thickness to have resonant mode vibration components distributed over said at least one area and have predetermined preferential locations or sites within said area for transducer means and having a transducer mounted on said member at one of said locations or sites to vibrate the member to cause it to resonate forming an acoustic radiator which provides an acoustic output when resonating, the second member being mounted on or in the first said member, and a resilient suspension coupling the first and second members.
  • the second member may be mounted in an aperture in the first member.
  • the second transducer may be mounted wholly and exclusively on the second member.
  • a panel-form loudspeaker (81) of the kind described and claimed in our co-pending International application No. WO97/09842 of even date herewith comprising a rectangular frame (1) carrying a resilient suspension (3) round its inner periphery which supports a distributed mode sound radiating panel (2).
  • a transducer (9) e.g as described in detail with reference to our co-pending International publication Nos. WO97/09859, WO97/09861, WO97/09858 even date herewith, is mounted wholly and exclusively on or in the panel (2) at a predetermined location defined by dimensions x and y , the position of which location is calculated as described in our co-pending International publication No. WO97/09842 of even date herewith, to launch bending waves into the panel to cause the panel to resonate to radiate an acoustic output.
  • the transducer (9) is driven by a signal amplifier (10), e.g. an audio amplifier, connected to the transducer by conductors (28).
  • a signal amplifier (10) e.g. an audio amplifier
  • Amplifier loading and power requirements can be entirely normal, similar to conventional cone type speakers, sensitivity being of the order of 86 - 88dB/watt under room loaded conditions.
  • Amplifier load impedance is largely resistive at 6 ohms, power handling 20-80 watts. Where the panel core and/or skins are of metal, they may be made to act as a heat sink for the transducer to remove heat from the motor coil of the transducer and thus improve power handling.
  • Figures 2 a and 2 b are partial typical cross-sections through the loudspeaker (81) of Figure 1.
  • Figure 2 a shows that the frame (1), surround (3) and panel (2) are connected together by respective adhesive-bonded joints (20).
  • Suitable materials for the frame include lightweight framing, e.g. picture framing of extruded metal e.g. aluminium alloy or plastics.
  • Suitable surround materials include resilient materials such as foam rubber and foam plastics.
  • Suitable adhesives for the joints (20) include epoxy, acrylic and cyano-acrylate etc. adhesives.
  • Figure 2 b illustrates, to an enlarged scale, that the panel (2) is a rigid lightweight panel having a core (22) e.g. of a rigid plastics foam (97) e.g. cross linked polyvinylchloride or a cellular matrix (98) i.e. a honeycomb matrix of metal foil, plastics or the like, with the cells extending transversely to the plane of the panel, and enclosed by opposed skins (21) e.g. of paper, card, plastics or metal foil or sheet.
  • the skins are of plastics, they may be reinforced with fibres e.g. of carbon, glass, Kevlar (RTM) or the like in a manner known per se to increase their modulus.
  • RTM Kevlar
  • Envisaged skin layer materials and reinforcements thus include carbon, glass, Kevlar (RTM), Nomex (RTM) i.e. aramid etc. fibres in various lays and weaves, as well as paper, bonded paper laminates, melamine, and various synthetic plastics films of high modulus, such as Mylar (RTM), Kaptan (RTM), polycarbonate, phenolic, polyester or related plastics, and fibre reinforced plastics, etc. and metal sheet or foil.
  • Investigation of the Vectra grade of liquid crystal polymer thermoplastics shows that they may be useful for the injection moulding of ultra thin skins or shells of smaller size, say up to around 30cm diameter. This material self forms an orientated crystal structure in the direction of injection, a preferred orientation for the good propagation of treble energy from the driving point to the panel perimeter.
  • thermoplastics allow for the mould tooling to carry location and registration features such as grooves or rings for the accurate location of transducer parts e.g. the motor coil, and the magnet suspension. Additional with some weaker core materials it is calculated that it would be advantageous to increase the skin thickness locally e.g. in an area or annulus up to 150% of the transducer diameter, to reinforce that area and beneficially couple vibration energy into the panel. High frequency response will be improved with the softer foam materials by this means.
  • Envisaged core layer materials include fabricated honeycombs or corrugations of aluminium alloy sheet or foil, or Kevlar (RTM), Nomex (RTM), plain or bonded papers, and various synthetic plastics films, as well as expanded or foamed plastics or pulp materials, even aerogel metals if of suitably low density.
  • Some suitable core layer materials effectively exhibit usable self-skinning in their manufacture and/or otherwise have enough inherent stiffness for use without lamination between skin layers.
  • a high performance cellular core material is known under the trade name 'Rohacell' which may be suitable as a radiator panel and which is without skins. In practical terms, the aim is for an overall lightness and stiffness suited to a particular purpose, specifically including optimising contributions from core and skin layers and transitions between them.
  • piezo and electro dynamic transducers have negligible electromagnetic radiation or stray magnet fields.
  • Conventional speakers have a large magnetic field, up to 1 metre distant unless specific compensation counter measures are taken.
  • electrical connection can be made to the conductive parts of an appropriate DML panel or an electrically conductive foam or similar interface may be used for the edge mounting.
  • the suspension (3) may damp the edges of the panel (2) to prevent excessive edge movement of the panel. Additionally or alternatively, further damping may be applied, e.g. as patches, bonded to the panel in selected positions to damp excessive movement to distribute resonance equally over the panel.
