EP0843737A1 - Test co-dominant de diagnostic genetique - Google Patents

Test co-dominant de diagnostic genetique

Info

Publication number
EP0843737A1
EP0843737A1 EP96925784A EP96925784A EP0843737A1 EP 0843737 A1 EP0843737 A1 EP 0843737A1 EP 96925784 A EP96925784 A EP 96925784A EP 96925784 A EP96925784 A EP 96925784A EP 0843737 A1 EP0843737 A1 EP 0843737A1
Authority
EP
European Patent Office
Prior art keywords
oligonucleotide
mutations
pcr
primers
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96925784A
Other languages
German (de)
English (en)
Inventor
Jacques S. Beckmann
Nathalie Bourg
Kevin P. Campbell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Association Francaise Contre les Myopathies
Original Assignee
Association Francaise Contre les Myopathies
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Association Francaise Contre les Myopathies filed Critical Association Francaise Contre les Myopathies
Publication of EP0843737A1 publication Critical patent/EP0843737A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6858Allele-specific amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/16Primer sets for multiplex assays
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/172Haplotypes

Definitions

  • the present invention relates to a co-dominant genetic diagnostic test, that is to say it makes it possible to distinguish in a population individuals homozygous and heterozygous for a polymorphic allele.
  • a rapid and efficient method of detecting a point mutation at the level of genomic DNA is essential for the identification of polymorphisms both for genetic studies and the prediction of a risk of pathology linked to this polymorphism, as well as for the study molecular bases of hereditary diseases, and the development of a genetic diagnostic test.
  • This type of rapid, effective and inexpensive detection method can be applied, more generally, to the detection of mutations in any living organism, whether it be microorganisms, or animals or plants, the method presenting basically an interest in diploids.
  • the fields of application of this type of detection can thus extend from the agro-food sector, medicine or veterinary diagnosis or finally animal or plant selection.
  • PCR (1) has made great strides in the analysis of genomic DNA.
  • His technique has allowed the diagnosis of genetic diseases when they are combined with other techniques (2, 3, 4, 5, 6, 7, 8, 9); this can be the combination of PCR and direct sequencing (2, 3, 4, 10) or, the technique called Allele Specific Oligonucleotide (ASO) (11, 12).
  • ASO Allele Specific Oligonucleotide
  • the appearance of a point mutation can create or destroy a recognition site for a restriction enzyme (13); the presence or absence of this restriction site can be used to make diagnoses as has been recently demonstrated for the diagnosis of sickle cell anemia (7); in the same way, a restriction polymorphism can be linked to an uncharacterized mutation which makes it possible to establish a diagnosis in families by analysis of this polymorphism after amplification.
  • Many techniques have been developed with the aim of allowing the detection of these mutations by combining PCR with other types of reactions. These include:
  • PASA PCR amplification of specify alleles
  • the diagnostic test techniques described are not very conducive to wide use in the population because they require either heavy, complex steps, expensive and employing high-level technical know-how, or do not make it possible to differentiate between homozygous and heterozygous individuals; other techniques such as allele specific oligonucleotides are of dominant types and do not make it possible to differentiate a homozygous individual from a heterozygous individual having a normal allele and a mutant allele.
  • genetic diagnosis and in particular the prediction of the risk in given populations vis-à-vis genetic diseases it is extremely important to be able to identify these two populations without implementing complex and expensive techniques.
  • the present invention makes it possible to overcome the drawbacks of the various techniques described in the literature and in particular to overcome the use of radio elements; it relates to a method for detecting the homozygous or heterozygous state of a suspected mutation in a nucleic acid, characterized in that it implements two amplifications of nucleic acids, these two amplifications respectively requiring at least two pairs of primers: - the first pair consists of an oligo-nucleotide specific for the wild allele (A) and a second oligo-nucleotide (B) different from (A), - the second pair consists an oligo-nucleotide specific for the mutant allele (A ') and a second oligo-nucleotide (C), itself being different from (A) and from (B), the difference in length between the fragments amplified between (A) and (B) and between (A ') and (C) being sufficient to be detected by conventional analysis methods.
  • reaction products are analyzed simultaneously by conventional methods in particular of analytical or preparative separation of DNA, in particular electrophoresis in polyacrylamide gel or in agarose gel; nevertheless it goes without saying for those skilled in the art that any other method of analysis, such as chromatography, the size of the amplified fragments should be considered as equivalent means in the method of the invention.
  • the two amplification reactions can be carried out either in two different reaction mixtures if (A) and (A ') are complementary to the same DNA chain, or carried out in the same reaction mixture if (A) and (A') are complementary to the (+) and (-) strands of DNA respectively.
  • the differences in length can be detected by the existence of two different bands after migration by electrophoresis in agarose gel for example; but it goes without saying that once the detection methods are refined, the length differences between the amplified fragments can be reduced.
  • any technique for amplifying a DNA sequence which comprises the use of at least two primers and a polymerase making it possible to synthesize the complementary sequence between the two primers, and whatever or its improvement, can be applied to the implementation of the invention which, for the latter, lies in the simultaneous use of two different pairs of primers, and the simultaneous visualization of the PCR products.
  • Couples of primers (A) and (B) on the one hand, (A ') and (C) on the other hand, can be symmetrical or inverted, in other words (A) and (A') hybridizable with the same strand of the double helix, and (B) and (C) with the other strand, or on the contrary, the couple (A) (B) on the one hand, and the couple (A ') (C) on the other apart, can be reversed, i.e. (A) and (A ') are hybridizable to the complementary strands of the DNA chain, just as (B) and (C).
  • the two amplifications carried out by the two pairs of primers must be carried out separately, then the products of the reaction must be mixed to be analyzed by conventional methods.
  • the reaction products can be mixed from the start, the amplification between (A) and (C) cannot then be carried out.
  • the primers (A) and (A ') must have a sufficiently different sequence to avoid parasitic hybridization between (A) and (A') in the reaction mixture. The only requirement is that (A) and (A ') carry the nucleotide corresponding to the one whose mutation is sought.
  • this technique can be implemented regardless of the organism containing the DNA, namely microorganism, bacteria, virus, animals or plants, but is of definite interest for diploid or polyploid organisms.
  • the usefulness of this new technique has been demonstrated to identify a mutation in Amish populations in southern Indiana carrying a gene coding for a protein involved in an autosomal recessive disorder: of the muscular dystrophy type of belts.
