EP0820210A2 - Verfahren zur elektronischen Strahlformung von akustischen Signalen und akustisches Sensorgerät - Google Patents

Verfahren zur elektronischen Strahlformung von akustischen Signalen und akustisches Sensorgerät Download PDF

Info

Publication number
EP0820210A2
EP0820210A2 EP97114413A EP97114413A EP0820210A2 EP 0820210 A2 EP0820210 A2 EP 0820210A2 EP 97114413 A EP97114413 A EP 97114413A EP 97114413 A EP97114413 A EP 97114413A EP 0820210 A2 EP0820210 A2 EP 0820210A2
Authority
EP
European Patent Office
Prior art keywords
signal
output
unit
transducers
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97114413A
Other languages
English (en)
French (fr)
Other versions
EP0820210A3 (de
Inventor
Joseph Malsano
Werner Hottinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sonova Holding AG
Original Assignee
Phonak AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phonak AG filed Critical Phonak AG
Priority to EP97114413A priority Critical patent/EP0820210A3/de
Publication of EP0820210A2 publication Critical patent/EP0820210A2/de
Publication of EP0820210A3 publication Critical patent/EP0820210A3/de
Priority to TR2000/00457T priority patent/TR200000457T2/xx
Priority to IL13443598A priority patent/IL134435A/en
Priority to DE69803933T priority patent/DE69803933T2/de
Priority to CN98808321A priority patent/CN1267445A/zh
Priority to JP2000510313A priority patent/JP2001516196A/ja
Priority to AT98922985T priority patent/ATE213581T1/de
Priority to AU75441/98A priority patent/AU746584B2/en
Priority to CA002301216A priority patent/CA2301216C/en
Priority to EP98922985A priority patent/EP1005783B1/de
Priority to DK98922985T priority patent/DK1005783T3/da
Priority to RU2000106528/28A priority patent/RU2185710C2/ru
Priority to NZ502883A priority patent/NZ502883A/xx
Priority to KR1020007001695A priority patent/KR20010023076A/ko
Priority to PCT/IB1998/000889 priority patent/WO1999009786A1/en
Priority to US09/168,184 priority patent/US6603861B1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/40Arrangements for obtaining a desired directivity characteristic
    • H04R25/407Circuits for combining signals of a plurality of transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/50Customised settings for obtaining desired overall acoustical characteristics
    • H04R25/505Customised settings for obtaining desired overall acoustical characteristics using digital signal processing

