EP0829622B1 - Procédé et dispositif de controle d'un filtre à particules - Google Patents

Procédé et dispositif de controle d'un filtre à particules Download PDF

Info

Publication number
EP0829622B1
EP0829622B1 EP97402056A EP97402056A EP0829622B1 EP 0829622 B1 EP0829622 B1 EP 0829622B1 EP 97402056 A EP97402056 A EP 97402056A EP 97402056 A EP97402056 A EP 97402056A EP 0829622 B1 EP0829622 B1 EP 0829622B1
Authority
EP
European Patent Office
Prior art keywords
filter
exhaust
filtering means
zones
filtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97402056A
Other languages
German (de)
English (en)
Other versions
EP0829622A1 (fr
Inventor
Jean-Baptiste Dementhon
Brigitte Martin
Olivier Pajot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0829622A1 publication Critical patent/EP0829622A1/fr
Application granted granted Critical
Publication of EP0829622B1 publication Critical patent/EP0829622B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/031Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters having means for by-passing filters, e.g. when clogged or during cold engine start
    • F01N3/032Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters having means for by-passing filters, e.g. when clogged or during cold engine start during filter regeneration only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/011Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0235Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using exhaust gas throttling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/031Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters having means for by-passing filters, e.g. when clogged or during cold engine start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/14Exhaust treating devices having provisions not otherwise provided for for modifying or adapting flow area or back-pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2410/00By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
    • F01N2410/10By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device for reducing flow resistance, e.g. to obtain more engine power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2410/00By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
    • F01N2410/14By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device in case of excessive pressure, e.g. using a safety valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/04Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by adding non-fuel substances to combustion air or fuel, e.g. additives

