EP0841914A2 - Use of griseofulvin for inhibiting the growth of cancers - Google Patents

Use of griseofulvin for inhibiting the growth of cancers

Info

Publication number
EP0841914A2
EP0841914A2 EP96926807A EP96926807A EP0841914A2 EP 0841914 A2 EP0841914 A2 EP 0841914A2 EP 96926807 A EP96926807 A EP 96926807A EP 96926807 A EP96926807 A EP 96926807A EP 0841914 A2 EP0841914 A2 EP 0841914A2
Authority
EP
European Patent Office
Prior art keywords
agents
griseofulvin
composition according
pharmaceutical composition
tumors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96926807A
Other languages
German (de)
English (en)
French (fr)
Inventor
James Berger Camden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Publication of EP0841914A2 publication Critical patent/EP0841914A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/34Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/34Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide
    • A61K31/343Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide condensed with a carbocyclic ring, e.g. coumaran, bufuralol, befunolol, clobenfurol, amiodarone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • griseofulvin for inhibiting the growth of cancers
  • This invention is a pharmaceutical composition that is useful for the treatment of cancers and tumors, particularly in human and warm blooded animals.
  • the composition contains griseofulvin. It can be used in combination with other chemotherapeutic agents also.
  • the exact cause of leukemia is not known, but links between certain activities such as smoking or exposure to carcinogens and the incidence of certain types of leukemia and tumors has been shown by a number of researchers.
  • Many types of chemotherapeutic agents have been shown to be effective against cancers, tumors and leukemia, but not all types of cancer and tumor cells respond to these agents. Unfortunately, many of these agents also destroy normal cells. The exact mechanism for the action of these chemotherapeutic agents are not always known.
  • cytocidal or cytostatic agents work best on cancers with large growth factors, i.e., ones whose cells are rapidly dividing.
  • hormones in particular estrogen, progesterone and testosterone, and some antibiotics produced by a variety of microbes, alkylating agents, and anti-metabolites form the bulk of therapies available to oncologists.
  • cytotoxic agents that have specificity for leukemia, cancer and tumor cells while not affecting normal cells would be extremely desirable. Unfortunately, none have been found and instead agents which target especially rapidly dividing cells (both diseased and normal) have been used.
  • i' is an object of this invention to provide a pharmaceutical composition that is effective in treating leukemia with mild or no effects on normal blood cells
  • a composition comprising a pharmaceutical carrier and a griseofulvin as defined herein along with a method for treating cancer, leukemia and tumors.
  • griseofulvin in combination with other chemotherapeutic agents which are effective in destroying the tumor is a novel method of treatment.
  • Griseofulvin can also be used to treat viral infections in the presence of a potentiator.
  • a pharmaceutical composition for treatment of mammals, and in particular, warm blooded animals and humans, which are affected by leukemia comprising a pharmaceutical carrier and an effective amount of griseofulvin.
  • Griseofulvin has the formula:
  • compositions can be used to inhibit the growth of leukemia, tumors and cancer cells in humans or animals by administration of an effective amount either orally, rectally, topically or parenterally, or intravenously. These compositions do not significantly affect healthy cells.
  • Potentiators can also be used in combination with griseofulvin as can chemotherapeutic agents.
  • the term “comprising” means various components can be conjointly employed in the pharmaceutical composition of this invention. Accordingly, the terms “consisting essentially o and “consisting o are embodied in the term comprising.
  • a "pharmaceutically acceptable” component is one that is suitable for use with humans and or animals without undue adverse side effects (such as toxicity, irritation, and allergic response) commensurate with a reasonable benefit/risk ratio.
  • safe and effective amount refers to the quantity of a component which is sufficient to yield a desired therapeutic response without undue adverse side effects (such as toxicity, irritation, or allergic response) commensurate with a reasonable benefit/risk ratio when used in the manner of this invention.
