EP0830590A1 - Ph-sensitiver mikrosensor, sowie verfahren zu seiner herstellung - Google Patents

Ph-sensitiver mikrosensor, sowie verfahren zu seiner herstellung

Info

Publication number
EP0830590A1
EP0830590A1 EP96915992A EP96915992A EP0830590A1 EP 0830590 A1 EP0830590 A1 EP 0830590A1 EP 96915992 A EP96915992 A EP 96915992A EP 96915992 A EP96915992 A EP 96915992A EP 0830590 A1 EP0830590 A1 EP 0830590A1
Authority
EP
European Patent Office
Prior art keywords
sensor
sensitive
microsensor
sensor membrane
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96915992A
Other languages
English (en)
French (fr)
Inventor
Michael Josef SCHÖNING
Willi Zander
Jürgen Schubert
Lutz Beckers
Axel Michael Schaub
Peter Kordos
Hans LÜTH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE1995120059 external-priority patent/DE19520059C1/de
Application filed by Forschungszentrum Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Publication of EP0830590A1 publication Critical patent/EP0830590A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/333Ion-selective electrodes or membranes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood

Definitions

  • pH-sensitive microsensor pH-sensitive microsensor and method for its production
  • the invention relates to a pH-sensitive microsensor based on silicon according to the preamble of claim 1. Furthermore, the invention relates to a method for its production according to the preamble of claim 4.
  • ISFET ion-sensitive field effect transistors
  • the basic structure of which corresponds to a conventional MOSFET instead of the metallic gate electrode, such a component has a combination of a sensitive layer (sensor membrane), electrolyte and reference electrode.
  • a sensitive layer sensor membrane
  • electrolyte electrolyte
  • reference electrode for example, C. Cui et al. , An experimental study of inorganic gate ISFETS, Sensors and Actuators B, 1 (1990), p. 421, instead of a complete ISFET also using capacitive field effect structures which correspond in structure to the gate area of an ISFET as pH sensors.
  • this sensor membrane consists, for example, of Si 3 N 4 , Ta 2 0 5 or also Al 2 0 3 .
  • the sensor membrane is formed, in particular when Al 2 0 3 is selected, by means of sputtering technology or chemical vapor deposition (CVD).
  • a disadvantage of the known microsensors containing such sensor membranes is the relatively high drift rates.
  • the object is achieved by a microsensor according to the entirety of the features according to claim 1.
  • the object is further achieved by a method according to the The entirety of the features according to claim 4. Further expedient or advantageous embodiments or variants can be found in the subclaims which refer back to one of these claims.
  • the characteristics with regard to the sensor properties for the sensor according to the invention are comparable or even better with the known sensors.
  • the drift rate of the sensor according to the invention is considerably reduced in comparison with the known sensors. While the sensors manufactured with sputter technology or CVD have a drift rate of at least 5 to 10 mV per day, as for example from IEEE Trans, on Electron Dev., Vol. Ed-26, No. 12, December 1979, p. 1939 ff., The sensor according to the invention shows a drift rate of, for example, only 1.0 mVolt per day or better.
  • the microsensor according to the invention can be used as a chemical pH sensor.
  • a biochemical sensor can also be formed on the basis thereof.
  • a biosensitive layer can be formed on the sensor membrane, for example from an enzyme.
  • the biosensitive sensor has the advantages mentioned above for the microsensor, in particular with regard to the lower drift rate.
  • the micro- or biosensor can optionally be re-annealed in an oxygen atmosphere during production after formation of the membrane.
  • Fig. 1 Micro or biosensor according to the invention
  • the micro or biosensor according to the invention is shown in FIG.
  • an insulating SiO 2 layer 2 (with a thickness in the range of 30-100 nm, for example) was successively placed on a substrate 1 made of p-doped silicon (with a concentration of, for example, 5 * 10 p / cm and a substrate thickness of 400 ⁇ m) ) and the sensor membrane 3 made of Al 2 0 3 and formed in this way.
  • layer 3 shown in FIG. 1 is to be understood as a sensor membrane with a biosensitive layer formed thereon from, for example, an enzyme.
  • An Ag-AgCl reference electrode 7 protruding into the electrolyte is connected via the voltage U bias and an alternating voltage U_ to an aluminum contact electrode 8 (with a layer thickness of 200 nm) located on the back of the substrate 1.
  • the thickness of the sensor membrane was selected in the range from 5 nm to 1000 nm, in particular in the range from 30 nm to 100 nm.
  • the insulating layer 2 for forming the sensor membrane can be coated by means of laser-induced evaporation of an Al 2 O 3 target by means of a KrF laser, for example.
  • the growth rate of the target material to form the membrane is in the range from 0.01 nm / s to 10 nm / s, in particular 1.0 nm / s.
  • the set oxygen partial pressure was selected in the range from 1 * 10 "4 mbar to 1 * 10 " 2 mbar.
  • the temperature on the substrate surface during the ablation was up to 1500 ° C., in particular in the range from 600 ° C. to 900 ° C., preferably 800 ° C.
  • the invention is not limited to the materials or dimensions mentioned here. Rather, other materials or dimensions are also conceivable and usable, depending on the required boundary conditions. Also it is conceivable to provide multiple systems with several sensitive layers 3, in particular sensor membranes and / or biosensitive layers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Die Erfindung betrifft einen pH-sensitiven Mikrosensor mit Sensormembran. Dabei ist die Sensormembran mit Hilfe der Laserablation gebildet. Sie kann aus Aluminiumoxid oder einem anderen Material durch Ablation hergestellt sein. Auf diese Weise wird ein Sensor mit sehr geringer Driftrate erhalten.

