EP1828611B1 - Vane pump - Google Patents

Vane pump Download PDF

Info

Publication number
EP1828611B1
EP1828611B1 EP05826789A EP05826789A EP1828611B1 EP 1828611 B1 EP1828611 B1 EP 1828611B1 EP 05826789 A EP05826789 A EP 05826789A EP 05826789 A EP05826789 A EP 05826789A EP 1828611 B1 EP1828611 B1 EP 1828611B1
Authority
EP
European Patent Office
Prior art keywords
rotor
annular groove
region
grooves
housing end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05826789A
Other languages
German (de)
French (fr)
Other versions
EP1828611A1 (en
Inventor
Christian Langenbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1828611A1 publication Critical patent/EP1828611A1/en
Application granted granted Critical
Publication of EP1828611B1 publication Critical patent/EP1828611B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0854Vane tracking; control therefor by fluid means
    • F01C21/0863Vane tracking; control therefor by fluid means the fluid being the working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C2/3441Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • F04C2/3442Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/70Safety, emergency conditions or requirements
    • F04C2270/701Cold start

Definitions

  • the invention relates to a vane pump according to the preamble of claim 1, as in JP 63-280 883 and JP 60-150496 disclosed.
  • Such a vane pump is through the DE 199 52 167 A1 known.
  • This vane pump has a pump housing, in which a rotor is arranged, which is driven in rotation by a drive shaft.
  • the rotor has distributed over its circumference a plurality of grooves which extend at least substantially radially to the axis of rotation of the rotor and in each of which a wing-shaped conveying element is guided displaceably.
  • the pump housing has a surrounding the rotor, to its axis of rotation eccentric peripheral wall, against which the wings with their radially outer ends.
  • the pump housing has in the direction of the axis of rotation of the rotor to these adjacent housing end walls.
  • enlarging and reducing chambers are formed due to the eccentric arrangement of the peripheral wall between the wings, between which the medium to be conveyed is promoted by increasing the pressure from a suction to a circumferentially offset to this pressure range.
  • the wings are held due to the centrifugal forces with a rotating rotor in abutment against the peripheral wall, but especially at start-up of the vane pump at low speed only small Centrifugal forces act, so that the vane pump promotes little.
  • the annular groove is arranged concentrically to the axis of rotation of the rotor, so that the sealing region has a constant radial extent.
  • a disadvantage of this known vane pump that is pressurized by the only over a part of the circumference of the rotor extending annular groove, the inner regions of the grooves of the rotor only over a corresponding part of a revolution of the rotor, which may only a small contact pressure of the wing at the peripheral wall results.
  • leakage of pressurized medium from the annular groove to the drive shaft may occur through the sealing area.
  • the vane pump according to the invention with the features of claim 1 has the advantage that the pressurization of the inner regions of the grooves of the rotor is reinforced by extending over the entire circumference of the rotor annular groove.
  • the eccentricity of the annular groove with respect to the axis of rotation of Rotor allows a targeted increase in the radial extent of the sealing area in a peripheral region of the rotor, whereby the leakage from the annular groove can be reduced.
  • FIG. 1 a vane pump in a simplified representation in a cross section along line II in FIG. 3 .
  • FIG. 2 the vane pump in a cross section along line II-II in FIG. 3 and
  • FIG. 3 the vane pump in a longitudinal section along line III-III in FIG. 1 ,
  • a vane pump is shown, which is preferably provided for conveying fuel, in particular diesel fuel.
  • the vane pump may be arranged separately from the high pressure pump, attached to the high pressure pump or integrated into the high pressure pump.
  • the vane pump has a pump housing 10, which is designed in several parts, and a drive shaft 12, which projects into the pump housing 10.
  • the pump housing 10 has two housing end walls 14,16, through which in the axial direction, that is, in the direction of the axis of rotation 13 of the drive shaft 12, a pump chamber is limited. In the circumferential direction, the pump chamber is bounded by a peripheral wall 18, which may be formed integrally with one of the housing end walls 14,16 or separated from them.
  • a rotor 20 which is rotatably connected to the drive shaft 12, for example via a groove / spring connection 22.
  • the rotor 20 has a plurality of distributed over its circumference, at least substantially radially to the axis of rotation 13 of the rotor 20 extending grooves 24.
  • the grooves 24 extend, starting from the outer jacket of the rotor 20, towards the axis of rotation 13 and into the rotor 20.
  • four grooves 24 are provided, wherein fewer or more than four grooves 24 may be provided.
  • a disk-shaped conveying element 26 is slidably disposed, which is referred to below as a wing and protrudes with its radially outer end portion of the groove 24.
  • a radially inner interior 25 is limited in the respective groove 24.
  • the inside of the peripheral wall 18 of the pump housing 10 is formed eccentrically to the axis of rotation 13 of the rotor 20, for example circular or other shape.
  • a suction provided, in which at least one suction opening 28 opens.
  • In the suction region is preferably formed in at least one housing end wall 14,16 an elongated in the circumferential direction of the rotor 20, approximately kidney-shaped curved suction groove 30 into which the suction opening 28 opens.
  • the suction opening 28 opens into the suction groove 30, preferably in its counter to the direction of rotation 21 of the rotor 20 facing end region.
  • the suction opening 28 is connected to an inlet leading from the reservoir.
