EP0834364B1 - Method and device for high-speed continuous casting plants with reduction of the width during solidification - Google Patents

Method and device for high-speed continuous casting plants with reduction of the width during solidification Download PDF

Info

Publication number
EP0834364B1
EP0834364B1 EP97116428A EP97116428A EP0834364B1 EP 0834364 B1 EP0834364 B1 EP 0834364B1 EP 97116428 A EP97116428 A EP 97116428A EP 97116428 A EP97116428 A EP 97116428A EP 0834364 B1 EP0834364 B1 EP 0834364B1
Authority
EP
European Patent Office
Prior art keywords
reduction
strip
continuous casting
segment
strand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97116428A
Other languages
German (de)
French (fr)
Other versions
EP0834364A2 (en
EP0834364A3 (en
Inventor
Fritz-Peter Prof. Dr. Pleschiutschnigg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Siemag AG
Original Assignee
SMS Demag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMS Demag AG filed Critical SMS Demag AG
Publication of EP0834364A2 publication Critical patent/EP0834364A2/en
Publication of EP0834364A3 publication Critical patent/EP0834364A3/en
Application granted granted Critical
Publication of EP0834364B1 publication Critical patent/EP0834364B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/1206Accessories for subsequent treating or working cast stock in situ for plastic shaping of strands

Definitions

  • the invention relates to a method and an apparatus for Continuous caster for the production of strands, their cross section is reduced during solidification.
  • the strands are on high speed equipment generally with a solidification thickness between 18 and 450 mm and casting speeds up to a maximum of 12 m / min e.g. on plants for casting slabs, blooms and sticks with a square or round profile, one of which Reduction of the strand cross-section, preferably in the thickness direction made after it emerged from the mold during solidification becomes.
  • So z. B a thin slab with a thickness of, for example, 65 to 40 mm in segment 0, which is located directly under the mold, reduced.
  • This strand thickness reduction by 25 mm or 38.5% can qualitatively disadvantageous for certain steel grades sensitive to internal cracks his.
  • the inner strand deformation can be caused by the Strand thickness reduction or also called casting rolls, for the trigger of internal cracks because of the critical deformation of the material liquid / solid on the inner strand shell, but also on the outer Strand shell is exceeded.
  • This example is based on a 2 m long circular arc segment 0, which is none Introduces bending work or bending deformation into the strand shell.
  • the forming speed the strand shell during casting rolling during solidification is 1.25 mm / s with a casting speed of 6 m / min. This value of the forming speed increases with a Casting speed increase to z. B. 10 m / min to 2.08 mm / s, where he becomes very critical.
  • Such internal deformations caused solely by casting rolling are not just for the low-carbon steel grades that are relatively insensitive against internal deformations, but especially for sensitive steels such as micro-alloyed APX-80 grades critical.
  • the deformation caused by the casting rolling can also with Vertical turning systems, usually in the segment under the mold at the same time there is a bending of the strand, still by the in the strand greatly increase the bending deformation, which increases the risk of exceeding it the critical deformation and thus the crack formation is further increased becomes.
  • the above-mentioned knowledge and connections are forward-looking the invention has the object of procedural measures and simple device features the rate of deformation of the Specify strand cross-section reduction so that the critical deformation of the Stranges taking into account the casting speed and also the steel grade is not exceeded.
  • the object is achieved according to the invention with a method for Continuous casting to produce strands, the cross section of which during solidification is reduced in such a way that in a particularly oscillating mold is poured and the strand cross section linear over a minimum length of Strand guidance immediately below the mold, the so-called casting rolls, is reduced and there is a further non-linear reduction in the cross-section of the strand, for example after the square-root function, the so-called "soft reduction", over the rest of the strand guide up to a maximum of just before the swamp tip.
  • the features of the invention apply to all formats cast in the strand and also for all types of continuous casting plants and describe with the method to claim 1 and its subclaims as well as the device claim and its subclaims the invention.
  • the thickness of the slab in the edge area at Mold exit z. B. is a minimum of 70 and a maximum of 160 mm is pulled.
  • the reduction in strand thickness, normally between the top and bottom of a strand guide takes place, is according to the state of the art today under test conditions maximum 60%, here is a 50 mm thick slab reduced to approx. 20 mm over a roll gap length of approx. 200 mm, and under production conditions a maximum of 38.5%, here the Strand from 65 to 40 mm over the length of segment 0 of approx. 2 m, which is located below the mold, reduced. In both Cases there is a maximum pouring speed of 6 m / min.
  • the description of the invention is based on an example Thin slab with a thickness of 100 mm at the mold outlet and a thickness of 80 mm after solidification.
  • the invention now proposes one Type of distribution and implementation of strand thickness reduction during the solidification of the thin slab in the strand guide frame for the exemplary casting speeds of 6 and 10 m / min before.
  • Tables 1 and 1.1 are the essential process and device data contrasted the invention with the prior art.
  • Table 1 provides the data for casting speeds of 6 m / min and Table 1.1 for speeds of 10 m / min represents.
  • FIGS 1 to 7 illustrate the invention in detail in comparison the state of the art.
  • the pure melting phase or penetration zone is in the range of segment 0, in which a strand thickness reduction or casting rolling of 2 x 10 mm or 20 mm and no more in the following segments 1 to 13, - Description of the state of the art (Image 1) -, or of 2 x 5 mm or 10 mm, casting rolls, and another 10 mm in the following segments 1 to 13, "soft reduction", part of the invention (Photo 2).
  • the reduction in strand thickness in the segment 0, the z. B. as pliers segment with two clamping devices, e.g. B. hydraulic cylinders (14) (Fig. 6), formed at the segment exit is linear over a length of 3 m; the reduction in the area of segments 1 - 13, but also across all segments, both linear and non-linear, i.e. for example following a square root.
  • the strand thickness reduction of 10 mm in the segments 1-13 "soft reduction" - linear distribution.
  • FIG. 4 schematically represents the situation of a Strands with a thickness in the mold of 100 mm and a solidification thickness of 80 mm for the casting speeds VG of 6 m / min, Figure 3, and of 10 m / min, Figure 4 compared.
  • the strand thickness reduction is 6 m / min from Z. B. 10 mm in segment 0 and of the remaining 10 mm in the Segments 1 to 8, corresponding to the shorter solidification path, performed. So the lowest liquidus point (1.2) is at already about 1.8 m and the swamp tip (2.2) at about 18.12 m.
  • the picture 4 in Figure 4 shows the situation of the strand like Figure 2 in Figure 1 at a casting speed of VG 10 m / min.
  • FIG. 5 shows the effect of a distribution of the strand thickness reduction in segment 0 and in segments 1 to 13 in the sense of Invention ( Figure 6) using the example of a vertical bending machine, FIG. 6, compared to the prior art (FIG. 5), on the inner strand deformation, caused by the bending deformations and the strand thickness reduction, depending on the strand guide for the maximum casting speed of, for example, 10 m / min shown.
  • Figure 5 represents the state of the art in Figure 5 the inner strand deformation depending on the strand guidance for the maximum casting speed (Vg-10) of 10, for example m / min compared to the boundary deformation (D-Gr).
  • Vg-10 maximum casting speed
  • D-Gw casting rolling
  • D-B boundary deformation
  • Both Deformations overlap to the total deformation (D-Ge), the becomes larger than the limit deformation (D-Gr) and therefore critical becomes.
  • Exceeding the boundary deformation leads to internal cracks solid / liquid at the phase boundary and thus to reduce quality of the strand and to reduce casting reliability.
  • the strand experiences increased internal deformation (D) through the Deformation (D-R) when it bends back in segment 4 from the inner circular arc into the horizontal, which, however, is not critical can be because the number of bending points in the "design" the system is chosen so that the reverse bending process at maximum No critical internal deformation in the casting speed Strand shell of the most crack-sensitive steel grade can trigger.
  • Figure 6 in Figure 5 shows the procedural features the invention using the example of a vertical turning system, Figure 6, schematically.
  • the inner deformation (D) of the strand shell (3) is never in a moment of solidification, H. from the mold exit critical to the end of scaffold 13. This is due to the distribution the total strand thickness reduction from 20 mm to, for example 10 mm in segment 0 (D-Gw) and 10 mm in frames 1 to 13 (D-SR) ensured according to the invention.
  • This machine configuration with a maximum casting speed of 10 m / min and a maximum capacity of approx. 3 million t / a represents an extremely advantageous solution when using the Invention represents, in which a minimal rate of deformation of the strand occurs during its solidification.
  • a segment should preferably be an odd one Number of 3, 5, 7 or 9 pairs of rollers (15) consisting of Lower (16) and upper roller (17) can be built. Every segment alternately consists of a pair of driven rollers (18), which is position and force controlled with a hydraulic system (19) and two with a hydraulic system (20) in the area the top rollers (17) connected non-driven roller pairs (21), which are provided with a machine element (22) that it allowed the pair of rollers of the top web in the casting direction by one Angle of z. B. to allow +/- 5 ° to swing in any casting situation for a given decrease in strand thickness, the strand if secured its shape.
  • This structure of segments 1 to 13 leads to an optimal one Strand guidance in any type of distribution of strand thickness reduction, every casting situation, every kind of steel grade, with regard to their internal crack sensitivity, d. H. Critical Deformation Limit and the use of a minimum of hydraulic Systems per pair of rollers. So come 0.66 hydraulic systems per pair of rollers.
  • the use of driven Roll pairs of 0.33 units per roll pair a mechanical engineering Minimum at maximum procedural and qualitative effect on the strand to be cast and its surface and interior quality, d. H. for example a minimal one Structure and a minimized accumulation of tensile stresses in the Strand shell between the driven roller pairs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Metal Rolling (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

Continuous casting process has strand cross-section reduction during strand solidification. The strand is cast in an oscillating mould and subjected to a linear cross-section reduction over a minimum length of the strand guide immediately below the mould, followed by a further "soft reduction" over the remaining strand guide up to a point close to full strand solidification. A corresponding casting plant is also claimed.

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung für Stranggießanlagen zur Erzeugung von Strängen, deren Querschnitt während der Erstarrung reduziert wird.The invention relates to a method and an apparatus for Continuous caster for the production of strands, their cross section is reduced during solidification.