Definitions

  • the present invention is generically directed on a technique for so-called "beam forming" on acoustical signals.
  • the amplitude of the resulting signal A r is proportional to the sine of the signal frequency ⁇ and to the distance p.
  • f r becomes approx. 7 kHz.
  • Such techniques for beam forming are well-known and have been realised using analogue signal processing, as e.g. shown in the US-A-2 237 298, US-A-4 544 927, US-A-4 703 506, US-A-5 506 908 or using digital signal processing, both in time or in frequency domain, as shown in the EP-A-0 381 498 (time domain) or in the US-A-5 581 620 (frequency domain).
  • the disclosed apparatus is bulky (>> 5 cm), so that it may not be implemented for one ear hearing aid.
  • Two equal beam lobes are generated in target and in opposing directions.
  • the US-A-4 653 102 proposes the use of two directional microphones aimed in target direction and of a third microphone aimed in opposite direction.
  • the signal of the third microphone supposedly only containing noise is used to shape the response of the two primary microphones.
  • This technique obviously has the drawback within reverberating rooms, where the desired signal is reflected on walls, floor, ceiling and furniture and is therefore considered as noise by the system.
  • This technique is further unhandy as making use of at least three microphones.
  • the preferred apparatus according to the present invention is a hearing aid apparatus, and especially a one ear hearing aid apparatus.
  • Still a further object of the present invention is to provide such method and apparatus which allow high signal to noise ratio realisation without unwanted side-lobes and with easily variable beam form, e.g. for acoustical zooming.
  • the inventive method comprises the steps of repetitively determining from signals dependent from the acoustical signals a respective mutual delay signal according to reception delay at the at least two transducers; subjecting a signal dependent from the output signal of at least one of the at least two transducers to filtering with a filtering transfer characteristic; and of controlling the filtering transfer characteristic in dependency of the mutual delay signal; further exploiting a signal dependent from the output signal of the filtering as electrical reception signal.
  • the inventive acoustical sensor apparatus comprises at least two acoustical/electrical transducers, arranged at a predetermined mutual distance in target direction, a time delay detection unit, which has at least two inputs and an output, the inputs thereof being respectively operationally connected to the outputs of the two transducers, whereby the time delay detection unit generates an output signal in dependency of the time delay of acoustical signals, impinging on the at least two spaced apart transducers, preferably a time domain to frequency domain converter unit generating the output signal of said time delay detection unit in frequency domain; a weighing unit with a predetermined weighing characteristic and with an input and with an output, whereby the input thereof is operationally connected to the output of the time delay detection unit and preferably receiving the signal at said output of said time delay detection unit in frequency domain mode; with a filter unit with a controllable transfer characteristic, which has at least one input, a control input and an output and whereat the input is operationally connected to at least one of the
  • At least two acoustical/electrical transducers 1 and 2 are provided with a predetermined mutual distance p along axis a. Acoustical signals IN are received by the transducers 1 and 2 as they impinge from different spatial directions ⁇ . The acoustical signals IN have frequency spectra which vary in time. Output signals of transducer 1, S 1 (t, ⁇ ) and of transducer 2, S 2 (t, ⁇ ), are formed as electrical signals at the output of the transducers 1 and 2.
  • the time delay dt ⁇ becomes equal for all spectral components at the different ⁇ .
  • the output signals S 1 and S 2 of the transducers 1 and 2 are operationally connected to the respective inputs of a time delay detection unit 10, which generates an output signal A 10 according to the spectral distribution of time delays dt ⁇ , which are, as was explained, a function of the impinging angle ⁇ at which the respective frequency components impinge on the transducers 1 and 2 and thus in fact of ⁇ ⁇ .
  • a possible spectrum of output signal A 10 is also shown in fig. 6. This spectrum varies in time according to the time variation of impinging acoustical signal IN.
  • the output signal A 10 of time delay detection unit 10 is input to a weighing unit 12.
  • a weighing unit 12 As the spectrum of dt ⁇ with respective spectral amplitudes of A 10 is input to the weighing unit 12 with the preselected weighing transfer characteristic W, there results at a certain moment in time, as an output signal A 12 , a spectral signal W( ⁇ ), as also shown as an example in fig. 6.
  • a 12 results from respectively weighing the spectral amplitudes of A 10 according to the characteristic W.
  • the weighing unit 12 determines with its characteristic W the beam shape.
  • the output signal A 12 is applied to a filter unit 14 with a controllable transfer filter characteristic.
  • each spectral line of the time varying spectrum of the output signal S 1 (t, ⁇ ) is amplified or attenuated according to the controlling spectrum W ⁇ ⁇ A 10 ⁇ .
  • unit 14 is a filter unit for input signal S 1 at which the transfer characteristic is varied, as controlled by A 12 .
  • the weighing unit 12 In dependency of the kind of filter unit 14 the weighing unit 12, generally spoken, calculates adjustment of filter characteristic determining coefficients as a function of A 10 .
  • the beam form can be adjusted and thus acoustical zooming is realised.
  • both transducer output signals may be advantageous to subject both transducer output signals to a controlled filtering at unit 14.
  • fig. 7 there is shown a first preferred form of realisation of the inventive principle according to fig. 6.
  • the output signals S 1 and S 2 are first converted from analogue to digital form in respective analogue/digital converters 16 and 17.
  • the digital output signals of the respective converters 16 and 17 are input to respective complex time domain/frequency domain converters 18 and 19.
  • the output spectra S 1 (t, ⁇ ) and S 2 (t, ⁇ ) of converters 18, 19 are input to the spectral time delay detection unit 10'.
  • Unit 10' computes according to formula (1) the phase difference spectrum ⁇ ⁇ divided by the respective frequency ⁇ to result in an output signal spectrum A 10 ' according to the time delay dt ⁇ as was explained in connection with fig. 6.
  • the output signal of the time delay detection unit 10', A 10 ' is further treated, as was explained in connection with fig. 6, by the weighing filter unit 12 and the controllable filter unit 14. In the following table there is exemplified how the unit 10' operates.