  • a pressure groove 34 which is elongate in the circumferential direction of the rotor 20 and is approximately kidney-shaped, is preferably formed in at least one housing end wall 14,16, into which the pressure opening 32 opens.
  • the pressure opening 32 opens into the pressure groove 34, preferably in its end region pointing in the direction of rotation 21 of the rotor 20.
  • the pressure port 32 is connected to a leading to the high-pressure pump drain.
  • the suction port 28, the suction groove 30, the pressure port 32 and the pressure groove 34 are arranged at a radial distance from the rotational axis 13 of the rotor 20 near the inside of the peripheral wall 18.
  • the wings 26 abut with their radially outer ends on the inside of the peripheral wall 18 and slide on this during the rotational movement of the rotor 20 in the direction of rotation 21 along.
  • the suction groove 30 and the suction opening is arranged in a peripheral region, in which the volume of the chambers 36 increases during the rotational movement in the direction of rotation 21 of the rotor 20, so that they are filled with fuel.
  • the pressure groove 34 and the pressure opening 32 is arranged in a peripheral region, in which the volume of the chambers 36 is reduced during the rotational movement in the direction of rotation 21 of the rotor 20, so that from this fuel into the pressure groove 34 and from this into the pressure port 32 is displaced ,
  • At least one housing end wall 14,16 is as in FIG. 2 illustrated an extending over the entire circumference of the rotor 20 extending annular groove 38 which is connected to the pressure groove 34 via a connecting groove 40.
  • the connecting groove 40 may also be provided a connecting hole.
  • a sealing region 39 is formed, in which between the rotor 20 and the adjacent housing end wall 14,16 only a small axial distance is present. In the area around the drive shaft 12, only a slight pressure prevails, so that there is a pressure gradient between the annular groove 38 and the area around the drive shaft 12.
  • the annular groove 38 extends eccentrically to the axis of rotation 13 of the rotor 20, so that the radial extent s of the sealing region 39 is variable over the circumference of the annular groove 38.
  • the annular groove 38 may, for example, extend at least approximately circular, wherein this has a center M which is arranged offset with respect to the axis of rotation 13 of the rotor 20 about a distance e forming the eccentricity.
  • the eccentricity e of the annular groove 38 is at least approximately the same size and in the same direction as the eccentricity of the inside of the peripheral wall 18 of the pump housing 10.
  • the center M of the annular groove 138 is seen in the direction of rotation 21 of the rotor 20 between the suction groove 30 and the pressure groove 34 lying portion of the peripheral wall 18 out with respect to the axis of rotation 13 arranged offset.
  • the radial extent s1 of the sealing region 39 within the annular groove 38 toward the drive shaft 12 on the side toward which the midpoint M is offset with respect to the rotational axis 13 increases during the radial extent s2 of the sealing region 39 the opposite side is reduced.
  • annular groove 38 is not circular, but has an eccentric course with respect to the axis of rotation 13, wherein the radial extent s1 of the sealing area 39 in a region in the direction of rotation 21 of the rotor 20 between the suction 30 and the pressure groove 34th is greater than the radial extent s2 of the sealing region 39 in the opposite region.
  • the connecting groove 40 may extend, for example radially or inclined to a radial with respect to the axis of rotation 13 of the pressure groove 34 inwardly.
  • the connecting groove 40 can, in particular, run in such a way that it approaches the annular groove 38 in the direction of rotation 21 of the rotor 20.
  • the connecting groove 40 can extend helically curved.
  • the connecting groove 40 preferably opens on the one hand at least approximately tangentially in the pressure groove 34 and / or on the other hand at least approximately tangentially in the annular groove 38.
  • the connecting groove 40 opens in the counter to the direction of rotation 21 of the rotor 20 facing end portion of the pressure groove 34.
  • a drag flow is additionally generated in the rotary movement of the rotor 20 in this, which leads to a further pressure increase in the annular groove 38 and thus the grooves 24, whereby the contact pressure of the wings 26 is further increased to the peripheral wall 18 ,
  • a pressure build-up in the annular groove 38 already takes place when the vane pump starts, so that the vaporizer pump already delivers a sufficient amount of fuel when it starts up.
  • the curved course of the connecting groove 40 also ensures that the wings 26 move approximately tangentially over the connecting groove 40 during the rotational movement of the rotor 20, whereby the wear of the wings 26 and the housing end wall 14,16 is kept low.
  • annular groove 38 and connecting them with the pressure groove 34 connecting groove 40 is arranged or it can be arranged in both housing end walls 14 and 16 each have an annular groove 38 and a connecting groove 40, which then preferably mirror images of each other in the housing end walls 14 and 16 are arranged. It can also be provided that an annular groove 38 is arranged in both housing end walls 14 and 16, but a connecting groove 40 is arranged only in a housing part 14 or 16.
  • the suction opening 28 and the pressure port 32 is provided only in a housing end wall 14 or 16, wherein in a housing end wall 14, the suction port 28 is provided and in the other housing wall 16, the pressure port 32 is provided.
  • the rotor 20 and the wings 26 are loaded in the axial direction on both sides at least approximately equal, so that no or only one low resultant force on the rotor 20 and the wings 26 in the direction of the axis of rotation 13 acts.
  • the depth of the annular groove 38 and the connecting groove 40 in the housing end wall 14,16 for example, between 0.1 and 2mm, preferably the width of the grooves 38,40 is greater than the depth.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