Es ist bekannt, daß die Stränge auf Hochgeschwindigkeitsanlagen im allgemeinen mit einer Erstarrungsdicke zwischen 18 und 450 mm und Gießgeschwindigkeiten bis maximal 12 m/min hergestellt werden, z.B. auf Anlagen für das Gießen von Brammen, Vorblöcken und Knüppeln mit quadratischem oder rundem Profil, bei denen eine Reduktion des Strangquerschnittes vorzugsweise in Dickenrichtung nach seinem Austreten aus der Kokille während der Erstarrung vorgenommen wird.It is known that the strands are on high speed equipment generally with a solidification thickness between 18 and 450 mm and casting speeds up to a maximum of 12 m / min e.g. on plants for casting slabs, blooms and sticks with a square or round profile, one of which Reduction of the strand cross-section, preferably in the thickness direction made after it emerged from the mold during solidification becomes.

Diese Technologie des Gießwalzens von Dünnbrammen bzw. Rund-Knüppeln ist durch die Patentschriften DE 44 03 048 und DE 44 03 049 bzw. DE 41 39 242 bekanntgeworden; im Falle von Dünnbrammen wird sie zudem auch in Produktionsstätten täglich angewendet.This technology of casting rolling thin slabs or round billets is by the patents DE 44 03 048 and DE 44 03 049 or DE 41 39 242 become known; in the case of thin slabs they are also used daily in production facilities.

So wird z. B. eine Dünnbramme mit einer Dicke von bspw. 65 auf 40 mm im Segment 0, das direkt unter der Kokille angeordnet ist, reduziert. Diese Strangdickenreduktion um 25 mm oder 38,5 % kann für bestimmte innenrißempfindliche Stahlgüten qualitativ von Nachteil sein. So kann die Stranginnendeformation, bedingt durch die Strangdickenreduktion oder auch Gießwalzen genannt, zum Auslöser von Innenrissen sein, da die kritische Deformation des Werkstoffes an der inneren Strangschale flüssig/fest, aber auch an der äußeren Strangschale überschritten wird. So z. B. a thin slab with a thickness of, for example, 65 to 40 mm in segment 0, which is located directly under the mold, reduced. This strand thickness reduction by 25 mm or 38.5% can qualitatively disadvantageous for certain steel grades sensitive to internal cracks his. The inner strand deformation can be caused by the Strand thickness reduction or also called casting rolls, for the trigger of internal cracks because of the critical deformation of the material liquid / solid on the inner strand shell, but also on the outer Strand shell is exceeded.

Diesem Beispiel liegt ein 2 m langes Kreisbogensegment 0 zugrunde, das keine Biegearbeit oder Biegedeformation in die Strangschale einbringt. Die Umformgeschwindigkeit der Strangschale beim Gießwalzen während der Erstarrung, die ein Maß für die Strangdeformation darstellt, beträgt hier 1,25 mm/s mit einer Gießgeschwindigkeit von 6 m/min. Dieser Wert der Umformgeschwindigkeit steigt bei einer Gießgeschwindigkeitserhöhung auf z. B. 10 m/min auf 2,08 mm/s an, wobei er sehr kritisch wird. Solche allein durch das Gießwalzen hervorgerufenen Innendeformationen werden nicht nur für die Tief-C-Stahlgüten, die relativ unempfindlich gegen Innendeformationen sind, sondern vor allem für empfindliche Stähle wie micro-legierte APX-80 Güten kritisch.This example is based on a 2 m long circular arc segment 0, which is none Introduces bending work or bending deformation into the strand shell. The forming speed the strand shell during casting rolling during solidification, the one The measure for the strand deformation is 1.25 mm / s with a casting speed of 6 m / min. This value of the forming speed increases with a Casting speed increase to z. B. 10 m / min to 2.08 mm / s, where he becomes very critical. Such internal deformations caused solely by casting rolling are not just for the low-carbon steel grades that are relatively insensitive against internal deformations, but especially for sensitive steels such as micro-alloyed APX-80 grades critical.

Die durch das Gießwalzen hervorgerufene Deformation kann sich außerdem bei Senkrecht-Abbiegeanlagen, bei denen normalerweise im Segment unter der Kokille gleichzeitig eine Biegung des Stranges erfolgt, noch durch die in den Strang eingebrachte Biegedeformation stark erhöhen, wodurch die Gefahr der Überschreitung der kritischen Deformation und damit der Rissbildung nochmals vergrößert wird.The deformation caused by the casting rolling can also with Vertical turning systems, usually in the segment under the mold at the same time there is a bending of the strand, still by the in the strand greatly increase the bending deformation, which increases the risk of exceeding it the critical deformation and thus the crack formation is further increased becomes.

Die vorbeschriebenen Erkenntnisse und Zusammenhänge vorausschickend liegt der Erfindung die Aufgabe zugrunde, durch verfahrenstechnische Maßnahmen und einfache Vorrichtungsmerkmale die Deformationsgeschwindigkeit der Strangquerschnittsreduktion so vorzugeben, daß die kritische Deformation des Stranges unter Berücksichtigung der Gießgeschwindigkeit und auch der Stahlgüte nicht überschritten wird.The above-mentioned knowledge and connections are forward-looking the invention has the object of procedural measures and simple device features the rate of deformation of the Specify strand cross-section reduction so that the critical deformation of the Stranges taking into account the casting speed and also the steel grade is not exceeded.

Die Lösung der Aufgabe erfolgt erfindungsgemäß mit einem Verfahren zum Stranggießen zur Erzeugung von Strängen, deren Querschnitt während der Erstarrung in der Weise reduziert wird, daß in eine insbesondere oszillierende Kokille gegossen wird und der Strangquerschnitt linear über eine Mindestlänge der Strangführung unmittelbar unterhalb der Kokille, dem sogenannten Gießwalzen, reduziert wird und sich eine weitere nicht lineare Strangquerschnittsreduktion beispielsweise nach der Quatrat-Wurzel-Funktion, die sogenannte "Soft-Reduktion", über die restliche Strangführung bis maximal unmittelbar vor der Sumpfspitze anschließt. Die Erfindungsmerkmale gelten für alle im Strang gegossenen Formate und auch für alle Typen von Stranggießanlagen und beschreiben mit dem Verfahren zu Anspruch 1 und seinen Unteransprüchen sowie mit dem Vorrichtungsanspruch und seinen Unteransprüchen die Erfindung.The object is achieved according to the invention with a method for Continuous casting to produce strands, the cross section of which during solidification is reduced in such a way that in a particularly oscillating mold is poured and the strand cross section linear over a minimum length of Strand guidance immediately below the mold, the so-called casting rolls, is reduced and there is a further non-linear reduction in the cross-section of the strand, for example after the square-root function, the so-called "soft reduction", over the rest of the strand guide up to a maximum of just before the swamp tip. The features of the invention apply to all formats cast in the strand and also for all types of continuous casting plants and describe with the method to claim 1 and its subclaims as well as the device claim and its subclaims the invention.

Die folgende erfindungsgemäße, unerwartete Lösung zur Erreichung des oben beschriebenen Zieles wird am Beispiel einer Dünnbramme naher erläutert, wobei die Erfindung im besonderen für das Gießen von Dünnbrammen mit einer Dicke zwischen 60 und 120 mm nach der Erstarrung, wobei die Dicke der Bramme im Kantenbereich am Kokillenaustritt z. B. minimal 70 und maximal 160 mm beträgt, in Betracht gezogen wird. Die Reduktion der Strangdicke, die normalerweise zwischen der Oberseite und der Unterseite einer Strangführung stattfindet, beträgt nach dem Stand der Technik heute unter Versuchsbedingungen maximal 60 %, hier wird eine 50 mm dicke Bramme auf ca. 20 mm über eine Walzspaltlänge von ca.200 mm reduziert, und unter Produktionsbedingungen maximal 38,5 %, hier wird der Strang von 65 auf 40 mm über die Länge des Segmentes 0 von ca. 2 m, das unterhalb der Kokille angeordnet ist, reduziert. In beiden Fällen liegt eine maximale Gießgeschwindikeit von 6 m/min vor.The following unexpected solution according to the invention to achieve the above The goal described is based on the example of a thin slab explained in more detail, the invention in particular for casting of thin slabs with a thickness between 60 and 120 mm after the Solidification, the thickness of the slab in the edge area at Mold exit z. B. is a minimum of 70 and a maximum of 160 mm is pulled. The reduction in strand thickness, normally between the top and bottom of a strand guide takes place, is according to the state of the art today under test conditions maximum 60%, here is a 50 mm thick slab reduced to approx. 20 mm over a roll gap length of approx. 200 mm, and under production conditions a maximum of 38.5%, here the Strand from 65 to 40 mm over the length of segment 0 of approx. 2 m, which is located below the mold, reduced. In both Cases there is a maximum pouring speed of 6 m / min.

Die Beschreibung der Erfindung basiert beispielhaft auf einer Dünnbramme mit einer Dicke von 100 mm am Kokillenaustritt und einer Dicke nach der Erstarrung von 80 mm. Die Erfindung schlägt nun eine Art der Verteilung und die Realisation der Strangdickenreduktion während der Erstarrung der Dünnbramme im Strangführungsgerüst für die beispielhaften Gießgeschwindigkeiten von 6 und 10 m/min vor.The description of the invention is based on an example Thin slab with a thickness of 100 mm at the mold outlet and a thickness of 80 mm after solidification. The invention now proposes one Type of distribution and implementation of strand thickness reduction during the solidification of the thin slab in the strand guide frame for the exemplary casting speeds of 6 and 10 m / min before.

In den Tabellen 1 und 1.1 sind die wesentlichen Prozeß- und Vorrichtungsdaten der Erfindung dem Stand der Technik gegenübergestellt. Die Tabelle 1 stellt die Daten für Gießgeschwindigkeiten von 6 m/min und die Tabelle 1.1 für Geschwindigkeiten von 10 m/min dar.Tables 1 and 1.1 are the essential process and device data contrasted the invention with the prior art. Table 1 provides the data for casting speeds of 6 m / min and Table 1.1 for speeds of 10 m / min represents.