  • the “Touchdown” method takes advantage of the exponential nature of the PCR reaction which can start above the standard hybridization temperature: the reaction temperature begins 5 to 10 ° C above this hybridization temperature (for example 65 ° C.) then decreases regularly from 1 to 2 ° C. per cycle until the standard hybridization temperature is obtained by this technique; any difference in Tm between correct and incorrect matches will give the correct product an advantage over the incorrect product, all things being equal otherwise. Thus, a difference of 5 ° makes it possible to give an advantage of 4 5 times (19).
  • the amplified fragments preferably have respective lengths between 50 and 200 nucleotides; moreover, and so that the identification of the amplified segments between (A) and (B) on the one hand, and (A ') and (C) on the other hand does not present any ambiguity character, the difference of length should preferably be at least 10%.
  • the method of the invention is particularly advantageous to implement for the detection of point mutations as defined above.
  • the invention also relates to a kit, or kit, for diagnosing presumed homozygous or heterozygous point mutations and is characterized in that it contains at least: a) a thermostable polymerase; b) a first pair of primers consisting of an oligo-nucleotide (A) specific for the wild allele and a second specific oligo-nucleotide (B), distinct from (A); c) a second pair of primers consisting of an oligo-nucleotide specific for the mutant allele (A ') and a second oligo-nucleotide (C) distinct from (A), the size of the amplified fragments between the primers (A) and (B) on the one hand, and the primers (A ') and (C) on the other hand, preferably differing by at least 10%.
  • a thermostable polymerase b) a first pair of primers consisting of an oligo-nucleotide (A
  • the kit according to the invention contains, in addition to the four primers (A), (A '), (B), (C), above, all the elements which make it possible to carry out an amplification by PCR or any improved method and derivative and in particular the so-called “Touchdown” PCR method.
  • the kit according to the invention is more particularly usable for detecting or identifying the homozygous or heterozygous state of point mutations, whether these mutations are transitions or transversions.
  • Such a diagnostic kit in accordance with the invention can find its application in the field of human or animal health as well as in any other sector of application such as the environment, seeds or food industry for which detecting and monitoring the health or infectious status of the environment can be important.
  • the diagnosis can also be applied in an animal or seed selection process.
  • FIG. 1 is a diagram which illustrates the system of the invention when the pairs of primers are symmetrical.
  • N corresponds to the normal allele and M to the mutant allele.
  • the arrows represent the primers, and the direction reflects the 5 ' ⁇ 3' direction.
  • FIG. 2 is a diagram which illustrates the system of the invention when the pairs of primers are asymmetrical. N and M and the arrows have the same meaning as in Figure 1.
  • Figure 3 illustrates the segregation of threonine to arginine substitution in an Amish population.
  • line A presents the pedigree of the A620 family in which affected or healthy individuals are indicated by black or white symbols respectively.
  • healthy it is understood that the individuals can be non-carriers or heterozygous carriers
  • B represents the result obtained in agarose gel electrophoresis of the mixtures of the PCR "touchdown" amplification products of the fragments of 100 and 158 base pairs respectively
  • C represents the segregation of haplotypes on chromosome 4 within the family; the chromosomes carrying the mutation are surrounded, and the CA12T represents the intragenic micro-satellite.
  • Figures 1 and 2 illustrate the technology of the invention.
  • the primers are all 20 nucleotides in length.
  • the first pair of primers (A) (B) specific to the normal allele makes it possible to obtain an amplification product of 180 bp; in fact, the primer (B) is located 140 bp downstream of the nucleotide whose mutation is sought and the primer (A) contains said nucleotide at its 3 ′ end.
  • the second pair of primers (A ') (C), which is used to identify the mutant genotype, has a primer identical to primer (A), but has in place of the normal nucleotide at 3' the mutated nucleotide M.
  • the other primer (C) downstream of the mutation will be chosen so that the product obtained by PCR is significantly different from the product (A) (B), here by 120 bp.
  • Figure 2 illustrates this case.
  • the pairs of primers (A) (B) on the one hand and (A ') (C) on the other hand lead, as in the previous case, to amplification products of 120 bp for the mutant and 180 bp for the wild type.
  • the amplification products will comprise only 2 bands of 180 and 260 bp.
  • the reaction product will have 2 bands of 120 and 260 bp.
  • This diagnostic system therefore has all the advantages of other systems using PCR, sensitivity, non-radioactive, automated test, etc., but above all having the advantage of transforming dominant markers into co-dominant markers.
  • RNA transcripts of size 4.4 Kb. are present in quantity and normal size both in samples from affected patients and in healthy controls. This strongly suggested that the mutation was probably due to a point mutation as defined above.
  • cDNA fragments of the LGMD2E gene were amplified after reverse transcription from the total RNA prepared from six muscle biopsies. The RT-PCR products were sequenced and a simple transversion from C to G at nucleotide 461 was detected in the two patients whose two alleles are mutated. The codon change is from ACA to AGA and results in a substitution of threonine by arginine corresponding to a missense mutation at residue 151.
  • the first amplification step is carried out as follows: 40 sec. at 94 ° C then 30 sec. at 63 ° C (this constitutes a cycle) with a decrease of 1 Q every 2 cycles from 63 ° C to 59 ° C.
  • a total of 10 PCR cycles will be done at the rate of two cycles at each temperature from 63 ° C to 59 ° C inclusive.
  • the second step is carried out in 25 additional amplification cycles consisting of 40 sec. at 94 ° C and 30 sec. at 58 ° C. Priming pairs used:
  • First pair of primers a) pair of primers of type AB allowing the amplification of the wild allele: T461: ⁇ 'GTTTTTCAGCAAGGGACAAC-S 'm1: 5'-CTTTTCACTCCACTTGGCAA-3'.
  • the results are presented in part B of FIG. 1, the legend of which is detailed above.
  • the difference in the sizes of the amplified segments is 58 base pairs knowing that the amplification products of the pair T461 / m1 is 100 base pairs and that of the pair A461 / m3 is 158 base pairs.
  • FIG. 1 shows that the parents who have a normal phenotype are in fact heterozygotes since the amplification product contains the two types of fragments. It is clear that if one of the individuals was normal homozygous, the profile obtained after this set of operations would only include bands corresponding to a molecular weight of 158 base pairs.
  • the technology of the invention therefore makes it possible, for the first time, to unambiguously distinguish the homozygous or heterozygous state from a mutation in a population, while avoiding complex operations of the enzymatic digestion type or creation of restriction for example. It is fast and frees up experimentation with the use of radio-elements.
  • the detection of heterozygotes is of considerable importance in what is called predictive medicine; for recessive illnesses linked to sex, the possibility of detecting female conductors in families at risk is considerable progress.
  • the carriers of the genetic trait are potential patients and this type of analysis makes it possible to detect the risk whatever the penetration of the tare and its degree of expressiveness.
  • the method of the invention makes it possible to carry out a pre-symptomatic diagnosis, that is to say before the appearance of the first signs of a possible disease.