  • the specific "safe and effective amount” will, obviously, vary with such factors as the particular condition being treated, the physical condition of the patient, the type of mammal being treated, the duration of the treatment, the nature of concurrent therapy (if any), and the specific formulations employed and the structure of the compounds or its derivatives.
  • a "pharmaceutical addition salts” is salt of the anti-leukemia compound with an organic or inorganic acid.
  • These preferred acid addition salts are chlorides, bromides, sulfates, nitrates, phosphates, sulfonates, formates, tartrates, maleates, malates, citrates, benzoates, salicylates, ascorbates, and the like.
  • a “pharmaceutical carrier” is a pharmaceutically acceptable solvent, suspending agent or vehicle for delivering the anti-leukemia agent to the animal or human.
  • the carrier may be liquid or solid and is selected with the planned manner of administration in mind.
  • cancer or “leukemia” refers to all types of cancers or neoplasm or malignant disease which attack normal healthy blood cells or bone marrow which produces blood cells which are found in mammals.
  • virus includes viruses which cause diseases in warm blooded animals including HIV, influenza, rhinoviruses, herpes and the like.
  • grisofulvin means 7-Chloro-2',4,6-trimethoxy-6-methylspiro
  • potentiators are materials such as triprolidine and its cis-isomer which are used in combination with griseofulvin. Potentiators can suppress the immune system or enhance the effectiveness of the drugs.
  • chemotherapeutic agents includes DNA-interactive Agents, Antime- tabolites, Tubulin-Interactive Agents, Hormonal agents and others, such as Asparaginase or hydroxyurea.
  • GRISEOFULVIN Griseofulvin has the following structure:
  • the chemotherapeutic agents are generally grouped as DNA-interactive Agents, Antimetabolites, Tubulin-Interactive Agents, Hormonal agents and others such as Asparaginase or hydroxyurea. Each of the groups of chemotherapeutic agents can be further divided by type of activity or compound.
  • the chemotherapeutic agents used in combination with griseofulvin include members of all of these groups.
  • DNA-interactive Agents include the alkylating agents, e.g. Cisplatin, Cyclophosphamide, Altretamine; the DNA strand-breakage agents, such as Bleomycin; the intercalating topoisomerase II inhibitors, e.g., Dactinomycin and Doxorubicin); the nonintercalating topoisomerase II inhibitors such as, Etoposide and Teniposde; and the DNA minor groove binder
  • the alkylating agents form covalent chemical adducts with cellular DNA, RNA, and protein molecules and with smaller amino acids, glutathione and similar chemicals. Generally, these alkylating agents react with a nucleophilic atom in a cellular constituent, such as an amino, carboxyl, phosphate, sulfhydryl group in nucleic acids, proteins, amino acids, or glutathione. The mechanism and the role of these alkylating agents in cancer therapy is not well understood.
  • Typical alkylating agents include: Nitrogen mustards, such as Chlorambucil, Cyclophosphamide, Isofamide,
  • Mechlorethamine, Melphalan, Uracil mustard such as Thiotepa methanesulphonate esters such as Busulfan; nitroso ureas, such as Carmustine, Lomustine, Streptozocin; platinum complexes, such as Cisplatin, Carboplatin; bioreductive alkylator, such as Mitomycin, and Procarbazine, dacarbazine and Altretamine;
  • DNA strand breaking agents include Bleomycin; DNA topoisomerase II inhibitors include the following: Intercalators, such as Amsacrine, Dactinomycin, Daunorubicin, Doxorubicin,
  • the DNA minor groove binder is Plicamycin.
  • the antimetabolites interfere with the production of nucleic acids by one or the other of two major mechanisms. Some of the drugs inhibit production of the deoxyribonucleoside triphosphates that are the immediate precursors for DNA synthesis, thus inhibiting DNA replication. Some of the compounds are sufficiently like purines or pyrimidines to be able to substitute for them in the anabolic nucleotide pathways. These analogs can then be substituted into the DNA and RNA instead of their normal counterparts.
  • the antimetabolites useful herein include: folate antagonists such as Methotrexate and trimetrexate pyrimidine antagonists, such as Fluorouracil, Fluorodeoxyuridine, CB3717, Azacitidine,
  • Cytarabine, and Floxuridine purine antagonists include Mercaptopurine, 6-Thioguanine, Fludarabine, Pentostatin; sugar modified analogs include Cyctrabine, Fludarabine; ribonucleotide reductase inhibitors include hydroxyurea.
  • Tubulin Interactive agents act by binding to specific sites on tubulin, a protein that polymerizes to form cellular microtubules. Microtubules are critical cell structure units. When the interactive agents bind on the protein, the cell can not form microtubules
  • Tubulin Interactive agents include Vincristine and Vinblasune, both alkaloids and Paclitaxel.