In beiden Tabellen wird die Gesamt-Reduktion der Dicke des Stranges von 20 mm während der Erstarrung in seiner Verteilung zwischen dem Segment 0 und dem Rest der Strangführung, den Segmenten 1 bis maximal 13, variiert. Der Stand der Technik stellt sich in den Tabellen durch eine Gesamtreduktion der Strangdicke von 20 mm, durchgeführt allein im Segment 0, dar (vgl. die Ziffern 19 bis 22 in Spalte 1). Hier wird deutlich, daß sich die Reduktionsgeschwindigkeit des Stranges im 3 m langen Segment 0, ausgelöst durch die Strangdickenreduktion oder das Gießwalzen, und damit funktional die Strangschalendeformation von 0,67 auf 1,11 mm/s bei einer Gießgeschwindigkeitserhöhung von 6 m/min auf 10 m/min erhöht.In both tables, the total reduction in the thickness of the strand of 20 mm during solidification in its distribution between segment 0 and the rest of the strand guide, segments 1 to maximum 13, varies. The state of the art is in the Tables by a total reduction of the strand thickness of 20 mm, carried out in segment 0 alone (see paragraphs 19 to 22 in column 1). Here it becomes clear that the rate of reduction of the strand in the 3 m segment 0, triggered by the Strand thickness reduction or casting rolling, and therefore functional the strand shell deformation from 0.67 to 1.11 mm / s at one Increased casting speed from 6 m / min to 10 m / min.

Die Ziffern 19-22 und 23-28, Spalten 2, 3 und 4 und Ziffern 29-34 stellen nun die erfindungsgemäße Lösung dar, die eine starke Senkung der Deformationsgeschwindigkeit der Strangschale durch eine Umverteilung der Gesamt-Dickenreduktion von 20 mm zwischen dem Segment 0 und den Segmenten 1 - n, das auch als "soft reduction" bezeichnet werden kann, bewirken. Diese Umverteilung wird an Hand folgender Beispiele näher erläutert :

  • 15 mm im Segment 0 und 5 mm in den Segmenten 1 - n, Ziffern 19-28, Spalte 2;
  • 10 mm im Segment 0 und 10 mm in den Segmenten 1 - n, Ziffern 19-28, Spalte 3;
  • 5 mm im Segment 0 und 15 mm in den Segmenten 1 - n, Ziffern 19-28, Spalte 4;
  • 20 mm in den Segmenten 0 bis n, Ziffern 29 - 34.
Numbers 19-22 and 23-28, columns 2, 3 and 4 and numbers 29-34 now represent the solution according to the invention, which greatly reduces the rate of deformation of the strand shell by redistributing the total thickness reduction of 20 mm between segment 0 and segments 1 - n, which can also be referred to as "soft reduction". This redistribution is explained in more detail using the following examples:
  • 15 mm in segment 0 and 5 mm in segments 1 - n, numbers 19-28, column 2;
  • 10 mm in segment 0 and 10 mm in segments 1 - n, numbers 19-28, column 3;
  • 5 mm in segment 0 and 15 mm in segments 1 - n, numbers 19-28, column 4;
  • 20 mm in the segments 0 to n, numbers 29 - 34.

So kann nun die Reduktionsgeschwindigkeit und damit die funktionale Deformationsgeschwindigkeit der Strangschale bei 20 mm Gesamt-Dickenreduktion und 10 m/min Gießgeschwindigkeit von

  • 1,11 mm/s, 20 mm im Segment 0, Stand der Technik, Ziffer 21, Spalte 1 auf
  • 0,114 mm/s, 20 mm in den Segmenten 0 bis 13, Ziffer 33
abgesenkt werden. Mit Verlagerung eines Teiles der Dickenreduktion vom Segment 0 in die Segmente 1 bis 13 oder 1 bis n - je nach Gießgeschwindigkeit - wird allerdings die einzubringende Arbeit in den Strang mit wachsender Strangschalendicke größer. Die Erfindung berücksichtigt daher, daß eine optimale Verteilung der Gesamt-Dickenreduktion in der gesamten Strangführung zwischen dem Segment 0 und dem Segment n, das bis unmittelbar vor der Enderstarrung reicht, die Strangschalendicke auch mit einbezieht. Diese Berücksichtigung wird durch eine Quadrat-Wurzel Funktion über die Erstarrungszeit in vorteilhafter Weise entweder im Bereich der Segmente 1 bis n , soft reduction, oder im Bereich der Segmente 0 bis n, soft reduction, erreicht.So the reduction speed and thus the functional deformation speed of the strand shell with 20 mm total thickness reduction and 10 m / min casting speed of
  • 1.11 mm / s, 20 mm in segment 0, state of the art, number 21, column 1
  • 0.114 mm / s, 20 mm in segments 0 to 13, number 33
be lowered. With a shift in part of the thickness reduction from segment 0 to segments 1 to 13 or 1 to n - depending on the casting speed - the work to be introduced into the strand increases with increasing strand shell thickness. The invention therefore takes into account that an optimal distribution of the total thickness reduction in the entire strand guide between segment 0 and segment n, which extends until just before final solidification, also includes the strand shell thickness. This consideration is advantageously achieved by a square-root function over the solidification time either in the range of segments 1 to n, soft reduction, or in the range of segments 0 to n, soft reduction.

Die Figuren 1 bis 7 verdeutlichen die Erfindung im Detail im Vergleich zum Stand der Technik.Figures 1 to 7 illustrate the invention in detail in comparison the state of the art.

Die Figur 1 mit den Bildern 1 und 2 stellt schematisch die Situation eines Stranges mit einer Dicke in der Kokille von 100 mm und einer Erstarrungsdicke von 80 mm für eine Gießgeschwindigkeit von 10 m/min und einer Gesamt-Strangdickenreduktion von 20 mm nur im Segment 0, Gießwalzen, (Bild 1) bzw. 10 mm im Segment 0, Gießwalzen, und 10 mm in den Segmenten 1 bis 13, "soft reduction", (Bild 2) dar. Weiterhin wird der Strang in der Maschine mit seinen Stahlphasen gezeigt, wie

  • der Überhitzungsphase (1), der reinen Schmelzphase oder auch Penetrationszone genannt mit ihrem tiefsten Liquiduspunkt (1.1),
  • dem 2-Phasengebiet, Schmelze/Kristall (2) mit seinem tiefsten Soliduspunkt, der Sumpfspitze (2.1) nach 30 m Strangführung, die aus einer ca. 1,2 m langen Kokille, einem 3 m langem Segment 0 und den Segmenten 1 bis 13 mit einer Länge von insgesamt 26 m besteht und
  • der festen Phase oder Strangschale (3).
Figure 1 with pictures 1 and 2 shows schematically the situation of a strand with a thickness in the mold of 100 mm and a solidification thickness of 80 mm for a casting speed of 10 m / min and a total strand thickness reduction of 20 mm only in segment 0 , Casting rolls, (Figure 1) or 10 mm in segment 0, casting rolls, and 10 mm in segments 1 to 13, "soft reduction", (Figure 2). Furthermore, the strand is shown in the machine with its steel phases, how
  • the overheating phase (1), the pure melting phase or also called the penetration zone with its lowest liquidus point (1.1),
  • the 2-phase area, melt / crystal (2) with its deepest solidus point, the swamp tip (2.1) after 30 m strand guidance, which consists of an approx. 1.2 m long mold, a 3 m long segment 0 and segments 1 to 13 with a total length of 26 m and
  • the solid phase or strand shell (3).

Die reine Schmelzphase oder auch Penetrationszone liegt im Bereich des Segmentes 0, in dem eine Strangdickenreduktion oder das Gießwalzen von 2 x 10 mm oder 20 mm und keine weitere in den Folgesegmenten 1 bis 13, - Beschreibung des Stands der Technik (Bild 1) -, bzw. von 2 x 5 mm oder 10 mm, Gießwalzen, und weiteren 10 mm in den Folgesegmenten 1 bis 13, "soft reduction", Teil der Erfindung (Bild 2), vorgenommen wird. Die Reduktion der Strangdicke im Segment 0, das z. B. als Zangensegment mit zwei Klemmvorrichtungen, z. B. hydraulischen Zylindern (14) (Fig. 6), am Segmentausgang ausgebildet ist, wird über eine Länge von 3 m linear vorgenommen; die Reduktion im Bereich der Segmente 1 - 13 kann partiell pro Segment, aber auch über alle Segmente sowohl linear als auch nicht linear, d.h. zum Beispiel einer Quadrat-Wurzel folgend, erfolgen. Im Bild 2 ist die Strangdickenreduktion von 10 mm in den Segmenten 1 - 13, "soft reduction" - linear verteilt.The pure melting phase or penetration zone is in the range of segment 0, in which a strand thickness reduction or casting rolling of 2 x 10 mm or 20 mm and no more in the following segments 1 to 13, - Description of the state of the art (Image 1) -, or of 2 x 5 mm or 10 mm, casting rolls, and another 10 mm in the following segments 1 to 13, "soft reduction", part of the invention (Photo 2). The reduction in strand thickness in the segment 0, the z. B. as pliers segment with two clamping devices, e.g. B. hydraulic cylinders (14) (Fig. 6), formed at the segment exit is linear over a length of 3 m; the reduction in the area of segments 1 - 13, but also across all segments, both linear and non-linear, i.e. for example following a square root. In the picture 2 is the strand thickness reduction of 10 mm in the segments 1-13, "soft reduction" - linear distribution.