Abstract

Méthode de détection de l'état homozygote ou hétérozygote de mutations présumées dans un acide nucléique faisant intervenir simultanément deux couples d'amorces. Les deux couples d'amorces différents conduisent à la production de fragments amplifiés de tailles différentes, le nombre et la qualité des bandes amplifiées permettant de distinguer les individus homozygotes et hétérozygotes vis-à-vis de ladite mutation.

Description

TEST CO-DOMINANT DE DIAGNOSTIC GENETIQUE
La présente invention porte sur un test de diagnostic génétique co- dominant, c'est-à-dire qu'il permet de distinguer dans une population des individus homozygotes et hétérozygotes pour un allèle polymorphe.
Une méthode de détection rapide et efficace de mutation ponctuelle au niveau de l'ADN génomique est essentielle à l'identification des polymorphismes aussi bien pour des études génétiques et la prévision d'un risque de pathologie lié à ce polymorphisme, que pour l'étude des bases moléculaires des maladies héréditaires, et à la mise au point d'un test de diagnostic génétique.
Dans tout ce qui suit on parlera de mutation ponctuelle, ce terme englobant un changement de séquence soit une transition, soit une transversion, soit une délétion ou une addition de nucléotides ; y sont incluses plus généralement les transitions, transversions, délétions ou additions de 1 à 6 nucléotides.
Ce type de méthode de détection rapide, efficace, et peu onéreuse peut être, de façon plus générale, appliquée à la détection de mutations de toute organisme vivant, que ce soit des micro-organismes, ou des animaux ou des plantes, la méthode présentant essentiellement un intérêt pour les organismes diploides. Les domaines d'application de ce type de détection peuvent ainsi s'étendre du secteur agro-alimentaire, la médecine ou le diagnostic vétérinaire ou enfin la sélection animale ou végétale. La PCR (1 ) a fait faire un grand pas à l'analyse de l'ADN génomique.
Sa technique a permis le diagnostic de maladies génétiques quand elles sont combinées avec d'autres techniques (2, 3, 4, 5, 6, 7, 8, 9) ; cela peut être la combinaison de la PCR et le séquençage direct (2, 3, 4, 10) ou, la technique appelée Oligo-nucléotide Spécifique d'Allèle (ASO) (11 , 12). Dans certains cas, l'apparition d'une mutation ponctuelle peut créer ou détruire un site de reconnaissance d'une enzyme de restriction (13) ; la présence ou l'absence de ce site de restriction peut être utilisée pour réaliser des diagnostics comme cela a été récemment démontré pour un diagnostic d'anémie falciforme (7) ; de la même manière un polymorphisme de restriction peut être lié à une mutation non caractérisée qui permet d'établir un diagnostic dans des familles par analyse de ce polymorphisme après amplification. De nombreuses techniques ont été développées avec pour objectif de permettre la détection de ces mutations en combinant la PCR avec d'autres types de réactions. Il s'agit notamment :
- de la technique appelée "PCR amplification of spécifie allèles" (PASA) qui est une modification de ia technique PCR par l'utilisation soit d'une amorce oligo-nucléotidique qui s'hybride avec l'allèle sauvage mais qui ne s'hybride pas avec l'allèle mutant, soit l'inverse : le produit amplifié sera donc spécifique de l'allèle pour lequel ont été choisies les amorces et l'amplification se trouve alors inefficace si ii n'y a pas d'hybridation de l'amorce avec l'allèle correspondant (14) ;
- HEIM and al. (15) ont utilisé un jeu d'amorces différent pour amplifier les deux allèles, ces amplifications étant suivies par une PCR spécifique d'allèle ;
- SCHUSTER and al (16) ont combiné la PCR asymétrique avec la PCR spécifique d'allèle en utilisant un jeu de 3 amorces oligo-nucléotidiques dans un seul mélange réactionnel pour détecter une mutation ponctuelle dans le gêne de l'apoB ; mais cette technique, simple, ne permet pas de distinguer, pour les maladies récessives, les individus porteurs d'un seul allèle muté des individus malades qui ont leurs deux allèles mutés. D'autres méthodes ont été appliquées notamment pour mettre en évidence la création par mutation d'un site de restriction à partir d'un produit d'amplification. Ceci a été utilisé notamment pour la détection de l'hémophilie B (17) ou de l'hémophilie A (18).
Dans toutes leurs mises en oeuvre, les techniques de test de diagnostic décrites sont peu propices à une utilisation large dans la population car elles nécessitent soit des étapes lourdes, complexes, chères et mettant en oeuvre un savoir-faire technique de haut niveau, soit ne permettent pas de différencier des individus homozygotes et hétérozygotes ; d'autres techniques telles les oligonucleotides spécifiques d'allèles sont de types dominants et ne permettent pas de différencier un individu homozygote d'un individu hétérozygote ayant un allèle normal et un allèle mutant. Or pour ce qui est du diagnostic génétique et notamment de la prévision du risque dans des populations données vis-à-vis de maladies génétiques, il est extrêmement important de pouvoir identifier ces deux populations sans mettre en oeuvre des techniques complexes et chères.
La présente invention permet de surmonter les inconvénients des différentes techniques décrites dans la littérature et notamment de s'affranchir de l'utilisation de radio-éléments ; elle est relative à une méthode de détection de l'état homozygote ou hétérozygote d'une mutation présumée dans un acide nucléique, caractérisée en ce qu'elle met en oeuvre deux amplifications d'acides nucléiques, ces deux amplifications demandant en oeuvre respectivement au moins deux couples d'amorces : - le premier couple est constitué d'un oligo-nucléotide spécifique de l'allèle sauvage (A) et d'un 2ème oligo-nucléotide (B) différent de (A), - le deuxième couple est constitué d'un oligo-nucléotide spécifique de l'allèle mutant (A') et d'un deuxième oligo-nucléotide (C), lui-même étant différent de (A) et de (B), la différence de longueur entre les fragments amplifiés entre (A) et (B) et entre (A') et (C) étant suffisante pour être détectée par des méthodes d'analyse classique.
Ces deux amplifications sont simultanées.
