EP0842366B1 - Equipment for pumping fuel from a storage tank to the internal-combustion engine of a motor vehicle - Google Patents

Equipment for pumping fuel from a storage tank to the internal-combustion engine of a motor vehicle Download PDF

Info

Publication number
EP0842366B1
EP0842366B1 EP97914145A EP97914145A EP0842366B1 EP 0842366 B1 EP0842366 B1 EP 0842366B1 EP 97914145 A EP97914145 A EP 97914145A EP 97914145 A EP97914145 A EP 97914145A EP 0842366 B1 EP0842366 B1 EP 0842366B1
Authority
EP
European Patent Office
Prior art keywords
impeller
unit according
vanes
flow duct
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97914145A
Other languages
German (de)
French (fr)
Other versions
EP0842366A1 (en
Inventor
Klaus Neidhard
Michael HÜBEL
Willi Strohl
Jochen Rose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0842366A1 publication Critical patent/EP0842366A1/en
Application granted granted Critical
Publication of EP0842366B1 publication Critical patent/EP0842366B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D5/00Pumps with circumferential or transverse flow
    • F04D5/002Regenerative pumps
    • F04D5/003Regenerative pumps of multistage type
    • F04D5/005Regenerative pumps of multistage type the stages being radially offset
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/048Arrangements for driving regenerative pumps, i.e. side-channel pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D5/00Pumps with circumferential or transverse flow
    • F04D5/002Regenerative pumps