Die Reduktionsgeschwindigkeit in mm/s der Strangschale, die ein Maß für die Strangschalendeformation darstellt, kann im Fall der Erfindung (Bild 2) im Vergleich zum Stand der Technik (Bild 1) wesentlich verringert werden, wie die folgenden Werte zeigen :

  • Stand der Technik, Bild 1 :
  • Segment 0, Reduktion 20 mm, Gießwalzen, Reduktionsgeschwindigkeit 1,11 mm/s;
  • Segmente 1-13, Reduktion 0 mm, kein "soft reduction", Reduktionsgeschwindigkeit 0
  • Erfindung, Bild 2 :
  • Segment 0, Reduktion 10 mm, Gießwalzen, Reduktionsgeschwindigkeit 0,56 mm/s;
  • Segmente 1-13, Reduktion 10 mm, soft reduction, Reduktionsgeschwindigkeit 0,064 mm/s.
The reduction speed in mm / s of the strand shell, which is a measure of the strand shell deformation, can be significantly reduced in the case of the invention (Figure 2) compared to the prior art (Figure 1), as the following values show:
  • State of the art, Figure 1:
  • Segment 0, reduction 20 mm, casting rolls, reduction speed 1.11 mm / s;
  • Segments 1-13, reduction 0 mm, no "soft reduction", reduction speed 0
  • Invention, Figure 2:
  • Segment 0, reduction 10 mm, casting rolls, reduction speed 0.56 mm / s;
  • Segments 1-13, reduction 10 mm, soft reduction, reduction speed 0.064 mm / s.

Die Verteilung der Strangdickenreduktionen zwischen dem Segment 0 und den Folgesegmenten 1 - 13 kann nun optimal, hinsichtlich der möglichen Strangdeformation unter Vermeidung von Innen- und Oberflächenrissen und der minimal einzubringenden Arbeit zur Strangdickenreduktion, die mit der Dicke der Strangschale anwächst, gewählt werden. The distribution of strand thickness reductions between segment 0 and the following segments 1 - 13 can now be optimal, with regard to the possible strand deformation while avoiding internal and surface cracks and the minimal work to be done to reduce the strand thickness, that grows with the thickness of the strand shell, to get voted.

Dieser Verteilungseffekt auf die Reduktionsgeschwindigkeit und damit auf die Strangschalenbelastung ist in den Tabellen 1 und 1.1 angegeben sowie in den Figuren 2 und 3 dargestellt. Die Figur 2 zeigt die Reduktion der Strangdicke in mm/m Strangführung für eine Gesamt-Dickenabnahme von 20 mm in Abhängigkeit von unterschiedlichen Abnahmen im Segment 0 und der jeweils entsprechenden komplementären Dickenabnahme in den Segmenten 1 - 13 für die Stranggießgeschwindigkeiten von 6 und 10 m/min. Bei einer linearen Verteilung der Gesamt-Reduktion von 20 mm über alle Segmente 0 bis 8 oder 13 stellen sich Werte bei der Dickenreduktion (RL-6) und (RL-10) und Reduktionsgeschwindigkeit (RS-6) und (RS-10) von

  • 1,168 mm/m Strangführung (RL-6) und 0,117 mm/s (RS-6) bei 6 m/min Gießgeschwindigkeit bzw.
  • 0,685 mm/m Strangführung (RL-10) und 0,114 mm/s (RS-10) bei 10/min Gießgeschwindigkeit
ein, die die geringste Deformationsgeschwindigkeit aufweisen, allerdings einen maximalen Aufwand an Arbeit verlangen und einen "soft reduction" Vorgang über die gesamte Strangführung ergeben. Zwischen diesem Extrem, der Gesamtreduktion von 20 mm im Segment 0 und der Reduktion gleichförmig über die Strangführung im Segment 0 bis kurz hinter der Enderstarrung des Stranges verteilt, setzt die Erfindung mit ihren Ansprüchen an.This distribution effect on the reduction speed and thus on the strand shell loading is given in Tables 1 and 1.1 and shown in FIGS. 2 and 3. FIG. 2 shows the reduction of the strand thickness in mm / m strand guidance for a total thickness decrease of 20 mm depending on different decreases in segment 0 and the corresponding complementary thickness decrease in segments 1-13 for the continuous casting speeds of 6 and 10 m / min. With a linear distribution of the total reduction of 20 mm over all segments 0 to 8 or 13, values for the thickness reduction (RL-6) and (RL-10) and reduction speed (RS-6) and (RS-10) of
  • 1.168 mm / m strand guide (RL-6) and 0.117 mm / s (RS-6) at 6 m / min casting speed or
  • 0.685 mm / m strand guide (RL-10) and 0.114 mm / s (RS-10) at 10 / min casting speed
a, which have the lowest rate of deformation, but require maximum effort and result in a "soft reduction" process over the entire strand. Between this extreme, the total reduction of 20 mm in segment 0 and the reduction uniformly distributed over the strand guide in segment 0 to just behind the final solidification of the strand, the invention starts with its claims.

Die Figur 4 stellt wie Figur 1 schematisch die Situation eines Stranges mit einer Dicke in der Kokille von 100 mm und einer Erstarrungsdicke von 80 mm für die Gießgeschwindigkeiten VG von 6 m/min, Bild 3, und von 10 m/min, Bild 4 vergleichend gegenüber. Im Falle von VG 6m/min wird erfindungsgemäß die Strangdickenreduktion von z. B. 10 mm im Segment 0 und von den restlichen 10 mm in den Segmenten 1 bis 8, entsprechend des kürzeren Erstarrungsweges, vorgenommen. So befindet sich der tiefste Liquidus-Punkt (1.2) bei bereits ca. 1,8 m und die Sumpfspitze (2.2) bei ca. 18,12 m. Da die Reduktion der Strangdicke maximal über 18,12 m verläuft und gleichzeitig die Enderstarrung mit erfassen soll, werden die Segmente 1 bis 8 für die Reduktion der Dicke genutzt. Das Bild 4 in Figur 4 stellt wie das Bild 2 in Figur 1 die Situation des Stranges bei einer Gießgeschwindigkeit von VG 10 m/min dar.Like FIG. 1, FIG. 4 schematically represents the situation of a Strands with a thickness in the mold of 100 mm and a solidification thickness of 80 mm for the casting speeds VG of 6 m / min, Figure 3, and of 10 m / min, Figure 4 compared. in the According to the invention, the strand thickness reduction is 6 m / min from Z. B. 10 mm in segment 0 and of the remaining 10 mm in the Segments 1 to 8, corresponding to the shorter solidification path, performed. So the lowest liquidus point (1.2) is at already about 1.8 m and the swamp tip (2.2) at about 18.12 m. There the reduction in the strand thickness is a maximum of 18.12 m and At the same time the final solidification is to be included, the segments 1 to 8 used for the reduction of the thickness. The picture 4 in Figure 4 shows the situation of the strand like Figure 2 in Figure 1 at a casting speed of VG 10 m / min.

Der Vergleich der erfindungsgemäßen Gießsituationen, dargestellt in den Bildern 3 und 4 in Figur 4 führt zu folgenden Werten der Reduktionsgeschwindigkeiten und damit Strangschalenbelastungen :

  • 6 m/min, Bild 3 in Figur 4, Erfindungsbeispiel,
  • Segment 0, Reduktion 10 mm, Reduktionsgeschwindigkeit 0,33 mm/s, Gießwalzen;
  • Segmente 1 - 8, Reduktion 10 mm, Reduktionsgeschwindigkeit 0,071 mm/s, soft reduction,
  • 10 m/min Bild 4 in Figur 4, Erfindungsbeispiel,
  • Segment 0, Reduktion 10 mm, Reduktionsgeschwindigkeit 0,56 mm/s, Gießwalzen;
  • Segmente 1 -13, Reduktion 10 mm, Reduktionsgeschwindigkeit 0,064 mm/s, soft reduction.
The comparison of the casting situations according to the invention, shown in FIGS. 3 and 4 in FIG. 4, leads to the following values of the reduction speeds and thus strand shell loads:
  • 6 m / min, Figure 3 in Figure 4, example of the invention,
  • Segment 0, reduction 10 mm, reduction speed 0.33 mm / s, casting rolls;
  • Segments 1 - 8, reduction 10 mm, reduction speed 0.071 mm / s, soft reduction,
  • 10 m / min Figure 4 in Figure 4, inventive example,
  • Segment 0, reduction 10 mm, reduction speed 0.56 mm / s, casting rolls;
  • Segments 1-13, reduction 10 mm, reduction speed 0.064 mm / s, soft reduction.

Dieser Vergleich macht deutlich, daß die Verteilung der Dickenreduktion auch eine Frage der Gießgeschwindigkeit ist und daß, entsprechend der Lage der Sumpfspitze, d. h. der Gießgeschwindigkeit, die Dickenreduktion und ihre Verteilung in den Segmenten 1 bis n bzw. 0 bis n einer optimalen Gießsituation bezüglich der Gießsicherheit und der Strangqualität anzupassen ist.This comparison makes it clear that the distribution of the thickness reduction is also a question of casting speed and that, accordingly the location of the swamp tip, d. H. the casting speed, the thickness reduction and its distribution in the segments 1 to n or 0 to n an optimal pouring situation with regard to pouring safety and is to be adapted to the strand quality.

In der Figur 5 ist die Wirkung einer Verteilung der Strangdickenreduktion im Segment 0 und in den Segmenten 1 bis 13 im Sinne der Erfindung (Bild 6) am Beispiel einer Senkrecht-Abbiegemaschine, Figur 6, gegenüber dem Stand der Technik (Bild 5), auf die Stranginnendeformation, hervorgerufen durch die Biegedeformationen und die Strangdickenreduktion, in Abhängigkeit von der Strangführung für die maximale Gießgeschwindigkeit von beispielsweise 10 m/min dargestellt.5 shows the effect of a distribution of the strand thickness reduction in segment 0 and in segments 1 to 13 in the sense of Invention (Figure 6) using the example of a vertical bending machine, FIG. 6, compared to the prior art (FIG. 5), on the inner strand deformation, caused by the bending deformations and the strand thickness reduction, depending on the strand guide for the maximum casting speed of, for example, 10 m / min shown.