  • the patches may be of bitumen-based material, as commonly used in conventional loudspeaker enclosures or may be of a resilient or rigid polymeric sheet material. Some materials, notably paper and card, and some cores may be self-damping. Where desired, the damping may be increased in the construction of the panels by employing resiliently setting, rather than rigid setting adhesives.
  • Effective said selective damping includes specific application to the panel including its sheet material of means permanently associated therewith. Edges and corners can be particularly significant for dominant and less dispersed low frequency vibration modes of panels hereof. Edge-wise fixing of damping means can usefully lead to a panel with its said sheet material fully framed, though their corners can often be relatively free, say for desired extension to lower frequency operation. Attachment can be by adhesive or self-adhesive materials. Other forms of useful damping, particularly in terms of more subtle effects and/or mid- and higher frequencies can be by way of suitable mass or masses affixed to the sheet material at predetermined effective medial localised positions of said area.
  • An acoustic panel as described above is bidirectional.
  • the sound energy from the back is not strongly phase related to that from the front. Consequently there is the benefit of overall summation of acoustic power in the room, sound energy of uniform frequency distribution, reduced reflective and standing wave effects and with the advantage of superior reproduction of the natural space and ambience in the reproduced sound recordings.
  • FIG 3 illustrates a panel-form loudspeaker (81) generally similar to that shown in Figures 1 and 2 and in which the distributed mode panel (2) is formed with a generally rectangular aperture (82) within its boundaries in which is mounted a second distributed mode sound radiating panel (4) with a resilient suspension (3) interposed between the respective panels.
  • the panel (4) is constructed in the same manner as the panel (2), e.g. with a central core (22) separating skins (21).
  • the panel (4) is driven by its own transducer (9) mounted wholly and exclusively on or in the panel (4) at a predetermined location to produce a high frequency acoustic output, while the panel (2) is driven by a separate transducer (9) to produce an acoustic output of lower frequency, so that the loudspeaker can readily encompass the whole acoustic spectrum.
  • a separate transducer 9
  • Such an arrangement may be useful if losses in the material of the panel tend to attenuate high frequencies.
  • More than one transducer may be mounted on each or one of the panel to improve performance.
  • Figure 4 illustrates how a distributed mode panel (2) according to the present invention, and for example of the kind shown in Figures 1 and 2, can be driven to resonate by a pair (70,71) of transducers (9).
  • the smaller one of the transducers (70) is a high frequency piezo transducer, e.g. of the kind shown in Figure 7, and the larger one of the transducers (71) is of the electrodynamic kind, e.g. as shown in our co-pending International publication Nos. WO97/09859, WO97/09861, WO97/09858.
  • the transducers (70,71) are driven by an amplifier (10) coupled in parallel to the respective transducers with the interposition of a step-up transformer (72) and matching resistance (73) in the line to the piezo transducer in view of its relatively high voltage requirement. If desired more than one transducer (70) and/or transducer (71) may be provided to improve the performance.
  • Figure 5 illustrates how a distributed mode panel (2) according to the present invention, e.g. of the kind shown in Figures 1 and 2, can be driven by a pair (70,74) of transducers (9), the transducer (70) being a high frequency piezo-electric transducer e.g. of the kind shown in Figure 7 and the transducer (74) being a low frequency piezo-electric transducer of the kind shown in our co-pending International publication No. WO97/09861.
  • Reference (75) indicates that the transducer (74) is weighted with a mass to increase its inertia.
  • the transducers (70,74) are driven by an amplifier (10) to which they are connected in parallel, with resistors (78) interposed to provide a frequency dividing network. If desired more than one transducer (70) and/or transducer (74) may be provided to improve the performance.
  • Figure 6 illustrates how a distributed mode panel (2) according to the present invention, e.g. of the kind shown in Figures 1 and 2, can be driven by a pair (68,69) of electrodynamic transducers, e.g. of the kinds shown in our co-pending International publication Nos. WO97/09859, WO97/09861, WO97/09858.
  • the transducer (68) is intended as a high frequency driver and is thus of low inductance, whereas the transducer (69) is intended as a low frequency driver and is of high inductance.
  • the transducers (68,69) are driven in parallel by an amplifier (10) with a capacitor (77) in the line to the transducer (68) to act as a frequency divider to pass most of the high frequency signal to the transducer (68). If desired more than one transducer (68) and/or transducer (69) may be provided to improve the performance.
  • Figure 7 shows a transducer (9) for a distributed mode panel (2) in the form of a crystalline disc-like piezo bender (27) mounted on a disc (118), e.g. of brass, which is bonded to a face of the panel (2), e.g. by an adhesive bond (20).
  • a transducer (9) for a distributed mode panel (2) in the form of a crystalline disc-like piezo bender (27) mounted on a disc (118), e.g. of brass, which is bonded to a face of the panel (2), e.g. by an adhesive bond (20).
  • a transducer (9) via leads (28) will cause the piezo disc (27) to bend and thus locally resiliently deform the panel (2) to launch bending waves into the panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Multimedia (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Holo Graphy (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Claims (11)