Description

B e s c h r e i b u n g
pH-sensitiver Mikrosensor, sowie Verfahren zu seiner Herstellung
Die Erfindung betrifft einen pH-sensitiven Mikrosensor auf Siliziumbasis gemäß dem Oberbegriff des Anspruchs 1. Desweiteren betrifft die Erfindung ein Verfahren zu seiner Herstellung gemäß dem Oberbegriff des Anspruchs 4.
Als Stand der Technik sind aus T. Matsuo et al. , Me- thods of ISFET fabrication, Sensors and Actuators 1 (1981) , S. 77, H. Abe et al . , ISFETs using inorganic gate thin fil s, IEEE Trans. Electron. Dev. Ed. 26, 12 (1979) , S.1939 oder L. Bousse et al. , Hysteresis in Al203-gate ISFETS, Sensors and Actuators B, 2 (1990) , S. 103, pH-sensitive Mikrosensoren auf Siliziumbasis bekannt.
Dabei handelt es sich um sog. Ionensensitive Feldef¬ fekttransistoren (ISFET) , die in ihrem Grundaufbau ei¬ nem herkömmlichen MOSFET entsprechen. Anstelle der me- tallischen Gateelektrode weist ein solches Bauelement eine Kombination aus sensitiver Schicht (Sensormembran) , Elektrolyt und Referenzelektrode auf. Weiterhin ist aus z.B. C. Cui et al. , An experimental study of inorganic gate ISFETS, Sensors and Actuators B, 1 (1990), S. 421 bekannt, anstelle eines kompletten ISFETs auch kapazitive Feldeffektstrukturen, die in ih¬ rem Aufbau dem Gatebereichs eines ISFETs entsprechen, als pH Sensoren einzusetzen.
Bei einem pH-sensitiven ISFET besteht diese Sensormem- bran z.B. aus Si3N4, Ta205 oder auch Al203. Die besten
Resultate bezüglich Sensitivität, Stabilität und Selek¬ tivität wurden für Ta205 und A1203 erzielt.
Die Sensormembran wird, insbesondere bei Wahl des Al203 mittels Sputtertechnologie oder Chemical Vapor Deposi¬ tion (CVD) gebildet.
Nachteilig bei den bekannten, solche Sensormembrane enthaltenden Mikrosensoren sind die relativ großen Driftraten.
Es ist deshalb Aufgabe der Erfindung einen Sensor zu schaffen, sowie ein Verfahren zur Herstellung eines solchen bereitzustellen, bei dem eine verbesserte, ver- ringerte Driftrate des Sensors erreicht wird.
Die Aufgabe wird gelöst durch einen Mikrosensor gemäß der Gesamtheit der Merkmale nach Anspruch 1. Die Aufga¬ be wird ferner gelöst durch ein Verfahren gemäß der Ge- samtheit der Merkmale nach Anspruch 4. Weitere zweckmä¬ ßige oder vorteilhafte Ausfuhrungsformen oder Varianten finden sich in den auf jeweils einen dieser Ansprüche rückbezogenen Unteransprüchen.
Es wurde erkannt, die Abscheidung von Al203 als pH- sensitive Schicht mittels Laserablation für kapazitive Feldeffektsensoren auf Halbleiterbasis einzusetzen. Der Vorteil der Laserablation liegt dabei sowohl in der einfachen Prozeßführung als auch in der gezielt stöchiometrischen Abscheidung von Mehrkomponentensyste¬ men. Dabei kann vorteilhafterweise gemäß Anspruch 2 bzw. 5 als Material Al203 Einsatz finden. Es sind je¬ doch auch andere Materialien zur Bildung der Membran vorstellbar.
Außerdem ist bei Verwendung der Laserablation gemäß An¬ spruch 1 bzw. 4 vorteilhaft, daß weder eine aufwendige UHV-Technologie wie beim Sputterprozeß, insbesondere lange Pumpzeiten und zudem nur geringe Aufwachsraten, noch die Zufuhr von speziellen Prozeßgasen (AlCl3, AlBr3, NO) und eine aufwendige Prozeßgasführung und - entsorgung wie bei der CVD-Abscheidung, erforderlich sind.
Der erfindungsgemäße Mikrosensor besitzt vorteilhafter- weise eine hohe Empfindlichkeit im Bereich von bei¬ spielsweise 56 mV/pH für Konzentrationsbereiche von pH=3 bis zu pH=10. Besonders vorteilhaft erweist sich der Mikrosensor hinsichtlich der Langzeitstabilität un¬ ter ständiger Elektrolytexposition. Sie beträgt bei¬ spielsweise mehr als sechs Monate. Dabei sind die Cha- rakteristika bzgl. der Sensoreigenschaften für den er- findungsgemäßen Sensor mit den bekannten Sensoren ver¬ gleichbar oder sogar besser.