Das den Stand der Technik wiedergebende Bild 5 in Figur 5 stellt die Stranginnendeformation in Abhängigkeit von der Strangführung für die beispielsweise maximale Gießgeschwindigkeit (Vg-10) von 10 m/min gegenüber der Grenzdeformation (D-Gr) dar. Am Ausgang der Kokille erfährt der Strang im Segment 0 sowohl eine Deformation, hervorgerufen durch das Gießwalzen (D-Gw) im Segment 0, als auch eine Deformation, verursacht durch den Biegevorgang (D-B). Beide Deformationen überlagern sich zur Gesamtdeformation (D-Ge), die größer wird als die Grenzdeformation (D-Gr) und damit kritisch wird. Das Überschreiten der Grenzdeformation führt zu Innenrissen an der Phasengrenze fest/flüssig und damit zur Qualitätsminderung des Stranges und zur Senkung der Gießsicherheit. Eine weitere Erhöhung der Innendeformation (D) erfährt der Strang durch die Deformation (D-R) bei seiner Rückbiegung im Segment 4 aus dem inneren Kreisbogen in die Horizontale, die allerdings nicht kritisch werden kann, da die Anzahl der Rückbiegepunkte beim "design" der Anlage so gewählt wird, daß der Rückbiegevorgang bei maximaler Gießgeschwindigkeit keine kritische Innendeformation in der Strangschale der rißempfindlichsten Stahlgüte auslösen kann.Figure 5 represents the state of the art in Figure 5 the inner strand deformation depending on the strand guidance for the maximum casting speed (Vg-10) of 10, for example m / min compared to the boundary deformation (D-Gr). At the exit of the The mold in segment 0 undergoes both a deformation, caused by the casting rolling (D-Gw) in segment 0, as well a deformation caused by the bending process (D-B). Both Deformations overlap to the total deformation (D-Ge), the becomes larger than the limit deformation (D-Gr) and therefore critical becomes. Exceeding the boundary deformation leads to internal cracks solid / liquid at the phase boundary and thus to reduce quality of the strand and to reduce casting reliability. Another The strand experiences increased internal deformation (D) through the Deformation (D-R) when it bends back in segment 4 from the inner circular arc into the horizontal, which, however, is not critical can be because the number of bending points in the "design" the system is chosen so that the reverse bending process at maximum No critical internal deformation in the casting speed Strand shell of the most crack-sensitive steel grade can trigger.

Das Bild 6 in Figur 5 stellt die verfahrenstechnischen Merkmale der Erfindung am Beispiel einer Senkrecht-Abbiegeanlage, Figur 6, schematisch dar. Die Innendeformation (D) der Strangschale (3) wird in keinem Moment der Erstarrung, d. h. vom Kokillenausgang bis zum Ende des Gerüstes 13 kritisch. Dies ist durch die Verteilung der Gesamt-Strangdickenreduktion von 20 mm auf beispielsweise 10 mm im Segment 0 (D-Gw) und 10 mm in den Gerüsten 1 bis 13 (D-SR) erfindungsgemäß sichergestellt. Außerdem ist der Biegevorgang und die damit verbundene Deformation (D-B) aus dem Segment 0 in das Segment 1 gelegt, um die zwar gesenkte aber noch relativ hohe Deformationsdichte (D-Gw) im Segment 0, hervorgerufen durch das Gießwalzen von zum Beispiel 10 mm, nicht noch zusätzlich zu erhöhen. Die in den Segmenten 1 bis 13 erzeugte Deformation (D-SR), hervorgerufen durch das "soft reduction" von insgesamt z. B. 10 mm, ist relativ klein und führt zu keiner praktischen Erhöhung der Deformation (D-R) bei der Rückbiegung des Stranges im Segment 4, d. h. (D-Ge) ist ungefähr größer/gleich (D-R).Figure 6 in Figure 5 shows the procedural features the invention using the example of a vertical turning system, Figure 6, schematically. The inner deformation (D) of the strand shell (3) is never in a moment of solidification, H. from the mold exit critical to the end of scaffold 13. This is due to the distribution the total strand thickness reduction from 20 mm to, for example 10 mm in segment 0 (D-Gw) and 10 mm in frames 1 to 13 (D-SR) ensured according to the invention. In addition, the bending process and the associated deformation (D-B) from segment 0 in segment 1 placed around the lowered but still relatively high Deformation density (D-Gw) in segment 0, caused by the Casting rolls of 10 mm, for example, not to be increased additionally. The deformation generated in segments 1 to 13 (D-SR), caused by the "soft reduction" of a total of z. B. 10 mm, is relatively small and does not lead to a practical increase in the Deformation (D-R) when the strand is bent back in segment 4, d. H. (D-Ge) is approximately greater than or equal to (D-R).

Die Figur 6 zeigt eine Senkrecht-Abbiegeanlage, an der die Erfindung beispielhaft angewendet werden kann, für das Gießen von 100 mm dicken Brammen am Kokillenaustritt mit einer Dicke nach der Erstarrung von 80 mm und maximal VG 10 m/min. Diese Anlage weist die in den Figuren 1 -5 beschriebenen verfahrenstechnischen Merkmale auf. Die Strangießanlage besteht neben einem Verteiler (V) und einem Tauchausguß (Ta) aus

  • einer ca. 1,2 m langen Senkrecht -Kokille (K), die vorzugsweise in horizontaler Richtung konkav ausgebildet ist,
  • einem 3 m langem Segment 0, das für das Gießwalzen oder auch die Strangdickenreduktion vorzugsweise als Zangensegment ausgerüstet und mit zwei hydraulischen Zylindern (14) an seinem Ausgang versehen ist,
  • dem Segment 1 mit fünf Biegepunkten (23),
  • den Segmenten 2 und 3 mit dem inneren Kreisbogen von ca. 4 m Radius,
  • dem Segment 4 zum Rückbiegen des Stranges vom inneren Kreisbogen über fünf Rückbiegepunkte (24) in die Horizontale und
  • den Segmenten 5 bis13 im horizontalen Bereich der Maschine.
FIG. 6 shows a vertical bending system, to which the invention can be applied by way of example, for the casting of 100 mm thick slabs at the mold exit with a thickness after solidification of 80 mm and a maximum of 10 m / min. This system has the procedural features described in FIGS. 1-5. The continuous casting plant consists of a distributor (V) and a dip spout (Ta)
  • an approximately 1.2 m long vertical mold (K), which is preferably concave in the horizontal direction,
  • a 3 m long segment 0, which is preferably equipped as a tong segment for the casting rolling or the strand thickness reduction and is provided with two hydraulic cylinders (14) at its outlet,
  • segment 1 with five bending points (23),
  • segments 2 and 3 with the inner circular arc of approx. 4 m radius,
  • the segment 4 for bending back the strand from the inner circular arc via five bending points (24) into the horizontal and
  • segments 5 to 13 in the horizontal area of the machine.

Diese Maschinenkonfiguration mit einer maximalen Gießgeschwindigkeit von 10 m/min und einer maximalen Kapazität von ca. 3 mio t/a stellt eine äußerst vorteilhafte Lösung bei der Anwendung der Erfindung dar, bei der eine minimale Deformationsgeschwindigkeit des Stranges während seiner Erstarrung auftritt.This machine configuration with a maximum casting speed of 10 m / min and a maximum capacity of approx. 3 million t / a represents an extremely advantageous solution when using the Invention represents, in which a minimal rate of deformation of the strand occurs during its solidification.

Um die Art der Strangdickenreduktion im Sinne der Erfindung mit den beschriebenen Segmenten 1 bis 13 vorteilhaft realisieren zu können, sollten die Segmente im Prinzip wie in Figur 7 dargestellt aufgebaut sein. Ein Segment sollte vorzugsweise aus einer ungeraden Anzahl von 3, 5, 7 oder 9 Rollenpaaren (15), bestehend aus Unter- (16) und Oberrolle (17), aufgebaut sein. Jedes Segment besteht wiederum abwechselnd aus einem angetriebenen Rollenpaar (18), das mit einem Hydrauliksystem (19) positions- und kraftgeregelt wird, und zwei mit einem Hydrauliksystem (20) im Bereich der Oberrollen (17) verbundenen nicht angetriebenen Rollenpaaren (21), die mit einem Maschinenelement (22) versehen sind, das es erlaubt, das Rollenpaar der Oberbahn in Gießrichtung um einen Winkel von z. B. +/- 5° pendeln zu lassen, um in jeder Gießsituation bei vorgegebener Strangdickenabnahme den Strang bei Sicherstellung seiner Form führen zu können.To the type of strand thickness reduction in the sense of the invention with to advantageously implement the segments 1 to 13 described should, in principle, the segments as shown in Figure 7 be constructed. A segment should preferably be an odd one Number of 3, 5, 7 or 9 pairs of rollers (15) consisting of Lower (16) and upper roller (17) can be built. Every segment alternately consists of a pair of driven rollers (18), which is position and force controlled with a hydraulic system (19) and two with a hydraulic system (20) in the area the top rollers (17) connected non-driven roller pairs (21), which are provided with a machine element (22) that it allowed the pair of rollers of the top web in the casting direction by one Angle of z. B. to allow +/- 5 ° to swing in any casting situation for a given decrease in strand thickness, the strand if secured its shape.

Dieser Aufbau der Segmente 1 bis 13 führt zu einer optimalen Strangführung bei jeder Art der Verteilung der Strangdickenreduktion, jeder Gießsituation, jeder Art von Stahlgüte, hinsichtlich ihrer Innenrißempfindlichkeit, d. h. Höhe der kritischen Deformationsgrenze und bezüglich des Einsatzes eines Minimums an hydraulischen Systemen pro Rollenpaar. So kommen 0,66 hydraulische Systeme pro Rollenpaar zum Einsatz. Auch stellt der Einsatz an angetriebenen Rollenpaaren von 0,33 Einheiten pro Rollenpaar ein maschinenbauliches Minimum bei maximaler verfahrenstechnischer und qualitativer Wirkung auf den zu gießenden Strang und seine Oberflächen- und Innenqualität dar, d. h. zum Beispiel ein minimaler Aufbau und eine minimierte Kumulation von Zugspannungen in der Strangschale zwischen den angetriebenen Rollenpaaren.This structure of segments 1 to 13 leads to an optimal one Strand guidance in any type of distribution of strand thickness reduction, every casting situation, every kind of steel grade, with regard to their internal crack sensitivity, d. H. Critical Deformation Limit and the use of a minimum of hydraulic Systems per pair of rollers. So come 0.66 hydraulic systems per pair of rollers. The use of driven Roll pairs of 0.33 units per roll pair a mechanical engineering Minimum at maximum procedural and qualitative effect on the strand to be cast and its surface and interior quality, d. H. for example a minimal one Structure and a minimized accumulation of tensile stresses in the Strand shell between the driven roller pairs.

