EP0811763B1 - Zündsystem mit Generatorspannungsverteilungssteuerung - Google Patents
Zündsystem mit Generatorspannungsverteilungssteuerung Download PDFInfo
- Publication number
- EP0811763B1 EP0811763B1 EP97630031A EP97630031A EP0811763B1 EP 0811763 B1 EP0811763 B1 EP 0811763B1 EP 97630031 A EP97630031 A EP 97630031A EP 97630031 A EP97630031 A EP 97630031A EP 0811763 B1 EP0811763 B1 EP 0811763B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- electric generator
- circuit
- ignition
- battery
- thyristor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01T—SPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
- H01T13/00—Sparking plugs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P15/00—Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
- F02P15/12—Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits having means for strengthening spark during starting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B61/00—Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing
- F02B61/02—Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing for driving cycles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P1/00—Installations having electric ignition energy generated by magneto- or dynamo- electric generators without subsequent storage
- F02P1/08—Layout of circuits
Definitions
- the present invention relates to an ignition system, in particular to an ignition system comprising a CDI circuit in which a capacitor charged by a supply voltage from an electric generator is selectively discharged at an appropriate ignition timing so that ignition current is supplied to an ignition unit of an internal combustion engine.
- Various types of ignition systems are used for internal combustion engines for automobiles.
- DCCDI DC-DC converter
- a DC-DC converter is used to raise the supply voltage so as to obtain a voltage required for a CDI-type ignition unit.
- FIG. 4 schematically shows a circuit configuration of a conventional DCCDI-type ignition system.
- An AC generator 1 is connected via a regulator circuit 12 to a battery 3, a stop lamp 4 and a lamp 5 for a meter such as a speedometer or the like, as well as to one end of a primary winding 7a of a transformer 7 in a DC-DC converter 6.
- the other end of the primary winding 7a is selectively connected to the ground via a switching transistor T which is controlled by a DC-DC converter control circuit 8.
- the secondary winding 7b of the transformer 7 in the DC-DC converter 6 is connected to an ignition unit 9.
- the battery 3 when the battery 3 is disconnected or is not charged sufficiently, it may be even more difficult or sometimes impossible to start the engine by operating a kickstarter of the motorcycle.
- the AC generator 1 When the AC generator 1 is rotated by operating the kickstarter, the electric power generated by the AC generator 1 is consumed by the electrical loads. Further, the battery 3 may also absorb electrical current when it is undercharged. In such a case, the AC generator 1 may be unable to generate a sufficiently high voltage required for the DC-DC converter 6 to operate properly. As a result, the output voltage of the DC-DC converter 6 may be insufficiently low or sometimes the DC-DC converter 6 cannot operate at all, failing to charge the capacitor Cc in the ignition unit 9 to a sufficiently high voltage level to produce an ignition spark.
- a primary object of the present invention is to provide an ignition system which, in case the battery is not properly functioning, can distribute the power from the electric generator preferentially to the CDI circuit so that the power is prevented from being consumed by the electrical loads other than the ignition unit, to thereby ensure proper starting of the engine.
- a second object of the present invention is to provide such an ignition system as a simple circuit with minimum additional cost.
- the present invention provides an ignition system for an internal combustion engine of a vehicle comprising: an electric generator; an ignition circuit connected to the electric generator for producing a spark voltage for a spark plug; a battery having an end connected to the electric generator via switching means, and another end connected to the ground; and an electrical load connected in parallel with the battery, wherein the switching means includes a voltage detector for detecting an output voltage of the electric generator, and a switching element in use disconnecting the battery and the electrical load from the electric generator when the output voltage detected by the voltage detector is below a prescribed value.
- the present invention is suitable for an ignition system for an internal combustion engine of a motorcycle in which a kickstarter is used to start the engine. More specifically, the present invention is particularly beneficial when the ignition circuit comprises a CDI circuit, especially when the ignition circuit comprises a DCCDI circuit in which a DC-DC converter is used to raise the output voltage from the generator so as to obtain a voltage required for a CDI-type ignition unit.
- the switching means comprises: a thyristor connected between the electric generator and the battery; a thyristor control circuit having an output terminal connected to a gate of the thyristor; a zener diode having a cathode connected to the anode of the thyristor; and a transistor having a base connected to an anode of the zener diode, a collector connected to the anode of the thyristor via a resistor, and an emitter connected to the thyristor control circuit.
- the zener diode does not conduct electrical current, and the transistor is kept in the off state. This prevents the output voltage of the electric generator from being applied to the thyristor control circuit, and hence the thyristor is kept in the off state, electrically disconnecting the battery and the electrical load from the generator. Because the electric power generated by the electric generator is not consumed by the battery or the electric load, the output voltage of the electric generator can go up to a sufficiently high voltage level to produce a spark from the spark plug, to thereby ensure proper starting of the engine.