Par simultanée, il est entendu que les produits de la réaction sont analysés simultanément par des méthodes classiques notamment de séparation analytique ou preparative d'ADN notamment l'électrophorèse en gel de polyacrylamide ou en gel d'agarose ; néanmoins il va de soit pour l'homme du métier que toute autre méthode d'analyse, comme la chromatographie, de la taille des fragments amplifiés doit être considérée comme moyen équivalent dans la méthode de l'invention.
Les deux réactions d'amplification peuvent être réalisées soit dans deux mélanges réactionnels différents si (A) et (A') sont complémentaires de la même chaîne d'ADN, soit réalisées dans le même mélange réactionnel si (A) et (A') sont complémentaires des brins (+) et (-) de l'ADN respectivement.
En particulier, les différences de longueurs peuvent être détectées par l'existence de deux bandes différentes après une migration en électrophorèse en gel d'agarose par exemple ; mais il va de soi que à partir du moment où les méthodes de détection vont s'affiner, les différences de longueurs entre les fragments amplifiés pourront être réduites.
De manière plus générale, toute technique d'amplification d'une séquence d'ADN qui comprend l'utilisation d'au moins deux amorces et d'une polymerase permettant de synthétiser la séquence complémentaire comprise entre les deux amorces, et quel qu'en soit son perfectionnement, peut être appliquée à la mise en oeuvre de l'invention qui, pour cette dernière, réside dans l'utilisation simultanée de deux couples d'amorces différents, et de la visualisation simultanée des produits de PCR. Des couples d'amorces (A) et (B) d'une part, (A') et (C) d'autre part, peuvent être symétriques ou inversés, autrement dit (A) et (A') hybridables avec un même brin de la double hélice, et (B) et (C) avec l'autre brin, ou au contraire, le couple (A) (B) d'une part, et le couple (A') (C) d'autre part, peuvent être inversés, c'est-à-dire (A) et (A') sont hybridables aux brins complémentaires de la chaîne d'ADN, tout comme (B) et (C).
Dans la première branche de l'alternative, les deux amplifications réalisées par les deux couples d'amorces doivent être réalisées séparément, puis les produits de la réaction doivent être mélangés pour être analysés par les méthodes classiques. En revanche, dans la deuxième branche de l'alternative, les produits de la réaction peuvent être mélangés dès le départ, l'amplification entre (A) et (C) ne pouvant alors être réalisée. Mais, dans ce dernier cas, les amorces (A) et (A') devront avoir une séquence suffisamment différente pour éviter une hybridation parasite entre (A) et (A') dans le mélange réactionnel. Le seul impératif est que (A) et (A') soient porteurs du nucleotide correspondant à celui dont la mutation est recherchée.
Enfin, cette technique peut être mise en oeuvre quel que soit l'organisme contenant l'ADN, à savoir micro-organisme, bactéries, virus, animaux ou plantes, mais présente un intérêt certain pour les organismes diploides ou polyploides. L'utilité de cette nouvelle technique a été démontrée pour identifier une mutation dans des populations Amish du Sud de l'Indiana porteuses d'un gêne codant pour une protéine impliquée dans une maladie autosomale récessive : de type dystrophie musculaire des ceintures.
Si la méthode PCR classique s'est avérée extrêmement puissante pour amplifier des séquences cibles, notamment dans des génomes complexes, il arrive souvent que de petites bandes parasites artéf actuel les apparaissent dans le spectre des bandes obtenues après amplification. Cela est souvent interprété comme une erreur d'amorçage sur la chaîne cible ; aussi R.H. DON (19) a-t-il mis au point une technique dite "touchdown" qui permet d'éliminer ces artefacts d'une façon beaucoup plus rigoureuse que les techniques utilisées préalablement qui étaient essentiellement des ajustements en concentration de magnésium ou l'augmentation de la température d'hybridation de l'amorce avec l'ADN. La méthode de « Touchdown » tire parti de la nature exponentielle de la réaction PCR qui peut commencer au-dessus de la température d'hybridation standard : la température de la réaction commence 5 à 10°C au-dessus de cette température d'hybridation (par exemple 65°C) puis décroît régulièrement de 1 à 2°C par cycle jusqu'à l'obtention de la température d'hybridation standard par cette technique ; toute différence de Tm entre les reappariements corrects et incorrects va donner un avantage au produit correct vis à vis du produit incorrect, toutes choses étant égales par ailleurs. Ainsi, une différence de 5° permet de donner un avantage de 45 fois (19).
Afin d'éviter les risques d'erreurs inhérents aux techniques d'amplification, dans la méthode selon l'invention, les fragments amplifiés ont de préférence des longueurs respectives comprises entre 50 et 200 nucléotides ; en outre, et pour que l'identification des segments amplifiés entre (A) et (B) d'une part, et (A') et (C) d'autre part ne présente pas de caractère d'ambiguïté, la différence de longueur doit être de préférence d'au moins 10%. La méthode de l'invention est particulièrement intéressante à mettre en oeuvre pour la détection de mutations ponctuelles telle que définies ci-dessus.
L'invention porte également sur une trousse, ou kit, de diagnostic de présumées mutations ponctuelles homozygotes ou hétérozygotes et est caractérisée en ce qu'elle contient au moins : a) une polymerase thermostable ; b) un premier couple d'amorces constitué d'un oligo-nucléotide (A) spécifique de l'allèle sauvage et d'un deuxième oligo-nucléotide spécifique (B), distinct de (A) ; c) un deuxième couple d'amorces constitué d'un oligo-nucléotide spécifique de l'allèle mutant (A') et d'un deuxième oligo-nucléotide (C) distinct de (A), la taille des fragments amplifiés entre les amorces (A) et (B) d'une part, et les amorces (A') et (C) d'autre part, différant de préférence d'au moins 10%.
La trousse conformément à l'invention contient, outre les quatre amorces (A), (A'), (B), (C), ci-dessus, tous les éléments qui permettent de réaliser une amplification par PCR ou toute méthode perfectionnée et dérivée et notamment la méthode dite de 'Touchdown » PCR.
