EP0807228B1 - Procede et dispositif de confinement, notamment d'une atmosphere particuliere dans un espace de traitement en continu de produits traversants - Google Patents

Procede et dispositif de confinement, notamment d'une atmosphere particuliere dans un espace de traitement en continu de produits traversants Download PDF

Info

Publication number
EP0807228B1
EP0807228B1 EP96902323A EP96902323A EP0807228B1 EP 0807228 B1 EP0807228 B1 EP 0807228B1 EP 96902323 A EP96902323 A EP 96902323A EP 96902323 A EP96902323 A EP 96902323A EP 0807228 B1 EP0807228 B1 EP 0807228B1
Authority
EP
European Patent Office
Prior art keywords
jet
atmosphere
gas
space
confined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96902323A
Other languages
German (de)
English (en)
Other versions
EP0807228A1 (fr
Inventor
Laurent Sohier
François Meline
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Societe Generale pour les Techniques Nouvelles SA SGN
Original Assignee
Societe Generale pour les Techniques Nouvelles SA SGN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Generale pour les Techniques Nouvelles SA SGN filed Critical Societe Generale pour les Techniques Nouvelles SA SGN
Publication of EP0807228A1 publication Critical patent/EP0807228A1/fr
Application granted granted Critical
Publication of EP0807228B1 publication Critical patent/EP0807228B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/16Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by purification, e.g. by filtering; by sterilisation; by ozonisation
    • F24F3/163Clean air work stations, i.e. selected areas within a space which filtered air is passed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F9/00Use of air currents for screening, e.g. air curtains
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F9/00Use of air currents for screening, e.g. air curtains
    • F24F2009/007Use of air currents for screening, e.g. air curtains using more than one jet or band in the air curtain