- FIG. 1 is a schematic circuit diagram of an embodiment of an ignition system for an internal combustion engine of a motorcycle to which the present invention is applied.
- an AC generator 1 is connected via a regulator circuit 2 to one end of a battery 3, the other end of which being connected to the ground.
- electrical loads including a stop lamp 4 and a meter lamp 5 in this embodiment.
- the generator 1 is also connected to one end of a primary winding 7a of a transformer 7 in a DC-DC converter 6 via a well known rectification/overvoltage protection circuit.
- the secondary winding 7b of the transformer 7 is connected to a CDI-type ignition unit 9.
- the other end of the primary winding 7a is selectively connected to the ground through a switching transistor T which is controlled by a DC-DC converter control circuit 8.
- the regulator circuit 2 comprises (i) a thyristor SCR connected between the AC generator 1 and the battery 3, (ii) a thyristor control circuit 2a connected to a gate terminal of the thyristor SCR to provide a trigger signal to the gate terminal so as to turn on the thyristor SCR, and (iii) a disconnecting circuit 2b consisting of a zener diode ZR, a transistor TR and a resistor for, according to the output voltage from the AC generator 1, stopping power feed to the thyristor control circuit 2a selectively so as to electrically disconnect the battery 3 and the electrical loads including the stop lamp 4 and meter lamp 5 in the downstream of the thyristor SCR.
- the AC generator 1 can generate a sufficient voltage to power the DC-DC converter. After the battery 3 has been sufficiently charged, the stop lamp 4 and meter lamp 5 can also function properly.
- the output voltage (at terminal CH) of the AC generator 1 fluctuates when the electric generator 1 is rotated by operating a kickstarter in order to start the engine.
- the output voltage of the generator 1 cannot go up to a sufficient level due to the electrical current which flows through the various electrical loads (i.e., the stop lamp 4, meter lamp 5, and the like) other than the ignition unit.
- the voltage applied to the DC-DC converter 6 may be about 3V due to a regulator circuit between the DC-DC converter 6 and the AC generator 1. At such a voltage, the DC-DC converter 6 is virtually unable to operate and cannot generate a sufficient voltage.
- the zener diode ZR does not conduct electrical current, and the transistor TR is kept in the off state.
- a prescribed value e.g. 7V
- the zener diode ZR does not conduct electrical current, and the transistor TR is kept in the off state.
- the output voltage from the AC generator 1 is applied to the input of the DC-DC converter 6 substantially without any loss.
- Such a voltage is enough to power the DC-DC converter 6 so that the capacitor Cc is charged to an adequately high voltage above a threshold level to produce a spark from the spark plug.
- FIG 3 shows another embodiment of the ignition system according to the present invention. This embodiment is similar to that shown in Figure 1 except that the battery 3 is also connected to the rectification/overvoltage protection circuit via a diode A having an anode connected to the battery 3 and a cathode connected to the rectification/overvoltage protection circuit, and the electric generator 1 is connected to the rectification/overvoltage protection circuit via another diode B having an anode connected to the generator 1 and a cathode connected to the rectification/overvoltage protection circuit.
- a diode A having an anode connected to the battery 3 and a cathode connected to the rectification/overvoltage protection circuit
- the electric generator 1 is connected to the rectification/overvoltage protection circuit via another diode B having an anode connected to the generator 1 and a cathode connected to the rectification/overvoltage protection circuit.
- the DC-DC converter 6 can be supplied with power from the battery 3 via the rectification/overvoltage protection circuit when the battery 3 is properly functioning, with the result that a more stable voltage can be applied to the DC-DC converter 6 compared with when the power is supplied from the electric generator 1 alone.
- the power is supplied from the generator 1 in a similar way to that described in the first embodiment, except that the output voltage of the electric generator 1 is decreased by a voltage drop across the diode B.
- the present invention has been described in terms of specific embodiments thereof, it is possible to modify and alter details thereof without departing from the spirit of the present invention.
- a single-phase AC generator was used in the above embodiments, but the present invention is also applicable to ignition systems which comprise an AC generator of a three-phase type. In such a case, a similar effect can be obtained by changing at least one diode in the regulator circuit to a thyristor and applying the present invention in a similar manner to that described above.
- a DCCDI system was used as an ignition system of an engine in the above embodiment, the present invention is also applicable to a CDI system which does not use a DC-DC converter.
- the electrical loads can include, besides those mentioned above, a fuel meter, a starter motor or, in some circuit configurations, a tale lamp, a head lamp or the like.