La trousse conformément à l'invention est plus particulièrement utilisable pour détecter ou identifier l'état homozygote ou hétérozygote de mutations ponctuelles, que ces mutations soient des transitions ou des transversions. De fait, par ces deux amplifications simultanées, on aboutit à une lecture aisément interprétable d'un test de diagnostic co-dominant qu'aucun des procédés précédents ne permettaient.
Une telle trousse de diagnostic conformément à l'invention peut trouver aussi bien son application dans le domaine de la santé humaine, ou animale, que dans tout autre secteur d'application tel l'environnement, les semences ou l'agro-alimentaire pour lesquels la détection et le suivi de l'état sanitaire ou infectieux du milieu peut être important.
Le diagnostic peut être également appliqué dans un processus de sélection d'animaux ou de semences. Les exemples suivant ainsi que les figures qui leur sont annexées, sans être limitatifs, montrent la performance de l'invention sur la détection d'une mutation ponctuelle dans le gène LGMD2E codant pour la protéine impliquée dans un type de dystrophie musculaire des ceintures.
La figure 1 est un schéma qui illustre le système de l'invention quand les couples d'amorces sont symétriques. Dans cette figure, N correspond à l'allèle normal et M à l'allèle mutant. Les flèches représentent les amorces, et le sens reflète le sens 5' → 3'.
La figure 2 est un schéma qui illustre le système de l'invention quand les couples d'amorces sont antisymétriques. N et M et les flèches ont la même signification que dans la figure 1.
La figure 3 illustre la ségrégation de la substitution thréonine vers l'arginine dans une population Amish. Dans cette figure, la ligne A présente le pedigree de la famille A620 dans laquelle les individus affectés ou sains sont indiqués par des symboles noirs ou blancs respectivement. Par « sains », il est entendu que les individus peuvent être non porteurs ou porteurs hétérozygotes ; B représente le résultat obtenu en électrophorèse par gel d'agarose des mélanges des produits d'amplification par « Touchdown » PCR des fragments de 100 et de 158 paires de base respectivement ; C représente la ségrégation des haplotypes sur le chromosome 4 au sein de la famille ; les chromosomes portant la mutation sont entourés, et le CA12T représente le micro-satellite intragénique. Exemple de réalisation :
Les Figures 1 et 2 illustrent la technologie de l'invention. Dans cet exemple, les amorces ont toutes une longueur de 20 nucléotides. a) Cas où les couples d'amorces (AÏB) d'une part et (A'ÏÏC) d'autre part sont symétriques :
Ce cas est représenté dans la figure 1.
Dans cette figure, le premier couple d'amorces (A)(B) spécifique de l'allèle normal permet d'obtenir un produit d'amplification de 180 pb ; en effet, l'amorce (B) est située à 140 pb en aval du nucleotide dont la mutation est recherchée et l'amorce (A) contient ledit nucleotide à son extrémité 3'.
Le second couple d'amorces (A')(C), qui sert à identifier le génotype mutant, a une amorce identique à l'amorce (A), mais possède à la place du nucleotide normal en 3' le nucleotide muté M. L'autre amorce (C) en aval de la mutation sera choisie de telle façon que le produit obtenu par PCR soit significativement différent du produit (A)(B), ici de 120 pb.
Lorsque les produits d'amplification sont mélangés après la phase de PCR, puis déposés sur un gel d'agarose à 4% contenant du bromure d'éthidium en tampon TBE1X, on obtient deux bandes dans la même piste lorsque l'échantillon de départ contenait un allèle normal et un allèle mutant. Ainsi, on a transformé le système de diagnostic « dominant » conventionnel avec une réponse de type « tout ou rien » pour chacune des réactions de PCR en un système co-dominant facilement interprétable. Les homozygotes ne produisent qu'une seule bande de 120 ou 180 pb selon que l'homozygote est muté ou est normal.
b) Cas où les amorces sont antisymétriques :
La figure 2 illustre ce cas. On voit clairement dans ce cas que les couples d'amorces (A)(B) d'une part et (A')(C) d'autre part conduisent, comme dans le cas précédent, à des produits d'amplification de 120 pb pour le mutant et de 180 pb pour le sauvage.
Il apparaît dans cette figure que, quand l'amplification PCR est conduite dans un seul milieu réactionnel contenant les 4 amorces, on obtient alors un mélange de 3 produits d'amplification : les 2 produits correspondant aux allèles sauvages et mutant respectivement de 180 et 120 pb, et également un produit correspondant à une amplification entre les amorces (B) et (C) qui a une longueur de 260 pb.
Le dépôt sur un gel d'agarose en 4% de bromure d'éthidium des produits de la réaction PCR va, quand l'ADN amplifié est hétérozygote et porte les deux allèles N et M à l'observation de 3 bandes correspondant respectivement aux produits de 120, 180 et 260 pb.
Si, au contraire, l'ADN est homozygote pour l'allèle normal, les produits d'amplification comporteront uniquement 2 bandes de 180 et 260 pb.
Enfin, si l'ADN est homozygote mutant, le produit de la réaction comportera 2 bandes de 120 et 260 pb.
Ce système de diagnostic a donc tous les avantages des autres systèmes utilisant la PCR, sensibilité, test non radio-actif, automatisable, etc., mais surtout présentant en plus l'avantage de transformer des marqueurs dominants en marqueurs co-dominants.
Exemple d'application : identification d'une mutation dans des patients Amishs porteurs de LGMD2E a) sélection des familles
Six familles déjà décrites antérieurement (20) et comprenant 52 individus dont 13 affectés ont été analysées. Puis 5 familles additionnelles ont également été inclues comportant en tout 39 individus dont 13 affectés.
Dans la recherche de l'identification de la protéine impliquée dans ces familles, des analyses en Northern blot ont été réalisées sur l'ARN total isolé de biopsie de muscle squelettique pour déterminer si l'ARN messager du gène LGMD2E était affecté dans sa taille ou dans la quantité produite. Or, la population de transcrits d'ARN, de taille de 4,4 Kb. sont présents en quantité et en taille normale aussi bien dans les échantillons provenant de patients affectés que dans les contrôles sains. Ceci suggérait très fortement que la mutation était probablement due à une mutation ponctuelle telle que définie ci-dessus. Pour vérifier cette question, des fragments d'ADNc du gène LGMD2E ont été amplifiés après une transcription reverse à partir de l'ARN total préparé de six biopsies de muscles. Les produits de RT-PCR ont été séquences et une simple transversion de C vers G au nucleotide 461 a été détectée chez les deux patients dont les deux allèles sont mutés. Le changement de codon est de ACA vers AGA et résulte dans une substitution de la thréonine par l'arginine correspondant à une mutation faux sens au résidu 151.