A vane pump having a pump containing a rotor driven via a drive shaft with the rotor having a number of generally radially extending grooves distributed over its circumference each of which grooves support a vane shaped delivery element in sliding fashion. The rotor is encompassed by an eccentric circumferential wall, against which the radially outer ends of the vanes rest. Housing end walls are situated adjacent to the rotor in the direction of its rotation axis. When the rotor turns, the vanes deliver medium from a suction region to a pressure region offset in the rotation direction. An annular groove is provided in at least one of the housing end walls which annular groove encompasses the rotation axis of the rotor, is situated opposite the inner regions delimited in the grooves of the rotor by the vanes, and is connected to the pressure region via a connecting groove in the housing end wall. The annular groove extends in eccentric fashion in relation to the rotation axis of the rotor.

Description

Stand der TechnikState of the art

Die Erfindung geht aus von einer Flügelzellenpumpe nach der Gattung des Anspruchs 1, wie in JP 63-280 883 und JP 60-150496 offenbart.The invention relates to a vane pump according to the preamble of claim 1, as in JP 63-280 883 and JP 60-150496 disclosed.

Eine solche Flügelzellenpumpe ist durch die DE 199 52 167 A1 bekannt. Diese Flügelzellenpumpe weist ein Pumpengehäuse auf, in dem ein Rotor angeordnet ist, der durch eine Antriebswelle rotierend angetrieben wird. Der Rotor weist über seinen Umfang verteilt mehrere Nuten auf, die zumindest im wesentlichen radial zur Drehachse des Rotors verlaufen und in denen jeweils ein flügelförmiges Förderelement verschiebbar geführt ist. Das Pumpengehäuse weist eine den Rotor umgebende, zu dessen Drehachse exzentrische Umfangswand auf, an der die Flügel mit ihren radial äußeren Enden anliegen. Das Pumpengehäuse weist in Richtung der Drehachse des Rotors an diesen angrenzende Gehäusestirnwände auf. Bei der Rotation des Rotors werden infolge der exzentrischen Anordnung der Umfangswand zwischen den Flügeln sich vergrößernde und verkleinernde Kammern gebildet, zwischen denen das zu fördernde Medium unter Druckerhöhung von einem Saugbereich zu einem zu diesem in Umfangsrichtung versetzten Druckbereich gefördert wird. Die Flügel werden dabei infolge der Fliehkräfte bei rotierendem Rotor in Anlage an der Umfangswand gehalten, wobei jedoch insbesondere beim Anlaufen der Flügelzellenpumpe bei niedriger Drehzahl nur geringe Fliehkräfte wirken, so dass die Flügelzellenpumpe nur wenig fördert. Bei der bekannten Flügelzellenpumpe ist vorgesehen, dass von einer anderen Förderpumpe, die mit der Flügelzellenpumpe eine gemeinsame Pumpenanordnung bildet, verdichtetes Medium in die durch die Flügel in den Nuten des Rotors begrenzten Innenbereiche zugeführt wird, wodurch die Flügel zusätzlich zur Fliehkraft radial nach außen zur Umfangswand hin gedrückt werden. Dabei ist in wenigstens einer Gehäusestirnwand eine sich über einen Teil des Umfangs des Rotors erstreckende ringförmige Nut vorgesehen, der von der weiteren Förderpumpe verdichtetes Medium zugeführt wird. Die ringförmige Nut ist von der Antriebswelle durch einen Dichtbereich getrennt, in dem der Rotor und die angrenzende Gehäusestirnwand mit geringem axialem Abstand zueinander angeordnet sind. Die ringförmige Nut ist konzentrisch zur Drehachse des Rotors angeordnet, so dass der Dichtbereich eine konstante radiale Erstreckung aufweist. Nachteilig bei dieser bekannten Flügelzellenpumpe ist, dass durch die sich nur über einen Teil des Umfangs des Rotors erstreckende ringförmige Nut die Innenbereiche der Nuten des Rotors nur über einen entsprechenden Teil einer Umdrehung des Rotors druckbeaufschlagt werden, wodurch sich unter Umständen nur eine geringe Anpresskraft der Flügel an der Umfangswand ergibt. Darüberhinaus kann durch den Dichtbereich eine Leckage von unter Druck stehendem Medium aus der ringförmigen Nut zur Antriebswelle hin auftreten.Such a vane pump is through the DE 199 52 167 A1 known. This vane pump has a pump housing, in which a rotor is arranged, which is driven in rotation by a drive shaft. The rotor has distributed over its circumference a plurality of grooves which extend at least substantially radially to the axis of rotation of the rotor and in each of which a wing-shaped conveying element is guided displaceably. The pump housing has a surrounding the rotor, to its axis of rotation eccentric peripheral wall, against which the wings with their radially outer ends. The pump housing has in the direction of the axis of rotation of the rotor to these adjacent housing end walls. During the rotation of the rotor, enlarging and reducing chambers are formed due to the eccentric arrangement of the peripheral wall between the wings, between which the medium to be conveyed is promoted by increasing the pressure from a suction to a circumferentially offset to this pressure range. The wings are held due to the centrifugal forces with a rotating rotor in abutment against the peripheral wall, but especially at start-up of the vane pump at low speed only small Centrifugal forces act, so that the vane pump promotes little. In the known vane pump it is provided that from another feed pump, which forms a common pump arrangement with the vane pump, compressed medium is fed into the limited by the wings in the grooves of the rotor inner regions, whereby the wings in addition to the centrifugal force radially outward to the peripheral wall pressed down. In this case, an annular groove extending over part of the circumference of the rotor is provided in at least one housing end wall, to which medium compressed by the further delivery pump is supplied. The annular groove is separated from the drive shaft by a sealing region in which the rotor and the adjacent housing end wall are arranged at a small axial distance from each other. The annular groove is arranged concentrically to the axis of rotation of the rotor, so that the sealing region has a constant radial extent. A disadvantage of this known vane pump, that is pressurized by the only over a part of the circumference of the rotor extending annular groove, the inner regions of the grooves of the rotor only over a corresponding part of a revolution of the rotor, which may only a small contact pressure of the wing at the peripheral wall results. In addition, leakage of pressurized medium from the annular groove to the drive shaft may occur through the sealing area.

Vorteile der ErfindungAdvantages of the invention

Die erfindungsgemäße Flügelzellenpumpe mit den Merkmalen gemäß Anspruch 1 hat demgegenüber den Vorteil, dass die Druckbeaufschlagung der Innenbereiche der Nuten des Rotors durch die sich über den gesamten Umfang des Rotors erstreckende Ringnut verstärkt ist. Außerdem ist durch die Exzentrizität der Ringnut bezüglich der Drehachse des Rotors die radiale Erstreckung des Dichtbereichs zwischen der Ringnut und der Antriebswelle eine gezielte Vergrößerung der radialen Erstreckung des Dichtbereichs in einem Umfangsbereich des Rotors ermöglicht, wodurch die Leckage aus der Ringnut verringert werden kann.The vane pump according to the invention with the features of claim 1 has the advantage that the pressurization of the inner regions of the grooves of the rotor is reinforced by extending over the entire circumference of the rotor annular groove. In addition, by the eccentricity of the annular groove with respect to the axis of rotation of Rotor, the radial extent of the sealing area between the annular groove and the drive shaft allows a targeted increase in the radial extent of the sealing area in a peripheral region of the rotor, whereby the leakage from the annular groove can be reduced.

In den abhängigen Ansprüchen sind vorteilhafte Ausgestaltungen und Weiterbildungen der erfindungsgemäßen Flügelzellenpumpe angegeben.In the dependent claims advantageous refinements and developments of the vane pump according to the invention are given.