  • Hormonal agents are also useful in the treatment of cancers and tumors. They are used in hormonally susceptible tumors and are usually derived from natural sources. These include: estrogens, conjugated estrogens and Ethinyl Estradiol and Diethylsulbesterol, Chlortrianisen and Idenestrol; progestins such as Hydroxyprogesterone caproate, Medroxyprogesterone, and Megestrol; androgens such as testosterone, testosterone propionate; fluoxymesterone, methyltestosterone;
  • Adrenal corticosteroids are derived from natural adrenal cortisol or hydrocortisone. They are used because of their anti inflammatory benefits as well as the ability of some to inhibit mitotic divisions and to halt DNA synthesis. These compounds include, Prednisone, Dexamethasone, Methylprednisolone, and Prednisolone. Leutinizing hormone releasing hormone agents or gonadotropin-releasing hormone antagonists are used primarily the treatment of prostate cancer. These include leuprolide acetate and goserelin acetate. They prevent the biosynthesis of steroids in the testes.
  • Antihormonal antigens include: antiestrogenic agents such as Tamosifen, antiandrogen agents such as Flutamide ; and antiadrenal agents such as Mitotane and Aminoglutethimide.
  • Hydroxyurea appears to act primarily through inhibition of the enzyme ribonucleotide reductase.
  • Asparaginase is an enzyme which converts asparagine to nonfunctional aspartic acid and thus blocks protein synthesis in the tumor.
  • D. POTENTIATORS are enzymes which converts asparagine to nonfunctional aspartic acid and thus blocks protein synthesis in the tumor.
  • potentiators can be any material which improves or increase the efficacy of the pharmaceutical composition or acts as an immunosuppressor.
  • One such potentiator is triprolidine and its cis-isomer which are used in combination with the chemotherapeutic agents and the griseofulvin.
  • Triprolidine is described in US 5,114,951 (1992).
  • Another potentiator is procodazole, lH-Benzimidazole-2-propanoic acid; [ ⁇ -(2-benzimidazole) propionic acid; 2-(2- carboxyethyl)benzimidazole; propazol].
  • Procodazole is a non-specific active immunoprotective agent against viral and bacterial infections and can be used with the compositions claimed herein. It is effective with griseofulvin alone in treating cancers, tumors, leukemia and viral infections or combined with chemotherapeutic agents.
  • Propionic acid and its salts and esters can also be used in combination with the pharmaceutical compositions claimed herein.
  • Antioxidant vitamins such as vitamins A, C and E and beta-carotene can be added to these compositions.
  • any suitable dosage may be given in the method ofthe invention.
  • the type of compound and the carrier and the amount will vary widely depending on the species of the warm blooded animal or human, body weight, and the type of cancer or tumor or viral infection being treated.
  • a dosage of between about 1 milligram (mg) per kilogram (kg) of body weight and about 8000 mg per kg of body weight is suitable for either the griseofulvin or the chemotherapeutic agent.
  • Preferably from 15 mg to about 5000 mg/kg of body weight is used.
  • the dosage in man is lower than for small warm blooded mammals such as mice.
  • a dosage unit may comprise a single compound or mixtures thereof with other compounds or other cancer inhibiting compounds.
  • the dosage unit can also comprise diluents, extenders, carriers, liposomes and the » like.
  • the unit may be in solid or gel form such as pills, tablets, capsules and the like or in liquid form suitable for oral, rectal, topical, intravenous injection or parenteral administration or injection into or around the bone marrow.
  • the range and ratio of griseofulvin to chemotherapeutic agent will depend on the type of cancer or tumor being treated and the particular chemotherapeutic agent.
  • the chemotherapeutic agents, griseofulvin and, optionally, the potentiators are typically mixed with a pharmaceutically acceptable carrier.
  • This carrier can be a solid or liquid and the type is generally chosen based on the type of administration being used.
  • the active agent can be coadministered in the form of a tablet or capsule, liposome, as an agglomerated powder or in a liquid form.
  • suitable solid carriers include lactose, sucrose, gelatin and agar. Capsule or tablets can be easily formulated and can be made easy to swallow or chew; other solid forms include granules, and bulk powders.
  • Tablets may contain suitable binders, lubricants, diluents, disintegrating agents, coloring agents, flavoring agents, flow-inducing agents, and melting agents.