  1. Paneelförmiger Lautsprecher (81) mit einem Bauteil (2), das ein steifes leichtes Paneel mit der Fähigkeit aufweist, eingespeiste Schwingungsenergie aufrechtzuerhalten und durch Biegewellen in zumindest einer wirksamen Fläche fortzupflanzen, die quer zur Dicke verläuft, um Resonanzmoden-Schwingungskomponenten über die zumindest eine Fläche zu verteilen mit vorbestimmten bevorzugten Orten oder Stellen innerhalb der Fläche für Wandlereinrichtungen (9), und mit ersten und zweiten Wandlern (9), die auf dem Bauteil an zwei der Orte oder Stellen angebracht sind, um das Bauteil in Schwingung zu versetzen, um es in Resonanz treten zu lassen, wobei ein akustischer Strahler geschaffen wird, der ein akustisches Ausgangssignal liefert, wenn er in Resonanz schwingt.
  2. Paneelförmiger Lautsprecher nach Anspruch 1, dadurch gekennzeichnet, daß die ersten und zweiten Wandler (9) dafür ausgelegt sind, in verschiedenen Frequenzbereichen zu arbeiten.
  3. Paneelförmiger Lautsprecher nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, daß der Strahler einen zwischen Häuten (21) sandwichartig aufgenommenen zellularen Kern (22) hat.
  4. Paneelförmiger Lautsprecher nach Anspruch 3, gekennzeichnet durch einen den Strahler (2) haltenden Rahmen (1) und durch eine federnde Aufhängung (3), durch die der Strahler am Rahmen befestigt ist.
  5. Paneelförmiger Lautsprecher nach Anspruch 4, dadurch gekennzeichnet, daß der Rahmen (1) den Strahler umgibt, und dadurch, daß die Aufhängung am Rand des Strahlers befestigt ist.
  6. Paneelförmiger Lautsprecher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die ersten und zweiten Wandler (9) ganz und ausschließlich auf dem Strahler angebracht sind.
  7. Paneelförmiger Lautsprecher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß einer der Wandler elektromagnetisch ist.
  8. Paneelförmiger Lautsprecher nach Anspruch 7, dadurch gekennzeichnet, daß einer der Lautsprecher piezoelektrisch ist.
  9. Paneelförmiger Lautsprecher nach einem der vorhergehenden Ansprüche, gekennzeichnet durch ein zweites Bauteil (4) mit der Fähigkeit, eingespeiste Schwingungsenergie aufrechtzuerhalten und durch Biegewellen in zumindest einer wirksamen Fläche fortzupflanzen, die quer zur Dicke verläuft, um Resonanzmoden-Schwingungskomponenten über die zumindest eine Fläche zu verteilen mit vorbestimmten bevorzugten Orten oder Stellen innerhalb der Fläche für Wandlereinrichtungen, und mit einem Wandler (9), der auf dem Bauteil (4) an einem der Orte oder Stellen angebracht ist, um das Bauteil in Schwingung zu versetzen, um es in Resonanz treten zu lassen, wobei ein akustischer Strahler geschaffen wird, der ein akustisches Ausgangssignal liefert, wenn er in Resonanz schwingt, das zweite Bauteil (4) auf oder in dem ersten Bauteil (2) angebracht ist und eine federnde Aufhängung (3) die ersten und zweiten Bauteile (2, 4) koppelt.
  10. Paneelförmiger Lautsprecher nach Anspruch 9, dadurch gekennzeichnet, daß das zweite Bauteil (4) in einer Öffnung (82) im ersten Bauteil (2) angebracht ist.
  11. Paneelförmiger Lautsprecher nach Anspruch 9 oder Anspruch 10, dadurch gekennzeichnet, daß der zweite Wandler ganz und ausschließlich auf dem Bauteil (4) angebracht ist.
EP96929403A 1995-09-02 1996-09-02 Paneelförmige lautsprecher Expired - Lifetime EP0847665B1 (de)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
GBGB9517918.0A GB9517918D0 (en) 1995-09-02 1995-09-02 Acoustic device
GB9517918 1995-09-02
GBGB9522281.6A GB9522281D0 (en) 1995-10-31 1995-10-31 Acoustic device
GB9522281 1995-10-31
GBGB9606836.6A GB9606836D0 (en) 1996-03-30 1996-03-30 Acoustic device
GB9606836 1996-03-30
PCT/GB1996/002162 WO1997009846A1 (en) 1995-09-02 1996-09-02 Panel-form loudspeakers