La ségrégation de cette mutation a été étudiée dans cette famille et dans d'autres familles porteuses de dystrophie des ceintures en séquençant puis en amplifiant le fragment correspondant par la technique de touchdown PCR décrite plus haut, b) Touchdown PCR
50 ng d'ADN ont été soumis à un procédé de touchdown PCR (19) dans un mélange réactionnel de 50 μ litres contenant 10 mM Tris HCl, pH8.8, 50mM KCI, 1,5 mM MgCI2, 0,1 % Triton X-100, 200 mM de chaque dNTP, 100 ng de chaque amorce, et 2 unités de Taq Polymerase (Perkin Elmer). Après 5 minutes de dénaturation à 96°C, la première étape d'amplification est réalisée de la manière suivante :40 sec. à 94°C puis 30 sec. à 63°C (ceci constitue un cycle) avec une diminution de 1 Q tous les 2 cycles de 63°C à 59°C. Au total, 10 cycles de PCR seront faits à raison de deux cycles à chaque température de 63°C à 59°C compris. La deuxième étape est réalisée en 25 cycles additionnels d'amplification consistant en 40 sec. à 94°C et 30 sec. à 58°C. Couples d'amorces utilisés :
Premier couple d'amorces : a) couple d'amorces de type AB permettant l'amplification de l'allèle sauvage : T461 : δ'GTTTTTCAGCAAGGGACAAC-S' m1 : 5'-CTTTTCACTCCACTTGGCAA-3'.
Deuxième couple d'amorces permettant l'amplification de l'allèle mutant : A461 : S'-GTTTTTCAGCAAGGGACAAG-S' m3 : 5TATTTTGAGTCCTCGGGTCA-3' On remarquera que dans le T461 le G en 3' a été substitué par le C en
3' correspondant à la transversion C vers G dans la séquence d'ADNc. Les produits d'amplification ont été analysés par électrophorèse en gel d'agarose à 4% coloré au bromure d'ethidium.
c) Résultats
Les résultats sont présentés dans la partie B de la figure 1 dont la légende est détaillée ci-dessus. La différence des tailles des segments amplifiés est de 58 paires de bases sachant que les produits d'amplification de la paire T461/m1 est de 100 paires de bases et celui de ia paire A461/m3 est de 158 paires de bases.
L'analyse de la figure 1 montre que les parents qui ont un phénotype normal sont en fait des hétérozygotes puisque le produit d'amplification contient les deux types de fragments. Il est clair que si l'un des individus était homozygote normal, le profil obtenu après cet ensemble d'opérations ne comporterait que des bandes correspondant à un poids moléculaire de 158 paires de bases.
La technologie de l'invention permet donc, pour la première fois, de distinguer de manière non ambiguë l'état homozygote ou hétérozygote d'une mutation dans une population, tout en évitant des opérations complexes de type digestion enzymatique ou création de sites de restriction par exemple. Elle est rapide et affranchit l'expérimentation de l'utilisation de radio-éléments.
La détection des hétérozygotes revêt une importance tout à fait considérable dans le cadre de ce qu'on appelle la médecine prédictive ; pour les maladies récessives liées au sexe, la possibilité de détecter des femmes conductrices dans des familles à risques est un progrès considérable. En ce qui concerne les maladies dominantes à expression tardive, les porteurs du trait génétique sont des malades en puissance et ce type d'analyse permet de détecter le risque quelle que soit ia pénetrance de la tare et son degré d'expressivité. Dans ce cas, la méthode de l'invention permet de réaliser un diagnostic pré-symptomatique c'est-à- dire avant l'apparition des premiers signes d'une maladie éventuelle.
Enfin, il est évident pour l'homme du métier que si la maladie ou plus généralement le phénotype recherché résulte de la combinaison de différentes mutations ponctuelles, le principe même d'amplification par deux amorces et une polymerase thermostable donnant des produits d'amplification dont la taille varie pour chaque allèle permet d'associer plusieurs de ces couples d'amorces à partir du moment ou les produits d'amplification ont chacun une taille définie, et différente d'un produit à l'autre, visualisable.
BIBLIOGRAPHIE
1- Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T., Mullis, K.B. and Erlich, H.A. (1988) Science 239 487-491.
2- Newton, C.R., Kalsheker, N., Graham, A., Powell, S., Grammack, A., Riley, J. and Markham, A. F. (1988) Nucl. Acid. Res. 16 8233-8243.
3- Stoflet, E.S., Koeberl, D.D., Sarkar, G. and Sommer, S.S. (1988) Science 239 491-494.
4- Engelke, D.R., Hoener, P.A. and Collins, F.S. (1988) Proc. Nat. Acad. Sci. USA. 85 544-548.
5- Bruun Petersen, Kolvraa, S., Bolund, L., Bruun Petersen, G., Koch, J. and Gregersen, N. (1988) Nucl. Acid. Res. 16 352.
6- Bugawan, T.L, R.K., Levenson, C.H., Watson, R.M. and Erlich, H.A. (1988) Biotechnology 6 943-947.
7- Chehab, F.F., Doherty, M., Cai, S., Kan, Y.W., Cooper, S. and Rubin, EM. (1987) Nature 329 293-294.
8- Kogan, S.C., Doherty, M. And Gitschier, J. (1987) New Engl. J. Med 317 985-990.
9- Levinson, B., Janco, R., Phillips, J.and Gitschier J. (1987) Nucl. Acid. Res. 15 9797-9805. 10- Wong, C, Dowiing, CE., Saiki, R.K., Higuchi, R.G., Erlich, H.A. and Kazazian, H.H. (1987) Nature 330 384-386.
11- Connor, B.J., Reyes, A.A., Morin, C. Itakura, K., Teplitz, R.L. and Wallace, R.B. (1983) Proc. Natl. Acad. Sci. USA. 80278-282.
12- Orkin, S.H., Markham, A.F. and Kazazian, H.H. (1983) J. Clin. Invest. 71 775-779.
13- Southern, E.M. (1975) J. Mol. Biol. 98 503-517.
14- Sommer S.S. et al (1989) Mayo Clim. Proc 64; 1361-1372.
15- Heim, M. et al (1990) Lancet. 336 : 529-532.
16- Schuster, H. et al (1992) Analytical Biochemistry 204 : 22-25.
17- Mttsushita, T. et al (1991) Trombosis Research 63 : 355-361.
18- Pattinson J.K. et al (1990) British Journ. of Haeamatology 75 : 33-77.
19- Don, R.H. et al (1991) Nucl. Ac. Research 19:4008.
20- Allamand, V. et al (1995) Human Molecular Genetic 4:459-464.