  • the time domain to frequency domain conversion units 18 and 19 perform complex (real and imaginary) operation.
  • a second preferred realisation form of the present invention and especially as concerns realisation of the time delay detection unit 10, shall be explained with the help of fig. 8 and 9.
  • the output signal of one of the transducers, as shown e.g. of transducer 1, S 1 (t, ⁇ ) is fed to a time delay unit 20, wherein, in a first form of this realisation, signal S 1 is time delayed by a predetermined frequency independent time delay ⁇ .
  • the output signal of time delay unit 20 thus accords with signal A 1 ' of fig. 1.
  • the time delay signal according to A 1 ' is superimposed to the output signal S 2 (t, ⁇ ) from transducer 2 at a superimposing unit 23 according to unit 3 of fig. 1, thus resulting in an output signal according to A r (t, ⁇ ) of fig. 1.
  • the output signal A r (t, ⁇ ) depends from the impinging acoustical signal direction ⁇ according to the first order cardoid beam of fig. 2, which cardoid function nevertheless varies with frequency ⁇ .
  • the output signal A r of superimposing unit 23 and e.g. the output signal S 2 (t, ⁇ ) from transducer 2 are input to a ratio unit 25, as a comparator unit.
  • fig. 9 the cardoid attenuation characteristic of output signal A r at a specific spectral frequency ⁇ 1 is shown.
  • the output signal A r of superimposing unit 23 is A ro ( ⁇ 1 ) with an amplitude value as indicated in fig. 9.
  • the amplitude of signal S 2 is A 2o ( ⁇ 1 ) as also shown in fig. 9. It must be emphasised that as the amplitude A 2o varies, the amplitude of A ro varies proportionally.
  • the ratio of A ro to A 20 according to fig. 9 is indicative of the impinging angle ⁇ o .
  • the division unit 25 of fig. 8 there is formed for each spectral component amplitude the ratio of A r to A r , wherefrom there results a signal spectrum at the output of division unit 25 with a ratio spectrum.
  • the spectrum of A 10 according to fig. 6 thus becomes the spectrum of an amplitude ratio which nevertheless is indicative of the impinging angle ⁇ , at which each frequency component of the spectrum of the acoustical signal impinges with respect to the axis a of the two transducers (see fig. 6).
  • the dotted line block indicates the delay detection unit 10 according to fig. 6. Further signal processing is performed as was explained by means of fig. 6, i.e. via weighing unit 12 and controllable filter unit 14.
  • the output ratio signal of unit 25 is a measure for the time delay dt ⁇ and is input to the weighing unit 12.
  • the cardoid function as shown in the figures 2, 9 and 11 is only valid for one specific frequency considered.
  • the outputs of the transducers 1 and 2 are converted into digital form by respective analogue to digital converters 16, 17 and the resulting digital signal of transducer 1 is time delayed by a time delay ⁇ ', which is larger than p/c.
  • the output signal S 2 of transducer 2 is further converted into frequency domain by a linear (not complex) time to frequency domain conversion unit 18', whereas the output signal A r of superimposing unit 23 is converted to frequency domain at a linear time to frequency domain conversion unit 19'.
  • the frequency dependent polar diagram according to fig. 13 is taken into account by a normaliser unit 30 which is in fact a filter.
  • the transfer characteristic of the filter is selected proportional to 1/ ⁇ . This results in a frequency dependency of the pole diagram as is shown in fig. 15 for the same distance and frequency values as shown in fig. 13.
  • a further, even improved normalisation function or filter characteristic at unit 30 of fig. 14 is achieved when the filter characteristic is selected as a function 1/sin( ⁇ ). The result is shown in fig. 16. The characteristics match well from 0.5 to 4 kHz.
  • a further advantage of this normalisation technique is improved sensitivity in backwards direction. This improved sensitivity may be exploited for adaptive beam forming, that is for selectively eliminating noise sources from the rear side.
  • Fig. 24 shows in block diagram form, that the signal A 10 (dt ⁇ ) may also be generated as the output signal of a comparator unit 60 to which on one hand the output signal of an omnidirectional transducer 61, having equal amplification of its acoustical/electrical reception characteristic substantially irrespective of the impinging angle ⁇ and the output signal of a directional transducer 62 with selected, beam shaped reception characteristic are led to.
  • time delaying ⁇ may also be performed by one of the transducers itself.
  • the output signals of the transducers 1 and 2 are first converted by respective analogue to digital converters 16 and 17 and then by respective time domain to frequency domain converters 18, 19 finally into frequency domain.
  • One signal, as an example S 2 of the converted output signals of the transducers, which, after time to frequency domain conversion may be represented as a spectrum of S 2 ⁇ pointers, is converted to its conjugate complex pointers at a conversion unit 50.
  • the conjugate complex pointers S* 2 ⁇ are generated.
  • This spectrum S 2 * and the pointer spectrum S 1 are multiplied to form the scalar product spectrum S 3 in a multiplication unit 52.
  • the pointers S 3 ⁇ of spectrum S 3 have a phase angle with respect to the real axis, which is ⁇ ⁇ .
  • a conversion unit 53 forms the imaginary part of the pointers S 3 ⁇ and a further unit 54 forms the amplitudes
  • All the units 50, 52, 53, 54, 55 and 56 are preferably realised in one calculator unit.
  • each dt ⁇ spectral line amplitude of signal A 10 (see fig. 6) is attenuated to zero, if such amplitude is below or above predetermined values dt min, ⁇ , dt mas, ⁇ and is set to be "one" if such spectral component amplitude is between these two values.
  • Such selection of weighing function W results in an output signal spectrum A 12 , as shown in the figures 18a and 18b.
  • Fig. 19 shows a spectrum example of signal S 1 .
  • All spectral lines of S 1 (Fig. b) are amplified by the value 1 according to A 12 or are nullified according to zero values of A 12 .
  • the weighing function I of fig. 17 is applied to the technique according to fig. 7 there results a beam form as shown in fig. 21 in strong lines.
  • If an amplitude filter characteristic is applied as shown by II in fig. 17, there results the characteristic as shown in fig. 21 in dashed line.
  • Fig. 22 shows the resulting beam if in analogy to fig. 17 and with an eye on figures 8 and 9 all ratio values which exceed (A r /A 2 )max are discarded. This is realised by the amplitude filter characteristic as also indicated in Fig. 22.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Otolaryngology (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
EP97114413A 1997-08-20 1997-08-20 Verfahren zur elektronischen Strahlformung von akustischen Signalen und akustisches Sensorgerät Withdrawn EP0820210A3 (de)