Die Erfindung wurde am Beispiel einer Dünnbrammenanlage beschrieben, kann jedoch hinsichtlich des Verfahrens und der Vorrichtung auch auf andere Stranggießanlagen entsprechend übertragen werden, wie

  • Brammenanlagen,
  • Vorblockanlagen,
  • Knüppelanlagen für Quadrat- und Rund-Knüppel. Gießgeschwindigkeit 6 m/min Spalte 1 2 3 4 5 1 Strangdicke mm 100 2 Erstarrungsdicke mm 80 3 met. Länge der Kokille m 1 4 Länge des Segmentes 0 m 3 5 Länge der Segmente 1 - 13 m 26 6 Länge der ges. Strangführung m 30 7 Erstarrungszeit min 3,02 8 Erstarrungszeit s 181,2 9 Gießgeschwindigkeit m/min 6,0 10 metallurgische Länge des Stranges m 18,12 11 Erstarrungszeit, Eintritt Segm. 0 min 0,167 12 Erstarrungszeit, Eintritt Segm. 0 s 10,0 13 Strangschalendicke, Eintritt Segm. 0 mm 9,4 14 Verweilzeit des Stranges in Segm, 0 min 0,5 15 Verweilzeit des Stranges in Segm. 0 s 30,0 16 Erstarrungszeit, Austritt Segm. 0 min 0,667 17 Erstarrungszeit, Austritt Segm. 0 s 40,02 18 Strangschalendicke, Austritt Segm, 0 mm 18,78 19 Dickenreduktion in Segment 0 mm 20 15 10 5 0 20 Dickenreduktion in Segment 0 % 20 15 10 5 0 21 Reduktionsgeschwindigkeit mm/s 0,67 0,5 0,33 0,17 0 22 Reduktion / Meter Strangführung mm/m 6,67 5,0 3,33 1,67 0 23 Soft reduction in Segment 1-n(8) mm 0 5 10 15 20 24 Zeit für restliche Erstarrung min 2,353 25 Zeit für restliche Erstarrung s 141,18 26 Soft reduction-Geschwindigkeit mm/s 0 0,035 0,071 0,106 0,14 27 metallurgische Länge der Rest-Erstarrung m 14,12 28 Soft reduction/Meter Rest-Erstarrung mm/m 0 0,35 0,71 1,062 1,42 29 Soft reduction, Segment 0 - n (8) mm 20 30 Zeit der Erstarrung in den Segm. 0 - n min 2,853 31 Zeit der Erstarrung in den Segm. 0 - n s 171,18 32 metallurgische Länge, Segm. 0 - n m 17,12 33 Soft reduction - Geschw., Segm. 0 - n mm/s 0,117 34Soft reduction/Meter Erstarrung, Segm.0-n mm/m 1,168 Gießgeschwindigkeit 10 m/min Spalte 1 2 3 4 5 1 Strangdicke mm 100 2 Erstarrungsdicke mm 80 3 met. Länge der Kokille m 1 4 Länge des Segmentes 0 m 3 5 Länge der Segmente 1 - 13 m 20 6 Länge der ges. Strangführung m 30 7 Erstarrungszeit min 3,02 8 Erstarrungszeit s 181,2 9 Gießgeschwindigkeit m/min 10,0 10 metallurgische Länge des Stranges m 30,20 11 Erstarrungszeit, Eintritt Segm. 0 min 0,10 12 Erstarrungszeit, Eintritt Segm.0 s 6,0 13 Strangschalendicke, Eintritt Segm. 0 mm 7,3 14 Verweilzeit des Stranges in Segm. 0 min 0,3 15 Verweilzeit des Stranges in Segm 0 s 18,0 16 Erstarrungszeit, Austritt Segm. 0 min 0,4 17 Erstarrungszeit, Austritt Segm. 0 s 24,0 18 Strangschalendicke, Austritt Segm. 0 mm 14,55 19 Dickenreduktion in Segment 0 mm 20 15 10 5 0 20 Dickenreduktion in Segment 0 % 20 15 10 5 0 21 Reduktionsgeschwindigkeit mm/s 1,11 0,83 0,56 0,28 0 22 Reduktion / Meter Strangführung mm/m 6,67 5,0 3,33 1,67 0 23 Soft reduction in Segment 1 - n (13) mm 0 5 10 15 20 24 Zeit für restliche Erstarrung min 2,62 25 Zeit für restliche Erstarrung s 157,2 26 Soft reduction - Geschwindigkeit mm/s 0 0,032 0,064 0,095 0,127 27 metallurgische Länge der Rest-Erstarrung m 26,2 28 Soft reduction / Meter Rest-Erstarrung mm/m 0 0,19 0,38 0,57 0,76 29 Soft reduction, Segment 0 - n (13) mm 20,0 30 Zeit der Erstarrung in den Segm. 0 -n min 2,92 31 Zeit der Erstarrung in den Segm. 0 - n s 175,2 32 metallurgische Länge, Segm. 0 - n m 29,2 33 Soft reduction - Geschw., Segm. 0 - n mm/s 0,114 34Soft reduction/Meter Erstarrung, Segm.0-n mm/m 0,685
The invention has been described using the example of a thin slab plant, but can also be transferred accordingly to other continuous casting plants with regard to the method and the device, such as
  • Slab lines,
  • Blooming lines,
  • Billet lines for square and round billets. Casting speed 6 m / min column 1 2 3rd 4th 5 1 strand thickness mm 100 2 solidification thickness mm 80 3 met. Length of the mold m 1 4 Length of segment 0 m 3rd 5 Length of segments 1 - 13 m 26 6 total length Strand guide m 30th 7 solidification time min 3.02 8 solidification time s 181.2 9 casting speed m / min 6.0 10 metallurgical length of the strand m 18.12 11 Freezing time, entry Segm. 0 min 0.167 12 Freezing time, entry Segm. 0 s 10.0 13 strand shell thickness, entry Segm. 0 mm 9.4 14 Dwell time of the strand in Segm, 0 min 0.5 15 Dwell time of the strand in Segm. 0 s 30.0 16 Freezing time, segm. 0 min 0.667 17 Freezing time, exit segm. 0 s 40.02 18 strand shell thickness, outlet Segm, 0 mm 18.78 19 Thickness reduction in segment 0 mm 20th 15 10 5 0 20 Thickness reduction in segment 0 % 20th 15 10 5 0 21 reduction speed mm / s 0.67 0.5 0.33 0.17 0 22 Reduction / meter strand guidance mm / m 6.67 5.0 3.33 1.67 0 23 Soft reduction in segment 1-n (8) mm 0 5 10 15 20th 24 time for remaining solidification min 2,353 25 time for remaining solidification s 141.18 26 Soft reduction speed mm / s 0 0.035 0.071 0.106 0.14 27 Metallurgical length of the remaining solidification m 14.12 28 Soft reduction / meter solidification mm / m 0 0.35 0.71 1,062 1.42 29 Soft reduction, segment 0 - n (8) mm 20th 30 time of solidification in the segm. 0 - n min 2,853 31 Time of solidification in the segm. 0 - n s 171.18 32 metallurgical length, segm. 0 - n m 17.12 33 Soft reduction - speed, segm. 0 - n mm / s 0.117 34 Soft reduction / meter solidification, segment 0-n mm / m 1,168 Casting speed 10 m / min column 1 2 3rd 4th 5 1 strand thickness mm 100 2 solidification thickness mm 80 3 met. Length of the mold m 1 4 Length of segment 0 m 3rd 5 Length of segments 1 - 13 m 20th 6 total length Strand guide m 30th 7 solidification time min 3.02 8 solidification time s 181.2 9 casting speed m / min 10.0 10 metallurgical length of the strand m 30.20 11 Freezing time, entry Segm. 0 min 0.10 12 Freezing time, entry Segm. 0 s 6.0 13 strand shell thickness, entry Segm. 0 mm 7.3 14 Dwell time of the strand in Segm. 0 min 0.3 15 Dwell time of the strand in Segm 0 s 18.0 16 Freezing time, segm. 0 min 0.4 17 Freezing time, exit segm. 0 s 24.0 18 strand shell thickness, outlet Segm. 0 mm 14.55 19 Thickness reduction in segment 0 mm 20th 15 10 5 0 20 Thickness reduction in segment 0 % 20th 15 10 5 0 21 reduction speed mm / s 1.11 0.83 0.56 0.28 0 22 Reduction / meter strand guidance mm / m 6.67 5.0 3.33 1.67 0 23 Soft reduction in segment 1 - n (13) mm 0 5 10 15 20th 24 time for remaining solidification min 2.62 25 time for remaining solidification s 157.2 26 Soft reduction - speed mm / s 0 0.032 0.064 0.095 0.127 27 Metallurgical length of the remaining solidification m 26.2 28 Soft reduction / meter solidification mm / m 0 0.19 0.38 0.57 0.76 29 Soft reduction, segment 0 - n (13) mm 20.0 30 time of solidification in the segm. 0 -n min 2.92 31 Time of solidification in the segm. 0 - n s 175.2 32 metallurgical length, segm. 0 - n m 29.2 33 Soft reduction - speed, segm. 0 - n mm / s 0.114 34 Soft reduction / meter solidification, segment 0-n mm / m 0.685