Claims

REVENDICATIONS
1. Méthode de détection de l'état homozygote ou hétérozygote de mutations présumées dans un acide nucléique caractérisée en ce qu'elle met en oeuvre deux amplifications d'acides nucléiques, les deux amplifications mettant en oeuvre une polymerase et au moins deux couples d'amorces :
- le premier couple est constitué d'un oligonucleotide spécifique de l'allèle sauvage (A) et d'un deuxième oligonucleotide (B), - le deuxième couple est constitué d'un oligonucleotide spécifique de l'allèle mutant (A') et d'un deuxième oligonucleotide (C). La différence de longueur entre les fragments amplifiés entre (A) et (B) et (A') et (C) respectivement étant suffisante pour être détectée par les méthodes d'analyse classiques de fragments d'acide nucléique.
2. Méthode selon la revendication 1 , caractérisée en ce que si l'amorce (A) du premier couple s'hybride avec un brin de l'ADN, l'amorce (A') du deuxième couple s'hybride au brin du complémentaire.
3. Méthode selon la revendication 1 , caractérisée en ce que si l'amorce (A) du premier couple s'hybride avec un brin de l'ADN, l'amorce (A') s'hybride avec le même brin de l'ADN.
4. Méthode selon l'une des revendications 1 à 3, caractérisée en ce que l'amplification est réalisée par PCR ou une méthode dérivée utilisant au moins deux amorces et une polymerase, notamment la « Touchdown » PCR.
5. Méthode selon l'une des revendications 1 à 4, caractérisée en ce que les mutations présumées sont des mutations ponctuelles.
6. Méthode selon l'une quelconque des revendications 1 à 5, caractérisée en ce que l'acide nucléique dans lequel on cherche à détecter une mutation présumée provient d'un homme, ou d'un animal, ou d'une partie de ceux-ci
7. Méthode selon l'une des revendications 1 à 5, caractérisée en ce que l'acide nucléique dont on cherche à détecter l'existence d'une mutation présumée provient d'une plante ou d'une partie de celle-ci.
8. Trousse de diagnostic de mutations présumées homozygotes ou hétérozygotes dans un acide nucléique caractérisée en ce qu'elle contient au moins : a) une polymerase thermostable, b) un premier couple d'amorces constitué d'un oligonucleotide (A) spécifique de l'allèle sauvage et d'un deuxième oligonucleotide (B), c) un deuxième couple d'amorces constitué d'un oligonucleotide (A') spécifique de l'allèle mutant et d'un deuxième oligonucleotide (C), les fragments amplifiés entre (A) et (B) d'unepart, et entre (A') et (C) d'autre part, ayant une différence visualisable par les méthodes classiques.
9. Trousse selon la revendication 8, caractérisée en ce que les différences de taille entre les fragments amplifiés sont d'au moins 10%.
10. Trousse selon la revendication 9, caractérisée en ce qu'elle contient en outre les éléments permettant de réaliser une amplification par PCR ou toute méthode dérivée notamment la « Touchdown » PCR.
11. Trousse selon l'une des revendications 9 ou 10, caractérisée en ce que les mutations présumées susceptibles d'être diagnostiquées sont des mutations ponctuelles.
12. Utilisation d'une trousse de diagnostic selon l'une quelconque des revendications 8 à 11 à la détection de mutations génétiques chez l'homme ou l'animal.
13. Utilisation d'une trousse de diagnostic selon l'une quelconque des revendications 8 à 11, à la détection de mutations génétiques chez les plantes ou des parties de celles-ci.
14. Utilisation d'une trousse de diagnostic selon l'une quelconque des revendications 8 à 11, à la sélection d'espèces animales ou végétales.
EP96925784A 1995-08-07 1996-07-12 Test co-dominant de diagnostic genetique Withdrawn EP0843737A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9509586A FR2737732B1 (fr) 1995-08-07 1995-08-07 Test co-dominant de diagnostic genetique
FR9509586 1995-08-07
PCT/FR1996/001093 WO1997006276A1 (fr) 1995-08-07 1996-07-12 Test co-dominant de diagnostic genetique