Priority Applications (16)

Application Number Priority Date Filing Date Title
EP97114413A EP0820210A3 (de) 1997-08-20 1997-08-20 Verfahren zur elektronischen Strahlformung von akustischen Signalen und akustisches Sensorgerät
KR1020007001695A KR20010023076A (ko) 1997-08-20 1998-06-08 음향 신호를 전자적으로 비임 형성하는 방법 및 음향 센서장치
PCT/IB1998/000889 WO1999009786A1 (en) 1997-08-20 1998-06-08 A method for electronically beam forming acoustical signals and acoustical sensor apparatus
AU75441/98A AU746584B2 (en) 1997-08-20 1998-06-08 A method for electronically beam forming acoustical signals and acoustical sensor apparatus
CA002301216A CA2301216C (en) 1997-08-20 1998-06-08 A method for electronically beam forming acoustical signals and acoustical sensor apparatus
DE69803933T DE69803933T2 (de) 1997-08-20 1998-06-08 Verfahren zur elektronischen strahlformung von akustischen signalen und akustisches sensorgerät
CN98808321A CN1267445A (zh) 1997-08-20 1998-06-08 声信号的电子波束形成方法和声传感装置
JP2000510313A JP2001516196A (ja) 1997-08-20 1998-06-08 音響信号の電子的ビーム形成方法及び音響センサー装置
AT98922985T ATE213581T1 (de) 1997-08-20 1998-06-08 Verfahren zur elektronischen strahlformung von akustischen signalen und akustisches sensorgerät
TR2000/00457T TR200000457T2 (tr) 1997-08-20 1998-06-08 Elektronik bir şekilde huzme oluşturan akustik sinyallere yönelik metod
IL13443598A IL134435A (en) 1997-08-20 1998-06-08 A method of producing acoustic signals electronically and an acoustic sensor
EP98922985A EP1005783B1 (de) 1997-08-20 1998-06-08 Verfahren zur elektronischen strahlformung von akustischen signalen und akustisches sensorgerät
DK98922985T DK1005783T3 (da) 1997-08-20 1998-06-08 Fremgangsmåde til elektronisk stråledannelse af akustiske signaler og akustisk affølingsapparat
RU2000106528/28A RU2185710C2 (ru) 1997-08-20 1998-06-08 Способ электронного формирования диаграммы направленности для акустических сигналов и устройство акустического датчика
NZ502883A NZ502883A (en) 1997-08-20 1998-06-08 Amplification directional characteristic for deaf aid set established by electronic filtering in accordance with acoustic reception delay at twin transducers
US09/168,184 US6603861B1 (en) 1997-08-20 1998-10-07 Method for electronically beam forming acoustical signals and acoustical sensor apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP97114413A EP0820210A3 (de) 1997-08-20 1997-08-20 Verfahren zur elektronischen Strahlformung von akustischen Signalen und akustisches Sensorgerät

Publications (2)

Publication Number Publication Date
EP0820210A2 true EP0820210A2 (de) 1998-01-21
EP0820210A3 EP0820210A3 (de) 1998-04-01

Family

ID=8227250

Family Applications (2)