Definitions

  • the subject of the present invention is a method and a device for confinement of an atmosphere in a space communicating with the outside through at least one opening; a gas curtain being generated at said level opening.
  • Such gas curtains have a slow jet, the sting of which ensures the dynamic separation of atmospheres and a fast jet which stabilizes and stiffens said slow jet.
  • suction mouth In contrast to the jet emission nozzles, there is generally a suction mouth which collects the blown gas as well as a fraction of the separate atmospheres which mix with said gas blown into the induction zone.
  • the gases collected by such a suction mouth are generally treated before recycling or release to the environment.
  • the materials and energy lost by the suction flow are considered necessary and / or negligible vis-à-vis of the desired result.
  • the recovery of the double jet by a suction mouth is not however not systematic ...
  • the fast jet and slow jet emission nozzles are supplied with unpolluted gas.
  • the double jet gas curtain is an air curtain.
  • the air injected in the form of slow and fast jets is recirculated or rejected after filtration of suspended particles entrained in the suction mouth.
  • the invention therefore relates to a method for maintain a special atmosphere in a space communicating with the exterior thanks to at least one opening protected by a double gas curtain jet.
  • Said atmosphere is special in that it differs from the atmosphere ambient by at least one element of differentiation which, for example, can consist of a particle concentration, a gas concentration, a temperature ...
  • Said particular atmosphere or differentiated atmosphere is therefore confined in said space.
  • said particular atmosphere is a clean atmosphere or a polluted atmosphere, compared to the atmosphere ambient.
  • the slow jet of the gas curtain is arranged on the side of said atmosphere confined to avoid turbulent transfers due to passing through.
  • the axial plane of the slow jet emission nozzle and that of the jet emission nozzle fast are parallel. Said nozzles can be arranged on any one sides of the opening.
  • a gas curtain to double jet there is therefore a gas curtain to double jet, the slow jet of said curtain being located on the side of the particular atmosphere confined (point a) above) and, opposite the jet injection area, a device, including a suction mouth for the recovery of gas blown under shape of said jets and of a fraction of said confined atmosphere (point b) above). It is also generally used at said mouth of suction, a fraction of the ambient atmosphere. Said jets and mouth are arranged so as to maintain in the confined atmosphere characteristics constant or between precise values. Their particular provision allows, as will be explained below, to minimize material and / or energy losses by the recovery rate and by consequent to minimize the continuous contributions necessary for the maintenance of said special characteristics of the confined atmosphere.
  • a fraction of the slow jet flow is sent into said atmosphere confined (point d) above). Said fraction is taken from the induction zone slow jet, confined space side of course. It is not directly taken back through the suction mouth. It penetrates into said confined atmosphere, generates there turbulence and is at least partly taken up by the slow jet for its induction.
  • the slow jet induction flow is typically according to the invention taken partly from itself (confined space side). Space side confined, said slow jet self-stabilizes. In fact, part of it is "recycled", in the confined space for this purpose. As for the ambient atmosphere, we recall here that said slow jet is stabilized by the rapid jet.
  • the containment process with double jet gas curtain is indeed implemented according to the invention under conditions such that an effect is observed regulating the extracted confined atmosphere flow, with maintenance of homogeneous conditions in said confined atmosphere.
  • This regularization effect is particularly interesting when the gas curtain delimits a treatment in which a specific reagent must be kept in concentration sufficient in the atmosphere for the duration of the treatment.
  • the curvature curtain caused by overpressure mainly due to injection into the confined space of a fraction of the slow jet flow
  • the turbulence generated inside the treatment chamber (by the injection of a fraction of the slow jet flow within it) homogenizes the distribution of said reagent in the atmosphere of the chamber, reagent advantageously added continuously in said chamber to compensate for losses.
  • the gas curtain is not frozen, stabilized in a fixed position.
  • pressure variation which may be due to a variation in the supply flow to an adequate atmosphere and / or when a large object arrives in the confined space
  • the jets move and a more or less significant fraction of the slow jet flow is sent in the confined atmosphere.
  • the technology of the double gas curtain has been adapted. jet so as to minimize the loss of materials and / or energy from the confined atmosphere, through the suction mouth, while homogenizing the characteristics of said confined atmosphere.
  • the curtain of gas will in this context be generated from the same atmosphere with at least one slow jet thermostatically controlled which will maintain the temperature in the confined space.
  • the process of the invention makes it possible, in this context, to make circulate objects continuously, limiting energy losses and gradients of temperature at the inputs and outputs of said tunnels.
  • Such a processing space includes a gas curtain at the entrance and a gas curtain at the exit; gas curtains generally planes successively crossed by the objects or products to be treated, transported by the conveyor system. If the spaces upstream and downstream of the space of treatment are at the same pressure, the two gas curtains work so symmetrical and the same effect of regulating the suction flow is obtained of confined atmosphere on said two curtains.
  • the expected result is obtained with a plane of the gas curtain, inclined, with respect to the plane of the opening, towards the inside of confined space.
  • Said plane of the gas curtain makes an angle with said plane of the opening, so that the end of the dart of the slow jet faces inward of confined space.
  • Said angle of inclination of the median planes of the gas jets by ratio to the plane of the opening generally remains less than or equal to 30 °.
  • This pressure increase (which generally remains around Pascal) is due to the transformation of the dynamic pressure of the recycled fraction of gas under static pressure. She is depending on the value of said angle of inclination and the shape of the mouth suction.
  • the gas curtain (s) involved in the process the invention may (may) have various geometries.
  • n can be curtains of gases generated by linear, polygonal or circular arc nozzles.
  • the plan of gas curtain will describe, therefore, with possibly tilt mentioned above either a plan, or a portion of polyhedron, or a portion of frustoconical surface.
  • the geometry of the gas curtain is obviously adapted to that of the opening to be covered or that of the confined space.
  • the gas curtain formed by the two jets is generated from nozzles which can be located on a horizontal or vertical side the access opening to the confined space.