Definitions

  • the invention is based on a unit for conveying Fuel from a reservoir to the internal combustion engine of a motor vehicle according to the preamble of claim 1.
  • Such an assembly is known from DE 40 20 521 A1.
  • This unit has a flow pump Feed pump on, rotating by a drive part driven impeller rotates in a pump chamber.
  • the Pump chamber is in the direction of the axis of rotation of the impeller through two opposite end walls and in radial direction with respect to the axis of rotation Ring wall limited.
  • the impeller instructs on its circumference a wreath of wings on both ends on.
  • the wing is at the height of the two end walls one over part of the circumference around the axis of rotation of the impeller extending groove arranged with the wings of the impeller each form a delivery channel.
  • the Delivery channels lead from an inlet opening at one end to an outlet opening at their other end.
  • the impeller has one of its vanes radially outward pointing outer ring connecting ends. It has been shown that this Execution of the unit due to convection due to the entry of dirt particles Axial gaps in between the end faces of the impeller and the end walls not to exclude the space between the outer ring of the impeller and the ring wall is. This is due to the fact that in the conveying channels in the direction of rotation of the impeller a pressure build-up occurs and thus there is a higher pressure than in that Space between the outer ring of the impeller and the ring wall, so that a leakage amount flows from the delivery channels into the annulus. An entry of dirt particles in this space can lead to increased wear of the unit and should therefore be avoided.
  • An aggregate for conveying fuel with an impeller that is in on its outer ring one lateral surface has a second ring of wings, is from G 92 18 042 Ul known.
  • the wings in the lateral surface form a flow channel together with the ring wall, in which pressure builds up.
  • GB 21 34 598 A shows a unit for conveying fuel with a two-stage Flow pump with a radially inner and a radially outer flow channel, the radially inner with the radially outer flow channel connected in series and therefore both flow channels are passed through in succession.
  • the unit according to the invention for delivering fuel from a storage container to the internal combustion engine of a motor vehicle has the advantage that the at least one outer flow channel in the space between the outer ring of the Impeller and the ring wall in the direction of rotation of the impeller also build up pressure takes place and thus a pressure difference between the at least one flow channel and the delivery channels are avoided or at least reduced and thus the leakage amount avoided or at least reduced between the delivery channels and the annular space is.
  • the pressure build-up in at least one flow channel takes place approximately accordingly the pressure build-up in the delivery channels. Furthermore, an entry of Dirt particles in this room are reduced.
  • Aggregate specified Through the training according to each of claims 2 and 3 is achieved that in at least one flow channel a pressure build-up approximately corresponding the pressure builds up in the delivery channels. By training according to claim 5 the pressure build-up in at least one flow channel can be influenced.
  • FIG. 1 shows an aggregate for conveying of fuel with a flow pump in an axial longitudinal section
  • FIG. 2 in detail the flow pump in an enlarged view according to a first embodiment in an axial longitudinal section
  • Figure 3 shows the flow pump in one Cross-section along lines III-III in Figure 2
  • Figure 4 detail of the flow pump in a modified version in cross section
  • FIG Flow pump in a further modified embodiment Figure 6 shows the flow pump excerpts in a longitudinal section according to a second embodiment
  • Figure 7 shows the flow pump in a cross section along line VII-VII in Figure 6
  • Figure 8 shows the flow pump in cross section in a modified version
  • Figure 9 shows the flow pump in sections in a longitudinal section according to a third exemplary embodiment
  • FIG. 10 shows the flow pump in a cross section along line X-X in Figure 9.
  • FIG. 1 An assembly shown in simplified form in FIG. 1 is used to deliver fuel a not shown Internal combustion engine of a motor vehicle.
  • the Fuel delivery unit has a flow pump 10, whose impeller 12 by an electric drive motor 14 is driven in rotation. During the operation of the The fuel delivery unit sucks the flow pump 10 Fuel through a suction nozzle 16 and presses it via a pump outlet 18 in a more detailed below explained wall in a room 20 in which the drive motor 14 is arranged. From there, the fuel is over a pressure port 22 and a not shown Fuel line supplied to the internal combustion engine.
  • the flow pump 10 is enlarged in FIGS. 2 to 10 shown.
  • the impeller 12 of the flow pump 10 runs in a pump chamber 24 um, which in the direction of the axis of rotation 13 of the impeller 12 through a respective end wall 26 and 28 is limited and in the radial direction with respect to Axis of rotation 13 is limited by an annular wall 30.
  • the End wall 26 can be a cover of the Form fuel delivery unit, on which the intake manifold 16th is arranged.
  • the other end wall 28 can be a partition to form space 20 and the pump outlet 18 in the form of a Have outlet opening.
  • the impeller 12 has on his Circumference on each of its two faces spaced apart, radially outward upright wings 32.
  • the wings 32 are thereby formed that around on a common pitch circle the axis of rotation 13 arranged openings 34 webs remain, which the openings 34 in the circumferential direction of the Limit impeller 12.
  • the wings 32 are radial at their outer ends by a closed outer ring 36 connected with each other.
  • FIG Figure 3 shows a partially annular around the Axis of rotation 13 of the impeller 12 at the level of the wing 32 of Impeller 12 extending groove 38 arranged at the in Direction of rotation 11 of the impeller 12 considered the beginning connected to the suction port 16 inlet opening 40.
  • the groove 38 is in a circumferential area 41 in the circumferential direction 11 of the impeller 12 viewed between its end and hers Interrupted beginning.
  • the end wall 28 is also a mirror image of the end wall 26 one is partially annular around the axis of rotation 13 of the impeller 12 groove 42 extending at the level of the blades 32 of the impeller 12 arranged, in the direction of rotation 11 of the impeller 12th viewed end of the pump outlet 18 leads away.
  • the groove 42 is also in a circumferential area in the circumferential direction 11 the impeller 12 viewed between its end and hers Interrupted beginning.
  • the grooves 38 and 42 form together with the wings 32 of these end faces facing the Impeller 12 each have a feed channel 44 in which at Operation of the fuel delivery unit fuel from the Inlet opening 40 is conveyed to outlet opening 18.
  • the Flow pump 10 is thus a side channel pump formed because the conveyor channels 44 only laterally next to the Impeller 12 are formed and not on the Extend the outer circumference of the impeller 12.
  • Embodiment of the flow pump 10 has the impeller 12 on its outer ring 36 in its end walls 26, 28 facing end faces each have a wreath of in Wings 50 spaced apart from one another in the circumferential direction.
  • the Wing 50 are at their radially outer ends over a further, the impeller 12 radially outwardly delimiting ring 51 connected to each other.
  • the wings 50 can Minimization of fluid mechanical energy losses in Direction of rotation 11 of the impeller 12 with its radially outer Run ahead of ends, preferably about 25 ° to 50 °.
  • German patent application 1 95 04 079 the content of which belongs to the content of the present application should.
  • the end walls 26, 28 each have one partially ring-shaped around the axis of rotation 13 of the impeller 12 at height the wing 50 extends groove 52 or 54.
  • the grooves 52 or 54 extend at least approximately over the same scope as that forming the delivery channels 44 Grooves 38 and 42 of the end walls 26, 28, wherein the grooves 52 or 54 also over a slightly smaller or larger one Perimeter can extend as the grooves 38 and 42.
  • Die outer grooves 52, 54 are over from the inner grooves 38, 42 part of its circumference by webs 56 of the end walls 26, 28 Cut.
  • the outer grooves 52, 54 form with the wings 50 of these end faces of the outer ring 36 of the Impeller 12 each have an outer flow channel 58. In the outer flow channels 58 is intended to operate the Fuel delivery unit to build up pressure at least approximately the pressure build-up in the delivery channels 44 equivalent.
  • the outer flow channels 58 are each radial within these arranged delivery channels 44 over connected part of its scope. It can be provided be that the outer flow channels 58 forming Grooves 52,54 in the area of their in the circumferential direction 11 of Impeller 12 considered in the beginning and / or in the area of their viewed in the direction of rotation 11 with the end Delivery channels 44 connected to forming inner grooves 38,42 are. As shown in Figure 4, this connection can be done by one or more recesses which interrupt the webs 56 60 done.
  • both at the beginning and at End of the outer grooves 52, 54 connect to the inner Grooves 38.42 available so that at the beginning and at the end of the outer flow channels 58 approximately the same pressure conditions adjust like at the beginning and at the end of the inner Delivery channels 44.
  • the connection of the outer Grooves 52, 54 with the inner grooves 38, 42 as in FIG. 3 also shown in a medium circumferential area between their beginning and end also over one or more the webs 56 interrupting recesses 60 take place. The width, depth and position of the recesses 60 is so determines that there are favorable flow conditions between the grooves and there is a pressure equalization between sets this.
  • the outer flow channels 58 are in peripheral regions 62 between their in the direction of rotation 11 of the impeller 12 considered ends and beginnings interrupted or at least narrows.
  • the circumferential areas 62 correspond to essentially the peripheral regions 41, in which the inner Grooves 38,42 are interrupted, but can also be something be larger or slightly smaller than this.
  • the embodiment shown in FIG. 3 are the outer grooves 52, 54 between their in the direction of rotation 11 of the impeller 12 considered ends and beginnings in the peripheral regions 62 completely interrupted.
  • Figure 4 modified version are the grooves 52,54 in the Circumferential area 62 narrows.
  • the grooves run 52.54 in Circumferential area 62 radially offset from the rest Circumference, for example radially further, so that none or only a slight overlap with the wings 50 of the Outer ring 36 of the impeller 12 is present and accordingly the flow channels 58 interrupted or at least narrowed are.
  • the wings 50 of the outer ring 36 of the impeller 36 form together with the grooves 52, 54 another flow pump, which is also a side channel pump because the Flow channels 58 only to the side of the impeller 12 are arranged and no connection via the ring 51 on Have the outer circumference of the impeller 12.
  • the flow pump is not like the known one multi-stage feed pumps of the first, inner feed pump downstream, but promotes, so to speak, parallel to this from the same inlet opening 40 to the same outlet opening 18.
  • the vanes 50 arranged on the outer ring 36 of the impeller 12 When operating the fuel delivery unit is also carried out by the vanes 50 arranged on the outer ring 36 of the impeller 12 a delivery of fuel in the flow channels 58.
  • the amount of fuel delivered, the dependency of the amount of fuel delivered from the speed of the impeller 12 and the course of the pressure build-up over the scope of the Flow channels 58 can be formed by the formation of the wing 50 and the grooves 52, 54 and the formation of the interruption or narrowing of the flow channels 58 are influenced, so that through appropriate training a desired Flow rate and a desired pressure build-up can be achieved can.
  • the flow pump 10 is according to one shown second embodiment.
  • the End walls 26, 28 each have one partially ring-shaped around the axis of rotation 13 of the impeller 12 at height the wing 70 extending groove 72 or 74.
  • the grooves 72 or 74 extend approximately over the same Scope like that of the delivery channels 44 with grooves 38 or 42 of the end walls 26, 28, but can also over a slightly smaller or a slightly larger scope than these extend.
  • peripheral region 41 is interrupted or at least their width and / or depth be reduced. Additionally or alternatively, the radial gap 76 in the peripheral region 41 can be reduced, such as this with a modified shown in Figure 7 Execution is the case. A reduction in the gap 76 can radially inward through one of the annular wall 30 protruding projection 77 can be achieved.
  • the connection can be as with first embodiment at the beginning and / or at the end of Flow channel 78 or in an intermediate Circumferential area.
  • For connecting the flow channel 78 with the conveying channels 44 are one or more Recesses 79 are provided in the intermediate walls 26, 28.
  • the through the wings 70 of the outer ring 36 of the impeller 12 and the second feed pump formed in the flow channel 78 a combined side channel and peripheral pump, because the flow channel 78 both laterally next to the outer ring 36 of the impeller 12 and extends over its outer circumference.
  • the wing 70 of the impeller 12, the dimensions of the Flow channel 78 and the interruption or narrowing the flow channel 78 are coordinated such that in the flow channel 78 in the circumferential direction of the impeller 12 a pressure build-up approximately corresponding to the pressure build-up in the Delivery channels 44 and a predetermined fuel delivery rate results.
  • the flow pump 10 is shown in FIG shown a third embodiment. It points the impeller 12 also has a ring on its outer ring 36 of vanes 90 spaced apart in the circumferential direction that protrude radially outward from the outer ring 36.
  • the Wings 90 can extend across the entire width of the impeller 12 or it can extend to the two End faces of the outer ring 36 of the impeller 12 each Wreath of wings 90 may be arranged. Between the radial outer ends of the wings 90 and the annular wall 30 remains a radial gap 92 which together with the wings 90 of the Outer ring 36 of the impeller 12 has a flow channel 94 forms.
  • the flow channel 94 in turn extends approximately over the same scope as the inner delivery channels 44, but also about a slightly larger or something extend smaller circumference than the inner delivery channels 44. Between its in the direction of rotation 11 of the impeller 12 considered end and its beginning is the flow channel 94 approximately in the same peripheral region 41 as the inner grooves 38 or 42 interrupted or at least narrowed. The Interruption or narrowing of the flow channel 94 can take place by the radial gap 92 more or less strong is reduced by what is radially from the annular wall 30 protrusion 96 protruding inwards.
  • the end wall 28 is shown with the groove 42, wherein the end wall 26 with the groove 38 is a mirror image is.
  • the exemplary embodiment is the flow channel 94 with the inner conveyor channels 44 connected.
  • the connection can be made in Area of the impeller 12 in the circumferential direction 11 considered start and / or end of the flow channel 94 take place or in an arranged between them Peripheral region.
  • the connection of the flow channel 94 with the inner delivery channels 44 can be the same as in the first two Embodiments through one or more recesses 98 in the end walls 26, 28.
  • the wing 90 of the Impeller 12 the dimensions of the flow channel 94 and the interruption or narrowing of the flow channel 94 can be coordinated so that in Flow channel 94 in the circumferential direction of the impeller 12 Pressure build-up approximately according to the pressure build-up in the Delivery channels 44 and a predetermined fuel delivery rate results.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

Stand der TechnikState of the art

Die Erfindung geht aus von einem Aggregat zum Fördern von Kraftstoff aus einem Vorratsbehälter zur Brennkraftmaschine eines Kraftfahrzeugs nach der Gattung des Anspruchs 1.The invention is based on a unit for conveying Fuel from a reservoir to the internal combustion engine of a motor vehicle according to the preamble of claim 1.