- the ignition unit even when the battery is not properly functioning, it is possible to provide the ignition unit with a sufficient voltage from the electric generator by operating the kickstarter of the motorcycle, to thereby ensure proper starting of the engine.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Ignition Installations For Internal Combustion Engines (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
Claims (7)
- Ein Zündsystem für einen internen Verbrennungsmotor eines Fahrzeugs, umfassend:einen elektrischen Generator;eine Zündschaltung, die an den elektrischen Generator angeschlossen ist, zur Erzeugung einer Zündspannung für eine Zündkerze;eine Batterie, die mit einem Pol an den elektrischen Generator mittels einem Schaltmittel angeschlossen ist und mit einem anderen Pol an die Erde angeschlossen ist; undeine elektrische Last, die parallel an die Batterie angeschlossen ist;
- Ein Zündsystem gemäß Anspruch 1, worin das Fahrzeug ein Motorrad ist.
- Ein Zündsystem gemäß Anspruch 2, worin die Zündschaltung eine CDI-Schaltung umfasst.
- Ein Zündsystem gemäß Anspruch 3, worin die Zündschaltung weiterhin einen DC-DC Konverter umfasst, der zwischen dem elektrischen Generator und der CDI-Schaltung angeschlossen ist, um die Ausgabespannung des elektrischen Generators zu erhöhen, um eine zum Betrieb der CDI-Schaltung notwendige Spannung zu erhalten.
- Ein Zündsystem gemäß Anspruch 1, worin das Schaltelement aus einem Thyristor besteht.
- Ein Zündsystem gemäß Anspruch 1, worin das Schaltelement umfasst:einen Thyristor, der zwischen dem elektrischen Generator und der Batterie angeschlossen ist;eine Thyristorkontrollschaltung mit einem Ausgabeanschluss, der an das Gatter des Thyristors angeschlossen ist;eine Zenerdiode mit einer Kathode, die an die Anode des Thyristors angeschlossen ist; undeinen Transistor mit einer Basis, die an eine Anode der Zenerdiode angeschlossen ist, mit einem Kollektor, der an die Anode des Thyristors mittels einem Widerstand angeschlossen ist, und mit einem Emitter, der an die Thyristorkontrollschaltung angeschlossen ist.
- Ein Zündsystem gemäß Anspruch 1, worin auch die Batterie an die Zündschaltung mittels einer ersten Diode angeschlossen ist, welche eine Anode, die an die Batterie angeschlossen ist, und eine Kathode, die an die Zündschaltung angeschlossen ist, aufweist, und mittels einer zweiten Diode angeschlossen ist, welche zwischen dem elektrischen Generator und der Zündschaltung angeschlossen ist, die zweite Diode weist eine Anode auf, die an den elektrischen Generator angeschlossen ist, und eine Kathode, die an die Zündschaltung angeschlossen ist.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16530396 | 1996-06-05 | ||
JP16530396A JP3525010B2 (ja) | 1996-06-05 | 1996-06-05 | 点火制御装置 |
JP165303/96 | 1996-06-05 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0811763A2 EP0811763A2 (de) | 1997-12-10 |
EP0811763A3 EP0811763A3 (de) | 1999-12-15 |
EP0811763B1 true EP0811763B1 (de) | 2002-10-30 |
Family
ID=15809776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97630031A Expired - Lifetime EP0811763B1 (de) | 1996-06-05 | 1997-06-03 | Zündsystem mit Generatorspannungsverteilungssteuerung |
Country Status (9)
Country | Link |
---|---|
EP (1) | EP0811763B1 (de) |
JP (1) | JP3525010B2 (de) |
KR (1) | KR100268957B1 (de) |
CN (1) | CN1071843C (de) |
ES (1) | ES2184051T3 (de) |
ID (1) | ID17443A (de) |
IN (1) | IN192325B (de) |
MY (1) | MY119183A (de) |
TW (1) | TW328556B (de) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1080379C (zh) * | 1999-02-05 | 2002-03-06 | 财团法人工业技术研究院 | 电子喷油摩托车的电力系统 |
JP3949854B2 (ja) * | 1999-10-01 | 2007-07-25 | キッコーマン株式会社 | 糖化蛋白質の測定方法 |
JP4378224B2 (ja) * | 2004-06-04 | 2009-12-02 | 株式会社ミクニ | 電源装置 |
JP2007288916A (ja) | 2006-04-17 | 2007-11-01 | Yamaha Motor Co Ltd | 電圧調整回路、および電圧調整回路を備えた自動二輪車 |
JP5653517B2 (ja) * | 2011-05-20 | 2015-01-14 | ボッシュ株式会社 | グロープラグ及びグロープラグ新品判別方法並びにグロープラグ駆動制御装置 |
CN104662286B (zh) * | 2012-09-26 | 2017-11-28 | 本田技研工业株式会社 | 发动机起动装置 |
CN108278173B (zh) * | 2018-02-12 | 2024-01-05 | 芜湖长捷航空动力科技有限责任公司 | 一种发动机电路控制系统 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59183078A (ja) * | 1983-04-04 | 1984-10-18 | Nissan Motor Co Ltd | 内燃機関用点火装置 |