Definitions

  • the present invention relates to the post-treatment of gases emitted at Diesel vehicle exhaust.
  • a known technique for exhaust gas post-treatment is the particles. It is thus possible to obtain filtration efficiencies greater than 80%.
  • Many filter technologies have been developed to date. As illustrative, may be cited the ceramic monolith marketed by the Company Corning, or the wound ceramic fiber cartridge as described in patent application WO-95 / 27,843.
  • Patent EP-B1-0,485,179 illustrates a system based on this principle.
  • the conditions for regeneration can be highly dependent on the fouling condition of the filter.
  • Known means do not allow to act on filter clogging.
  • the present invention allows to adapt the filtration phase to all the operating conditions of the vehicle. It also makes it possible to overcome the problems of the prior art mentioned above.
  • the present invention has the overall effect of better controlling the medium exhaust back pressure and therefore limit degradation of the performance engine.
  • the present invention makes it possible to minimize the contribution of energy necessary for the regeneration of said filter.
  • the present invention relates to a method of control of a particulate filter placed at the exhaust of a Diesel engine for a post-treatment of particles, requiring a minimum of energy.
  • said method consists in adapting the geometry a filter placed at the exhaust according to strategies predetermined conditions related to the operating conditions of said engine by adapting the volume of the filter in which the exhaust gases are filtered at the volume flow rate gases which enter the filtration means, so as to allow limitation the average exhaust back pressure and therefore the performance degradation engine.
  • the method consists in creating heterogeneities in the concentration of soot in different areas of the filtration.
  • the method can consist in reserving certain areas of the filtration means to certain types of soot.
  • a set of partitions is used intended to insulate the different zones constituting the filtration means.
  • the partitions can be provided with openings arranged so as to allow the propagation of combustion from one zone to another.
  • the method according to the invention can allow, when fouling of the filter exceeds a predetermined threshold causing heating gases necessary for regeneration.
  • the method consists in limiting temporarily the exhaust gas passage section in the means of filtration when the fouling of said means exceeds a determined threshold, in order to initiate regeneration by raising the gas temperature.
  • the device according to the invention can comprise a set of partitions intended to isolate the various zones constituting the filtration means.
  • said partitions may be provided with openings arranged in so as to allow the propagation of combustion from one zone to another.
  • control means reacts as a function of the pressure measured. upstream of the filtration means.
  • the device according to the invention comprises a sensor for temperature intended to evaluate the volume flow of gases from their flow Mass.
  • said control means makes it possible to determine the angle each winnowing means.
  • FIG. 1 is a diagram illustrating the means used according to the invention. These means essentially comprise a divided particle filter 1 in several zones 11, 12, 13. In each zone is arranged a filter element by example a filter cartridge 2.
  • a winnowing means 31, 32, 33 is associated with each sector.
  • the means of winnowing 31, 32, 33 are controlled by one or more actuators (4), so independent of each other, and according to predefined strategies.
  • a calculator 5 controls each actuator by calculating the position of each means of winnowing according to different parameters and according to different strategies.
  • the winnowing means 31, 32, 33 can be arranged upstream or in downstream of the filter relative to the direction of flow of the exhaust gases. They don't never close the entire filter passage section 1.
  • a set of partitions 6 as illustrated in FIG. 1 can be used for isolate the filtration zones 11, 12, 13 therebetween.
  • Such a device here divides the filter with particles 1 in three equal angular sectors, in each of which is arranged a filter element 2.
  • the partitions forming the assembly 6 can be provided openings to allow the spread of combustion inside the filter 1, when it has started locally in one of the filter elements 2.
  • the filter 1 is divided into three substantially equal sectors having the characteristics set out above.
  • the number and the arrangement of the partitions 6 can vary according to the type and size of the filter used.
  • the acquisition of the input data of the computer 5 is carried out by several sensors and in particular by at least one pressure sensor and at least one sensor upstream of the filter.
  • two sensors pressure are arranged on either side of the filter 1; a means of assessing the Mass flow of gases through the filter is also required.
  • Fig. 2 illustrates one of the control methods of the winnowing means associated with the filter. This is to enslave the winnowing means 31, 32, 33 to the flow volume of gas passing through filter 1, the volume flow being deduced from both the temperature upstream of the filter, and the mass flow.
  • the ordinate of the curves of fig. 2 gives (in%) the opening angle ⁇ of each of the three valves associated with each of the angular sectors described above.
  • the abscissa of the curves represents the volume flow rate Q, in m 3 / h, of the exhaust gases passing through the filter 1.
  • valve A is always open regardless of the flow rate; valve B opens gradually for average volume flows (between 200 and 400 m 3 / h). Valve B remains open for high flow rates. The third valve C only opens for high flow rates, that is to say beyond 500 m 3 / h.
  • the volume flow Q can be evaluated from the mass flow and a temperature measurement.
  • Mass flow can be obtained by direct measurement, by example using a hot film flow meter, or it can be inferred from a engine mapping.
  • the hot film flow meter can also be used to other specific engine control needs.
  • Gas temperature measurement is preferably carried out upstream of the filter.
  • Fig. 3 is a simplified flowchart showing the main functions of the computer 5.
  • the input data are the mass flow rate (in kg / h) and the temperature of the exhaust gases.
  • the computer determines the volume flow rate in (m 3 / h) of the exhaust gases. Based on preset strategies stored in said computer 5, the latter defines the respective positions of the different valves. Then it triggers the commands of the various actuators associated with the valves, so that they respond according to the curves in FIG. 2.
  • the strategy described in relation to figs. 2 and 3 can also allow the creation of a heterogeneity of fouling within the filter, during prolonged operation at low or partial engine load.
  • the study of spontaneous regeneration phenomena (especially in the presence of additives) shows that the creation of such heterogeneities can facilitate local lighting conditions which are dependent on the concentration of trapped material. Furthermore a stratification of the combustible material is favorable for good propagation of the combustion.
  • control of the distribution of fouling inside the filter can provide lower back pressures for a total mass of particles given.
  • valve opening strategy shows that if the engine operation continues at low load, cartridge A becomes clogged strongly while the other two B and C remain clean. In these conditions low speed and low torque (busy urban traffic), the stratification of fouling promotes regeneration if not difficult to reach due to low exhaust gas temperature. Even in the event of a heavy load (acceleration), the heterogeneity of fouling thus created results in more favorable regeneration conditions.
  • the present invention therefore allows to organize the fouling, to control it and consequently, to organize the filter regeneration.
  • Figs. 4A and 4B correspond to strategies which take into account the filter clogging level.
  • the opening thresholds of the different valves as a function of the gas flow rate also change as a function of the pressure measured upstream of the filter.
  • the openings of the valves B and C intervene for important volume flow rates for example beyond 400m 3 / h.
  • Fig. 5 gives a simplified flowchart of the operation of the computer 5.
  • the input data here are the mass flow, the temperature and the pressure measured at least upstream of filter 1.
  • the computer determines the gas volume flow exhaust. Then, taking into account the upstream pressure, the computer determines the level of fouling and calculates the position of the different flaps according to the curves of fig. 4A and 4B. It follows a command of the actuators associated with each of the components.
  • fouling represents the additional parameter which is taken into account here and which allows reach the curves according to fig. 4A and 4B.
  • Figs. 6A, 6B and 6C relate to another strategy for activating different flaps associated with the different zones forming the filter.
  • valve 2 can open fully and instantly as shown in fig. 6B, and the third valve can open gradually as shown in fig. 6C.
  • Another strategy for controlling the regeneration of particles deposited on the filter 1 can consist in carrying out a temporary winnowing of the whole of the filter. This leads to heating of the exhaust gases which itself allows trigger regeneration.
  • the strategy according to the invention consists in monitoring fouling of the filter via a measurement of the back pressure for example; then, when the latter reaches a certain threshold, to act on one or other of the valves 31, 32, 33, simultaneously or separately in order to limit the cross-section of the gas passage and thus causing their temperature to rise.
  • the computer 5 makes it possible to precisely determine the opening angle of each valve 31, 32, 33.
  • the winnowing strategy at a time given may be adapted to the level and distribution of fouling resulting from the application of the strategies described above, aimed in particular at maintaining the filter clogging conditions.
  • a direct advantage lies in obtaining a lower exhaust back pressure, which helps increase engine performance.
  • the present invention makes it possible to prepare a very efficient self-ignition.