Ein solches Aggregat ist durch die DE 40 20 521 A1 bekannt. Dieses Aggregat weist eine als Strömungspumpe ausgebildete Förderpumpe auf, deren von einem Antriebsteil rotierend angetriebenes Laufrad in einer Pumpenkammer umläuft. Die Pumpenkammer ist in Richtung der Drehachse des Laufrads durch zwei einander gegenüberliegende Stirnwände und in radialer Richtung bezüglich der Drehachse durch eine Ringwand begrenzt. Das Laufrad weist an seinem Umfang an seinen beiden Stirnseiten jeweils einen Kranz von Flügeln auf. In den beiden Stirnwänden ist in Höhe der Flügel jeweils eine über einen Teil des Umfangs um die Drehachse des Laufrads verlaufende Nut angeordnet, die mit den Flügeln des Laufrads jeweils einen Förderkanal bilden. Die Förderkanäle führen von einer Einlassöffnung an ihrem einen Ende zu einer Auslassöffnung an ihrem anderen Ende. Das Laufrad weist einen dessen Flügel an deren radial auswärts weisenden Enden verbindenden Außenring auf. Es hat sich gezeigt, dass bei dieser Ausführung des Aggregats konvektionsbedingt ein Eintrag von Schmutzpartikeln durch zwischen den Stirnseiten des Laufrads und den Stirnwänden vorhandene Axialspalte in den Raum zwischen dem Außenring des Laufrads und der Ringwand nicht auszuschließen ist. Dies ist dadurch bedingt, dass in den Förderkanälen in Umlaufrichtung des Laufrads ein Druckaufbau erfolgt und sich somit dort ein höherer Druck einstellt als in dem Raum zwischen dem Außenring des Laufrads und der Ringwand, so dass eine Leckmenge von den Förderkanälen in den Ringraum strömt. Ein Eintrag von Schmutzpartikeln in diesen Raum kann zu einem erhöhten Verschleiß des Aggregats führen und sollte daher vermieden werden.Such an assembly is known from DE 40 20 521 A1. This unit has a flow pump Feed pump on, rotating by a drive part driven impeller rotates in a pump chamber. The Pump chamber is in the direction of the axis of rotation of the impeller through two opposite end walls and in radial direction with respect to the axis of rotation Ring wall limited. The impeller instructs on its circumference a wreath of wings on both ends on. The wing is at the height of the two end walls one over part of the circumference around the axis of rotation of the impeller extending groove arranged with the wings of the impeller each form a delivery channel. The Delivery channels lead from an inlet opening at one end to an outlet opening at their other end. The impeller has one of its vanes radially outward pointing outer ring connecting ends. It has been shown that this Execution of the unit due to convection due to the entry of dirt particles Axial gaps in between the end faces of the impeller and the end walls not to exclude the space between the outer ring of the impeller and the ring wall is. This is due to the fact that in the conveying channels in the direction of rotation of the impeller a pressure build-up occurs and thus there is a higher pressure than in that Space between the outer ring of the impeller and the ring wall, so that a leakage amount flows from the delivery channels into the annulus. An entry of dirt particles in this space can lead to increased wear of the unit and should therefore be avoided.

Ein Aggregat zum Fördern von Kraftstoff mit einem Laufrad, das an seinem Außenring in einer Mantelfläche einen zweiten Kranz von Flügeln aufweist, ist aus der G 92 18 042 Ul bekannt. Die Flügel in der Mantelfläche bilden zusammen mit der Ringwand einen Strömungskanal, in dem ein Druckaufbau erfolgt.An aggregate for conveying fuel with an impeller that is in on its outer ring one lateral surface has a second ring of wings, is from G 92 18 042 Ul known. The wings in the lateral surface form a flow channel together with the ring wall, in which pressure builds up.

Die GB 21 34 598 A zeigt ein Aggregat zum Fördern von Kraftstoff mit einer zweistufigen Strömungspumpe mit einem radial inneren und einem radial äußeren Strömungskanal, wobei der radial innere mit dem radial äußeren Strömungskanal in Reihe geschaltet ist und daher beide Strömungskanäle nacheinander durchlaufen werden.GB 21 34 598 A shows a unit for conveying fuel with a two-stage Flow pump with a radially inner and a radially outer flow channel, the radially inner with the radially outer flow channel connected in series and therefore both flow channels are passed through in succession.

Vorteile der ErfindungAdvantages of the invention

Das erfindungsgemäße Aggregat zum Fördern von Kraftstoff aus einem Vorratsbehälter zur Brennkraftmaschine eines Kraftfahrzeugs hat demgegenüber den Vorteil, dass durch den wenigstens einen äußeren Strömungskanal im Raum zwischen dem Außenring des Laufrads und der Ringwand in Umlaufrichtung des Laufrads ebenfalls ein Druckaufbau erfolgt und somit eine Druckdifferenz zwischen dem wenigstens einen Strömungskanal und den Förderkanälen vermieden oder zumindest verringert ist und somit die Leckmenge zwischen den Förderkanälen und dem Ringraum vermieden oder zumindest reduziert ist. Der Druckaufbau im wenigstens einen Strömungskanal erfolgt dabei etwa entsprechend den Druckaufbau in den Förderkanälen. Des weiteren wird dadurch ein Eintrag von Schmutzpartikeln in diesen Raum verringert. In den abhängigen Ansprüchen sind vorteilhafte Ausgestaltungen und Weiterbildungen des erfindungsgemäßen Aggregats angegeben. Durch die Ausbildung gemäß jedem der Ansprüche 2 und 3 ist erreicht, dass im wenigstens einen Strömungskanal ein Druckaufbau etwa entsprechend dem Druckaufbau in den Förderkanälen erfolgt. Durch die Ausbildung gemäß Anspruch 5 kann der Druckaufbau im wenigstens einen Strömungskanal beeinflusst werden.The unit according to the invention for delivering fuel from a storage container to the internal combustion engine of a motor vehicle has the advantage that the at least one outer flow channel in the space between the outer ring of the Impeller and the ring wall in the direction of rotation of the impeller also build up pressure takes place and thus a pressure difference between the at least one flow channel and the delivery channels are avoided or at least reduced and thus the leakage amount avoided or at least reduced between the delivery channels and the annular space is. The pressure build-up in at least one flow channel takes place approximately accordingly the pressure build-up in the delivery channels. Furthermore, an entry of Dirt particles in this room are reduced. In the dependent claims are advantageous Refinements and developments of the invention Aggregate specified. Through the training according to each of claims 2 and 3 is achieved that in at least one flow channel a pressure build-up approximately corresponding the pressure builds up in the delivery channels. By training according to claim 5 the pressure build-up in at least one flow channel can be influenced.

Zeichnungdrawing

Drei Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 ein Aggregat zum Fördern von Kraftstoff mit einer Strömungspumpe in einem axialen Längsschnitt, Figur 2 ausschnittsweise die Strömungspumpe in vergrößerter Darstellung gemäß einem ersten Ausführungsbeispiel in einem axialen Längsschnitt, Figur 3 die Strömungspumpe in einem Querschnitt entlang Linien III-III in Figur 2, Figur 4 ausschnittsweise die Strömungspumpe in einer modifizierten Ausführung im Querschnitt, Figur 5 ausschnittsweise die Strömungspumpe in einer weiteren modifizierten Ausführung, Figur 6 die Strömungspumpe ausschnittsweise in einem Längsschnitt gemäß einem zweiten Ausrührungsbeispiel, Figur 7 die Strömungspumpe in einem Querschnitt entlang Linie VII-VII in Figur 6, Figur 8 die Strömungspumpe im Querschnitt in einer modifizierten Ausführung, Figur 9 die Strömungspumpe ausschnittsweise in einem Längsschnitt gemäß einem dritten Ausführungsbeispiel und Figur 10 die Strömungspumpe in einem Querschnitt entlang Linie X-X in Figur 9.Three embodiments of the invention are shown in the drawing and in the following description explained in more detail. FIG. 1 shows an aggregate for conveying of fuel with a flow pump in an axial longitudinal section, FIG. 2 in detail the flow pump in an enlarged view according to a first embodiment in an axial longitudinal section, Figure 3 shows the flow pump in one Cross-section along lines III-III in Figure 2, Figure 4 detail of the flow pump in a modified version in cross section, FIG Flow pump in a further modified embodiment, Figure 6 shows the flow pump excerpts in a longitudinal section according to a second embodiment, Figure 7 shows the flow pump in a cross section along line VII-VII in Figure 6, Figure 8 shows the flow pump in cross section in a modified version, Figure 9 shows the flow pump in sections in a longitudinal section according to a third exemplary embodiment and FIG. 10 shows the flow pump in a cross section along line X-X in Figure 9.