Schließlich ist beim Einsatz von mit Hilfe der La¬ serablation gebildeten Sensormembranen beim erfindungs- gemäßen Mikrosensor in besonders vorteilhafter Weise die Driftrate des erfindungsgemäßen Sensors gegenüber den bekannten Sensoren erheblich reduziert. Während die mit Sputtertechnologie oder CVD hergestellten Sensoren einen Driftrate von wenigstens 5 bis 10 mV pro Tag auf- weisen, wie beispielsweise aus IEEE Trans, on Electron Dev., Vol. Ed-26, No. 12, December 1979, S. 1939 ff. bekannt, zeigt der erfindungsgemäße Sensor eine Drif¬ trate von beispielsweise nur 1,0 mVolt pro Tag oder besser.
Der erfindungsgemäße Mikrosensor kann als chemischer pH-Sensor eingesetzt werden. Auf seiner Basis kann aber auch ein biochemischer Sensor gemäß Anspruch 3 bzw. 6 gebildet werden. Dazu kann auf der Sensormembran eine biosensitive Schicht z.B. aus einem Enzym gebildet sein. Der biosensitive Sensor weist insofern die oben für den Mikrosensor genannten Vorteile, insbesondere hinsichtlich der niedrigeren Driftrate, auf. Zur weiteren Annährung an die ideale Stöchiometrie kann der Mikro- bzw. Biosensor bei der Herstellung nach Bil¬ dung der Membran in einer Sauerstoffatmosphäre gegebe¬ nenfalls nachgetempert werden.
Die Erfindung ist im weiteren an Hand von Figur und Ausführungsbeispiel näher erläutert. Es zeigt:
Fig. 1: Erfindungsgemäßer Mikro- bzw. Biosensor
Ausführungsbeispiel
In der Figur 1 ist der erfindungsgemäße Mikro- bzw. Biosensor dargestellt. Dazu wurde auf einem Substrat 1 aus p-dotiertem Silicium (mit einer Konzentration von beispielsweise 5*10 p/cm und einer Substratdicke von 400 μm) nacheinander eine isolierende Si02-Schicht 2 (mit einer Dicke beispielsweise im Bereich von 30-100 nm) und die Sensormembran 3 aus Al203 aufgebracht und auf diese Weise gebildet . Zur Ausbildung als Biosensor ist die in Figur 1 dargestellte Schicht 3 als eine Sen- sormembran mit darauf gebildeter, biosensitiver Schicht aus z.B. einem Enzym, zu verstehen.
Über der sensitiven Schicht 3 ist ein flüssiger Elek¬ trolyt (in Abhängigkeit der gewählten Pufferlösung im Bereich von beispielsweise pH=2 bis zu pH=ll gewählt) von einer Wandung 5 über O-Ringe zur Schicht flüssig¬ dicht abgedichtet angeordnet. Eine in den Elektrolyten hineinragende Ag-AgCl-Referenzelektrode 7 ist über die Spannung UBias und eine Wechselspannung U_ mit einer an der Rückseite des Substrats 1 befindlichen Aluminium- Kontaktelektrode 8 (mit einer Schichtdicke von 200 nm) verbunden.
Die Dicke der Sensormembran wurde im Bereich von 5 nm bis 1000 nm, insbesondere im Bereich von 30 nm bis zu 100 nm, gewählt.
Die Beschichtung der isolierenden Schicht 2 zur Bilde- ung der Sensormembran kann mittels laserinduzierten Verdampfens eines Al203-Targets durch beispielsweise einen KrF-Laser erfolgen. Die Aufwachsrate des Target- material zur Bildung der Membran liegt im Bereich von 0,01 nm/s bis zu 10 nm/s, insbesondere 1,0 nm/s . Der eingestellte Sauerstoffpartialdruck wurde im Bereich von 1*10"4 mBar bis zu 1*10"2 mBar gewählt. Die Tempera¬ tur an der Substratoberfläche während der Ablation be¬ trug bis zu 1500 °C, insbesondere im Bereich von 600 °C bis zu 900 °C, vorzugsweise 800 °C.
Die Erfindung beschränkt sich nicht auf die hier ge¬ nannten Materialien oder Abmessungen. Vielmehr sind auch andere Materialien oder Abmessungen denkbar und brauchbar, je nach geforderten Randbedingungen. Auch ist es vorstellbar, mehrfache Systeme mit mehreren sen¬ sitiven Schichten 3, insbesondere Sensormembranen und / oder biosensitive Schichten, vorzusehen.