  • suitable liquid dosage forms include solutions or suspensions in water, pharmaceutically acceptable fats and oils, alcohols or other organic solvents, including esters, emulsions, syrups or elixirs, suspensions, solutions and/or suspensions reconstituted from non-effervescent granules and effervescent preparations reconstituted from effervescent granules.
  • Such liquid dosage forms may contain, for example, suitable solvents, preservatives, emulsifying agents, suspending agents, diluents, sweeteners, thickeners, and melting agents.
  • Oral dosage forms optionally contain flavorants and coloring agents.
  • Parenteral and intravenous forms would also include minerals and other materials to make them compatible with the type of injection or delivery system chosen.
  • the method of treatment can be any suitable method which is effective in the treatment of the particular cancer or tumor type being treated.
  • Treatment may be oral, rectal, topical, parenteral or intravenous administration or by injection into the tumor or cancer.
  • the method of applying an effective amount also varies depending on the leukemia, cancer, tumor or virus being treated. It is believed that parenteral treatment by intravenous, subcutaneous, or intramuscular application ofthe griseofulvin, formulated with an appropriate carrier, additional cancer inhibiting compound or compounds or diluent to facilitate application will be the preferred method of administering the compounds to warm blooded animals.
  • griseofulvin can be combined with fungicides, herbicides or other antiviral agents.
  • Preferred herbicides and fungicides include carbendazim, fluoconazole, benomyl, glyphosate and propicodazole.
  • griseofulvin inhibited viral replication by 98% at lO ⁇ g ml with a therapeutic index of 5.3.
  • AZT a known HIV drug
  • the therapeutic index is the ratio of toxic dose of drug to efficacious dose of drug.
  • griseofulvin showed an increase in the survival time relative to a non treated control of 156% at 4000 mg/kg dose; 188% at 5000 mg/kg dose; and 218% at 6000 mg/kg dose.
  • griseofulvin showed an increase in the survival time relative to a nontreated control of 165% at 4000 mg/kg dose; 179% at 5000 mg/kg dose; and 201% at 6000 mg/kg dose. Cytoxan at 300 mg/kg showed an increased survival rate of 192%.
  • Rhinovirus type A-l, cell line WI-38
  • griseofulvin was effective at 100 ⁇ g/ml.
  • the positive control was A-36683 of Abbot Company, (S,S)-l,2-bis(5- methoxy-2-benzimidazolyl)-l,2-ethanediol.
  • A-36683 has a therapeutic index of 1000-3200.
  • Griseofulvin has a therapeutic index of 1-2. (See Schleicher et al, Applied Microbiology, 23, No. 1, 113-116 (1972).
  • Solid tumors removed by patients are minced into 2 to 5 mm fragments and immediately placed in McCoy's Medium 5A plus 10% heat inactivated newborn calf serum plus 1% penicillin streptomycin. Within 4 hours, these solid tumors are mechanically disassociated with scissors, forced through No. 100 stainless steel mesh, through 25 gauge needles, and then washed with McCoy's medium as described above. Ascitic, pleural, pericardial fluids and bone marrow are obtained by standard techniques. The fluid or marrow is placed in sterile containers containing 10 units of preservative free heparin per ml. of malignant fluid or marrow. After centrifugation at 150 x g for 10 minutes, the cells are harvested and washed with McCoy's medium plus 10% heat inactivated calf serum. The viability of cell suspensions is determined on a hemocytometer with trypan blue.
  • Cells to be cloned are suspended in 0.3% agar in enriched CMRL1066 supplemented with 15% heat inactivated horse serum, penicillin (100 units/ml), streptomycin (2mg ml), glutamine (2mM), insulin (3 units/ml), asparagine (0.6 mg/ml), and HEPES buffer (2mM).
  • penicillin 100 units/ml
  • streptomycin 2mg ml
  • insulin 3 units/ml
  • asparagine 0.6 mg/ml
  • HEPES buffer HEPES buffer
  • the number of colonies (defined as 50 cells) formed in the 3 compound treated plates is compared to the number of colonies formed in the 3 control plates, and the percent colonies surviving at the concentration of compound can be estimated.
  • Three positive control plates are used to determine survival rate. Orthosodium vanadate at 200 ⁇ g/ml is used as the positive control. If there is ⁇ 30% colonies in the positive control when compared to the untreated control, the test is evaluated.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Epidemiology (AREA)
  • Virology (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
EP96926807A 1995-08-03 1996-07-30 Use of griseofulvin for inhibiting the growth of cancers Withdrawn EP0841914A2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US183995P 1995-08-03 1995-08-03
US1839P 1995-08-03
US67418196A 1996-07-16 1996-07-16
US674181 1996-07-16
PCT/US1996/012475 WO1997005870A2 (en) 1995-08-03 1996-07-30 Use of griseofulvin for inhibiting the growth of cancers