Description

La présente invention concerne le post-traitement des gaz émis à l'échappement de véhicules Diesel.
Des normes sur les émissions de particules sont apparues récemment en Europe. Ces normes se sévériseront encore dans les prochaines années. A cet horizon, les améliorations liées aux moteurs et aux carburants peuvent être insuffisantes, même en présence d'un pot catalytique d'oxydation.
Une technique connue de post-traitement des gaz d'échappement est le filtre à particules. Il est ainsi possible d'obtenir des efficacités de filtration supérieures à 80%. De nombreuses technologies de filtre ont été développées à ce jour. A titre illustratif, peuvent être cités le monolithe céramique commercialisé par la Société Corning, ou encore la cartouche à fibres céramiques enroulées telle que décrite dans la demande de brevet WO-95/27.843.
La difficulté technique rencontrée pour le développement d'un tel système est que le filtre doit être périodiquement régénéré par combustion du dépôt de suies. Cette combustion se produit parfois naturellement lorsque la température des gaz atteint d'elle-même le niveau requis pour initier l'oxydation des particules. Cependant, les conditions de fonctionnement moyennes aboutissent généralement à des températures trop faibles pour initier spontanément la combustion des particules. Ceci conduit alors à un colmatage du filtre, ce qui est pénalisant pour le bon rendement du moteur. Il est alors nécessaire d'assurer artificiellement la régénération du filtre.
De nombreuses techniques ont été développées dans ce sens. Elles peuvent être essentiellement mécaniques, basées sur des modifications du fonctionnement moteur : vannage à l'admission, vannage à l'échappement, retard de l'avance à l'injection, ou encore apport local d'énergie dans les gaz d'échappement ou au niveau du filtre (résistance électrique, brûleur, micro-ondes...). Il est alors nécessaire de piloter ces différents dispositifs par une commande extérieure prise en charge par un calculateur. Le plus souvent, le critère retenu pour le déclenchement de la régénération est la contre-pression dans la ligne d'échappement.
Pour faciliter la régénération des filtres à particules, une approche différente, de nature chimique consiste à ajouter au carburant un additif par exemple organométallique, qui se retrouve dans le dépôt de suies ce qui conduit généralement à une baisse de la température d'allumage et donc à une augmentation de la fréquence de régénération.
Parmi les produits le plus fréquemment utilisé comme additifs, on peut citer le cuivre, le fer, le cérium, le sodium... . Des études montrent qu'en présence de tels additifs, des régénérations partielles peuvent survenir spontanément pour des températures de gaz d'échappement relativement faibles (~ 200 °C).
En outre, dans les systèmes connus, des problèmes liés à la contre-pression et/ou à l'énergie consommée sont souvent rencontrés.
En effet, l'accumulation de particules dans le filtre conduit à une augmentation parfois importante de la contre-pression et donc à une baisse du rendement moteur. A titre illustratif, peut être citée la demande de brevet WO-95/18.292.
En ce qui concerne la consommation d'énergie, la plupart des systèmes connus présentent un chauffage global de l'élément catalytique. Ceci entraíne une forte consommation d'énergie, plus ou moins maítrisée. Le brevet EP-B1-0.485.179 illustre un système basé sur ce principe.
Par ailleurs et comme cela est connu par les documents EP-A-0690210 et US 4502874, les conditions de la régénération peuvent être fortement dépendantes de l'état d'encrassement du filtre. Les moyens connus ne permettent pas d'agir sur l'encrassement du filtre. De façon avantageuse, la présente invention permet d'adapter la phase de filtration à toutes les conditions de fonctionnement du véhicule. Elle permet en outre de pallier les problèmes de l'art antérieur évoqués ci-avant.
Autrement dit, la présente invention a pour effet global de mieux maítriser la contre-pression moyenne à l'échappement et donc de limiter la dégradation du rendement-moteur. De plus, la présente invention permet de minimiser l'apport d'énergie nécessaire à la régénération dudit filtre.
Selon l'un de ses aspects, la présente invention concerne un procédé de contrôle d'un filtre à particules placé à l'échappement d'un moteur Diesel en vue d'un post-traitement des particules, nécessitant un minimum d'énergie.
Conformément à l'invention, ledit procédé consiste à adapter la géométrie d'un moyen de filtration placé à l'échappement en fonction de stratégies prédéterminées liées aux conditions de fonctionnement dudit moteur en adaptant le volume du filtre dans lequel les gaz d'échappement sont filtrés au débit volumique des gaz qui entrent dans le moyen de filtration, de manière à permettre la limitation de la contre-pression moyenne à l'échappement et donc la dégradation du rendement moteur.
Selon un autre mode de réalisation de l'invention, le procédé consiste à créer des hétérogénéités de la concentration des suies dans différentes zones du moyen de filtration.
Sans sortir du cadre de l'invention, le procédé peut consister à réserver certaines zones du moyen de filtration à certains types de suies.
Plus particulièrement, on utilise un ensemble de cloisons destinées à isoler les différentes zones constituant le moyen de filtration.
Avantageusement, les cloisons peuvent être munies d'ouvertures disposées de façon à permettre la propagation de la combustion d'une zone à l'autre.
Par ailleurs, le procédé selon l'invention peut permettre, lorsque l'encrassement du filtre dépasse un seuil prédéterminé de provoquer l'échauffement des gaz nécessaire à la régénération. En d'autres termes, le procédé consiste à limiter temporairement la section de passage des gaz d'échappement dans le moyen de filtration lorsque l'encrassement dudit moyen dépasse un seuil déterminé, afin de déclencher la régénération par élévation de la température des gaz.
L'invention a en outre pour objet un dispositif de contrôle de la filtration et de la régénération d'un filtre à particules comprenant :
  • un moyen de filtration divisé en au moins deux zones de filtration,
  • un moyen de vannage associé à l'une au moins desdites zones de filtration permettant de moduler la répartition de l'écoulement des gaz entre les différentes zones de filtration,
De façon particulière, il comprend en outre :
  • au moins un capteur de pression placé en amont du moyen de filtration,
  • au moins un moyen d'évaluation du débit volumique des gaz passant dans le moyen de filtration,