Application Number Title Priority Date Filing Date
EP97114413A Withdrawn EP0820210A3 (de) 1997-08-20 1997-08-20 Verfahren zur elektronischen Strahlformung von akustischen Signalen und akustisches Sensorgerät
EP98922985A Expired - Lifetime EP1005783B1 (de) 1997-08-20 1998-06-08 Verfahren zur elektronischen strahlformung von akustischen signalen und akustisches sensorgerät

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP98922985A Expired - Lifetime EP1005783B1 (de) 1997-08-20 1998-06-08 Verfahren zur elektronischen strahlformung von akustischen signalen und akustisches sensorgerät

Country Status (14)

Country Link
EP (2) EP0820210A3 (de)
JP (1) JP2001516196A (de)
KR (1) KR20010023076A (de)
CN (1) CN1267445A (de)
AT (1) ATE213581T1 (de)
AU (1) AU746584B2 (de)
CA (1) CA2301216C (de)
DE (1) DE69803933T2 (de)
DK (1) DK1005783T3 (de)
IL (1) IL134435A (de)
NZ (1) NZ502883A (de)
RU (1) RU2185710C2 (de)
TR (1) TR200000457T2 (de)
WO (1) WO1999009786A1 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000041436A1 (de) * 1999-01-06 2000-07-13 Phonak Ag Verfahren zur erzeugung eines elektrischen signals bzw. verfahren zur hervorhebung von akustischen signalen aus einer vorzugsrichtung, übertrager und vorrichtung
EP1035752A1 (de) * 1999-03-05 2000-09-13 Phonak Ag Verfahren zur Formgebung der Empfangsverstärkungsraumcharakteristik einer Umwandleranordnung und Umwandleranordnung
WO2000076268A2 (de) * 1999-06-02 2000-12-14 Siemens Audiologische Technik Gmbh Hörhilfsgerät mit richtmikrofonsystem sowie verfahren zum betrieb eines hörhilfsgeräts
WO2001087009A2 (en) * 2000-05-08 2001-11-15 Microbridge Technologies Inc. Gas flow sensor, speaker system and microphone
WO2002003754A1 (en) * 2000-07-03 2002-01-10 Nanyang Technological University Microphone array system
US6339647B1 (en) * 1999-02-05 2002-01-15 Topholm & Westermann Aps Hearing aid with beam forming properties
DE10313330A1 (de) * 2003-03-25 2004-10-21 Siemens Audiologische Technik Gmbh Verfahren zur Unterdrückung mindestens eines akustischen Störsignals und Vorrichtung zur Durchführung des Verfahrens
WO2005109951A1 (en) * 2004-05-05 2005-11-17 Deka Products Limited Partnership Angular discrimination of acoustical or radio signals
US8396234B2 (en) 2008-02-05 2013-03-12 Phonak Ag Method for reducing noise in an input signal of a hearing device as well as a hearing device
US9641929B2 (en) 2013-09-18 2017-05-02 Huawei Technologies Co., Ltd. Audio signal processing method and apparatus and differential beamforming method and apparatus
CN112240909A (zh) * 2020-09-30 2021-01-19 山东大学 一种桥梁拉索断丝声信号采集系统及方法