Zeichnungdrawing

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 eine Flügelzellenpumpe in vereinfachter Darstellung in einem Querschnitt entlang Linie I-I in Figur 3, Figur 2 die Flügelzellenpumpe in einem Querschnitt entlang Linie II-II in Figur 3 und Figur 3 die Flügelzellenpumpe in einem Längsschnitt entlang Linie III-III in Figur 1.An embodiment of the invention is illustrated in the drawing and explained in more detail in the following description. Show it FIG. 1 a vane pump in a simplified representation in a cross section along line II in FIG. 3 . FIG. 2 the vane pump in a cross section along line II-II in FIG. 3 and FIG. 3 the vane pump in a longitudinal section along line III-III in FIG. 1 ,

Beschreibung des AusführungsbeispielsDescription of the embodiment

In den Figuren 1 bis 3 ist eine Flügelzellenpumpe dargestellt, die vorzugsweise zum Fördern von Kraftstoff, insbesondere Dieselkraftstoff, vorgesehen ist. Durch die Flügelzellenpumpe wird dabei Kraftstoff aus einem Vorratsbehälter zu einer Hochdruckpumpe gefördert. Die Flügelzellenpumpe kann getrennt von der Hochdruckpumpe angeordnet sein, an die Hochdruckpumpe angebaut oder in die Hochdruckpumpe integriert sein. Die Flügelzellenpumpe weist ein Pumpengehäuse 10 auf, das mehrteilig ausgebildet ist, und eine Antriebswelle 12, die in das Pumpengehäuse 10 hineinragt. Das Pumpengehäuse 10 weist zwei Gehäusestirnwände 14,16 auf, durch die in axialer Richtung, das heißt in Richtung der Drehachse 13 der Antriebswelle 12, eine Pumpenkammer begrenzt wird. In Umfangsrichtung wird die Pumpenkammer durch eine Umfangswand 18 begrenzt, die einstückig mit einer der Gehäusestirnwände 14,16 oder getrennt von diesen ausgebildet sein kann.In the FIGS. 1 to 3 a vane pump is shown, which is preferably provided for conveying fuel, in particular diesel fuel. By the vane pump while fuel is conveyed from a reservoir to a high-pressure pump. The vane pump may be arranged separately from the high pressure pump, attached to the high pressure pump or integrated into the high pressure pump. The vane pump has a pump housing 10, which is designed in several parts, and a drive shaft 12, which projects into the pump housing 10. The pump housing 10 has two housing end walls 14,16, through which in the axial direction, that is, in the direction of the axis of rotation 13 of the drive shaft 12, a pump chamber is limited. In the circumferential direction, the pump chamber is bounded by a peripheral wall 18, which may be formed integrally with one of the housing end walls 14,16 or separated from them.

In der Pumpenkammer ist wie in Figur 1 und 3 dargestellt ein Rotor 20 angeordnet, der mit der Antriebswelle 12 drehfest verbunden ist, beispielsweise über eine Nut/Federverbindung 22. Der Rotor 20 weist mehrere über seinen Umfang verteilt angeordnete, zumindest im wesentlichen radial zur Drehachse 13 des Rotors 20 verlaufende Nuten 24 auf. Die Nuten 24 erstrecken sich ausgehend vom Außenmantel des Rotors 20 zur Drehachse 13 hin in den Rotor 20 hinein. Es sind beispielsweise vier Nuten 24 vorgesehen, wobei auch weniger oder mehr als vier Nuten 24 vorgesehen sein können. In jeder Nut 24 ist ein scheibenförmiges Förderelement 26 verschiebbar angeordnet, das nachfolgend als Flügel bezeichnet wird und das mit seinem radial äußeren Endbereich aus der Nut 24 herausragt. Durch jeden Flügel 26 wird in der jeweiligen Nut 24 ein radial innenliegender Innenbereich 25 begrenzt.In the pump chamber is like in FIG. 1 and 3 represented a rotor 20 which is rotatably connected to the drive shaft 12, for example via a groove / spring connection 22. The rotor 20 has a plurality of distributed over its circumference, at least substantially radially to the axis of rotation 13 of the rotor 20 extending grooves 24. The grooves 24 extend, starting from the outer jacket of the rotor 20, towards the axis of rotation 13 and into the rotor 20. For example, four grooves 24 are provided, wherein fewer or more than four grooves 24 may be provided. In each groove 24, a disk-shaped conveying element 26 is slidably disposed, which is referred to below as a wing and protrudes with its radially outer end portion of the groove 24. Through each wing 26, a radially inner interior 25 is limited in the respective groove 24.