Publications (2)

Publication Number Publication Date
EP0847665A1 EP0847665A1 (de) 1998-06-17
EP0847665B1 true EP0847665B1 (de) 1999-04-21

Family

ID=34865248

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96929403A Expired - Lifetime EP0847665B1 (de) 1995-09-02 1996-09-02 Paneelförmige lautsprecher

Country Status (13)

Country Link
EP (1) EP0847665B1 (de)
JP (1) JPH11512257A (de)
CN (1) CN1195458A (de)
AT (1) ATE179296T1 (de)
AU (1) AU703122B2 (de)
CA (1) CA2230461A1 (de)
DE (1) DE69602203T2 (de)
DK (1) DK0847665T3 (de)
EA (1) EA001720B1 (de)
ES (1) ES2132953T3 (de)
HK (1) HK1008649A1 (de)
RO (1) RO119045B1 (de)
WO (1) WO1997009846A1 (de)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0953275A1 (de) * 1996-12-20 1999-11-03 NCT Group, Inc. Elektroakustischer wandler mit schwingplatten
GB9709959D0 (en) * 1997-05-15 1997-07-09 New Transducers Ltd Panel-form loudspeakers
US6278790B1 (en) 1997-11-11 2001-08-21 Nct Group, Inc. Electroacoustic transducers comprising vibrating panels
IL140304A0 (en) 1998-06-22 2002-02-10 Slab Technology Ltd Loudspeakers
JP3512087B2 (ja) 1999-06-15 2004-03-29 日本電気株式会社 パネルスピーカ
TW511391B (en) 2000-01-24 2002-11-21 New Transducers Ltd Transducer
US7151837B2 (en) 2000-01-27 2006-12-19 New Transducers Limited Loudspeaker
US6865277B2 (en) 2000-01-27 2005-03-08 New Transducers Limited Passenger vehicle
US6839444B2 (en) 2000-11-30 2005-01-04 New Transducers Limited Loudspeakers
GB0029098D0 (en) * 2000-11-30 2001-01-10 New Transducers Ltd Vibration transducer
US10848118B2 (en) 2004-08-10 2020-11-24 Bongiovi Acoustics Llc System and method for digital signal processing
US10158337B2 (en) 2004-08-10 2018-12-18 Bongiovi Acoustics Llc System and method for digital signal processing
US8284955B2 (en) 2006-02-07 2012-10-09 Bongiovi Acoustics Llc System and method for digital signal processing
US11431312B2 (en) 2004-08-10 2022-08-30 Bongiovi Acoustics Llc System and method for digital signal processing
TW200706049A (en) * 2005-05-12 2007-02-01 Kenwood Corp Screen speaker system
JP2006319626A (ja) * 2005-05-12 2006-11-24 Kenwood Corp スクリーンスピーカシステム
DE102005029977A1 (de) * 2005-06-28 2007-01-11 Robert Bosch Gmbh Vorrichtung mit einem adaptiven Biegewandler zur Abgabe eines Signaltons
US10848867B2 (en) 2006-02-07 2020-11-24 Bongiovi Acoustics Llc System and method for digital signal processing
US11202161B2 (en) 2006-02-07 2021-12-14 Bongiovi Acoustics Llc System, method, and apparatus for generating and digitally processing a head related audio transfer function
US10701505B2 (en) 2006-02-07 2020-06-30 Bongiovi Acoustics Llc. System, method, and apparatus for generating and digitally processing a head related audio transfer function