Beschreibung der AusführungsbeispieleDescription of the embodiments

Ein in Figur 1 vereinfacht dargestelltes Aggregat dient zum Fördern von Kraftstoff aus einem nicht dargestellten Brennkraftmaschine eines Kraftfahrzeugs. Das Kraftstofförderaggregat weist eine Strömungspumpe 10 auf, deren Laufrad 12 durch einen elektrischen Antriebsmotor 14 rotierend angetrieben wird. Während des Betriebs des Kraftstofförderaggregats saugt die Strömungspumpe 10 Kraftstoff durch einen Saugstutzen 16 an und drückt diesen über einen Pumpenauslaß 18 in einer nachfolgend näher erläuterten Wand in einen Raum 20, in dem der Antriebsmotor 14 angeordnet ist. Von dort aus wird der Kraftstoff über einen Druckstutzen 22 und eine nicht dargestellte Kraftstoffleitung der Brennkraftmaschine zugeführt.An assembly shown in simplified form in FIG. 1 is used to deliver fuel a not shown Internal combustion engine of a motor vehicle. The Fuel delivery unit has a flow pump 10, whose impeller 12 by an electric drive motor 14 is driven in rotation. During the operation of the The fuel delivery unit sucks the flow pump 10 Fuel through a suction nozzle 16 and presses it via a pump outlet 18 in a more detailed below explained wall in a room 20 in which the drive motor 14 is arranged. From there, the fuel is over a pressure port 22 and a not shown Fuel line supplied to the internal combustion engine.

In den Figuren 2 bis 10 ist die Strömungspumpe 10 vergrößert dargestellt. Das Laufrad 12 der Strömungspumpe 10 läuft in einer Pumpenkammer 24 um, die in Richtung der Drehachse 13 des Laufrads 12 durch jeweils eine Stirnwand 26 und 28 begrenzt ist und die in radialer Richtung bezüglich der Drehachse 13 durch eine Ringwand 30 begrenzt ist. Die Stirnwand 26 kann dabei einen Deckel des Kraftstofförderaggregats bilden, an dem der Saugstutzen 16 angeordnet ist. Die andere Stirnwand 28 kann eine Trennwand zum Raum 20 bilden und den Pumpenauslaß 18 in Form einer Auslaßöffnung aufweisen. Das Laufrad 12 weist an seinem Umfang an seinen beiden Stirnseiten jeweils einen Kranz von mit Abstand zueinander angeordneten, radial auswärts gerichteten Flügeln 32 auf. Die Flügel 32 sind dadurch gebildet, daß zwischen auf einem gemeinsamen Teilkreis um die Drehachse 13 angeordneten Durchbrüchen 34 Stege verbleiben, welche die Durchbrüche 34 in Umfangsrichtung des Laufrads 12 begrenzen. Die Flügel 32 sind an ihren radial äußeren Enden durch einen geschlossenen Außenring 36 miteinander verbunden.The flow pump 10 is enlarged in FIGS. 2 to 10 shown. The impeller 12 of the flow pump 10 runs in a pump chamber 24 um, which in the direction of the axis of rotation 13 of the impeller 12 through a respective end wall 26 and 28 is limited and in the radial direction with respect to Axis of rotation 13 is limited by an annular wall 30. The End wall 26 can be a cover of the Form fuel delivery unit, on which the intake manifold 16th is arranged. The other end wall 28 can be a partition to form space 20 and the pump outlet 18 in the form of a Have outlet opening. The impeller 12 has on his Circumference on each of its two faces spaced apart, radially outward upright wings 32. The wings 32 are thereby formed that around on a common pitch circle the axis of rotation 13 arranged openings 34 webs remain, which the openings 34 in the circumferential direction of the Limit impeller 12. The wings 32 are radial at their outer ends by a closed outer ring 36 connected with each other.

In der dem Laufrad 12 zugewandten Stirnwand 26 ist wie in Figur 3 dargestellt eine sich teilringförmig um die Drehachse 13 des Laufrads 12 in Höhe der Flügel 32 des Laufrads 12 erstreckende Nut 38 angeordnet, an deren in Umlaufrichtung 11 des Laufrads 12 betrachtetem Anfang eine mit dem Saugstutzen 16 verbundene Einlaßöffnung 40 mündet. Die Nut 38 ist in einem Umfangsbereich 41 in Umlaufrichtung 11 des Laufrads 12 betrachtet zwischen ihrem Ende und ihrem Anfang unterbrochen. In der dem Laufrad 12 zugewandten Stirnwand 28 ist spiegelbildlich zur Stirnwand 26 ebenfalls eine sich teilringförmig um die Drehachse 13 des Laufrads 12 in Höhe der Flügel 32 des Laufrads 12 erstreckende Nut 42 angeordnet, von deren in Umlaufrichtung 11 des Laufrads 12 betrachtetem Ende der Pumpenauslaß 18 abführt. Die Nut 42 ist ebenfalls in einem Umfangsbereich in Umlaufrichtung 11 des Laufrads 12 betrachtet zwischen ihrem Ende und ihrem Anfang unterbrochen. Die Nuten 38 und 42 bilden zusammen mit den Flügeln 32 der diesen zugewandten Stirnseiten des Laufrads 12 jeweils einen Förderkanal 44, in dem beim Betrieb des Kraftstofförderaggregats Kraftstoff von der Einlaßöffnung 40 zur Auslaßöffnung 18 gefördert wird. Die Strömungspumpe 10 ist somit als Seitenkanalpumpe ausgebildet, da die Förderkanäle 44 nur seitlich neben dem Laufrad 12 ausgebildet sind und sich nicht über den Außenumfang des Laufrads 12 erstrecken.In the end wall 26 facing the impeller 12 is as in FIG Figure 3 shows a partially annular around the Axis of rotation 13 of the impeller 12 at the level of the wing 32 of Impeller 12 extending groove 38 arranged at the in Direction of rotation 11 of the impeller 12 considered the beginning connected to the suction port 16 inlet opening 40. The groove 38 is in a circumferential area 41 in the circumferential direction 11 of the impeller 12 viewed between its end and hers Interrupted beginning. In the impeller 12 facing The end wall 28 is also a mirror image of the end wall 26 one is partially annular around the axis of rotation 13 of the impeller 12 groove 42 extending at the level of the blades 32 of the impeller 12 arranged, in the direction of rotation 11 of the impeller 12th viewed end of the pump outlet 18 leads away. The groove 42 is also in a circumferential area in the circumferential direction 11 the impeller 12 viewed between its end and hers Interrupted beginning. The grooves 38 and 42 form together with the wings 32 of these end faces facing the Impeller 12 each have a feed channel 44 in which at Operation of the fuel delivery unit fuel from the Inlet opening 40 is conveyed to outlet opening 18. The Flow pump 10 is thus a side channel pump formed because the conveyor channels 44 only laterally next to the Impeller 12 are formed and not on the Extend the outer circumference of the impeller 12.

Bei einem in den Figuren 2 bis 5 dargestellten ersten Ausführungsbeispiel der Strömungspumpe 10 weist das Laufrad 12 an seinem Außenring 36 in dessen den Stirnwänden 26,28 zugewandten Stirnseiten jeweils einen Kranz von in Umfangsrichtung zueinander beabstandeten Flügeln 50 auf. Die Flügel 50 sind an ihren radial äußeren Enden über einen weiteren, das Laufrad 12 radial nach außen begrenzenden Ring 51 miteinander verbunden. Die Flügel 50 können dabei zur Minimierung der strömungsmechanischen Energieverluste in Umlaufrichtung 11 des Laufrads 12 mit ihren radial äußeren Enden vorauseilen, vorzugsweise um etwa 25° bis 50°. Hierzu wird auf die Deutsche Patentanmeldung 1 95 04 079 verweisen, deren Inhalt zum Inhalt der vorliegenden Anmeldung gehören soll. Die Stirnwände 26,28 weisen dabei jeweils eine sich teilringförmig um die Drehachse 13 des Laufrads 12 auf Höhe der Flügel 50 erstreckende Nut 52 bzw. 54 auf. Die Nuten 52 bzw. 54 erstrecken sich dabei zumindest annähernd etwa über denselben Umfang wie die die Förderkanäle 44 mit bildenden Nuten 38 bzw. 42 der Stirnwände 26,28, wobei sich die Nuten 52 bzw. 54 auch über einen etwas kleineren oder größeren Umfang erstrecken können als die Nuten 38 bzw. 42. Die äußeren Nuten 52,54 sind von den inneren Nuten 38,42 über einen Teil ihres Umfangs durch Stege 56 der Stirnwände 26,28 getrennt. Die äußeren Nuten 52,54 bilden mit den Flügeln 50 der diesen zugewandten Stirnseiten des Außenrings 36 des Laufrads 12 jeweils einen äußeren Strömungskanal 58. In den äußeren Strömungskanälen 58 soll beim Betrieb des Kraftstofförderaggregats ein Druckaufbau erfolgen, der zumindest annähernd dem Druckaufbau in den Förderkanälen 44 entspricht.In a first shown in Figures 2 to 5 Embodiment of the flow pump 10 has the impeller 12 on its outer ring 36 in its end walls 26, 28 facing end faces each have a wreath of in Wings 50 spaced apart from one another in the circumferential direction. The Wing 50 are at their radially outer ends over a further, the impeller 12 radially outwardly delimiting ring 51 connected to each other. The wings 50 can Minimization of fluid mechanical energy losses in Direction of rotation 11 of the impeller 12 with its radially outer Run ahead of ends, preferably about 25 ° to 50 °. For this will refer to German patent application 1 95 04 079, the content of which belongs to the content of the present application should. The end walls 26, 28 each have one partially ring-shaped around the axis of rotation 13 of the impeller 12 at height the wing 50 extends groove 52 or 54. The grooves 52 or 54 extend at least approximately over the same scope as that forming the delivery channels 44 Grooves 38 and 42 of the end walls 26, 28, wherein the grooves 52 or 54 also over a slightly smaller or larger one Perimeter can extend as the grooves 38 and 42. Die outer grooves 52, 54 are over from the inner grooves 38, 42 part of its circumference by webs 56 of the end walls 26, 28 Cut. The outer grooves 52, 54 form with the wings 50 of these end faces of the outer ring 36 of the Impeller 12 each have an outer flow channel 58. In the outer flow channels 58 is intended to operate the Fuel delivery unit to build up pressure at least approximately the pressure build-up in the delivery channels 44 equivalent.