US4687991A (en) * | 1985-08-30 | 1987-08-18 | Brunswick Corporation | Two and four cycle digital tachometer |
JP2653240B2 (ja) * | 1990-11-06 | 1997-09-17 | 国産電機株式会社 | コンデンサ放電式内燃機関用点火装置 |
US5415136A (en) * | 1993-08-30 | 1995-05-16 | Illinois Tool Works Inc. | Combined ignition and fuel system for combustion-powered tool |
IT1270142B (it) * | 1994-05-26 | 1997-04-29 | Ducati Energia Spa | Dispositivo per l'alimentazione di carichi elettrici e del circuito di accensione di motori a scoppio di veicoli a motore |
-
1996
- 1996-06-05 JP JP16530396A patent/JP3525010B2/ja not_active Expired - Fee Related
-
1997
- 1997-05-30 KR KR1019970021945A patent/KR100268957B1/ko not_active IP Right Cessation
- 1997-06-03 IN IN1033CA1997 patent/IN192325B/en unknown
- 1997-06-03 ES ES97630031T patent/ES2184051T3/es not_active Expired - Lifetime
- 1997-06-03 EP EP97630031A patent/EP0811763B1/de not_active Expired - Lifetime
- 1997-06-04 TW TW086107678A patent/TW328556B/zh not_active IP Right Cessation
- 1997-06-04 CN CN97112935A patent/CN1071843C/zh not_active Expired - Fee Related
- 1997-06-04 MY MYPI97002478A patent/MY119183A/en unknown
- 1997-06-05 ID IDP971917A patent/ID17443A/id unknown
Also Published As
Publication number | Publication date |
---|---|
CN1071843C (zh) | 2001-09-26 |
IN192325B (de) | 2004-04-10 |
KR980006676A (ko) | 1998-03-30 |
EP0811763A3 (de) | 1999-12-15 |
TW328556B (en) | 1998-03-21 |
ID17443A (id) | 1997-12-24 |
EP0811763A2 (de) | 1997-12-10 |
JP3525010B2 (ja) | 2004-05-10 |
CN1176344A (zh) | 1998-03-18 |
JPH09324732A (ja) | 1997-12-16 |
KR100268957B1 (ko) | 2000-10-16 |
ES2184051T3 (es) | 2003-04-01 |
MY119183A (en) | 2005-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6283104B1 (en) | Ignition system for internal combustion engine | |
JP2591078B2 (ja) | 内燃機関用点火装置 | |
JP2008522066A (ja) | 高速マルチスパーク点火 | |
US10422310B2 (en) | Ignition device | |
US6163138A (en) | Device for setting the output voltage in a three-phase alternator | |
US4658200A (en) | Protection circuit for voltage regulator of vehicle mounted generator | |
US4331122A (en) | Adapter for improving the operation of electrical circuits in a motor vehicle | |
US10619616B2 (en) | Ignition apparatus for internal combustion engine | |
EP0811763B1 (de) | Zündsystem mit Generatorspannungsverteilungssteuerung | |
US4461979A (en) | Low-drive power switching transistor control circuit | |
US4346338A (en) | Battery charging control system for vehicles | |
US4435745A (en) | Device for generating specific electrical voltage values for consumers associated with an internal combustion engine | |
EP0766003B1 (de) | Zündsystem für innere Brennkraftmaschine | |
EP3130793B9 (de) | Zündvorrichtung für einen verbrennungsmotor | |
US4438751A (en) | High voltage generating circuit for an automotive ignition system | |
US4549128A (en) | Charging generator controlling device | |
US20020047690A1 (en) | Power generation control unit for vehicles | |
JP2707616B2 (ja) | 車両用発電機の電圧制御装置 | |
JPS61294167A (ja) | 内燃機関用点火装置 | |
SU848731A1 (ru) | Система электронного зажигани | |
US4574275A (en) | Battery charge indicating circuit | |
KR0175748B1 (ko) | 차량용 발전기의 과전압 발생 방지회로 | |
JPS6156418B2 (de) | ||
RU1802854C (ru) | Электронна система зажигани | |
JPS6139508B2 (de) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): ES FR IT |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
17P | Request for examination filed |
Effective date: 20000121 |
|
AKX | Designation fees paid |
Free format text: ES FR IT |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8566 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 20020510 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): ES FR IT |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2184051 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20030731 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20080626 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20080708 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20080617 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20100226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090630 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20090604 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090604 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090603 |