US9615189B2 (en) 2014-08-08 2017-04-04 Bongiovi Acoustics Llc Artificial ear apparatus and associated methods for generating a head related audio transfer function
US10069471B2 (en) 2006-02-07 2018-09-04 Bongiovi Acoustics Llc System and method for digital signal processing
US8189851B2 (en) 2009-03-06 2012-05-29 Emo Labs, Inc. Optically clear diaphragm for an acoustic transducer and method for making same
GB2504691B (en) * 2012-08-06 2015-01-28 Jaguar Land Rover Ltd Audio apparatus and method
WO2014144084A1 (en) 2013-03-15 2014-09-18 Emo Labs, Inc. Acoustic transducers with releasable diaphragm
US9264004B2 (en) 2013-06-12 2016-02-16 Bongiovi Acoustics Llc System and method for narrow bandwidth digital signal processing
US9883318B2 (en) 2013-06-12 2018-01-30 Bongiovi Acoustics Llc System and method for stereo field enhancement in two-channel audio systems
USD743376S1 (en) * 2013-06-25 2015-11-17 Lg Electronics Inc. Speaker
US20150010173A1 (en) * 2013-07-05 2015-01-08 Qualcomm Incorporated Apparatus and method for providing a frequency response for audio signals
US9906858B2 (en) 2013-10-22 2018-02-27 Bongiovi Acoustics Llc System and method for digital signal processing
USD733678S1 (en) 2013-12-27 2015-07-07 Emo Labs, Inc. Audio speaker
USD741835S1 (en) 2013-12-27 2015-10-27 Emo Labs, Inc. Speaker
USD748072S1 (en) 2014-03-14 2016-01-26 Emo Labs, Inc. Sound bar audio speaker
US10820883B2 (en) 2014-04-16 2020-11-03 Bongiovi Acoustics Llc Noise reduction assembly for auscultation of a body
US10639000B2 (en) 2014-04-16 2020-05-05 Bongiovi Acoustics Llc Device for wide-band auscultation
US9615813B2 (en) 2014-04-16 2017-04-11 Bongiovi Acoustics Llc. Device for wide-band auscultation
US9564146B2 (en) 2014-08-01 2017-02-07 Bongiovi Acoustics Llc System and method for digital signal processing in deep diving environment
US9638672B2 (en) 2015-03-06 2017-05-02 Bongiovi Acoustics Llc System and method for acquiring acoustic information from a resonating body
WO2017087495A1 (en) 2015-11-16 2017-05-26 Bongiovi Acoustics Llc Surface acoustic transducer
US9621994B1 (en) 2015-11-16 2017-04-11 Bongiovi Acoustics Llc Surface acoustic transducer
CN106658318A (zh) * 2017-01-20 2017-05-10 瑞声科技(南京)有限公司 振动发声系统
EP3776528A4 (de) 2018-04-11 2022-01-05 Bongiovi Acoustics LLC Audioverstärktes gehörschutzsystem
WO2020028833A1 (en) 2018-08-02 2020-02-06 Bongiovi Acoustics Llc System, method, and apparatus for generating and digitally processing a head related audio transfer function
GB2597988B (en) * 2020-08-13 2024-11-06 Full Stack Acoustic Ltd Loudspeaker apparatus, Loudspeaker system, display panel and systems thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3247925A (en) * 1962-03-08 1966-04-26 Lord Corp Loudspeaker