BezugszeichenlisteReference list

1.1.
Überhitzungsphase, reine Schmelzphase oder Penetrationszone,Overheating phase, pure melting phase or penetration zone,
1.11.1
tiefster Liquiduspunkt bei 10 m/min Gießgeschwindigkeit,lowest liquidus point at 10 m / min casting speed,
1.21.2
tiefster Liquiduspunkt bei 6 m/min Gießgeschwindigkeit,lowest liquidus point at 6 m / min casting speed,
2.2nd
2-Phasengebiet Schmelze/Kristall,2-phase area melt / crystal,
2.12.1
tiefster Soliduspunkt, Sumpfspitze bei 10 m/min Gießgeschwindigkeit,lowest solidus point, swamp tip at 10 m / min casting speed,
2.22.2
tiefster Soliduspunkt, Sumpfspitze bei 6 m/min Gießgeschwindigkeit,lowest solidus point, swamp tip at 6 m / min casting speed,
3.3rd
Strangschale,Strand shell,
(D-Gr)(D-Gr)
Grenzdeformation,Boundary deformation,
(Vg-10)(Vg-10)
Gießgeschwindigkeit von 10 m/min,Casting speed of 10 m / min,
(K)(K)
Kokille,Mold,
(0)(0)
Segment 0,Segment 0,
(1)(1)
Segment 1,Segment 1,
(2)..(2) ..
Segment 2 usw.Segment 2 etc.
(13)(13)
Segment 13Segment 13
(D)(D)
Innendeformation der Strangschale,Internal deformation of the strand shell,
(D-Gw)(D-Gw)
Innendeformation beim Gießwalzen,Internal deformation during casting rolling,
(D-B)(D-B)
Innendeformation beim Biegen des Stranges,Internal deformation when bending the strand,
(D-Ge)(D-Ge)
Gesamt-Innendeformation, (d-Gw)+(D-B), (D-B)+(D-SR) oder (D-R)+(D-SR),Total internal deformation, (d-Gw) + (D-B), (D-B) + (D-SR) or (D-R) + (D-SR),
(D-R)(D-R)
Innendeformation beim Rückbiegen des Stranges,Internal deformation when bending the strand back,
(D-SR)(D-SR)
Innendeformation beim "Soft Reduction",Internal deformation during "soft reduction",
(RL-6)(RL-6)
lineare Reduktion über die Segmente 0 -13 von 1,168 mm/m bei 6 m/min,linear reduction over the segments 0 -13 of 1.168 mm / m at 6 m / min,
(RL-10)(RL-10)
lineare Reduktion über die Segmente 0 -13 von 0,685 mm/m bei 10 m/min,linear reduction over the segments 0 -13 of 0.685 mm / m at 10 m / min,
(RS-6)(RS-6)
Reduktionsgeschwindigkeit bei linearer Reduktion über die Segmente 0 - 13 von 0,117 mm/s bei 6 m/min Gießgeschwindigkeit, Reduction rate with linear reduction over segments 0 - 13 of 0.117 mm / s at 6 m / min casting speed,
(RS-10)(RS-10)
Reduktionsgeschwindigkeit bei linearer Reduktion über die Segmente 0 - 13 von 0,114 mm/s bei 10 m/min Gießgeschwindigkeit,Reduction rate with linear reduction over segments 0 - 13 of 0.114 mm / s at 10 m / min casting speed,
(V)(V)
Verteiler,Distributor,
(Ta)(Ta)
Tauchausguß,Diving spout,
1414
hydraulische Zylinder am Ausgang vom Segment 0, positions- u. kraftgeregelt,hydraulic cylinders at the output of segment 0, position u. force controlled,
1515
Rollenpaare, bestehend aus Ober- und Unterrollen,Pairs of rollers, consisting of top and bottom rollers,
1616
Unterrollen, fixiert,Under rolls, fixed,
1717th
Oberrollen, beweglich und positions- und kraftgeregelt,Top rollers, movable and position and force controlled,
1818th
angetriebenes Rollenpaar,driven roller pair,
1919th
hydraulisches System, positions- und kraftgeregelt für die angetriebenen Rollenpaarehydraulic system, position and force controlled for the driven roller pairs
2020th
hydraulisches System, positions- und kraftgeregelt für die nicht angetriebenen Rollenpaare,hydraulic system, position and force controlled for the non-driven roller pairs,
2121
2 nicht angetriebene Rollenpaare,2 non-driven roller pairs,
2222
Maschinenelement zum Pendeln der 2 benachbarten Oberrollen, eingebunden in das hydraulische System (20), des nicht angetriebenen Rollenpaares (21),Machine element for swinging the 2 adjacent top rollers, integrated in the hydraulic system (20), the non-driven roller pair (21),
2323
Biegepunkte,Bending points,
2424th
Rückbiegepunkte oder Richtpunkte.Rebend points or benchmarks.

Claims (28)

  1. Method for continuous casting for production of strips, the cross-section of which is reduced during hardening in the manner that the casting is, in particular, in an oscillating chill mould and the strip cross-section is linearly reduced over a minimum length of the strip guidance directly below the chill mould, i.e. so-called direct strand reduction, and a further non-linear strip cross-sectional reduction, for example in accordance with the square root function, i.e. so-called "soft reduction", is carried out subsequently over the remaining strip guidance at most up to directly before the liquid phase point.
  2. Method according to claim 1, characterised in that in the case of rectangular strip formats the cross-section is preferably reduced by a reduction in the thickness direction.
  3. Method according to claim 1 or 2, characterised in that the thickness of the strip is reduced to a maximum of 60% of the strip thickness at the chill mould outlet.
  4. Method according to one of claims 1 to 3, characterised in that preferably thin slabs with a thickness of 120 millimetres are reduced in thickness to 50 millimetres after hardening.
  5. Method according to one of claims 1 to 4, characterised by breaking down the overall thickness reduction into direct strip reduction directly below the chill mould and into "soft reduction" in the remaining strip guidance at a speed of less than 1.25 millimetres per second for maximum casting speed.
  6. Method according to one of claims 1 to 5, characterised in that casting is at a maximum speed of up to 12 metres per minute.
  7. Method according to one of claims 1 to 6, characterised in that during the "soft reduction" the thickness is reduced linearly over the hardening length.
  8. Method according to one of claims 1 to 6, characterised in that during "soft reduction" the strip thickness is reduced in linearly reducing manner over the hardening time.
  9. Method according to one of claims 1 to 7, characterised in that the entire thickness reduction from the outlet of the chill mould to at most directly before the liquid phase point elapses linearly and constantly.
  10. Method according to one of claims 1 to 9, characterised in that the bending of a strand from the vertical into the inner circular arc of a vertical bending continuous casting plant is undertaken in the region of the "soft reduction".
  11. Method according to one of claims 1 to 10, characterised in that the direct strand reduction is carried out exclusively in the vertical strip guidance without the lowest liquidus point emerging from the strip guidance at maximum casting speed.
  12. Continuous casting plant for carrying out the method according to one of claims 1 to 11, which contains the following elements
    an oscillating chill mould (K),
    a segment 0, which linearly reduces the strip in its cross-section by a maximum of 40% over a length of at least one metre,
    a remaining strip guidance, which reduces the strip by so-called "soft reduction" in its cross-section to at most directly ahead of the liquid phase point (2.1), and
    in which the entire reduction of the strip cross-section in the segment 0 and in the remaining strip guide is designed to be to 60%.
  13. Continuous casting plant according to claim 12, characterised in that for the casting of rectangular formats the segment (0) and the following segments (1-n) are designed for the cross-sectional reduction by reduction in the strip thickness.
  14. Continuous casting plant according to claim 12 or 13, characterised in that the segment (0) for reduction in the strip thickness is equipped at its outlet with two position-regulated and force-regulated squeezing cylinders.
  15. Continuous casting plant according to one of claims 12 to 14, characterised in that the segment (0) is designed for reduction of the strip thickness by at most 100 millimetres.
  16. Continuous casting plant according to one of claims 12 to 15, characterised in that the segments (1 to n) are position-regulated and force-regulated with respect to their strip thickness setting.
  17. Continuous casting plant according to one of claims 12 to 16, characterised in that the number of roller pairs (15) per segment is uneven and amounts to at least three.
  18. Continuous casting plant according to one of claims 12 to 17, characterised in that each third roller pair (18) is driven.
  19. Continuous casting plant according to one of claims 12 to 18, characterised in that the upper rollers of the non-driven roller pairs (21) are provided with a position-regulated and force-regulated squeezing cylinder.
  20. Continuous casting plant according to one of claims 12 to 19, characterised in that the upper rollers of the non-driven roller pairs (21) and their cylinders (20) are provided with a device (22) which permits a pendulation of the rollers by preferably +/- 5° in casting direction.
  21. Continuous casting plant according to one of claims 12 to 20, characterised in that the segment (0) is arranged vertically and has a maximum length of 5 metres.
  22. Continuous casting plant according to claim 21, characterised in that the first downstream segment (1) has at least one bending point (23) for bending of the strand from the vertical into a circular arc.
  23. Continuous casting plant according to one of claims 12 to 22, characterised in that at least one return bending point (24) for straightening the strip from the circular arc into the horizontal is provided in at least one of the segments (2 to n).
  24. Continuous casting plant according to claim 23, characterised in that the horizontal part of the strip guidance has a length of at least 4 metres.
  25. Continuous casting plant according to one of claims 12 to 24, characterised in that the chill mould walls are constructed to be concave.
  26. Continuous casting plant according to one of claims 12 to 25, characterised in that an immersion outlet (Ta) and casting powder are used for the casting.
  27. Continuous casting plant according to one of claims 13 to 26, characterised in that the wide sides of the chill mould are constructed to be concave in horizontal direction and decrease in their concavity in direction towards the chill mould outlet.
  28. Continuous casting plant according to one of claims 13 to 27, characterised in that the narrow sides of the chill mould are constructed to be concave in horizontal direction.
EP97116428A 1996-09-25 1997-09-20 Method and device for high-speed continuous casting plants with reduction of the width during solidification Expired - Lifetime EP0834364B1 (en)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
DE19639297A DE19639297C2 (en) 1996-09-25 1996-09-25 Method and device for high-speed continuous casting plants with a reduction in strand thickness during solidification
DE19639297 1996-09-25
BR9707100A BR9707100A (en) 1996-09-25 1997-12-16 Process and device for high-speed continuous casting facilities with reduced billet thickness to solidification
JP34813897A JP4057119B2 (en) 1996-09-25 1997-12-17 Method and apparatus for high speed continuous casting equipment for reducing sheet thickness during solidification
US09/004,430 US6276436B1 (en) 1996-09-25 1998-01-08 Method and apparatus for high-speed continuous casting plants with a strand thickness reduction during solidification
CNB981039030A CN1191898C (en) 1996-09-25 1998-01-08 Method and device for high-speed continuous casting equipment and freezing pressure casting blank
ZA9800204A ZA98204B (en) 1996-09-25 1998-01-12 Method and apparatus for high-speed continuous casting plants with a strand thickeness reduction during solidification.
AU51080/98A AU753199B2 (en) 1996-09-25 1998-01-12 Method and apparatus for high-speed continuous casting plants with a strand thickness reduction during solidification
CA002226859A CA2226859C (en) 1996-09-25 1998-01-13 Method and apparatus for high-speed continuous casting plants with a strand thickness reduction during solidification