Die äußeren Strömungskanäle 58 sind mit den jeweils radial innerhalb von diesen angeordneten Förderkanälen 44 über einen Teil ihres Umfangs verbunden. Es kann dabei vorgesehen sein, daß die die äußeren Strömungskanäle 58 mit bildenden Nuten 52,54 im Bereich ihres in Umlaufrichtung 11 des Laufrads 12 betrachteten Anfangs und/oder im Bereich ihres in Umlaufrichtung 11 betrachteten Endes mit den die Förderkanäle 44 mit bildenden inneren Nuten 38,42 verbunden sind. Wie in Figur 4 dargestellt kann diese Verbindung durch eine oder mehrere die Stege 56 unterbrechende Aussparungen 60 erfolgen. Vorzugsweise ist sowohl am Anfang als auch am Ende der äußeren Nuten 52,54 eine Verbindung mit den inneren Nuten 38,42 vorhanden, so daß sich am Anfang und am Ende der äußeren Strömungskanäle 58 etwa dieselben Druckverhältnisse einstellen wie am Anfang und am Ende der inneren Förderkanäle 44. Alternativ kann die Verbindung der äußeren Nuten 52,54 mit den inneren Nuten 38,42 wie in Figur 3 dargestellt auch in einem mittleren Umfangsbereich zwischen deren Anfang und deren Ende ebenfalls über eine oder mehrere die Stege 56 unterbrechende Aussparungen 60 erfolgen. Die Breite, Tiefe und Lage der Aussparungen 60 ist dabei so bestimmt, daß sich günstige Strömungsverhältnisse zwischen den Nuten ergeben und sich ein Druckausgleich zwischen diesen einstellt.The outer flow channels 58 are each radial within these arranged delivery channels 44 over connected part of its scope. It can be provided be that the outer flow channels 58 forming Grooves 52,54 in the area of their in the circumferential direction 11 of Impeller 12 considered in the beginning and / or in the area of their viewed in the direction of rotation 11 with the end Delivery channels 44 connected to forming inner grooves 38,42 are. As shown in Figure 4, this connection can be done by one or more recesses which interrupt the webs 56 60 done. Preferably, both at the beginning and at End of the outer grooves 52, 54 connect to the inner Grooves 38.42 available so that at the beginning and at the end of the outer flow channels 58 approximately the same pressure conditions adjust like at the beginning and at the end of the inner Delivery channels 44. Alternatively, the connection of the outer Grooves 52, 54 with the inner grooves 38, 42 as in FIG. 3 also shown in a medium circumferential area between their beginning and end also over one or more the webs 56 interrupting recesses 60 take place. The The width, depth and position of the recesses 60 is so determines that there are favorable flow conditions between the grooves and there is a pressure equalization between sets this.

Die äußeren Strömungskanäle 58 sind in Umfangsbereichen 62 zwischen deren in Umlaufrichtung 11 des Laufrads 12 betrachteten Enden und Anfängen unterbrochen oder zumindest verengt. Die Umfangsbereiche 62 entsprechen dabei im wesentlichen den Umfangsbereichen 41, in denen die inneren Nuten 38,42 unterbrochen sind, können jedoch auch etwas größer oder etwas kleiner als diese sein. Bei einer in Figur 3 dargestellten Ausführung sind die äußeren Nuten 52,54 zwischen ihren in Umlaufrichtung 11 des Laufrads 12 betrachteten Enden und Anfängen in den Umfangsbereichen 62 vollständig unterbrochen. Bei einer in Figur 4 dargestellten modifizierten Ausführung sind die Nuten 52,54 in dem Umfangsbereich 62 verengt. Es kann dabei beispielsweise wie dargestellt eine Verengung in radialer Richtung, das heißt der Breite der Nuten, und/oder in Richtung der Drehachse 13 des Laufrads 12, das heißt der Tiefe der Nuten 52,54 vorgesehen sein. Bei einer in Figur 5 dargestellten weiteren modifizierten Ausführung verlaufen die Nuten 52,54 im Umfangsbereich 62 radial versetzt gegenüber ihrem übrigen Umfang, beispielsweise radial weiter, so daß hier keine oder nur eine geringere Überdeckung mit den Flügeln 50 des Außenrings 36 des Laufrads 12 vorhanden ist und entsprechend die Strömungskanäle 58 unterbrochen oder zumindest verengt sind. The outer flow channels 58 are in peripheral regions 62 between their in the direction of rotation 11 of the impeller 12 considered ends and beginnings interrupted or at least narrows. The circumferential areas 62 correspond to essentially the peripheral regions 41, in which the inner Grooves 38,42 are interrupted, but can also be something be larger or slightly smaller than this. With one in figure The embodiment shown in FIG. 3 are the outer grooves 52, 54 between their in the direction of rotation 11 of the impeller 12 considered ends and beginnings in the peripheral regions 62 completely interrupted. In one shown in Figure 4 modified version are the grooves 52,54 in the Circumferential area 62 narrows. For example, how shown a narrowing in the radial direction, that is the width of the grooves, and / or in the direction of the axis of rotation 13 of the impeller 12, that is, the depth of the grooves 52, 54 be provided. In another shown in Figure 5 modified version, the grooves run 52.54 in Circumferential area 62 radially offset from the rest Circumference, for example radially further, so that none or only a slight overlap with the wings 50 of the Outer ring 36 of the impeller 12 is present and accordingly the flow channels 58 interrupted or at least narrowed are.

Die Flügel 50 des Außenrings 36 des Laufrads 36 bilden zusammen mit den Nuten 52,54 eine weitere Strömungspumpe, die ebenfalls eine Seitenkanalpumpe ist, da die Strömungskanäle 58 nur seitlich neben dem Laufrad 12 angeordnet sind und keine Verbindung über den Ring 51 am Außenumfang des Laufrads 12 aufweisen. Diese weitere Strömungspumpe ist jedoch nicht wie bei bekannten mehrstufigen Förderpumpen der ersten, inneren Förderpumpe nachgeschaltet, sondern fördert sozusagen parallel zu dieser von derselben Einlaßöffnung 40 zur selben Auslaßöffnung 18. Beim Betrieb des Kraftstofförderaggregats erfolgt auch durch die am Außenring 36 des Laufrads 12 angeordneten Flügel 50 in den Strömungskanälen 58 eine Förderung von Kraftstoff. Die Menge des geförderten Kraftstoffs, die Abhängigkeit der geförderten Kraftstoffmenge von der Drehzahl des Laufrads 12 und der Verlauf des Druckaufbaus über den Umfang der Strömungskanäle 58 kann durch die Ausbildung der Flügel 50 und der Nuten 52,54 sowie der Ausbildung der Unterbrechung bzw. Verengung der Strömungskänäle 58 beeinflußt werden, so daß durch entsprechende Ausbildung eine gewünschte Fördermenge und ein gewünschter Druckaufbau erreicht werden kann.The wings 50 of the outer ring 36 of the impeller 36 form together with the grooves 52, 54 another flow pump, which is also a side channel pump because the Flow channels 58 only to the side of the impeller 12 are arranged and no connection via the ring 51 on Have the outer circumference of the impeller 12. This one more However, the flow pump is not like the known one multi-stage feed pumps of the first, inner feed pump downstream, but promotes, so to speak, parallel to this from the same inlet opening 40 to the same outlet opening 18. When operating the fuel delivery unit is also carried out by the vanes 50 arranged on the outer ring 36 of the impeller 12 a delivery of fuel in the flow channels 58. The amount of fuel delivered, the dependency of the amount of fuel delivered from the speed of the impeller 12 and the course of the pressure build-up over the scope of the Flow channels 58 can be formed by the formation of the wing 50 and the grooves 52, 54 and the formation of the interruption or narrowing of the flow channels 58 are influenced, so that through appropriate training a desired Flow rate and a desired pressure build-up can be achieved can.