Publications (1)

Publication Number Publication Date
EP0843737A1 true EP0843737A1 (fr) 1998-05-27

Family

ID=9481766

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96925784A Withdrawn EP0843737A1 (fr) 1995-08-07 1996-07-12 Test co-dominant de diagnostic genetique

Country Status (6)

Country Link
US (1) US6232063B1 (fr)
EP (1) EP0843737A1 (fr)
JP (1) JPH11510059A (fr)
CA (1) CA2228694A1 (fr)
FR (1) FR2737732B1 (fr)
WO (1) WO1997006276A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20001839A (fi) * 2000-08-21 2002-02-22 Timo Korpela Hemokromatoosimutaation analyysimenetelmiä
US20070248949A1 (en) * 2003-12-17 2007-10-25 Agency For Science, Technology And Research Sensitive and Specific Test to Detect Sars Coronavirus
AR050891A1 (es) 2004-09-29 2006-11-29 Du Pont Evento das-59122-7 de maiz y metodos para su deteccion
TWM318228U (en) * 2006-11-02 2007-09-01 Datafab Sys Inc Structure for protecting terminal of memory card adapter
WO2010123625A1 (fr) 2009-04-24 2010-10-28 University Of Southern California Utilisation des polymorphismes de cd133 pour prédire l'issue clinique concernant des patients cancéreux
US20120288861A1 (en) 2009-12-21 2012-11-15 Heinz-Josef Lenz Germline polymorphisms in the sparc gene associated with clinical outcome in gastric cancer
WO2011085334A1 (fr) 2010-01-11 2011-07-14 University Of Southern California Polymorphismes du cd44 prédisant le résultat clinique chez des patients atteints d'un cancer gastrique

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IE61148B1 (en) * 1988-03-10 1994-10-05 Ici Plc Method of detecting nucleotide sequences
US5853989A (en) * 1991-08-27 1998-12-29 Zeneca Limited Method of characterisation of genomic DNA

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9706276A1 *

Also Published As

Publication number Publication date
FR2737732A1 (fr) 1997-02-14
FR2737732B1 (fr) 1997-10-10
US6232063B1 (en) 2001-05-15
CA2228694A1 (fr) 1997-02-20
WO1997006276A1 (fr) 1997-02-20
JPH11510059A (ja) 1999-09-07

Similar Documents

Publication Publication Date Title
EP0412883B1 (fr) Procédé rapide de détection et/ou d'identification d'une seule base sur une séquence d'acide nucléique, et ses applications
CA2555367A1 (fr) Marqueurs genetiques apoe associes a l'age de l'apparition de la maladie d'alzheimer
EP0749498B1 (fr) Marqueurs genetiques utilises conjointement pour le diagnostic de la maladie d'alzheimer, methode et kit de diagnostic
WO1997006276A1 (fr) Test co-dominant de diagnostic genetique
EP0763136B1 (fr) Procede et sondes pour la detection de marqueurs lies au locus des amyotrophies spinales infantiles
WO2005072152A2 (fr) Marqueurs genetiques apoc1 associes a la periode d'apparition de la maladie d'alzheimer
EP2714930B1 (fr) Amorces universelles et leur utilisation pour la détection et l'identification d'espèces de vertébrés
EP1032702A1 (fr) Reactifs et methodes pour la detection de genes lies au complexe majeur d'histocompatibilite d'oiseaux d'elevage, tels que le poulet
FR2842534A1 (fr) Amplification multiplex quantitative a l'echelle d'un genome, et applications a la detection de remaniements genomiques
FR2678285A1 (fr) Moyens et procedes pour l'etude du polymorphisme genetique de l'enzyme de conversion de l'angiotensine 1.
EP1254253B1 (fr) Oligonucleotides monocatenaires, sondes, amorces et procede de detection des spirochetes
EP4097254A1 (fr) Procede de genotypage hla simple et rapide
González et al. Incomplete DJH rearrangements
WO1996025517A9 (fr) Procede de detection d'une mutation intervenant dans la maladie d'alzheimer et sequences nucleotidiques pour sa mise en ×uvre
EP4153778A1 (fr) Procede de genotypage adapte au traitement simultane d'un grand nombre de patients
WO1996025517A1 (fr) Procede de detection d'une mutation intervenant dans la maladie d'alzheimer et sequences nucleotidiques pour sa mise en ×uvre
EP4028548A1 (fr) Procédé de génotypage adapté au traitement d'un grand nombre d'échantillons, notamment en cas de polymorphisme élevé
EP2576828B1 (fr) Procede de genotypage de staphylococcus aureus
WO2019102162A1 (fr) Amorces universelles et leur utilisation pour la détection et/ou l'identification d'algues
FR2829154A1 (fr) Nouveau procede de detection d'une mutation en phase de lecture dans une sequence codante et appareil pour sa mise en oeuvre
FR2764306A1 (fr) Methode de diagnostic genotypique indirect de la migraine hemiplegique familiale de type 2
FR2881756A1 (fr) Procede d'etude du genotype des chiens de la race labrador visant a determiner les possibilites de coloration du pelage de leurs descendants

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980205

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20000105

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030131