Publications (1)

Publication Number Publication Date
EP0841914A2 true EP0841914A2 (en) 1998-05-20

Family

ID=26669547

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96926807A Withdrawn EP0841914A2 (en) 1995-08-03 1996-07-30 Use of griseofulvin for inhibiting the growth of cancers

Country Status (16)

Country Link
EP (1) EP0841914A2 (xx)
JP (1) JPH11511136A (xx)
KR (1) KR19990036137A (xx)
AR (1) AR003176A1 (xx)
AU (1) AU713031B2 (xx)
BR (1) BR9609920A (xx)
CA (1) CA2228503A1 (xx)
CZ (1) CZ30598A3 (xx)
HU (1) HUP9903506A3 (xx)
IL (1) IL123094A0 (xx)
MX (1) MX9800945A (xx)
NO (1) NO980420L (xx)
PL (1) PL324905A1 (xx)
SK (1) SK14298A3 (xx)
TR (1) TR199800244T2 (xx)
WO (1) WO1997005870A2 (xx)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6262093B1 (en) 1995-04-12 2001-07-17 The Proctor & Gamble Company Methods of treating cancer with benzimidazoles
US6479526B1 (en) 1995-04-12 2002-11-12 The Procter & Gamble Company Pharmaceutical composition for inhibiting the growth of viruses and cancers
US6177460B1 (en) 1995-04-12 2001-01-23 The Procter & Gamble Company Method of treatment for cancer or viral infections
US5770616A (en) 1995-06-07 1998-06-23 The Procter & Gamble Company Pharmaceutical composition for inhibiting the growth of cancers
US6265427B1 (en) 1995-06-07 2001-07-24 The Proctor & Gamble Company Pharmaceutical composition for the method of treating leukemia
US6686391B2 (en) 1995-08-04 2004-02-03 University Of Arizona Foundation N-chlorophenylcarbamate and N-chlorophenylthiocarbamate compositions
US5900429A (en) 1997-01-28 1999-05-04 The Procter & Gamble Company Method for inhibiting the growth of cancers
US6506783B1 (en) 1997-05-16 2003-01-14 The Procter & Gamble Company Cancer treatments and pharmaceutical compositions therefor
US6245789B1 (en) 1998-05-19 2001-06-12 The Procter & Gamble Company HIV and viral treatment
EP1098641B1 (en) * 1998-07-27 2016-04-27 St. Jude Pharmaceuticals, Inc. Chemically induced intracellular hyperthermia
PT2055313E (pt) * 1998-11-09 2015-08-25 Biogen Idec Inc Tratamento de malignidades hematológicas associadas a células tumorais em circulação utilizando anticorpo quimérico anti-cd20
US6423734B1 (en) 1999-08-13 2002-07-23 The Procter & Gamble Company Method of preventing cancer
US6407105B1 (en) 2000-09-26 2002-06-18 The Procter & Gamble Company Compounds and methods for use thereof in the treatment of cancer or viral infections
US6462062B1 (en) 2000-09-26 2002-10-08 The Procter & Gamble Company Compounds and methods for use thereof in the treatment of cancer or viral infections
US6380232B1 (en) 2000-09-26 2002-04-30 The Procter & Gamble Company Benzimidazole urea derivatives, and pharmaceutical compositions and unit dosages thereof
US6608096B1 (en) 2000-09-26 2003-08-19 University Of Arizona Foundation Compounds and methods for use thereof in the treatment of cancer or viral infections
ATE489080T1 (de) * 2001-06-25 2010-12-15 Ajinomoto Kk Antitumorale mittel
EP2008652A1 (en) * 2007-06-28 2008-12-31 Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts Griseofulvin analogues for the treatment of cancer by inhibition of centrosomal clustering
EP2204367A1 (en) 2008-12-22 2010-07-07 Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts Griseofulvin analogues for the treatment of cancer by inhibition of centrosomal clustering