  • un moyen de commande du ou des moyens de vannage géré en fonction de stratégies prédéterminées liées aux conditions de fonctionnement du moteur et du débit volumique des gaz d'échappement qui entrent dans le moyen de filtration.
En option, le dispositif selon l'invention peut comprendre un ensemble de cloisons destinées à isoler les différentes zones constituant le moyen de filtration.
En outre, lesdites cloisons peuvent être munies d'ouvertures disposées de façon à permettre la propagation de la combustion d'une zone à l'autre.
Par ailleurs, le moyen de commande réagit en fonction de la pression mesurée en amont du moyen de filtration.
De façon particulière le dispositif selon l'invention comprend un capteur de température destiné à évaluer le débit volumique des gaz à partir de leur débit massique.
Avantageusement, ledit moyen de contrôle permet de déterminer l'angle d'ouverture de chaque moyen de vannage.
D'autres caractéristiques, avantages, détails de la présente invention apparaítront à la lecture de la description qui va suivre, faite à titre illustratif et nullement limitatif en relation avec les figures annexées sur lesquelles:
  • La fig. 1 est un schéma de principe du dispositif selon l'invention,
  • La fig. 2 montre des courbes illustrant l'asservissement des différentes vannes en fonction du débit volumique de gaz à l'échappement,
  • La fig. 3 est un organigramme simplifié permettant la mise en oeuvre de l'un des modes de réalisation de l'invention,
  • Les fig. 4A et 4B présentent des courbes illustrant l'asservissement des différentes vannes en fonction du débit volumique pour différents niveaux d'encrassement du filtre,
  • La fig. 5 est un organigramme simplifié permettant la mise en oeuvre du mode de réalisation de l'invention selon les fig. 4A et 4B,
  • Les fig. 6A, 6B, 6C sont des courbes montrant l'asservissement des différentes vannes en vue de créer une hétérogénéité en fonction de la nature des suies.
La figure 1 est un schéma illustrant les moyens mis en oeuvre selon l'invention. Ces moyens comprennent essentiellement un filtre à particules 1 divisé en plusieurs zones 11, 12, 13. Dans chaque zone est disposé un élément filtrant par exemple une cartouche filtrante 2.
Un moyen de vannage 31, 32, 33 est associé à chaque secteur. Les moyens de vannage 31, 32, 33 sont pilotés par un ou plusieurs actuateurs(s) 4, de façon indépendante les uns des autres, et selon des stratégies prédéfinies. A cet effet, un calculateur 5 contrôle chaque actuateur en calculant la position de chaque moyen de vannage en fonction de différents paramètres et selon différentes stratégies.
Les moyens de vannage 31, 32, 33 peuvent être disposés en amont ou en aval du filtre relativement au sens d'écoulement des gaz d'échappement. Ils ne ferment jamais la totalité de la section de passage du filtre 1.
Un ensemble de cloisons 6 tels qu'illustrées sur la fig. 1 peut être utilisé pour isoler les zones de filtration 11, 12, 13 entre elles. Un tel dispositif divise ici le filtre à particules 1 en trois secteurs angulaires égaux, dans chacun desquels est disposé un élément filtrant 2. Par ailleurs les cloisons formant l'ensemble 6 peuvent être munies d'ouvertures afin de permettre la propagation de la combustion à l'intérieur même du filtre 1, lorsque celle-ci a démarré localement dans l'un des éléments filtrants 2.
Il est supposé ici que le filtre 1 est divisé en trois secteurs sensiblement égaux présentant les caractéristiques énoncés ci-avant.
Bien entendu, le nombre et la disposition des cloisons 6 peuvent varier selon le type et la taille du filtre utilisé.
L'acquisition des données d'entrée du calculateur 5 est réalisée par plusieurs capteurs et notamment par au moins un capteur de pression et au moins un capteur de température placés en amont du filtre.
Par ailleurs, selon le présent mode de réalisation de l'invention deux capteurs de pression sont disposés de part et d'autre du filtre 1 ; un moyen d'évaluation du débit massique des gaz sur le filtre est en outre nécessaire.
La fig. 2 illustre l'une des stratégies de contrôle des moyens de vannage associés au filtre. Il s'agit ici d'asservir les moyens de vannage 31, 32, 33 au débit volumique de gaz passant dans le filtre 1, le débit volumique étant déduit à la fois de la température en amont du filtre, et du débit massique.
En modulant ainsi la vitesse des gaz dans le filtre 1, on cherche à améliorer la filtration (efficacité globale, dépôt en profondeur), ainsi que l'acoustique du système.
Le fait de pouvoir ainsi adapter le volume du filtre au volume de gaz qui le traverse permet de créer des conditions optimales de filtration ainsi qu'une contre-pression aussi limitée que possible.
Une stratégie possible d'ouverture/fermeture des différentes vannes est illustrée par la fig. 2.
L'ordonnée des courbes de la fig. 2 donne (en %) l'angle α d'ouverture de chacune des trois vannes associée à chacun des secteurs angulaires décrits ci-dessus.
L'abscisse des courbes représente le débit volumique Q, en m3/h, des gaz d'échappement passant à travers le filtre 1.
Le comportement de l'une des trois vannes est illustré par la courbe A en trait plein ; la deuxième vanne est actionnée selon la courbe B en pointillés tandis que la troisième vanne s'ouvre selon la courbe C en traits mixtes.
Selon la stratégie de la fig. 2, la vanne A est toujours ouverte quel que soit le débit ; la vanne B s'ouvre progressivement pour des débits volumiques moyens (compris entre 200 et 400 m3/h). La vanne B reste ouverte pour les forts débits. La troisième vanne C ne s'ouvre que pour des débits élevés, c'est-à-dire au-delà de 500 m3/h.
Ainsi le volume total de filtration vu par les gaz s'adapte progressivement au flux volumique des gaz.
Le débit volumique Q peut être évalué à partir du débit massique et d'une mesure de température. Le débit massique peut être obtenu par mesure directe, par exemple à l'aide d'un débitmètre à film chaud, ou bien il peut être déduit d'une cartographie moteur. Le débitmètre à film chaud peut par ailleurs être utilisé pour d'autres besoins spécifiques du contrôle moteur. La mesure de la température des gaz est préférentiellement réalisée en amont du filtre.
La fig. 3 est un organigramme simplifié qui reprend les principales fonctions du calculateur 5. Les données d'entrée sont le débit massique (en kg/h) et la température des gaz à l'échappement. A partir de ces données, le calculateur détermine le débit volumique en (m3/h) des gaz d'échappement. En fonction de stratégies préétablies et mémorisées dans ledit calculateur 5, celui-ci définit les positions respectives des différentes vannes. Puis il déclenche les commandes des différents actuateurs associés aux vannes, afin que celles-ci répondent selon les courbes de la fig. 2.