Die Innenseite der Umfangswand 18 des Pumpengehäuses 10 ist exzentrisch zur Drehachse 13 des Rotors 20 ausgebildet, beispielsweise kreisförmig oder mit anderer Form. In wenigstens einer Gehäusestirnwand 14,16 ist wie in Figur 2 dargestellt ein Saugbereich vorgesehen, in dem wenigstens eine Saugöffnung 28 mündet. Im Saugbereich ist vorzugsweise in wenigstens einer Gehäusestirnwand 14,16 eine in Umfangsrichtung des Rotors 20 langgestreckte, etwa nierenförmig gekrümmte Saugnut 30 ausgebildet, in die die Saugöffnung 28 mündet. Die Saugöffnung 28 mündet in die Saugnut 30 vorzugsweise in deren entgegen der Drehrichtung 21 des Rotors 20 weisenden Endbereich. Die Saugöffnung 28 ist mit einem vom Vorratsbehälter herführenden Zulauf verbunden. In wenigstens einer Gehäusestirnwand 14,16 ist außerdem ein Druckbereich vorgesehen, in dem wenigstens eine Drucköffnung 32 mündet. Im Druckbereich ist vorzugsweise in wenigstens einer Gehäusestirnwand 14,16 eine in Umfangsrichtung des Rotors 20 langgestreckte, etwa nierenförmig gekrümmte Drucknut 34 ausgebildet, in die die Drucköffnung 32 mündet. Die Drucköffnung 32 mündet in die Drucknut 34 vorzugsweise in deren in Drehrichtung 21 des Rotors 20 weisenden Endbereich. Die Drucköffnung 32 ist mit einem zur Hochdruckpumpe führenden Ablauf verbunden. Die Saugöffnung 28, die Saugnut 30, die Drucköffnung 32 und die Drucknut 34 sind mit radialem Abstand von der Drehachse 13 des Rotors 20 nahe der Innenseite der Umfangswand 18 angeordnet. Die Flügel 26 liegen mit ihren radial äußeren Enden an der Innenseite der Umfangswand 18 an und gleiten an dieser bei der Drehbewegung des Rotors 20 in Drehrichtung 21 entlang. Infolge der exzentrischen Ausbildung der Innenseite der Umfangswand 18 bezüglich der Drehachse 13 des Rotors 20 ergeben sich zwischen den Flügeln 26 Kammern 36 mit veränderlichem Volumen. Die Saugnut 30 und die Saugöffnung ist in einem Umfangsbereich angeordnet, in dem sich bei der Drehbewegung in Drehrichtung 21 des Rotors 20 das Volumen der Kammern 36 vergrößert, so dass diese mit Kraftstoff befüllt werden. Die Drucknut 34 und die Drucköffnung 32 ist in einem Umfangsbereich angeordnet, in dem sich bei der Drehbewegung in Drehrichtung 21 des Rotors 20 das Volumen der Kammern 36 verringert, so dass aus diesen Kraftstoff in die Drucknut 34 und von dieser in die Drucköffnung 32 verdrängt wird.The inside of the peripheral wall 18 of the pump housing 10 is formed eccentrically to the axis of rotation 13 of the rotor 20, for example circular or other shape. In at least one housing end wall 14,16 is as in FIG. 2 illustrated a suction provided, in which at least one suction opening 28 opens. In the suction region is preferably formed in at least one housing end wall 14,16 an elongated in the circumferential direction of the rotor 20, approximately kidney-shaped curved suction groove 30 into which the suction opening 28 opens. The suction opening 28 opens into the suction groove 30, preferably in its counter to the direction of rotation 21 of the rotor 20 facing end region. The suction opening 28 is connected to an inlet leading from the reservoir. In at least one housing end wall 14,16 also provided a pressure area in which at least one pressure port 32 opens. In the pressure region, a pressure groove 34, which is elongate in the circumferential direction of the rotor 20 and is approximately kidney-shaped, is preferably formed in at least one housing end wall 14,16, into which the pressure opening 32 opens. The pressure opening 32 opens into the pressure groove 34, preferably in its end region pointing in the direction of rotation 21 of the rotor 20. The pressure port 32 is connected to a leading to the high-pressure pump drain. The suction port 28, the suction groove 30, the pressure port 32 and the pressure groove 34 are arranged at a radial distance from the rotational axis 13 of the rotor 20 near the inside of the peripheral wall 18. The wings 26 abut with their radially outer ends on the inside of the peripheral wall 18 and slide on this during the rotational movement of the rotor 20 in the direction of rotation 21 along. As a result of the eccentric formation of the inside of the peripheral wall 18 with respect to the axis of rotation 13 of the rotor 20 results between the wings 26 chambers 36 with variable volume. The suction groove 30 and the suction opening is arranged in a peripheral region, in which the volume of the chambers 36 increases during the rotational movement in the direction of rotation 21 of the rotor 20, so that they are filled with fuel. The pressure groove 34 and the pressure opening 32 is arranged in a peripheral region, in which the volume of the chambers 36 is reduced during the rotational movement in the direction of rotation 21 of the rotor 20, so that from this fuel into the pressure groove 34 and from this into the pressure port 32 is displaced ,

In wenigstens einer Gehäusestirnwand 14,16 ist wie in Figur 2 dargestellt eine sich über den gesamten Umfang des Rotors 20 erstreckende Ringnut 38 vorgesehen, die mit der Drucknut 34 über eine Verbindungsnut 40 verbunden ist. Anstelle der Verbindungsnut 40 kann auch eine Verbindungsbohrung vorgesehen sein. Zwischen der Ringnut 38 und der Antriebswelle 12 ist ein Dichtbereich 39 gebildet, in dem zwischen dem Rotor 20 und der angrenzenden Gehäusestirnwand 14,16 nur ein geringer axialer Abstand vorhanden ist. Im Bereich um die Antriebswelle 12 herrscht nur ein geringer Druck, so dass zwischen der Ringnut 38 und dem Bereich um die Antriebswelle 12 ein Druckgefälle besteht. Die Ringnut 38 verläuft exzentrisch zur Drehachse 13 des Rotors 20, so dass die radiale Erstreckung s des Dichtbereichs 39 über den Umfang der Ringnut 38 veränderlich ist. Die Ringnut 38 kann beispielsweise zumindest annähernd kreisförmig verlaufen, wobei diese einen Mittelpunkt M aufweist, der bezüglich der Drehachse 13 des Rotors 20 um einen die Exzentrizität bildenden Abstand e versetzt angeordnet ist. Vorzugsweise ist die Exzentrizität e der Ringnut 38 zumindest annähernd gleich groß und gleichsinnig wie die Exzentrizität der Innenseite der Umfangswand 18 des Pumpengehäuses 10. Vorzugsweise ist der Mittelpunkt M der Ringnut 138 zu einem in Drehrichtung 21 des Rotors 20 gesehen zwischen der Saugnut 30 und der Drucknut 34 liegenden Bereich der Umfangswand 18 hin bezüglich der Drehachse 13 versetzt angeordnet. Durch diese exzentrische Ausbildung der Ringnut 38 ist die radiale Erstreckung s1 des Dichtbereichs 39 innerhalb der Ringnut 38 zur Antriebswelle 12 hin auf der Seite, zu der hin der Mittelpunkt M bezüglich der Drehachse 13 versetzt ist, vergrößert während die radiale Erstreckung s2 des Dichtbereichs 39 auf der gegenüberliegenden Seite verringert ist. Es kann auch vorgesehen sein, dass die Ringnut 38 nicht kreisförmig ausgebildet ist, sondern einen exzentrischen Verlauf bezüglich der Drehachse 13 aufweist, wobei die radiale Erstreckung s1 des Dichtbereichs 39 in einem Bereich in Drehrichtung 21 des Rotors 20 zwischen der Saugnut 30 und der Drucknut 34 größer ist als die radiale Erstreckung s2 des Dichtbereichs 39 im gegenüberliegenden Bereich.In at least one housing end wall 14,16 is as in FIG. 2 illustrated an extending over the entire circumference of the rotor 20 extending annular groove 38 which is connected to the pressure groove 34 via a connecting groove 40. Instead of the connecting groove 40 may also be provided a connecting hole. Between the annular groove 38 and the drive shaft 12, a sealing region 39 is formed, in which between the rotor 20 and the adjacent housing end wall 14,16 only a small axial distance is present. In the area around the drive shaft 12, only a slight pressure prevails, so that there is a pressure gradient between the annular groove 38 and the area around the drive shaft 12. The annular groove 38 extends eccentrically to the axis of rotation 13 of the rotor 20, so that the radial extent s of the sealing region 39 is variable over the circumference of the annular groove 38. The annular groove 38 may, for example, extend at least approximately circular, wherein this has a center M which is arranged offset with respect to the axis of rotation 13 of the rotor 20 about a distance e forming the eccentricity. Preferably, the eccentricity e of the annular groove 38 is at least approximately the same size and in the same direction as the eccentricity of the inside of the peripheral wall 18 of the pump housing 10. Preferably, the center M of the annular groove 138 is seen in the direction of rotation 21 of the rotor 20 between the suction groove 30 and the pressure groove 34 lying portion of the peripheral wall 18 out with respect to the axis of rotation 13 arranged offset. As a result of this eccentric design of the annular groove 38, the radial extent s1 of the sealing region 39 within the annular groove 38 toward the drive shaft 12 on the side toward which the midpoint M is offset with respect to the rotational axis 13 increases during the radial extent s2 of the sealing region 39 the opposite side is reduced. It can also be provided that the annular groove 38 is not circular, but has an eccentric course with respect to the axis of rotation 13, wherein the radial extent s1 of the sealing area 39 in a region in the direction of rotation 21 of the rotor 20 between the suction 30 and the pressure groove 34th is greater than the radial extent s2 of the sealing region 39 in the opposite region.