  • At least one of the jets of said gas curtain is supplied with thermostated gas.
  • the gases supplying said slow and fast jets can have the same characteristics (for example: nature of said gases, temperature thereof ...) or different characteristics.
  • gas curtain or gas curtains
  • gas curtain (s) return flow control usually consists of a double jet curtain of air.
  • the air is replaced by any other suitable gas, in particular an inert gas in one or more two jets.
  • gases injected of the same or different nature, may have characteristics different in particular of temperature, hygrometry, concentration in suspended liquid or solid particles.
  • the invention relates to a device useful for the implementation of the method described above.
  • Said device comprises the means classics necessary for the generation and operation of a gas curtain double jet at an opening.
  • said means are arranged to ensure the expected effect described above, i.e. the injection of a fraction of the slow jet flow, for its self-induction, in the confined space.
  • said gas suction mouth is positioned relative to said two nozzles so that and has a geometry such that a fraction of the slow jet flow is injected into said confined atmosphere and contributes to the induction flow rate of said slow jet; the importance of said fraction varying with the pressure within said confined space.
  • the two nozzles are oriented so that the plane of the gas curtain is tilted, by relative to the plane of the opening, towards the interior of the confined space.
  • the tilt angle as indicated above is between 0 and 30 °.
  • the position and geometry of the suction mouth must allow normal operation of the gas curtain from start-up and creation a slight overpressure in the confined area.
  • the gas suction mouth is arranged opposite, generally in line with the curtain's gas supply. She actually understands a gas receiving cavity which communicates with a discharge pipe from these. Said cavity is advantageously secured to at least one of the walls material which demarcate the opening.
  • the receiving cavity gas is advantageously secured to the base, to the floor of the confined area.
  • the nozzles are arranged in the upper part of the opening and said cavity is located below the level of the base of the area confined (floor of said area). It is advantageously delimited, on the side of the slow jet, by an edge with a concave curvilinear profile, connected to said base of the zone confined. Said edge does not present any edge likely to generate turbulence. Its profile is concave, so that it "accompanies" the deformation of the end of the stinger under the effect of overpressure.
  • the position and geometry of said cavity must allow a normal operation of the gas curtain, in the absence of significant overpressure in the confined area.
  • the end thinned dart of the slow jet arrives at the limit of the curvilinear edge of the cavity. Under the effect of a substantial overpressure, said end will deform and release the along said curvilinear edge a passage for the confined atmosphere (atmosphere, in diluted in gas taken from the slow jet).
  • the confined space is delimited by a ceiling, a floor and at least two side walls.
  • the injection nozzles of the gas curtain (s) are generally located at the level of the ceiling of the opening (openings), the (s) gas curtain (s) is (are) substantially vertical (vertical) and the intake opening is integrated into the floor.
  • the gas receiving cavity associated with said suction mouth is located below the level of said floor and is delimited in width through the walls of the confined space.
  • the confined space is bounded by a circular ceiling, a circular floor and a gas curtain cylindrical or frustoconical.
  • the cavity of the suction mouth, opposite the circular gas injection nozzles constitutes a ditch around said base.
  • the confined space is bounded by a polygonal ceiling, a polygonal floor and a gas curtain polyhedral.
  • the cavity of the suction mouth, opposite the polygonal gas injection nozzles constitutes a ditch around said base.
  • FIG. 1 The confinement according to said FIG. 1 is shown in section. the invention, from the atmosphere B of a chamber 4 for continuous treatment of a product P, by a reagent R injected through the tubing 8.
  • Product P is transported by the conveying system 11.
  • Chamber 4 is delimited by a horizontal ceiling, a horizontal floor, two vertical walls not shown and two curtains of vertical planes.
  • the products P to be treated arrive from atmosphere A (ambient atmosphere, for example), successively cross the air curtain inlet and outlet air curtain and are found in said atmosphere A.
  • Each of said air curtains has a slow jet 2, located on the side of the chamber 4, whose dart 3 is inclined towards the inside of said chamber 4 as well as a jet rapid 1, located on the outside (atmosphere A).
  • the suction system of the gas blown in and a fraction of the confined atmosphere B is placed directly above the injection nozzles 9 and 10.
  • Said suction system includes the cavity of reception of the gases 6 and the discharge conduit 7 of said aspirated gases.
  • Said cavity 6 is delimited on the side of the slow jet 2 by an edge 5 with a concave curvilinear profile which joined the floor of bedroom 4.
  • the gas receiving cavity 6 has a geometry and a positioning compared to nozzles 9 and 10 such as in stationary regime and in the absence of disturbance, the dart 3 of the slow jet 2 is in the equilibrium position, between the atmospheres A and B, shown in solid lines in Figure 1.
  • the gas flow driven by the slow jet 9 in its cross section located at distance L from its origin is divided on the curvilinear edge 5 of the cavity 6 constituting the return mouth of the double throw 1 + 2.
  • a chamber 4 for continuous sterilization of pharmaceutical products P is confined by means of two air curtains. Sterilization is obtained by contact of said products P with a sterilizing gas or nebulized liquid (H 2 O 2 ) at a temperature optimal. To reach and maintain said optimum temperature, two slow thermostatically controlled jets are used. The two air curtains prevent any leakage of H 2 O 2 to the adjacent areas (atmosphere A).
  • a sterilizing gas or nebulized liquid H 2 O 2
  • the inclination of the darts 3 of the slow jets 2 towards the interior of the chamber 4 allows training towards the sterilizing treatment zone (atmosphere B), at the entrance as at the outlet, the contaminating particles which accompany the P products.
  • the depletion effect of sterilizing reagent in the vicinity of the passage exhaust limits losses in said reagent and maintains its concentration at level required for the duration of the treatment by optimizing its consumption.
  • Said containment process is carried out under the conditions below.
  • Room 4 is a 0.5 x 0.5 m section tunnel. An atmosphere of H 2 O 2 at 15 g / m 3 is maintained there.
  • ns are injected through nozzles 9 with a length of 50 cm (length of the tunnel opening) and a width (slit) of 10 cm.
  • the scope of the dart 3 of said slow jets 2 is 60 cm.
  • the return flow corresponds the sum of the speed of the fast jet 1, the slow jet 2, the reagent supply sterilant (variable flow), and possibly from the ambient atmosphere (A) aspirated (variable flow).