La stratégie décrite en relation avec les fig. 2 et 3 peut par ailleurs permettre la création d'une hétérogénéité d'encrassement au sein du filtre, lors de fonctionnement prolongé à charge faible ou partielle du moteur. L'étude des phénomènes de régénération spontanée (en particulier en présence d'additif) montre que la création de telles hétérogénéités peut faciliter les conditions d'allumage local qui sont dépendantes de la concentration de matière piégée. Par ailleurs une stratification de la matière combustible est favorable à une bonne propagation de la combustion.
En outre, la maítrise de la répartition de l'encrassement à l'intérieur du filtre peut permettre d'obtenir des contre-pressions plus faibles pour une masse totale de particules donnée.
La stratégie d'ouverture des vannes telle qu'exposée ci-avant montre que si le fonctionnement du moteur se prolonge à faible charge, la cartouche A s'encrasse fortement tandis que les deux autres B et C demeurent propres. Dans ces conditions de faible régime et faible couple (trafic urbain chargé), la stratification de l'encrassement favorise la régénération sinon difficile à atteindre en raison d'une température faible des gaz d'échappement. Même en cas de passage à forte charge (accélération), l'hétérogénéité d'encrassement ainsi créée se traduit par des conditions de régénération plus favorables. La présente invention permet donc d'organiser l'encrassement, de le maítriser et en conséquence, d'organiser la régénération du filtre.
Les fig. 4A et 4B correspondent à des stratégies qui tiennent compte du niveau d'encrassement du filtre.
Dans ce cas, les seuils d'ouverture des différentes vannes en fonction du débit volumique des gaz évoluent aussi en fonction de la pression mesurée en amont du filtre. Lorsque l'encrassement est faible (cas de la fig. 4A), les ouvertures des vannes B et C interviennent pour des débits volumiques importants par exemple au-delà de 400m3/h.
Lorsque l'encrassement devient important (fig. 4B), il est utile d'ouvrir les vannes B et C pour des débits volumiques de gaz plus faibles, afin d'éviter une contre-pression trop pénalisante, soit par exemple dès que le débit atteint 200m3/h.
La fig. 5 donne un organigramme simplifié du fonctionnement du calculateur 5. Les données d'entrée sont ici le débit massique, la température et la pression mesurée au moins en amont du filtre 1.
A partir de ces données, le calculateur détermine le débit volumique des gaz d'échappement. Puis, en tenant compte de la pression amont, le calculateur détermine le niveau d'encrassement et calcule la position des différents volets selon les courbes des fig. 4A et 4B. Il s'ensuit une commande des actuateurs associés à chacun des volets.
On remarque que tant que l'encrassement du filtre est faible (contre-pression faible) seule l'une des vannes est ouverte, les autres restant fermées et ne s'ouvrant qu'à l'approche des débits élevés : fig. 4A.
Lorsque le filtre est encrassé (fig. 4B) seule une vanne est ouverte à faible débit (faibles régimes) mais dès les régimes moyens, une deuxième vanne s'ouvre progressivement puis la troisième vanne s'ouvre à son tour, afin d'avoir une ouverture maximale pour les forts débits (fortes charges).
Vis-à-vis de la stratégie évoquée en relation avec la fig. 2, l'encrassement représente le paramètre supplémentaire qui est ici pris en compte et qui permet d'atteindre les courbes selon les fig. 4A et 4B.
Les fig. 6A, 6B et 6C concernent une autre stratégie d'activation des différents volets associés aux différentes zones formant le filtre.
Il s'agit ici de réserver une zone du filtre pour un dépôt de suie riche en hydrocarbures, ladite suie étant généralement produite à faible charge, et étant (de par sa nature) plus facile à brûler. Cette zone sera exclusivement encrassée au voisinage du ralenti. La superposition des fig. 6A, 6B et 6C montre que pour le ralenti (faibles débits) seule une vanne est ouverte, les autres étant fermées. Ainsi, de façon privilégiée, seule la zone du filtre 1 associée à la vanne ouverte s'encrasse au voisinage du ralenti.
A charge et régime partiels, afin de conserver à la suie piégée au ralenti ses propriétés favorables à l'initiation de la combustion, la zone en question est fermée tandis que le reste du filtre s'ouvre : la vanne 2 peut s'ouvrir totalement et instantanément comme indiqué sur la fig. 6B, et la troisième vanne peut s'ouvrir progressivement comme indiqué sur la fig. 6C.
Pour les forts régime et charge (forts débits volumiques), toutes les vannes sont ouvertes ; ceci permet d'une part de limiter la contre-pression à l'échappement et d'autre part de déclencher la régénération dans la cartouche encrassée à faible charge c'est-à-dire ayant une suie riche en hydrocarbures. Le déclenchement de la combustion dans cette zone spécifique peut par ailleurs aider à l'initiation de la postcombustion dans le reste du filtre. Cet effet sera renforcé si les cloisons du porte-filtre 6 présentent des ouvertures appropriées.
Cette stratégie permet donc de créer volontairement une hétérogénéité dans le filtre en fonction de la nature des suies. En relation avec cela, le filtre adapte sa géométrie au scénario de conduite. On note que la création d'une zone riche en hydrocarbures n'est opérée que lors d'un ralenti prolongé. En cas de conduite stabilisée sur autoroute, le filtre fonctionne de façon tout à fait normale.
Une autre stratégie de contrôle de la régénération de particules déposées sur le filtre 1 peut consister à réaliser un vannage temporaire de l'ensemble du filtre. Ceci entraíne un échauffement des gaz d'échappement qui lui-même permet de déclencher la régénération.
Plus précisément, la stratégie selon l'invention consiste à surveiller l'encrassement du filtre via une mesure de la contre-pression par exemple ; puis, lorsque celle-ci atteint un certain seuil, à agir sur l'une ou l'autre des vannes 31, 32, 33, simultanément ou séparément afin de limiter la section de passage des gaz et de provoquer ainsi l'élévation de leur température. Le calculateur 5 permet de déterminer précisément l'angle d'ouverture de chaque vanne 31, 32, 33.
De façon intéressante selon l'invention, la stratégie de vannage à un moment donné pourra être adaptée au niveau et à la répartition d'encrassement résultant de l'application de stratégies décrites ci-avant, visant notamment à maintenir les conditions d'encrassement du filtre. Un avantage direct réside dans l'obtention d'une contre-pression plus faible à l'échappement, ce qui contribue à augmenter les performances du moteur. Par ailleurs, la présente invention permet de préparer un auto-allumage très performant.