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7274794B1 (en) 2001-08-10 2007-09-25 Sonic Innovations, Inc. Sound processing system including forward filter that exhibits arbitrary directivity and gradient response in single wave sound environment
US7369669B2 (en) 2002-05-15 2008-05-06 Micro Ear Technology, Inc. Diotic presentation of second-order gradient directional hearing aid signals
US8027495B2 (en) 2003-03-07 2011-09-27 Phonak Ag Binaural hearing device and method for controlling a hearing device system
EP1320281B1 (de) 2003-03-07 2013-08-07 Phonak Ag Binaurales Hörgerät und Verfahren zum Steuern eines solchen Hörgeräts
US20040175008A1 (en) 2003-03-07 2004-09-09 Hans-Ueli Roeck Method for producing control signals, method of controlling signal and a hearing device
EP1326478B1 (de) 2003-03-07 2014-11-05 Phonak Ag Verfahren zur erzeugung von kontrollsignalen und binaurales hörgerätesystem
DE10312065B4 (de) * 2003-03-18 2005-10-13 Technische Universität Berlin Verfahren und Vorrichtung zum Entmischen akustischer Signale
DE10331956C5 (de) 2003-07-16 2010-11-18 Siemens Audiologische Technik Gmbh Hörhilfegerät sowie Verfahren zum Betrieb eines Hörhilfegerätes mit einem Mikrofonsystem, bei dem unterschiedliche Richtcharakteistiken einstellbar sind
DE10334396B3 (de) * 2003-07-28 2004-10-21 Siemens Audiologische Technik Gmbh Hörhilfegerät sowie Verfahren zum Betrieb eines Hörhilfegerätes mit einem Mikrofonsystem, bei dem unterschiedliche Richtcharakteristiken einstellbar sind
US7212643B2 (en) 2004-02-10 2007-05-01 Phonak Ag Real-ear zoom hearing device
DE602004001058T2 (de) * 2004-02-10 2006-12-21 Phonak Ag Hörhilfegerät mit einer Zoom-Funktion für das Ohr eines Individuums
DE102004010867B3 (de) * 2004-03-05 2005-08-18 Siemens Audiologische Technik Gmbh Verfahren und Vorrichtung zum Anpassen der Phasen von Mikrofonen eines Hörgeräterichtmikrofons
DE102006046638A1 (de) 2005-12-15 2007-06-21 Strothmann, Rolf, Dr.rer.nat. Vorrichtung und Verfahren zur Ermittlung der Drehlage des Rotors einer elektrischen Maschine
US8249284B2 (en) 2006-05-16 2012-08-21 Phonak Ag Hearing system and method for deriving information on an acoustic scene
EP2095678A1 (de) 2006-11-24 2009-09-02 Rasmussen Digital APS Signalverarbeitung unter verwendung eines räumlichen filters
WO2009019748A1 (ja) * 2007-08-03 2009-02-12 Fujitsu Limited 受音装置、指向特性導出方法、指向特性導出装置及びコンピュータプログラム
DK2088802T3 (da) 2008-02-07 2013-10-14 Oticon As Fremgangsmåde til estimering af lydsignalers vægtningsfunktion i et høreapparat
DE102008046040B4 (de) 2008-09-05 2012-03-15 Siemens Medical Instruments Pte. Ltd. Verfahren zum Betrieb einer Hörvorrichtung mit Richtwirkung und zugehörige Hörvorrichtung
EP2192794B1 (de) 2008-11-26 2017-10-04 Oticon A/S Verbesserungen für Hörgerätalgorithmen
DK2262285T3 (en) 2009-06-02 2017-02-27 Oticon As Listening device providing improved location ready signals, its use and method
RU2550300C2 (ru) * 2009-07-24 2015-05-10 Конинклейке Филипс Электроникс Н.В. Формирование диаграммы направленности аудиосигналов
DK2306457T3 (en) 2009-08-24 2017-01-16 Oticon As Automatic audio recognition based on binary time frequency units
EP2352312B1 (de) 2009-12-03 2013-07-31 Oticon A/S Verfahren zur dynamischen Unterdrückung von Umgebungsgeräuschen beim Hören elektrischer Eingänge
DK2629551T3 (en) * 2009-12-29 2015-03-02 Gn Resound As Binaural hearing aid system
EP2372700A1 (de) 2010-03-11 2011-10-05 Oticon A/S Sprachverständlichkeitsprädikator und Anwendungen dafür
DK2381700T3 (en) 2010-04-20 2015-06-01 Oticon As Removal of the reverberation from a signal with use of omgivelsesinformation
WO2012010195A1 (en) 2010-07-19 2012-01-26 Advanced Bionics Ag Hearing instrument and method of operating the same
DK2439958T3 (da) 2010-10-06 2013-08-12 Oticon As Fremgangsmåde til bestemmelse af parametre i en adaptiv lydbehandlings-algoritme og et lydbehandlingssystem
EP2463856B1 (de) 2010-12-09 2014-06-11 Oticon A/s Verfahren zur Reduzierung von Artefakten in Algorithmen mit schnell veränderlicher Verstärkung
US20130294616A1 (en) 2010-12-20 2013-11-07 Phonak Ag Method and system for speech enhancement in a room
DK3122072T3 (da) 2011-03-24 2020-11-09 Oticon As Audiobehandlingsanordning, system, anvendelse og fremgangsmåde
EP2519032A1 (de) 2011-04-26 2012-10-31 Oticon A/s System mit einer tragbaren elektronischen Vorrichtung mit Zeitfunktion
EP2528358A1 (de) 2011-05-23 2012-11-28 Oticon A/S Verfahren zur Identifizierung eines drahtlosen Kommunikationskanals in einem Tonsystem
EP2541973B1 (de) 2011-06-27 2014-04-23 Oticon A/s Rückkoppelungssteuerung in einer Hörvorrichtung
DK2560410T3 (da) 2011-08-15 2019-09-16 Oticon As Kontrol af udgangsmodulation i et høreinstrument
EP2563045B1 (de) 2011-08-23 2014-07-23 Oticon A/s Verfahren und binaurales System zur Maximierung eines Effekts des besseren Ohrs.
EP2563044B1 (de) 2011-08-23 2014-07-23 Oticon A/s Verfahren, Hörvorrichtung und Hörsystem zur Maximierung eines Effekts des besseren Ohrs.