Die Verbindungsnut 40 kann beispielsweise radial oder geneigt zu einer Radialen bezüglich der Drehachse 13 von der Drucknut 34 nach innen verlaufen. Die Verbindungsnut 40 kann insbesondere derart verlaufen, dass diese sich in Drehrichtung 21 des Rotors 20 der Ringnut 38 annähert. Weiterhin kann die Verbindungsnut 40 schneckenförmig gekrümmt verlaufen. Die Verbindungsnut 40 mündet vorzugsweise einerseits zumindest annähernd tangential in die Drucknut 34 und/oder andererseits zumindest annähernd tangential in die Ringnut 38. Vorzugsweise mündet die Verbindungsnut 40 in den entgegen der Drehrichtung 21 des Rotors 20 weisenden Endbereich der Drucknut 34. Durch die Verbindung der Ringnut 38 mit der Drucknut 34 herrscht in der Ringnut 38 und damit in den mit dieser in Verbindung stehenden inneren Endbereichen der Nuten 24 des Rotors 20 ein erhöhter Druck, durch den die Anlagekraft der Flügel 26 an der Innenseite der Umfangswand 18 verstärkt wird, wodurch die Förderleistung der Flügelzellenpumpe verbessert wird. Durch den gekrümmten Verlauf der Verbindungsnut 40 wird außerdem bei der Drehbewegung des Rotors 20 in dieser eine Schleppströmung erzeugt, die zu einer weiteren Druckerhöhung in der Ringnut 38 und damit den Nuten 24 führt, wodurch die Anpresskraft der Flügel 26 an die Umfangswand 18 weiter erhöht wird. Insbesondere erfolgt infolge dieser Schleppströmung bereits beim Anlaufen der Flügelzellenpumpe ein Druckaufbau in der Ringnut 38, so dass die durch die Flügelzellenpumpe bereits beim Anlaufen eine ausreichende Kraftstoffmenge fördert. Durch den gekrümmten Verlauf der Verbindungsnut 40 ist außerdem sichergestellt, dass die Flügel 26 sich bei der Drehbewegung des Rotors 20 annähernd tangential über die Verbindungsnut 40 bewegen, wodurch der Verschleiß der Flügel 26 und der Gehäusestirnwand 14,16 gering gehalten wird.The connecting groove 40 may extend, for example radially or inclined to a radial with respect to the axis of rotation 13 of the pressure groove 34 inwardly. The connecting groove 40 can, in particular, run in such a way that it approaches the annular groove 38 in the direction of rotation 21 of the rotor 20. Furthermore, the connecting groove 40 can extend helically curved. The connecting groove 40 preferably opens on the one hand at least approximately tangentially in the pressure groove 34 and / or on the other hand at least approximately tangentially in the annular groove 38. Preferably, the connecting groove 40 opens in the counter to the direction of rotation 21 of the rotor 20 facing end portion of the pressure groove 34. By the connection of the annular groove 38 with the pressure groove 34 prevails in the annular groove 38 and thus in the associated with this inner end portions of the grooves 24 of the rotor 20, an increased pressure by which the contact force of the wings 26 is reinforced on the inside of the peripheral wall 18, whereby the flow rate the vane pump is improved. Due to the curved course of the connecting groove 40, a drag flow is additionally generated in the rotary movement of the rotor 20 in this, which leads to a further pressure increase in the annular groove 38 and thus the grooves 24, whereby the contact pressure of the wings 26 is further increased to the peripheral wall 18 , In particular, as a result of this drag flow, a pressure build-up in the annular groove 38 already takes place when the vane pump starts, so that the vaporizer pump already delivers a sufficient amount of fuel when it starts up. The curved course of the connecting groove 40 also ensures that the wings 26 move approximately tangentially over the connecting groove 40 during the rotational movement of the rotor 20, whereby the wear of the wings 26 and the housing end wall 14,16 is kept low.