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9705870A2 *

Also Published As

Publication number Publication date
PL324905A1 (en) 1998-06-22
CZ30598A3 (cs) 1998-06-17
CA2228503A1 (en) 1997-02-20
KR19990036137A (ko) 1999-05-25
AU713031B2 (en) 1999-11-18
SK14298A3 (en) 1998-09-09
IL123094A0 (en) 1998-09-24
NO980420L (no) 1998-04-03
HUP9903506A2 (hu) 2000-06-28
AR003176A1 (es) 1998-07-08
HUP9903506A3 (en) 2000-07-28
MX9800945A (es) 1998-04-30
WO1997005870A3 (en) 1997-04-17
BR9609920A (pt) 1999-07-06
WO1997005870A2 (en) 1997-02-20
AU6683496A (en) 1997-03-05
JPH11511136A (ja) 1999-09-28
TR199800244T2 (xx) 1998-09-21
NO980420D0 (no) 1998-01-30

Similar Documents

Publication Publication Date Title
US6077862A (en) Virus and cancer treatments
EP0821586B1 (en) A pharmaceutical composition containing benzimidazole for inhibiting the growth of cancers
AU713031B2 (en) Use of griseofulvin for inhibiting the growth of cancers
US6090796A (en) Pharmaceutical composition for inhibiting the growth of cancers
AU711966B2 (en) Use of fluconazole for inhibiting the growth of cancers
US5900429A (en) Method for inhibiting the growth of cancers
CA2217953C (en) A pharmaceutical composition containing n-chlorophenylcarbamates and n-chlorophenylthiocarbamates for inhibiting the growth of viruses and cancers
US6110953A (en) Pharmaceutical composition for inhibiting the growth of cancers
US5929099A (en) Pharmaceutical composition for inhibiting the growth of cancers
MXPA98000998A (en) Use of fluconazole to inhibit the growth of cance
US5908855A (en) Compositions for treating viral infections
MXPA98000945A (en) Use of griseofulvine to inhibit cancer growth
MXPA98000944A (es) Uso de derivados de 1h-1,2,4-triazol para inhibirel crecimiento de canceres
US20010041678A1 (en) Compositions and methods for treating cancer
AU730920B2 (en) A pharmaceutical composition containing N-chlorophenylcarbamates and N-chlorophenylthiocarbamates for inhibiting the growth of viruses and cancers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980205

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

17Q First examination report despatched

Effective date: 20010323

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20010803

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1010839

Country of ref document: HK