In den Figuren 6 bis 8 ist die Strömungspumpe 10 gemäß einem zweiten Ausführungsbeispiel dargestellt. Dabei weist das Laufrad 12 ebenfalls an seinem Außenring 36 in dessen den Stirnwänden 26,28 zugewandten Stirnseiten jeweils einen Kranz von in Umfangsrichtung zueinander beabstandeten Flügeln 70 auf, die jedoch abweichend zum ersten Ausführungsbeispiel am Außenumfang des Außenrings 36 des Laufrads 12 beispielsweise etwa radial auslaufen. Die Stirnwände 26,28 weisen dabei jeweils eine sich teilringförmig um die Drehachse 13 des Laufrads 12 auf Höhe der Flügel 70 erstreckende Nut 72 bzw. 74 auf. Die Nuten 72 bzw. 74 erstrecken sich dabei annähernd etwa über denselben Umfang wie die die Förderkanäle 44 mit bildenden Nuten 38 bzw. 42 der Stirnwände 26,28, können sich jedoch auch über einen etwas kleineren oder einen etwas größeren Umfang als diese erstrecken. Zwischen dem Außenumfang des Außenrings 36 des Laufrads 12 und der Ringwand 30 verbleibt ein radialer Spalt 76, durch den die Nuten 72,74 über den Außenumfang des Außenrings 36 des Laufrads 12 miteinander verbunden sind. Durch die Flügel 70 des Außenrings 36 des Laufrads 12 sowie die Nuten 72,74 und den Spalt 76 wird ein äußerer Strömungskanal 78 gebildet. In dem Umfangsbereich 41, in dem die inneren Förderkanäle 44 unterbrochen sind, ist der äußere Strömungskanal 78 ebenfalls unterbrochen oder zumindest verengt. In den Figuren 7 und 8 ist die Stirnwand 28 mit den Nuten 42 und 74 dargestellt, wobei die Stirnwand 26 mit den Nuten 38 und 72 spiegelbildlich ausgebildet ist. Die Nuten 72,74 können in den Stirnwänden 26,28 wie in den Figuren 7 und 8 dargestellt im Umfangsbereich 41 unterbrochen sein oder zumindest deren Breite und/oder Tiefe verringert sein. Zusätzlich oder alternativ kann auch der radiale Spalt 76 im Umfangsbereich 41 verringert sein, wie dies bei einer in Figur 7 dargestellten modifizierten Ausführung der Fall ist. Eine Verringerung des Spalts 76 kann durch einen von der Ringwand 30 radial nach innen abstehenden Vorsprung 77 erreicht werden.In Figures 6 to 8, the flow pump 10 is according to one shown second embodiment. This points Impeller 12 also on its outer ring 36 in the End walls 26, 28 facing end faces one each Wreath of spaced apart in the circumferential direction Wings 70, which differ from the first Embodiment on the outer circumference of the outer ring 36 of the Run wheel 12, for example, approximately radially. The End walls 26, 28 each have one partially ring-shaped around the axis of rotation 13 of the impeller 12 at height the wing 70 extending groove 72 or 74. The grooves 72 or 74 extend approximately over the same Scope like that of the delivery channels 44 with grooves 38 or 42 of the end walls 26, 28, but can also over a slightly smaller or a slightly larger scope than these extend. Between the outer circumference of the outer ring 36 of the impeller 12 and the ring wall 30 remains radial Gap 76 through which the grooves 72,74 over the outer circumference of the Outer ring 36 of the impeller 12 are interconnected. Through the wing 70 of the outer ring 36 of the impeller 12 and the grooves 72, 74 and the gap 76 become an outer one Flow channel 78 formed. In the peripheral region 41 in which the inner delivery channels 44 are interrupted outer flow channel 78 also interrupted or at least narrowed. The end wall is shown in FIGS. 7 and 8 28 with the grooves 42 and 74 shown, the end wall 26 is formed with the grooves 38 and 72 in mirror image. The grooves 72, 74 can be in the end walls 26, 28 as in FIGS FIGS. 7 and 8 are shown in the peripheral region 41 be interrupted or at least their width and / or depth be reduced. Additionally or alternatively, the radial gap 76 in the peripheral region 41 can be reduced, such as this with a modified shown in Figure 7 Execution is the case. A reduction in the gap 76 can radially inward through one of the annular wall 30 protruding projection 77 can be achieved.

Wie beim ersten Ausführungsbeispiel ist auch beim zweiten Ausführungsbeispiel der äußere Strömungskanal 78 mit den inneren Förderkanälen 44 verbunden, um einen Druckausgleich zwischen diesen zu ermöglichen. Die Verbindung kann wie beim ersten Ausführungsbeispiel am Anfang und/oder am Ende des Strömungskanals 78 oder in einem dazwischenliegenden Umfangsbereich erfolgen. Zur Verbindung des Strömungskanals 78 mit den Förderkanälen 44 sind dabei eine oder mehrere Aussparungen 79 in den Zwischenwänden 26,28 vorgesehen. Die durch die Flügel 70 des Außenrings 36 des Laufrads 12 und den Strömungskanal 78 gebildete zweite Förderpumpe ist dabei eine kombinierte Seitenkanal- und Peripheralpumpe, da sich der Strömungskanal 78 sowohl seitlich neben dem Außenring 36 des Laufrads 12 als auch über dessen Außenumfang erstreckt. Die Flügel 70 des Laufrads 12, die Abmessungen des Strömungskanals 78 sowie die Unterbrechung bzw. Verengung des Strömungskanals 78 sind dabei derart abgestimmt, daß sich im Strömungskanal 78 in Umlaufrichtung des Laufrads 12 ein Druckaufbau etwa entsprechend dem Druckaufbau in den Förderkanälen 44 und eine vorgegebene Kraftstoffördermenge ergibt.As in the first embodiment, the second Embodiment of the outer flow channel 78 with the inner delivery channels 44 connected to pressure equalization between them. The connection can be as with first embodiment at the beginning and / or at the end of Flow channel 78 or in an intermediate Circumferential area. For connecting the flow channel 78 with the conveying channels 44 are one or more Recesses 79 are provided in the intermediate walls 26, 28. The through the wings 70 of the outer ring 36 of the impeller 12 and the second feed pump formed in the flow channel 78 a combined side channel and peripheral pump, because the flow channel 78 both laterally next to the outer ring 36 of the impeller 12 and extends over its outer circumference. The wing 70 of the impeller 12, the dimensions of the Flow channel 78 and the interruption or narrowing the flow channel 78 are coordinated such that in the flow channel 78 in the circumferential direction of the impeller 12 a pressure build-up approximately corresponding to the pressure build-up in the Delivery channels 44 and a predetermined fuel delivery rate results.