Es kann vorgesehen sein, dass nur in einer Gehäusestirnwand 14 oder 16 die Ringnut 38 und die diese mit der Drucknut 34 verbindende Verbindungsnut 40 angeordnet ist oder es können in beiden Gehäusestirnwänden 14 und 16 jeweils eine Ringnut 38 und eine Verbindungsnut 40 angeordnet sein, die dann vorzugsweise spiegelbildlich zueinander in den Gehäusestirnwänden 14 und 16 angeordnet sind. Es kann auch vorgesehen sein, dass in beiden Gehäusestirnwänden 14 und 16 jeweils eine Ringnut 38 angeordnet ist, jedoch nur in einem Gehäuseteil 14 oder 16 eine Verbindungsnut 40 angeordnet ist. Es kann außerdem vorgesehen sein, dass nur in einer Gehäusestirnwand 14 oder 16 die Saugnut 30 und/oder die Drucknut 34 ausgebildet ist, wobei die andere Gehäusestirnwand 16 bzw. 14 glatt ausgebildet ist, oder dass in beiden Gehäusestirnwänden 14 und 16 jeweils eine Saugnut 30 und/oder Drucknut 34 ausgebildet ist, die dann vorzugsweise spiegelbildlich zueinander in den Gehäusestirnwänden 14 und 16 angeordnet sind. Die Saugöffnung 28 und die Drucköffnung 32 ist dabei jedoch nur in einer Gehäusestirnwand 14 oder 16 vorgesehen, wobei in einer Gehäusestirnwand 14 die Saugöffnung 28 vorgesehen ist und in der anderen Gehäusewand 16 die Drucköffnung 32 vorgesehen ist. Bei der spiegelbildlichen Anordnung der Saugnuten 30 und Drucknuten 34 sowie der Ringnuten 38 und Verbindungsnuten 40 in beiden Gehäusestirnwänden 14 und 16 wird erreicht, dass der Rotor 20 und die Flügel 26 in axialer Richtung beidseitig zumindest annähernd gleich belastet sind, so dass keine oder nur eine geringe resultierende Kraft auf den Rotor 20 und die Flügel 26 in Richtung der Drehachse 13 wirkt. Die Tiefe der Ringnut 38 und der Verbindungsnut 40 in der Gehäusestirnwand 14,16 beträgt beispielsweise zwischen 0,1 und 2mm, wobei vorzugsweise die Breite der Nuten 38,40 größer ist als deren Tiefe.It can be provided that only in a housing end wall 14 or 16, the annular groove 38 and connecting them with the pressure groove 34 connecting groove 40 is arranged or it can be arranged in both housing end walls 14 and 16 each have an annular groove 38 and a connecting groove 40, which then preferably mirror images of each other in the housing end walls 14 and 16 are arranged. It can also be provided that an annular groove 38 is arranged in both housing end walls 14 and 16, but a connecting groove 40 is arranged only in a housing part 14 or 16. It can also be provided that only in a housing end wall 14 or 16, the suction groove 30 and / or the pressure groove 34 is formed, the other housing end wall 16 and 14 is smooth, or that in both housing end walls 14 and 16 each have a suction 30th and / or pressure groove 34 is formed, which are then preferably arranged in mirror image to each other in the housing end walls 14 and 16. However, the suction opening 28 and the pressure port 32 is provided only in a housing end wall 14 or 16, wherein in a housing end wall 14, the suction port 28 is provided and in the other housing wall 16, the pressure port 32 is provided. In the mirror image arrangement of the suction grooves 30 and pressure grooves 34 and the annular grooves 38 and connecting grooves 40 in the housing end walls 14 and 16 is achieved that the rotor 20 and the wings 26 are loaded in the axial direction on both sides at least approximately equal, so that no or only one low resultant force on the rotor 20 and the wings 26 in the direction of the axis of rotation 13 acts. The depth of the annular groove 38 and the connecting groove 40 in the housing end wall 14,16, for example, between 0.1 and 2mm, preferably the width of the grooves 38,40 is greater than the depth.

Claims (5)

  1. Vane cell pump having a pump housing (10), in which a rotor (20) is arranged which is driven rotationally by a drive shaft (12), the rotor (20) having a plurality of grooves (24) distributed over its circumference, which grooves (24) extend at least substantially radially with respect to the rotational axis (13) of the rotor (20) and in which in each case one vane-shaped conveying element (26) is guided displaceably, having a circumferential wall (18) of the pump housing (10), which circumferential wall (18) surrounds the rotor (20), extends eccentrically with respect to the rotational axis (13) of the former and against which the conveying elements (26) bear with their radially outer ends, having housing end walls (14, 16) of the pump housing (10) which adjoin the rotor (20) in the direction of its rotational axis (13), medium being conveyed by the conveying elements (26), during the rotational movement of the rotor (20), from a suction region (28, 30) to a pressure region (32, 34) which is offset with respect to the former in the rotational direction (21) of the rotor (20), an annular groove (38) which extends at least over a part of the circumference of the rotor (20) is provided in at least one of the housing end walls (14, 16), which annular groove (38) lies opposite the inner regions (25) which are delimited by the conveying elements (26) in the grooves (24) of the rotor (20), and between which annular groove (38) and the drive shaft (12) a sealing region (39) is formed, the annular groove being configured as an annular groove (38) which extends over the entire circumference of the rotor (20), the annular groove (38) being connected to the pressure region (32, 34) via a connecting groove (40) in the housing end wall (14, 16), characterized in that the annular groove (38) is of eccentric configuration with regard to the rotational axis (13) of the rotor (20).
  2. Vane cell pump according to Claim 1, characterized in that the annular groove (38) extends at least approximately circularly, and in that, with regard to the rotational axis (13) of the rotor (20), its centre point (M) is arranged offset with respect to a region of the circumferential wall (18) of the pump housing (10), which region lies between the suction region (28, 30) and the pressure region (32, 34) in the rotational direction (21) of the rotor (20).
  3. Vane cell pump according to Claim 1, characterized in that, in a circumferential region which lies between the suction region (28, 30) and the pressure region (32, 34) in the rotational direction (21) of the rotor (20), the annular groove (38) extends at a greater radial spacing from the rotational axis (13) of the rotor (20) than in the circumferential region which lies opposite.
  4. Vane cell pump according to Claim 1, characterized in that the annular groove (38) extends in such a way that it follows at least approximately the stroke of the vanes (26) in the grooves (24) of the rotor (20) during the rotational movement of the latter.
  5. Vane cell pump according to one of the preceding claims, characterized in that the eccentricity (e) of the annular groove (38) is at least approximately as large as and in the same direction as the eccentricity of the circumferential wall (18) of the pump housing (10).
EP05826789A 2004-12-16 2005-11-21 Vane pump Not-in-force EP1828611B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004060551A DE102004060551A1 (en) 2004-12-16 2004-12-16 Vane pump
PCT/EP2005/056088 WO2006063917A1 (en) 2004-12-16 2005-11-21 Vane pump

Publications (2)

Publication Number Publication Date
EP1828611A1 EP1828611A1 (en) 2007-09-05
EP1828611B1 true EP1828611B1 (en) 2008-09-10

Family

ID=35589620

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05826789A Not-in-force EP1828611B1 (en) 2004-12-16 2005-11-21 Vane pump