Claims (13)

  1. Procédé de contrôle d'un filtre à particules placé à l'échappement d'un moteur Diesel en vue d'un post traitement des particules, nécessitant un minimum d'énergie, ledit procédé consistant à adapter la géométrie d'un moyen de filtration (1) placé à l'échappement en fonction de stratégies prédéterminées liées aux conditions de fonctionnement dudit moteur en adaptant le volume dans lequel les gaz d'échappement sont filtrés au débit volumique des gaz qui entrent dans le moyen de filtration (1), de manière à permettre la limitation de la contre-pression moyenne à l'échappement et donc la dégradation du rendement moteur.
  2. Procédé selon la revendication 1, caractérisé en ce qu'il consiste à créer des hétérogénéités de la concentration des suies dans différentes zones du moyen de filtration (1).
  3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce qu'il consiste à réserver certaines zones du moyen de filtration (1) à certains types de suies.
  4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il consiste à réaliser un cloisonnement du moyen de filtration (1) pour isoler les différentes zones constituant ledit moyen de filtration.
  5. Procédé selon la revendication 4, caractérisé en ce qu'il consiste à réaliser un cloisonnement munie d'ouvertures disposées de façon à permettre la propagation de la combustion d'une zone à l'autre.
  6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il consiste à limiter temporairement la section de passage des gaz d'échappement dans le moyen de filtration lorsque l'encrassement dudit moyen dépasse un seuil prédéterminé, afin de déclencher la régénération par élévation de la température des gaz.
  7. Dispositif de contrôle de la régénération de particules susceptibles d'être déposées sur un moyen de filtration placé à l'échappement d'un moteur Diesel, comprenant :
    un moyen de filtration divisé en au moins deux zones de filtration (11, 12, 13),
    un moyen de vannage (31, 32, 33) associé à l'une au moins desdites zones de filtration permettant de moduler la répartition de l'écoulement des gaz entre les différentes zones de filtration,
    caractérisé en ce qu'il comprend en outre :
    au moins un capteur de pression placé en amont du moyen de filtration (1),
    au moins un moyen d'évaluation du débit volumique des gaz passant dans le moyen de filtration (1),
    un moyen de commande (5) du ou des moyens de vannage (31, 32, 33) géré en fonction de stratégies prédéterminées liées aux conditions de fonctionnement du moteur et du débit volumique des gaz d'échappement qui entrent dans le moyen de filtration (1).
  8. Dispositif de contrôle selon la revendication 7, caractérisé en ce qu'il comprend en outre un ensemble de cloisons (6) destinées à isoler les différentes zones (11, 12, 13) constituant le moyen de filtration.
  9. Dispositif de contrôle selon la revendication 8, caractérisé en ce que lesdites cloisons (6) sont munies d'ouvertures disposées de façon à permettre la propagation de la combustion d'une zone à l'autre.
  10. Dispositif selon l'une quelconque des revendications 7 à 9, caractérisé en ce que ledit moyen de commande (5) réagit en outre en fonction de la pression mesurée en amont dudit moyen de filtration (1).
  11. Dispositif selon l'une quelconque des revendications 7 à 10, caractérisé en ce qu'il comprend en outre un capteur de température destiné à évaluer le débit volumique des gaz à partir de leur débit massique.
  12. Dispositif selon l'une quelconque des revendications 7 à 11, caractérisé en ce que ledit moyen de contrôle (5) permet de déterminer l'angle d'ouverture de chaque moyen de vannage (31, 32, 33).
  13. Dispositif selon la revendication 12, caractérisé en ce qu'un moyen de vannage (31, 32, 33) est associé à chacune desdites zones (11, 12, 13).
EP97402056A 1996-09-13 1997-09-03 Procédé et dispositif de controle d'un filtre à particules Expired - Lifetime EP0829622B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9611292A FR2753393B1 (fr) 1996-09-13 1996-09-13 Procede et dispositif de controle d'un filtre a particules
FR9611292 1996-09-13