In den Figuren 9 und 10 ist die Strömungspumpe 10 gemäß einem dritten Ausführungsbeispiel dargestellt. Dabei weist das Laufrad 12 ebenfalls an seinem Außenring 36 einen Kranz von in Umfangsrichtung zueinander beabstandeten Flügeln 90 auf, die vom Außenring 36 radial nach außen abstehen. Die Flügel 90 können sich durchgehend über die gesamte Breite des Laufrads 12 erstrecken oder es kann an den beiden Stirnseiten des Außenrings 36 des Laufrads 12 jeweils ein Kranz von Flügeln 90 angeordnet sein. Zwischen den radial äußeren Enden der Flügel 90 und der Ringwand 30 verbleibt eine radialer Spalt 92, der zusammen mit den Flügeln 90 des Außenrings 36 des Laufrads 12 einen Strömungskanal 94 bildet. Der Strömungskanal 94 erstreckt sich wiederum etwa über denselben Umfang wie die inneren Förderkanäle 44, kann sich jedoch auch über einen etwas größeren oder etwas kleineren Umfang erstrecken als die inneren Förderkanäle 44. Zwischen seinem in Umlaufrichtung 11 des Laufrads 12 betrachteten Ende und seinem Anfang ist der Strömungskanal 94 etwa im selben Umfangsbereich 41 wie die inneren Nuten 38 bzw. 42 unterbrochen oder zumindest verengt. Die Unterbrechung oder Verengung des Strömungskanals 94 kann erfolgen indem der radiale Spalt 92 mehr oder weniger stark verringert ist, was durch einen von der Ringwand 30 radial nach innen abstehenden Vorsprung 96 erfolgen kann. In Figur 10 ist die Stirnwand 28 mit der Nut 42 dargestellt, wobei die Stirnwand 26 mit der Nut 38 spiegelbildlich ausgebildet ist.In FIGS. 9 and 10, the flow pump 10 is shown in FIG shown a third embodiment. It points the impeller 12 also has a ring on its outer ring 36 of vanes 90 spaced apart in the circumferential direction that protrude radially outward from the outer ring 36. The Wings 90 can extend across the entire width of the impeller 12 or it can extend to the two End faces of the outer ring 36 of the impeller 12 each Wreath of wings 90 may be arranged. Between the radial outer ends of the wings 90 and the annular wall 30 remains a radial gap 92 which together with the wings 90 of the Outer ring 36 of the impeller 12 has a flow channel 94 forms. The flow channel 94 in turn extends approximately over the same scope as the inner delivery channels 44, but also about a slightly larger or something extend smaller circumference than the inner delivery channels 44. Between its in the direction of rotation 11 of the impeller 12 considered end and its beginning is the flow channel 94 approximately in the same peripheral region 41 as the inner grooves 38 or 42 interrupted or at least narrowed. The Interruption or narrowing of the flow channel 94 can take place by the radial gap 92 more or less strong is reduced by what is radially from the annular wall 30 protrusion 96 protruding inwards. In figure 10, the end wall 28 is shown with the groove 42, wherein the end wall 26 with the groove 38 is a mirror image is.

Auch bei der Strömungspumpe gemäß dem dritten Ausführungsbeispiel ist der Strömungskanal 94 mit den inneren Förderkanälen 44 verbunden. Die Verbindung kann im Bereich des in Umlaufrichtung 11 des Laufrads 12 betrachteten Anfangs und/oder des Endes des Strömungskanals 94 erfolgen oder in einem zwischen diesen angeordneten Umfangsbereich. Die Verbindung des Strömungskanals 94 mit den inneren Förderkanälen 44 kann wie bei den beiden ersten Ausführungsbeispielen durch eine oder mehrere Aussparungen 98 in den Stirnwänden 26,28 erfolgen. Die Flügel 90 des Laufrads 12, die Abmessungen des Strömungskanals 94 sowie die Unterbrechung bzw. Verengung des Strömungskanals 94 können dabei derart abgestimmt werden, daß sich im Strömungskanal 94 in Umlaufrichtung des Laufrads 12 ein Druckaufbau etwa entsprechend dem Druckaufbau in den Förderkanälen 44 und eine vorgegebene Kraftstoffördermenge ergibt.Also with the flow pump according to the third The exemplary embodiment is the flow channel 94 with the inner conveyor channels 44 connected. The connection can be made in Area of the impeller 12 in the circumferential direction 11 considered start and / or end of the flow channel 94 take place or in an arranged between them Peripheral region. The connection of the flow channel 94 with the inner delivery channels 44 can be the same as in the first two Embodiments through one or more recesses 98 in the end walls 26, 28. The wing 90 of the Impeller 12, the dimensions of the flow channel 94 and the interruption or narrowing of the flow channel 94 can be coordinated so that in Flow channel 94 in the circumferential direction of the impeller 12 Pressure build-up approximately according to the pressure build-up in the Delivery channels 44 and a predetermined fuel delivery rate results.

Claims (13)

  1. Unit for feeding fuel from a storage tank to the internal combustion engine of a motor vehicle, having a feed pump (10) which is designed as a flow pump and the impeller (12) of which, which is driven in a rotating manner by a drive part (14), revolves in a pump chamber (24) and is bounded in the direction of the axis of rotation (13) of the impeller (12) by two mutually opposite end walls (26, 28) and in the radial direction with respect to the axis of rotation (13) of the impeller (12) by a ring wall (30), the impeller (12) having, on its circumference, on both of its end sides, a respective ring of vanes (32) which are spaced apart from one another in the circumferential direction and are directed radially outwards, and in the two end walls (26, 28) there is respectively arranged, level with the vanes (32), a groove (38, 42) which extends in a partially annular manner around the axis of rotation (13) of the impeller (12), the said grooves, together with the vanes (32) of the impeller (12), forming a respective feed duct (44), the said feed ducts leading, as viewed in the revolving direction (11) of the impeller (12), from an inlet opening (40) at their beginning to an outlet opening (18) at their end, and the impeller (12) having an outer ring (36) connecting its vanes (32) at their radially outer ends, and a further ring of vanes (50; 70; 90) which are spaced apart from one another in the circumferential direction and are directed radially outwards being arranged on the outer ring (36) of the impeller (12), the said vanes, together with the end walls (26, 28) and/or with the ring wall (30), forming at least one flow duct (58; 78; 94) which extends at least in a partially annular manner around the axis of rotation (13) of the impeller (12) and in which a build up of pressure takes place in the circumferential direction (11) of the impeller (12), characterized in that the at least one flow duct (58; 78; 94) is connected over part of its circumference to the feed ducts (44), so that a build-up of pressure approximately corresponding to the build-up of pressure in the feed ducts (44) takes place in the said flow duct.
  2. Unit according to Claim 1, characterized in that the at least one flow duct (58; 78; 94) is connected in the region of its beginning and/or its end, as viewed in the revolving direction (11) of the impeller (12), to the feed ducts (44).
  3. Unit according to Claim 1, characterized in that the at least one flow duct (58; 78; 94) is connected in a circumferential region arranged between its beginning and end, as viewed in the revolving direction (11) of the impeller (12), to the feed ducts (44).
  4. Unit according to one of the preceding claims, characterized in that the at least one flow duct (58; 78; 94) is interrupted, or at least constricted, in a circumferential region (62) between its end and beginning, as viewed in the revolving direction (11) of the impeller (12).
  5. Unit according to Claim 4, characterized in that the feed ducts (44) are interrupted or at least constricted, likewise between their ends and beginnings, as viewed in the revolving direction (11) of the impeller (12), in a circumferential region (41, 43) which at least partially coincides with the circumferential region (62) in which the at least one flow duct (58; 78; 94) is interrupted or at least constricted.
  6. Unit according to one of the preceding claims, characterized in that a single flow duct (94) is formed over the outer circumference of the impeller (12) between the end walls (26, 28) and the ring wall (30).
  7. Unit according to one of Claims 1 to 5, characterized in that the vanes (50) of the outer ring (36) of the impeller (12) are connected to one another at their radially outer ends by a further, closed ring (51), and in that a respective groove (52, 54) which runs at least in a partially annular manner around the axis of rotation (13) of the impeller (12) is arranged in the two end walls (26, 28) level with the vanes (50), the said grooves, together with the vanes (50), in each case forming a lateral flow duct (58).
  8. Unit according to Claim 7, characterized in that the interruption or at least constriction of the flow ducts (58) is produced by an interruption or at least constriction of the grooves (52, 54).
  9. Unit according to Claim 7, characterized in that the interruption or at least constriction of the flow ducts (58) is produced by a radial offset of the grooves (52, 54) with respect to the vanes (50), so that the latter do not coincide, or coincide less relative to their remaining circumference, with the vanes (50).
  10. Unit according to Claim 4 or 5 and 6, characterized in that the interruption or at least constriction of the flow duct (94) is produced by at least one projection (96) protruding radially inwards from the ring wall (30).
  11. Unit according to Claim 4 or 5, characterized in that the flow duct (78) extends both laterally next to the outer ring (36) of the impeller (12) and also over the outer circumference thereof.
  12. Unit according to Claim 11, characterized in that the interruption or at least constriction of the flow duct (78) is produced by an interruption or at least constriction of its part extending over the outer circumference of the outer ring (36) of the impeller (12) brought about by means of a projection (77) protruding radially inwards from the ring wall (36).
  13. Unit according to Claim 11 or 12, characterized in that the interruption or at least constriction of the flow duct (78) is produced by an interruption or at least constriction of its part extending laterally next to the outer ring (36) of the impeller (12) by the said part being interrupted or at least constricted.
EP97914145A 1996-06-05 1997-02-13 Equipment for pumping fuel from a storage tank to the internal-combustion engine of a motor vehicle Expired - Lifetime EP0842366B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19622560 1996-06-05
DE19622560A DE19622560A1 (en) 1996-06-05 1996-06-05 Unit for delivering fuel from a reservoir to the internal combustion engine of a motor vehicle
PCT/DE1997/000272 WO1997046809A1 (en) 1996-06-05 1997-02-13 Equipment for pumping fuel from a storage tank to the internal-combustion engine of a motor vehicle