Claims

Patentansprüche
1. pH-sensitiver Mikrosensor mit Sensormembran, gekennzeichnet durch eine mit Hilfe der Laserablation gebildete Sensormembran.
2. pH-sensitiver Mikrosensor nach Anspruch 1, gekennzeichnet durch Al203 als Material für die Sensormembran.
3. Biosensitiver Sensor mit einem Mikrosensor nach Anspruch 1 oder 2 mit einer auf der Sensormembran gebildeten, biosensitiven, insbesondere aus einem Enzym bestehenden Schicht.
4. Verfahren zur Herstellung eines pH-sensitiven Mikrosensors mit Sensormembran, dadurch gekennzeichnet , daß mit Hilfe eines Lasers Material aus einem Target herausgelöst und zur Bildung der Sensormembran auf einer Oberfläche abgeschieden wird.
5. Verfahren zur Herstellung eines pH-sensitiven Mikrosensors nach Anspruch 4, dadurch gekennzeichnet , daß als Material zur Bildung der Sensormembran Al203 gewählt wird.
6. Verfahren zur Herstellung eines biosensitiven Sensors mit einem pH-sensitiven Mikrosensor nach
Anspruch 4 oder 5, dadurch gekennzeichnet , daß auf der Sensormembran eine biosensitive Schicht gebildet wird.
7. Verfahren zur Herstellung eines pH-sensitiven Mikrosensors nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet , daß nach Bildung der Sensormembran diese in einer Sauerstoff- atmosphäre getempert wird.
EP96915992A 1995-06-06 1996-06-04 Ph-sensitiver mikrosensor, sowie verfahren zu seiner herstellung Withdrawn EP0830590A1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19520059 1995-06-06
DE1995120059 DE19520059C1 (de) 1995-06-06 1995-06-06 pH-sensitiver Mikrosensor, sowie Verfahren zu seiner Herstellung
DE29512999U DE29512999U1 (de) 1995-06-06 1995-08-12 pH-sensitiver Mikrosensor
DE29512999U 1995-08-12
PCT/DE1996/001021 WO1996039624A1 (de) 1995-06-06 1996-06-04 Ph-sensitiver mikrosensor, sowie verfahren zu seiner herstellung