Publications (2)

Publication Number Publication Date
EP0829622A1 EP0829622A1 (fr) 1998-03-18
EP0829622B1 true EP0829622B1 (fr) 2002-12-11

Family

ID=9495789

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97402056A Expired - Lifetime EP0829622B1 (fr) 1996-09-13 1997-09-03 Procédé et dispositif de controle d'un filtre à particules

Country Status (7)

Country Link
US (1) US5956944A (fr)
EP (1) EP0829622B1 (fr)
JP (1) JP4008075B2 (fr)
AT (1) ATE229613T1 (fr)
DE (1) DE69717743T2 (fr)
ES (1) ES2188878T3 (fr)
FR (1) FR2753393B1 (fr)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2778118B1 (fr) * 1998-04-29 2000-06-02 Inst Francais Du Petrole Procede et dispositif de regeneration locale et controlee d'un filtre a particules
US6233926B1 (en) * 2000-03-01 2001-05-22 Illinois Valley Holding Company Apparatus and method for filtering particulate in an exhaust trap
US6572357B2 (en) 2001-02-27 2003-06-03 Illinois Valley Holding Comany Apparatus for manufacturing monolithic cross flow particulate traps
DE10211565A1 (de) * 2002-03-15 2003-10-09 Eberspaecher J Gmbh & Co Abgasanlage mit Partikelfilter für Dieselmotoren
US7269942B2 (en) * 2003-05-15 2007-09-18 Illinois Valley Holding Company Wall flow particulate trap system
CA2527006A1 (fr) * 2003-06-18 2004-12-29 Johnson Matthey Public Limited Company Procedes de commande d'ajout de reducteur
GB0428291D0 (en) * 2004-12-24 2005-01-26 Johnson Matthey Plc Methods of regenerating NOx-Absorbent
GB0428289D0 (en) * 2004-12-24 2005-01-26 Johnson Matthey Plc Reductant addition in exhaust system comprising NOx-absorbent
JP4400356B2 (ja) * 2004-07-22 2010-01-20 株式会社デンソー 内燃機関の排気浄化装置
FR2879654B1 (fr) 2004-12-20 2010-04-30 Inst Francais Du Petrole Procede de regeneration de filtre a particules avec dispositif a combustion catalytique et installation de filtration utilisant un tel procede
US7441403B2 (en) * 2004-12-20 2008-10-28 Detroit Diesel Corporation Method and system for determining temperature set points in systems having particulate filters with regeneration capabilities
US7210286B2 (en) * 2004-12-20 2007-05-01 Detroit Diesel Corporation Method and system for controlling fuel included within exhaust gases to facilitate regeneration of a particulate filter
US7461504B2 (en) * 2004-12-21 2008-12-09 Detroit Diesel Corporation Method and system for controlling temperatures of exhaust gases emitted from internal combustion engine to facilitate regeneration of a particulate filter
US7434388B2 (en) 2004-12-22 2008-10-14 Detroit Diesel Corporation Method and system for regeneration of a particulate filter
US7076945B2 (en) 2004-12-22 2006-07-18 Detroit Diesel Corporation Method and system for controlling temperatures of exhaust gases emitted from an internal combustion engine to facilitate regeneration of a particulate filter
US20060130465A1 (en) * 2004-12-22 2006-06-22 Detroit Diesel Corporation Method and system for controlling exhaust gases emitted from an internal combustion engine
FR2880914B1 (fr) * 2005-01-14 2007-04-06 Peugeot Citroen Automobiles Sa Ligne d'echappement pour moteur de vehicule automobile
DE102005038707A1 (de) * 2005-08-15 2007-03-08 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren und Vorrichtung zur Aufbereitung eines Abgases einer Verbrennungskraftmaschine
US7458207B2 (en) * 2005-10-07 2008-12-02 International Truck Intellectual Property Company, Llc Diesel vehicle exhaust aftertreatment apparatus and method
JP2009052440A (ja) * 2007-08-24 2009-03-12 Hitachi Plant Technologies Ltd 舶用排ガス処理装置
US8007555B2 (en) * 2008-03-30 2011-08-30 Lack Nicholas L Filter with multiple sections of different media
FR2944555A1 (fr) * 2009-04-16 2010-10-22 Peugeot Citroen Automobiles Sa Filtre a particules equipant une ligne d'echappement d'un moteur a combustion interne d'un vehicule automobile
EP2392790B1 (fr) * 2010-06-07 2019-12-25 Illinois Valley Holding Company Système et procédé pour piège à particules
GB2511772B (en) * 2013-03-12 2019-01-30 Ceramex Ltd Testing catalytic efficiency of an exhaust component