Publications (2)

Publication Number Publication Date
EP0842366A1 EP0842366A1 (en) 1998-05-20
EP0842366B1 true EP0842366B1 (en) 2003-05-07

Family

ID=7796219

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97914145A Expired - Lifetime EP0842366B1 (en) 1996-06-05 1997-02-13 Equipment for pumping fuel from a storage tank to the internal-combustion engine of a motor vehicle

Country Status (8)

Country Link
US (1) US6152686A (en)
EP (1) EP0842366B1 (en)
JP (1) JPH11510875A (en)
KR (1) KR19990036157A (en)
CN (1) CN1118635C (en)
BR (1) BR9702277A (en)
DE (2) DE19622560A1 (en)
WO (1) WO1997046809A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19719609A1 (en) * 1997-05-09 1998-11-12 Bosch Gmbh Robert Fuel supply unit for internal combustion engine
FR2768192B1 (en) * 1997-09-08 2004-01-23 Marwal Systems IMPROVED TURBINE PUMP, PARTICULARLY FOR MOTOR VEHICLE FUEL TANK
FR2768193B1 (en) * 1997-09-08 2004-11-26 Marwal Systems TURBINE PUMP, PARTICULARLY FOR AN IMPROVED MOTOR VEHICLE FUEL TANK FOR IMPROVED PERFORMANCE
FR2768191B1 (en) * 1997-09-08 2004-11-26 Marwal Systems TURBINE PUMP IN PARTICULAR FOR A FUEL TANK OF A MOTOR VEHICLE
DE19949615C2 (en) * 1998-10-14 2002-08-08 Ford Motor Co Side channel type paddlewheel pump for pumping fuel
EP1103723B1 (en) * 1999-11-23 2003-03-26 Siemens Aktiengesellschaft Fuel pump
US6527505B2 (en) * 2000-12-11 2003-03-04 Visteon Global Technologies, Inc. Regenerative fuel pump flow chamber
JP3800128B2 (en) * 2001-07-31 2006-07-26 株式会社デンソー Impeller and turbine fuel pump
US6932562B2 (en) * 2002-06-18 2005-08-23 Ti Group Automotive Systems, L.L.C. Single stage, dual channel turbine fuel pump
US6890144B2 (en) 2002-09-27 2005-05-10 Visteon Global Technologies, Inc. Low noise fuel pump design
DE102004052439A1 (en) 2004-10-28 2006-05-04 Siemens Ag Fuel pump and fuel supply system for an internal combustion engine of a motor vehicle with a fuel pump
US20080056886A1 (en) * 2006-08-31 2008-03-06 Varian, S.P.A. Vacuum pumps with improved pumping channel cross sections
DE102007026533A1 (en) * 2007-06-08 2008-12-11 Continental Automotive Gmbh Fuel pump
DE102007038144A1 (en) * 2007-08-13 2009-02-19 Continental Automotive Gmbh Side channel pump for conveying fuel in a motor vehicle

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3560104A (en) * 1969-02-28 1971-02-02 Abas Beaucan Neale Two-stage,vortex-type centrifugal compressor or pump
JPS58222997A (en) * 1982-06-21 1983-12-24 Nippon Denso Co Ltd Pumping device
DE3303352A1 (en) * 1983-02-02 1984-08-02 Robert Bosch Gmbh, 7000 Stuttgart AGGREGATE FOR PROMOTING FUEL, PREFERABLY FROM A STORAGE TANK FOR THE INTERNAL COMBUSTION ENGINE, ESPECIALLY A MOTOR VEHICLE
DK0391851T3 (en) * 1989-04-07 1994-07-25 Ciba Geigy Ag Pesticide concentrates and their preparation
US4948344A (en) * 1989-10-17 1990-08-14 Sundstrand Corporation Controlled vortex regenerative pump
DE4020521A1 (en) * 1990-06-28 1992-01-02 Bosch Gmbh Robert PERIPHERAL PUMP, ESPECIALLY FOR DELIVERING FUEL FROM A STORAGE TANK TO THE INTERNAL COMBUSTION ENGINE OF A MOTOR VEHICLE
DE9218042U1 (en) * 1992-12-19 1993-06-09 Pierburg GmbH, 4040 Neuss Fuel pump
DE4336090C2 (en) * 1993-10-22 2001-10-04 Bosch Gmbh Robert Unit for delivering fuel from a reservoir to the internal combustion engine of a motor vehicle
DE4411627A1 (en) * 1994-04-02 1995-10-05 Bosch Gmbh Robert Fuel supply unit for IC engine of motor vehicle
US5413457A (en) * 1994-07-14 1995-05-09 Walbro Corporation Two stage lateral channel-regenerative turbine pump with vapor release

Also Published As

Publication number Publication date
CN1118635C (en) 2003-08-20
US6152686A (en) 2000-11-28
WO1997046809A1 (en) 1997-12-11
EP0842366A1 (en) 1998-05-20
JPH11510875A (en) 1999-09-21
BR9702277A (en) 1999-07-20
CN1189879A (en) 1998-08-05
DE19622560A1 (en) 1997-12-11
KR19990036157A (en) 1999-05-25
DE59710028D1 (en) 2003-06-12

Similar Documents

Publication Publication Date Title
EP0774077B2 (en) Flow pump for use in pumping fuel from a reservoir to the engine of a motor vehicle
EP0842366B1 (en) Equipment for pumping fuel from a storage tank to the internal-combustion engine of a motor vehicle
EP0536159B1 (en) Assembly for feeding fuel from the fuel tank of a motor vehicle to its internal combustion engine
EP1828611B1 (en) Vane pump
DE4318122C2 (en) Unit for delivering fuel from a storage tank to the internal combustion engine of a motor vehicle
EP1828609B1 (en) Vane cell pump
DE19719609A1 (en) Fuel supply unit for internal combustion engine
DE3235427A1 (en) WING PUMP
DE19634734A1 (en) Hydrodynamic pump for delivering fuel from fuel tank of motor vehicle
DE102005047175A1 (en) Vane pump for feeding e.g. diesel fuel, has ring shaped groove designed at front sides of rotor opposite to front wall of pump housing, where ring shaped groove is connected to pressure area and extends over part of rotor circumference
EP1103723B1 (en) Fuel pump
DE102004014457B4 (en) Fuel pump
DE3117743A1 (en) OIL PUMP
DE19528181A1 (en) Peripheral pump, in particular for delivering fuel from a storage tank to the internal combustion engine of a motor vehicle
DE3801306A1 (en) Vane-cell compressor
DE4428254A1 (en) Fuel pump with chambered wheel and feed and degassing channels
DE4326505A1 (en) Peripheral pump, in particular for delivering fuel from a supply tank to the internal combustion engine of a motor vehicle
DE3644150C2 (en) Fuel injection pump for internal combustion engines
DE10054590B4 (en) Automobile fuel pump has 2 concentric feed chambers for feeding fuel to engine and to suction pump simultaneously
DE19902626C2 (en) Side channel blower
WO2002093014A1 (en) Flow-type pump, particularly for delivering fuel out of a tank to an internal combustion engine of a motor vehicle
AT407427B (en) FUEL INJECTION PUMP FOR INTERNAL COMBUSTION ENGINES
DE19652420A1 (en) Flow control arrangement for a hydraulic conveyor
WO1998004825A1 (en) Fuel injection pump for internal combustion engines
DE19749484A1 (en) Flow control device for hydraulic conveying system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR IT

17P Request for examination filed

Effective date: 19980612

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20020807

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR IT

REF Corresponds to:

Ref document number: 59710028

Country of ref document: DE

Date of ref document: 20030612

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041029

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050213