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5748153Y2 (de) * 1977-11-26 1982-10-22
DE3172790D1 (en) * 1980-12-19 1985-12-05 Nissan Motor Speaker for automotive vehicle audio system
US4751419A (en) * 1986-12-10 1988-06-14 Nitto Incorporated Piezoelectric oscillation assembly including several individual piezoelectric oscillation devices having a common oscillation plate member
US5025474A (en) * 1987-09-29 1991-06-18 Matsushita Electric Industrial Co., Ltd. Speaker system with image projection screen
US4997058A (en) * 1989-10-02 1991-03-05 Bertagni Jose J Sound transducer
DE69106712T2 (de) * 1990-08-04 1995-06-08 Secr Defence Brit Paneelförmiger lautsprecher.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3247925A (en) * 1962-03-08 1966-04-26 Lord Corp Loudspeaker

Also Published As

Publication number Publication date
EA001720B1 (ru) 2001-08-27
DE69602203T2 (de) 1999-09-16
CA2230461A1 (en) 1997-03-13
WO1997009846A1 (en) 1997-03-13
CN1195458A (zh) 1998-10-07
EA199800172A1 (ru) 1998-10-29
EP0847665A1 (de) 1998-06-17
RO119045B1 (ro) 2004-02-27
AU703122B2 (en) 1999-03-18
ATE179296T1 (de) 1999-05-15
JPH11512257A (ja) 1999-10-19
ES2132953T3 (es) 1999-08-16
HK1008649A1 (en) 1999-05-14
AU6881896A (en) 1997-03-27
DE69602203D1 (de) 1999-05-27
DK0847665T3 (da) 1999-10-25

Similar Documents

Publication Publication Date Title
EP0847665B1 (de) Paneelförmige lautsprecher
US6031926A (en) Panel-form loudspeakers
US6188775B1 (en) Panel-form loudspeakers
AU703061B2 (en) Vibration transducers
US6198831B1 (en) Panel-form loudspeakers
AU703198B2 (en) Inertial vibration transducers
EP0847676B1 (de) Inertial-schwingungswandler
AU702920B2 (en) Loudspeakers comprising panel-form acoustic radiating elements
EP0847669B1 (de) Bildschirm mit lautsprechern
EP0847671B1 (de) Personalcomputer mit lautsprechern
EP0847664B1 (de) Lautsprecher mit paneelförmigen akustischen abstrahlelementen
EP0847668B1 (de) Lautsprecher mit paneelförmigen schallausstrahlenden elementen
EP0847672B1 (de) Verpackung
US6327369B1 (en) Loudspeakers comprising panel-form acoustic radiating elements
EP0847666B1 (de) Paneelförmige lautsprecher
US6404894B1 (en) Packaging

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980318

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL PAYMENT 980318;LT PAYMENT 980318;LV PAYMENT 980318;SI PAYMENT 980318

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19980701

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NEW TRANSDUCERS LIMITED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL PAYMENT 19980318;LT PAYMENT 19980318;LV PAYMENT 19980318;SI PAYMENT 19980318

LTIE Lt: invalidation of european patent or patent extension
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990421

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990421

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990421

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990421

REF Corresponds to:

Ref document number: 179296

Country of ref document: AT

Date of ref document: 19990515

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69602203

Country of ref document: DE

Date of ref document: 19990527

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2132953

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990902

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19990709

Ref country code: CH

Ref legal event code: PL

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: INTERESSENGEMEINSCHAFT FUER RUNDFUNKSCHUTZRECHTE G

Effective date: 20000118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000331

NLR1 Nl: opposition has been filed with the epo

Opponent name: INTERESSENGEMEINSCHAFT FUER RUNDFUNKSCHUTZRECHTE G

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: NEW TRANSDUCERS LIMITED

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: NEW TRANSDUCERS LIMITED

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20020808

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020812

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20020813

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020815

Year of fee payment: 7

Ref country code: FI

Payment date: 20020815

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020822

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20020827

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20020903

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20020910

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20020919

Year of fee payment: 7

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

PLBL Opposition procedure terminated

Free format text: ORIGINAL CODE: EPIDOS OPPC

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030815

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030902

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030902

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030930

PLBM Termination of opposition procedure: date of legal effect published

Free format text: ORIGINAL CODE: 0009276

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

27C Opposition proceedings terminated

Effective date: 20030707

NLR2 Nl: decision of opposition

Effective date: 20030707

BERE Be: lapsed

Owner name: *NEW TRANSDUCERS LTD

Effective date: 20030930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040401

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040401

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040528

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040401

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20040331

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040902

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030903

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050902