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4502874A (en) * 1982-10-08 1985-03-05 Pneumafil Corporation Continuous filtration
DE69502344T2 (de) * 1994-05-17 1998-11-19 Isuzu Ceramics Res Inst Dieselpartikelfilter
EP0684062A1 (fr) * 1994-05-24 1995-11-29 Isuzu Ceramics Research Institute Co., Ltd. Filtre à particules pour moteurs diesel
US5582002A (en) * 1994-06-29 1996-12-10 Pattas; Konstantin Method of and an apparatus for controlled regeneration of a diesel soot filter

Also Published As

Publication number Publication date
FR2753393B1 (fr) 1998-10-30
ES2188878T3 (es) 2003-07-01
JPH1089049A (ja) 1998-04-07
JP4008075B2 (ja) 2007-11-14
ATE229613T1 (de) 2002-12-15
US5956944A (en) 1999-09-28
DE69717743D1 (de) 2003-01-23
DE69717743T2 (de) 2003-05-28
EP0829622A1 (fr) 1998-03-18
FR2753393A1 (fr) 1998-03-20

Similar Documents

Publication Publication Date Title
EP0829622B1 (fr) Procédé et dispositif de controle d'un filtre à particules
EP1171696B1 (fr) Controle de la combustion en regenerant un filtre de particules
EP0841475B1 (fr) Procédé et unité de filtration de gaz d'échappement ayant un chauffage modulable
FR2778118A1 (fr) Procede et dispositif de regeneration locale et controlee d'un filtre a particules
FR2850704A1 (fr) Procede de post-injection de gazole pour la regeneration de systemes de filtration des gaz d'echappement de moteur diesel
FR2974147A1 (fr) Procede et dispositif de regeneration d'un filtre a particules dans systeme de gaz d'echappement a structure en y
EP2430294A1 (fr) Circuit de traitement et d'evacuation des gaz d'echappement d'un moteur a combustion a allumage commande
EP1281843A2 (fr) Procédé de détermination du chargement d'un filtre à particules
EP2076659B1 (fr) Ligne d'echappement munie d'un injecteur de carburant et de moyens d'homogeneisation des gaz brules
EP1201888B1 (fr) Procédé et système pour controler la température de régénération d'un filtre à particules placé à l'échappement d'un moteur thermique
FR2805347A1 (fr) Dispositif pour controler le debit de particules conductrices dans un flux de gaz
EP1807610B1 (fr) Système d'aide à la régénération de moyens de dépollution pour moteur de véhicule automobile
WO2008037902A1 (fr) Dispositif de commande d'un ensemble moteur a moteur diesel permettant une strategie de regeneration du filtre a particules amelioree
EP3685031B1 (fr) Procede de regeneration d'un filtre a particules de moteur thermique
FR2929326A1 (fr) Dispositif et procede de vaporisation de carburant pour la regeneration d'un filtre a particules
FR2944555A1 (fr) Filtre a particules equipant une ligne d'echappement d'un moteur a combustion interne d'un vehicule automobile
FR2801636A1 (fr) Procede de regeneration d'un filtre a particules
FR2846049A1 (fr) Procede de regeneration d'un filtre a particules et dispositif de mise en oeuvre
FR2870566A1 (fr) Dispositif et procede de traitement des gaz d'echappement d'un moteur a combustion interne suralimente en vue de leur depollution
EP1418324A2 (fr) Procédé de régénération d'un filtre à particules et dispositif de mise en oeuvre
FR3085997A1 (fr) Procede d'utilisation d'une cartographie de la qualite d'une regeneration d'un filtre a particules
FR3079554A1 (fr) Procede de recalage d'un estimateur de chargement en suies d'un filtre a particules de moteur thermique
FR2879245A1 (fr) Dispositif de determination de la masse instantanee de particules retenues par un filtre a particules et utilisation du dispositif.
FR2808840A1 (fr) Procede de determination du point de montage d'un precatalyseur dans la tubulure d'echappement d'un moteur a combustion interne et installation d'epuration l'utilisant
FR2927656A3 (fr) Dispositif et procede de regeneration d'un filtre a particules

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES GB GR IT LI NL SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;RO;SI

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: PAJOT, OLIVIER

Inventor name: MARTIN, BRIGITTE

Inventor name: DEMENTHON, JEAN-BAPTISTE

17P Request for examination filed

Effective date: 19980918

AKX Designation fees paid

Free format text: AT BE CH DE ES GB GR IT LI NL SE

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE ES GB GR IT LI NL SE

17Q First examination report despatched

Effective date: 20010129

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES GB GR IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021211

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021211

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021211

REF Corresponds to:

Ref document number: 229613

Country of ref document: AT

Date of ref document: 20021215

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69717743

Country of ref document: DE

Date of ref document: 20030123

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030204

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2188878

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030912

BERE Be: lapsed

Owner name: INSTITUT FRANCAIS DU *PETROLE

Effective date: 20030930

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101025

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 69717743

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, HAUTS-DE-SEINE, FR

Effective date: 20110331

Ref country code: DE

Ref legal event code: R081

Ref document number: 69717743

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, FR

Effective date: 20110331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110920

Year of fee payment: 15

Ref country code: ES

Payment date: 20110926

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110921

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120903

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69717743

Country of ref document: DE

Effective date: 20130403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120903

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120903

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20131022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120904