EP2574082A1 (de) 2011-09-20 2013-03-27 Oticon A/S Steuerung eines adaptiven Feedback-Abbruchsystems basierend auf der Sondensignaleingabe
EP2584794A1 (de) 2011-10-17 2013-04-24 Oticon A/S Für Echtzeitkommunikation mit räumlicher Informationsbereitstellung in einem Audiostrom angepasstes Hörsystem
DK2613566T3 (en) 2012-01-03 2016-10-17 Oticon As A listening device and method for monitoring the placement of an earplug for a listening device
DK2613567T3 (da) 2012-01-03 2014-10-27 Oticon As Fremgangsmåde til forbedring af et langtidstilbagekoblingsvejestimat i en lytteanordning
EP2931118B1 (de) * 2012-12-17 2021-09-01 Koninklijke Philips N.V. Verfahren zur erzeugung von informationen und diagnosesystem für schlafapnoe mittels nicht-penetranter audioanalyse
CN112492475B (zh) * 2020-11-30 2022-01-11 瑞声新能源发展(常州)有限公司科教城分公司 Mems麦克风及其工作控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0289401A2 (de) * 1987-04-30 1988-11-02 Fairchild Weston Systems Inc. Digitaler Demodulator für FDM-Signale
GB2212619A (en) * 1987-10-23 1989-07-26 Szeto Lai Wan Magdalene Analyzing signals
EP0652686A1 (de) * 1993-11-05 1995-05-10 AT&T Corp. Adaptive Mikrophongruppierung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0289401A2 (de) * 1987-04-30 1988-11-02 Fairchild Weston Systems Inc. Digitaler Demodulator für FDM-Signale
GB2212619A (en) * 1987-10-23 1989-07-26 Szeto Lai Wan Magdalene Analyzing signals
EP0652686A1 (de) * 1993-11-05 1995-05-10 AT&T Corp. Adaptive Mikrophongruppierung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.E.GREENBERG,P.M.ZUREK: "EVALUATION OF AN ADAPTIVE BEAMFORMING METHOD FOR HEARING AIDS." THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, vol. 91, no. 3, March 1992, U.S.A., pages 1662-1676, XP002053435 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000041436A1 (de) * 1999-01-06 2000-07-13 Phonak Ag Verfahren zur erzeugung eines elektrischen signals bzw. verfahren zur hervorhebung von akustischen signalen aus einer vorzugsrichtung, übertrager und vorrichtung
US6339647B1 (en) * 1999-02-05 2002-01-15 Topholm & Westermann Aps Hearing aid with beam forming properties
EP1035752A1 (de) * 1999-03-05 2000-09-13 Phonak Ag Verfahren zur Formgebung der Empfangsverstärkungsraumcharakteristik einer Umwandleranordnung und Umwandleranordnung
WO2000054553A1 (en) * 1999-03-05 2000-09-14 Phonak Ag Method for shaping the spatial reception amplification characteristic of a converter arrangement and converter arrangement
AU758366B2 (en) * 1999-03-05 2003-03-20 Phonak Ag Method for shaping the spatial reception amplification characteristic of a converter arrangement and converter arrangement
US6522756B1 (en) 1999-03-05 2003-02-18 Phonak Ag Method for shaping the spatial reception amplification characteristic of a converter arrangement and converter arrangement
US7324649B1 (en) 1999-06-02 2008-01-29 Siemens Audiologische Technik Gmbh Hearing aid device, comprising a directional microphone system and a method for operating a hearing aid device
US7929721B2 (en) 1999-06-02 2011-04-19 Siemens Audiologische Technik Gmbh Hearing aid with directional microphone system, and method for operating a hearing aid
WO2000076268A2 (de) * 1999-06-02 2000-12-14 Siemens Audiologische Technik Gmbh Hörhilfsgerät mit richtmikrofonsystem sowie verfahren zum betrieb eines hörhilfsgeräts
WO2000076268A3 (de) * 1999-06-02 2001-05-17 Siemens Audiologische Technik Hörhilfsgerät mit richtmikrofonsystem sowie verfahren zum betrieb eines hörhilfsgeräts
WO2001087009A2 (en) * 2000-05-08 2001-11-15 Microbridge Technologies Inc. Gas flow sensor, speaker system and microphone
WO2001087009A3 (en) * 2000-05-08 2003-01-03 Microbridge Technologies Inc Gas flow sensor, speaker system and microphone
WO2002003754A1 (en) * 2000-07-03 2002-01-10 Nanyang Technological University Microphone array system
DE10313330A1 (de) * 2003-03-25 2004-10-21 Siemens Audiologische Technik Gmbh Verfahren zur Unterdrückung mindestens eines akustischen Störsignals und Vorrichtung zur Durchführung des Verfahrens
DE10313330B4 (de) * 2003-03-25 2005-04-14 Siemens Audiologische Technik Gmbh Verfahren zur Unterdrückung mindestens eines akustischen Störsignals und Vorrichtung zur Durchführung des Verfahrens
US6950528B2 (en) 2003-03-25 2005-09-27 Siemens Audiologische Technik Gmbh Method and apparatus for suppressing an acoustic interference signal in an incoming audio signal
WO2005109951A1 (en) * 2004-05-05 2005-11-17 Deka Products Limited Partnership Angular discrimination of acoustical or radio signals
US8275147B2 (en) 2004-05-05 2012-09-25 Deka Products Limited Partnership Selective shaping of communication signals
US8396234B2 (en) 2008-02-05 2013-03-12 Phonak Ag Method for reducing noise in an input signal of a hearing device as well as a hearing device
US9641929B2 (en) 2013-09-18 2017-05-02 Huawei Technologies Co., Ltd. Audio signal processing method and apparatus and differential beamforming method and apparatus
CN112240909A (zh) * 2020-09-30 2021-01-19 山东大学 一种桥梁拉索断丝声信号采集系统及方法