Publications (3)

Publication Number Publication Date
EP0834364A2 EP0834364A2 (en) 1998-04-08
EP0834364A3 EP0834364A3 (en) 1998-10-28
EP0834364B1 true EP0834364B1 (en) 2001-07-04

Family

ID=31950970

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97116428A Expired - Lifetime EP0834364B1 (en) 1996-09-25 1997-09-20 Method and device for high-speed continuous casting plants with reduction of the width during solidification

Country Status (11)

Country Link
US (2) US6276436B1 (en)
EP (1) EP0834364B1 (en)
JP (1) JP4057119B2 (en)
CN (1) CN1191898C (en)
AT (1) ATE202735T1 (en)
AU (1) AU753199B2 (en)
BR (1) BR9707100A (en)
CA (1) CA2226859C (en)
DE (2) DE19639297C2 (en)
ES (1) ES2160877T3 (en)
ZA (1) ZA98204B (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19921296A1 (en) * 1999-05-07 2000-11-09 Sms Demag Ag Method and device for the production of continuously cast steel products
DE10027324C2 (en) * 1999-06-07 2003-04-10 Sms Demag Ag Process for casting a metallic strand and system therefor
DE19933635A1 (en) 1999-07-17 2001-01-18 Sms Demag Ag Method and device for changing the format thickness of the cast strand of a continuous caster in a continuous casting operation
DE19956556A1 (en) * 1999-11-24 2001-05-31 Sms Demag Ag Radius configuration of the strand guide of a vertical bending continuous caster
AT408323B (en) * 1999-12-01 2001-10-25 Voest Alpine Ind Anlagen METHOD FOR STEEL CONTINUOUS
ATE318193T1 (en) 1999-12-15 2006-03-15 Sms Demag Ag METHOD FOR CHANGING THE SIZE THICKNESS OF THE CAST STRAND BELOW THE MOLD OF A CONTINUOUS CASTING PLANT
DE10011689A1 (en) 2000-03-10 2001-09-13 Sms Demag Ag Process for the continuous casting of slabs and in particular thin slabs
DE10057160A1 (en) * 2000-11-16 2002-05-29 Sms Demag Ag Method and device for producing thin slabs
DE10118518A1 (en) * 2001-04-14 2002-10-24 Sms Demag Ag Process for continuously casting slabs, especially thin slabs, in a continuously casting device comprises forming bulges from a casting strand within a region of a liquid core path
DE10119550A1 (en) * 2001-04-21 2002-10-24 Sms Demag Ag Production of continuously cast pre-material comprises casting strands in a continuous casting device, deforming below the mold and/or within or outside the strand guide using roller pairs to form pre-profiles, and rolling into profiles
DE10122118A1 (en) * 2001-05-07 2002-11-14 Sms Demag Ag Method and device for the continuous casting of blocks, slabs and thin slabs
KR100701185B1 (en) 2001-05-23 2007-03-29 주식회사 포스코 Apparatus for soft reducting a billet in a segment zero
ITMI20021996A1 (en) * 2002-09-19 2004-03-20 Giovanni Arvedi PROCESS AND PRODUCTION LINE FOR THE MANUFACTURE OF ULTRA-THIN HOT TAPE BASED ON THE TECHNOLOGY OF THE THIN SHEET
DE102005055529B4 (en) * 2005-11-22 2013-03-07 Sms Siemag Aktiengesellschaft Method and computer program for producing a sample from a continuous casting material
DE102006048511A1 (en) 2006-10-13 2008-04-17 Sms Demag Ag Strand guiding device and method for its operation
US8245760B2 (en) * 2007-11-19 2012-08-21 Posco Continuous cast slab and method for manufacturing the same
WO2010051981A1 (en) * 2008-11-04 2010-05-14 Sms Siemag Ag Method and device for controlling the solidification of a cast strand in a strand casting plant in startup of the injection process
ITMI20120046A1 (en) * 2012-01-18 2013-07-19 Arvedi Steel Engineering S P A PLANT AND PROCEDURE FOR THE CONTINUOUS QUICK CASTING OF STEEL BRAMME AND STEEL BRAMME
CN107081412B (en) * 2017-04-01 2019-08-09 唐山钢铁集团有限责任公司 The preparation method of high-quality plastic die steel special heavy plate continuous casting mother's base
CN108941493A (en) * 2018-08-30 2018-12-07 东北大学 A kind of use for laboratory small billet vertical casting machine roller column and its application method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT379093B (en) * 1984-02-16 1985-11-11 Voest Alpine Ag CONTINUOUS CHOCOLATE FOR A CONTINUOUS CASTING SYSTEM
DE3907905C2 (en) * 1988-07-04 1999-01-21 Mannesmann Ag Continuous casting process
DE4139242C3 (en) 1991-11-26 1999-08-19 Mannesmann Ag Process for the production of long steel products
AT398396B (en) * 1993-02-16 1994-11-25 Voest Alpine Ind Anlagen METHOD FOR PRODUCING A TAPE, PRE-STRIP OR A LAM
AT401744B (en) * 1993-10-14 1996-11-25 Voest Alpine Ind Anlagen METHOD AND SYSTEM FOR CONTINUOUS CASTING
DE4403049C1 (en) * 1994-01-28 1995-09-07 Mannesmann Ag Continuous caster and method for producing thin slabs
DE4403048C1 (en) * 1994-01-28 1995-07-13 Mannesmann Ag Continuous caster and process for producing rectangular thin slabs
JP3008821B2 (en) * 1994-07-29 2000-02-14 住友金属工業株式会社 Continuous casting method and apparatus for thin slab
IT1280171B1 (en) * 1995-05-18 1998-01-05 Danieli Off Mecc VERTICAL CASTING LINE FOR BRAMME
DE19639302C2 (en) * 1996-09-25 2000-02-24 Schloemann Siemag Ag Method and device for producing thin slabs on a continuous caster

Also Published As

Publication number Publication date
ES2160877T3 (en) 2001-11-16
AU753199B2 (en) 2002-10-10
JP4057119B2 (en) 2008-03-05
CN1222419A (en) 1999-07-14
EP0834364A2 (en) 1998-04-08
DE59703945D1 (en) 2001-08-09
AU5108098A (en) 1999-07-29
DE19639297A1 (en) 1998-03-26
CA2226859C (en) 2006-11-07
BR9707100A (en) 1999-07-27
EP0834364A3 (en) 1998-10-28
CN1191898C (en) 2005-03-09
US20020017375A1 (en) 2002-02-14
US6276436B1 (en) 2001-08-21
ATE202735T1 (en) 2001-07-15
JPH11179505A (en) 1999-07-06
CA2226859A1 (en) 1999-07-13
DE19639297C2 (en) 2000-02-03
ZA98204B (en) 1998-06-24

Similar Documents

Publication Publication Date Title
EP0834364B1 (en) Method and device for high-speed continuous casting plants with reduction of the width during solidification
DE4436328C5 (en) Process and plant for continuous casting
EP1478479B1 (en) Method for the continuous casting and direct shaping of a metal strand, in particular a steel cast strand
WO1988001209A1 (en) Process and device for continuous casting of slabs
WO2013000841A1 (en) Method for strand casting a cast strand, and strand casting system
DE102010050647A1 (en) Plant and method for casting and rolling metal
EP1330321B1 (en) Method and device for continuous casting and subsequent forming of a steel billet, especially a billet in the form of an ingot or a preliminary section
EP0734295B1 (en) Continuous casting facility and a process for producing thin slabs
LU85485A1 (en) DEVICE AND METHOD FOR CONTINUOUSLY POURING METAL
DE19639302C2 (en) Method and device for producing thin slabs on a continuous caster
DE2814600A1 (en) METHOD AND DEVICE FOR CONTINUOUS STEEL CASTING
DD293283A5 (en) METHOD AND DEVICE FOR THE CONTINUOUS CASTING OF DUENNE METALLIC OBJECTS WITH THICK REDUCTION UNDER THE COAL
DE3440236C2 (en)
DE2559038A1 (en) METHOD AND DEVICE FOR CONTINUOUS STEEL CASTING
DE3204339C2 (en) Continuous casting mold for casting carrier blanks
EP0917922A1 (en) Process and plant for continuous casting slabs
DE2853868C2 (en) Process for the continuous casting of steel as well as the correspondingly produced steel strand
DE102018220386A1 (en) Method and device for setting the target temperatures of cooling segments of a continuous caster
DE19745547A1 (en) Process and plant for the continuous casting of thin slabs
EP0946318B1 (en) Method and device for continuous thin slab steel casting
DD148736A5 (en) CONTINUOUS STEEL MOLDING PROCESS
DE3411734A1 (en) Apparatus for the continuous casting and rolling of metals, in particular steel
EP0920938B1 (en) Method and continuous casting facility for producing thin slabs
DE3346391C2 (en) Continuous casting process and device for the production of multilayer materials
DE1508884A1 (en) Device for continuous casting, in particular of metals

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971010

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE DE ES FR GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AKX Designation fees paid

Free format text: AT BE DE ES FR GB IT NL

17Q First examination report despatched

Effective date: 19990827

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SMS DEMAG AG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB IT NL

REF Corresponds to:

Ref document number: 202735

Country of ref document: AT

Date of ref document: 20010715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59703945

Country of ref document: DE

Date of ref document: 20010809

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20011005

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2160877

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59703945

Country of ref document: DE

Representative=s name: HEMMERICH & KOLLEGEN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59703945

Country of ref document: DE

Owner name: SMS GROUP GMBH, DE

Free format text: FORMER OWNER: SMS SIEMAG AKTIENGESELLSCHAFT, 40237 DUESSELDORF, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150922

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20150917

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160920

Year of fee payment: 20

Ref country code: DE

Payment date: 20160921

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20160921

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20160920

Year of fee payment: 20

Ref country code: ES

Payment date: 20160916

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160922

Year of fee payment: 20

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20161001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59703945

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20170919

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 202735

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170919

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20170920

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170921