Country Status (7)

Country Link
US (1) US20090238707A1 (en)
EP (1) EP1828611B1 (en)
JP (1) JP2008524486A (en)
CN (1) CN101080573A (en)
AT (1) ATE408064T1 (en)
DE (2) DE102004060551A1 (en)
WO (1) WO2006063917A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009048479A1 (en) 2009-10-07 2011-04-21 Volkswagen Ag Thermal engine for use as vane type expander, has chambers exhibiting reduced volume at high pressure inlet and large volume at low pressure outlet, where operating fluid discharges out from chambers at low pressure outlet
JP5480730B2 (en) * 2010-06-24 2014-04-23 宗司 中川 Airtight structure of vane type internal combustion engine
JP5865631B2 (en) * 2011-08-23 2016-02-17 株式会社ショーワ Vane pump
DE102011054028A1 (en) * 2011-09-29 2013-04-04 Zf Lenksysteme Gmbh displacement
WO2013068531A2 (en) 2011-11-11 2013-05-16 Dieter Brox Controllable vane compressor
JP6023615B2 (en) * 2013-03-13 2016-11-09 Kyb株式会社 Variable displacement vane pump
EP3056737B1 (en) * 2015-02-11 2017-11-15 Danfoss A/S Vane pump
JP2019019673A (en) * 2017-07-11 2019-02-07 日立オートモティブシステムズ株式会社 pump
WO2019154648A1 (en) * 2018-02-06 2019-08-15 Schenck Process S.R.O. System for fastening a seal to a rotor blade of a rotary feeder
JP7243528B2 (en) * 2019-08-29 2023-03-22 株式会社デンソー vane pump
DE102019127389A1 (en) * 2019-10-10 2021-04-15 Schwäbische Hüttenwerke Automotive GmbH Vane pump

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2423271A (en) * 1942-09-11 1947-07-01 Frank A Talbot Rotary motor, pump, and the like
JPS60150496A (en) * 1984-01-18 1985-08-08 Hitachi Ltd Variable vane type compressor
US4958995A (en) * 1986-07-22 1990-09-25 Eagle Industry Co., Ltd. Vane pump with annular recesses to control vane extension
US4854830A (en) * 1987-05-01 1989-08-08 Aisan Kogyo Kabushiki Kaisha Motor-driven fuel pump
JPS63280883A (en) * 1987-05-14 1988-11-17 Toyota Autom Loom Works Ltd Variable volume type vane compressor
US4872806A (en) * 1987-05-15 1989-10-10 Aisan Kogyo Kabushiki Kaisha Centrifugal pump of vortex-flow type
DE4442083C2 (en) * 1993-11-26 1998-07-02 Aisin Seiki Vane pump
DE19529806C2 (en) * 1995-08-14 1999-04-01 Luk Fahrzeug Hydraulik Vane pump
DE19710378C1 (en) * 1996-12-23 1998-03-12 Luk Fahrzeug Hydraulik Sliding-vane-type rotary pump
EP0851123B1 (en) * 1996-12-23 2003-07-09 LuK Fahrzeug-Hydraulik GmbH & Co. KG Vane pump
JP4193554B2 (en) * 2003-04-09 2008-12-10 株式会社ジェイテクト Vane pump

Also Published As

Publication number Publication date
ATE408064T1 (en) 2008-09-15
DE502005005361D1 (en) 2008-10-23
CN101080573A (en) 2007-11-28
JP2008524486A (en) 2008-07-10
DE102004060551A1 (en) 2006-06-22
WO2006063917A1 (en) 2006-06-22
EP1828611A1 (en) 2007-09-05
US20090238707A1 (en) 2009-09-24

Similar Documents

Publication Publication Date Title
EP1828611B1 (en) Vane pump
EP1828609B1 (en) Vane cell pump
EP0774077A1 (en) Flow pump for use in pumping fuel from a reservoir to the engine of a motor vehicle
DE69011733T2 (en) Rotary hydraulic machine.
DE69015874T2 (en) Rotary hydraulic pump.
DE102005047175A1 (en) Vane pump for feeding e.g. diesel fuel, has ring shaped groove designed at front sides of rotor opposite to front wall of pump housing, where ring shaped groove is connected to pressure area and extends over part of rotor circumference
DE3235427A1 (en) WING PUMP
DE102016121241B4 (en) Hydraulic drive, hydraulic motor and integrated pump with hydraulic drive
WO2000039465A1 (en) Pump assembly comprising two hydraulic pumps
EP2143935B1 (en) Pump unit for fluid delivery
EP2257693B1 (en) Pump, particularly vane pump
DE102017104063A1 (en) Electric gerotor pump with control mirror
DE10040711C2 (en) Vane pump
DE4110392A1 (en) Rotary vane pump for vehicle steering - has compact double rotor with double vanes mounted on drive shaft
WO1997005393A1 (en) Peripheral pump, in particular for feeding fuel from the tank to the internal combustion engine of a motor vehicle
DE3936357C2 (en)
EP2268899B1 (en) Pump, particularly vane pump
DE102012217484A1 (en) Internal gear pump, in particular for a hydraulic vehicle brake system
WO2020020902A1 (en) Fluid delivery device
WO2009019101A1 (en) Positive-displacement pump
WO2002093014A1 (en) Flow-type pump, particularly for delivering fuel out of a tank to an internal combustion engine of a motor vehicle
DE102006036439A1 (en) Conveying unit e.g. roller vane pump, has pressure channel loading rear groove chamber with pressure at outlet during zero to five degree rotation of rotor from point of time at which working chamber is not connected with inlet
EP3635224B1 (en) Vane pump, fluid system, and internal combustion engine
DE10339765B4 (en) Eccentric pump
DE10254220A1 (en) Pump, especially for a vehicle power assisted steering, has an injector insert to accelerate the hydraulic fluid flow into the pump to reduce or eliminate cavitation damage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070716

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005005361

Country of ref document: DE

Date of ref document: 20081023

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081210

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081221

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081118

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090210

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090110

BERE Be: lapsed

Owner name: ROBERT BOSCH G.M.B.H.

Effective date: 20081130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

26N No opposition filed

Effective date: 20090611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20081130

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081121

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081121

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091121

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180125

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005005361

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190601