Also Published As

Publication number Publication date
IL134435A0 (en) 2001-04-30
EP1005783B1 (de) 2002-02-20
EP1005783A1 (de) 2000-06-07
EP0820210A3 (de) 1998-04-01
KR20010023076A (ko) 2001-03-26
DE69803933D1 (de) 2002-03-28
WO1999009786A1 (en) 1999-02-25
DE69803933T2 (de) 2002-10-10
JP2001516196A (ja) 2001-09-25
IL134435A (en) 2004-03-28
ATE213581T1 (de) 2002-03-15
NZ502883A (en) 2002-10-25
AU746584B2 (en) 2002-05-02
TR200000457T2 (tr) 2000-05-22
DK1005783T3 (da) 2002-05-21
CA2301216A1 (en) 1999-02-25
CN1267445A (zh) 2000-09-20
AU7544198A (en) 1999-03-08
CA2301216C (en) 2004-07-13
RU2185710C2 (ru) 2002-07-20

Similar Documents

Publication Publication Date Title
EP1005783B1 (de) Verfahren zur elektronischen strahlformung von akustischen signalen und akustisches sensorgerät
AU749652B2 (en) Method for electronically selecting the dependency of an output signal from the spatial angle of acoustic signal impingement and hearing aid apparatus
US7409068B2 (en) Low-noise directional microphone system
US8111848B2 (en) Hearing aid with acoustical signal direction of arrival control
US6522756B1 (en) Method for shaping the spatial reception amplification characteristic of a converter arrangement and converter arrangement
US20040252852A1 (en) Hearing system beamformer
AU2004202688B2 (en) Method For Operation Of A Hearing Aid, As Well As A Hearing Aid Having A Microphone System In Which Different Directional Characteristics Can Be Set
US6603861B1 (en) Method for electronically beam forming acoustical signals and acoustical sensor apparatus
EP1391138B1 (de) Verfahren zur erzeugung eines elektrischen ausgangssignals und akustisch/elektrisches wandlungssystem
US6766029B1 (en) Method for electronically selecting the dependency of an output signal from the spatial angle of acoustic signal impingement and hearing aid apparatus
WO2007096247A1 (en) Hearing device providing smooth transition between operational modes of a hearing aid
US20040037437A1 (en) Directional microphone
US6947570B2 (en) Method for analyzing an acoustical environment and a system to do so
US7502479B2 (en) Method for analyzing an acoustical environment and a system to do so
Woods et al. Limitations of theoretical benefit from an adaptive directional system in reverberant environments
AU2004310722A1 (en) Method and apparatus for producing adaptive directional signals

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HOTTINGER, WERNER

Inventor name: MAISANO, JOSEPH

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RTI1 Title (correction)
17P Request for examination filed

Effective date: 19980624

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19980914