Publications (1)

Publication Number Publication Date
EP0830590A1 true EP0830590A1 (de) 1998-03-25

Family

ID=26015652

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96915992A Withdrawn EP0830590A1 (de) 1995-06-06 1996-06-04 Ph-sensitiver mikrosensor, sowie verfahren zu seiner herstellung

Country Status (2)

Country Link
EP (1) EP0830590A1 (de)
WO (1) WO1996039624A1 (de)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2391467A1 (fr) * 1977-05-20 1978-12-15 Anvar Cellule de mesure pour microdosages, comprenant des electrodes a membranes enzymatiques
DK133280A (da) * 1980-03-27 1981-09-28 Radiometer As Elektrodeanordning
US5348776A (en) * 1991-04-23 1994-09-20 Osaka Gas Company Limited Method of producing interconnectors for solid oxide electrolyte fuel cells

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9639624A1 *

Also Published As

Publication number Publication date
WO1996039624A1 (de) 1996-12-12

Similar Documents

Publication Publication Date Title
EP1379862B1 (de) Messelektrodenpaar, biosensor mit einem solchen messelektrodenpaar und verfahren zur herstellung
DE102005004878A1 (de) Mikromechanisches Bauelement und entsprechendes Herstellungsverfahren
EP1144968B1 (de) Platintemperatursensor und herstellungsverfahren für denselben
DE19526691A1 (de) Verfahren zur Herstellung von Beschleunigungssensoren
DE69504342T2 (de) Aufbau und herstellungsverfahren eines kapazitiven sensors mit anodisch verbundener elektrode
WO2004079355A1 (de) Ionensensitiver feldeffekttransistor und verfahren zum herstellen eines ionensensitiven feldeffekttransistors
EP1436607B1 (de) Ionensensitiver feldeffekttransistor und verfahren zum herstellen eines ionensensitiven feldeffekttransistors
EP1016637A2 (de) Verfahren zur Herstellung eines mikrostrukturierten SiO2/TiO2-Schichtsystems
DE69418740T2 (de) Kapazitiver Absolutdrucksensor und Verfahren zur Herstellung einer Vielzahl solcher Sensoren
DE4041578C2 (de) Verfahren zur Herstellung eines Sensors zur Messung der Geschwindigkeit bzw. der Durchflußmenge eines strömenden Mediums
DE19544303A1 (de) Vorrichtung und Verfahren zur Steuerung der Selektivität von gassensitiven chemischen Verbindungen über exteren Potentiale
DE3520064A1 (de) Kapazitiver drucksensor, sowie verfahren zu seiner herstellung
WO1996039624A1 (de) Ph-sensitiver mikrosensor, sowie verfahren zu seiner herstellung
DE19520059C1 (de) pH-sensitiver Mikrosensor, sowie Verfahren zu seiner Herstellung
DE10014984A1 (de) Herstellungsverfahren für ein Dünnschicht-Bauelement, insbesondere einen Dünnschicht-Hochdrucksensor
AT2267U1 (de) Heissfilmanemometer sowie verfahren zu seiner herstellung
WO2008110244A2 (de) Isolatorschichtsystem für einen sensor und sensor mit einem solchen isolatorschichtsystem
DE102008043858A1 (de) Verfahren zur Passivierung eines Feldeffekttransistors
EP0366687A1 (de) Herstellung von inerten, katalytisch wirksamen oder gassensitiven keramikschichten für gassensoren
EP0381046A2 (de) Dünnschichtmaterial für Sensoren oder Aktuatoren und Verfahren zu deren Herstellung
DE19806211C2 (de) Sensor in Dünnfilmbauweise
EP1139085B1 (de) Herstellungsverfahren für ein Dünnschicht-Bauelement, insbesondere ein Dünnschicht-Hochdrucksensorelement
DE4115399C1 (en) Integrated circuit - having ion-sensitive liq. sensor and reference electrode having gold@ layer
WO2000022657A1 (de) Verfahren zur mikrostrukturierung von gläsern
DE3640952A1 (de) Substrat

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971208

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB LI NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FORSCHUNGSZENTRUM JUELICH GMBH

17Q First examination report despatched

Effective date: 20030304

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20050310