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Control And Other Processes For Unpacking Of Materials (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Vacuum Packaging (AREA)
  • Accommodation For Nursing Or Treatment Tables (AREA)

Description

La présente invention a pour objet un procédé et un dispositif de confinement d'une atmosphère dans un espace communiquant avec l'extérieur grâce à au moins une ouverture ; un rideau de gaz étant généré au niveau de ladite ouverture.
Ces procédé et dispositif sont avantageusement mis en oeuvre pour le confinement d'une atmosphère particulière dans un espace de traitement en continu d'objets ou produits traversants. Selon l'art antérieur, à la connaissance de la Demanderesse, notamment lorsque de tels traitements font intervenir des substances explosives, toxiques et/ou contaminantes, ils sont mis en oeuvre de façon discontinue. Ainsi, lorsque l'on souhaite traiter des objets dans une atmosphère présentant des caractéristiques particulières qui doivent être maintenues entre des valeurs précises (caractéristiques de température, d'hygrométrie, de composition gazeuse, de concentrations en particules liquides ou solides en suspension...), procède-t-on généralement dans des espaces, munis à l'entrée et à la sortie, de sas à doubles portes étanches. Dans de telles conditions :
  • le traitement ne peut s'effectuer que par lots successifs ;
  • la quantité d'objets traités dépend du volume des sas ;
  • le remplissage et le vidage successifs des sas entraínent une perte de matière et d'énergie, proportionnelle au volume desdits sas...
Selon la présente invention, on propose plus précisément un perfectionnement à la technologie classique du confinement d'un espace par rideau de gaz à double jet. Ladite technologie est notamment illustrée dans les demandes de brevets FR-A-2 530 163 (confinement d'un espace pollué) et FR-A-2 652 520 (confinement d'un espace "propre"). Selon celle-ci, on utilise les rideaux de gaz à double jet pour séparer deux espaces contenant des atmosphères de caractéristiques différentes. De tels rideaux de gaz sont destinés à arrêter toutes particules solides ou liquides en suspension dans les atmosphères des espaces séparés mais doivent toutefois permettre le passage d'objets traversants macroscopiques sans échange entre lesdites atmosphères séparées.
De tels rideaux de gaz comportent un jet lent dont le dard assure la séparation dynamique des atmosphères et un jet rapide qui stabilise et rigidifie ledit jet lent.
On rappelle incidemment ici que, d'une manière générale, le débit d'un jet de gaz, dans une section quelconque de ce dernier, est la somme du débit initial de gaz insufflé et du débit prélevé par aspiration dans l'ambiance gazeuse externe au jet. Ce second débit constitue le débit d'induction dudit jet.
A l'opposé des buses d'émission des jets, on trouve généralement une bouche d'aspiration qui collecte le gaz soufflé ainsi qu'une fraction des atmosphères séparées qui se mélangent audit gaz soufflé dans la zone d'induction. Les gaz collectés par une telle bouche d'aspiration sont généralement traités avant recyclage ou rejet dans l'environnement. Les matières et l'énergie perdues par le débit d'aspiration sont considérées comme nécessaires et/ou négligeables vis-à-vis du résultat recherché. La reprise du double jet par une bouche d'aspiration n'est toutefois pas systématique... Les buses d'émission du jet rapide et du jet lent sont alimentées en gaz non pollué. Elles présentent généralement une légère inclinaison, vers l'extérieur de l'ouverture de l'espace à confiner, telle que - dans l'hypothèse du confinement d'une zone "propre" à protéger de la pollution extérieure (contexte du document FR-A-2 652 520) - la face du jet rapide située côté espace à confiner soit pratiquement parallèle au plan de ladite ouverture. Ledit espace à confiner - "propre" - est alimenté par un débit de gaz non pollué dit courant de gaz propre, légèrement supérieur au débit induit par la face interne dudit jet rapide (située côté espace à confiner) ; l'excédent de débit, par rapport à ce dernier, assurant un léger débit de fuite qui empêche la pénétration du jet rapide dans ledit espace à confiner. En tout état de cause, selon l'art antérieur, les buses du rideau de gaz n'injectent jamais directement de gaz dans l'espace à confiner.
De façon classique, lorsqu'il s'agit de protéger une ambiance d'une "pollution" (la "pollution" se localisant à l'intérieur ou à l'extérieur de l'espace à confiner), le jet rapide est toujours situé du côté non "pollué".
Généralement, le rideau de gaz à double jet est un rideau d'air. L'air injecté sous la forme des jets lent et rapide est remis en circulation ou rejeté, après filtration des particules en suspension entraínées dans la bouche d'aspiration.
Selon son premier objet, l'invention concerne donc un procédé pour maintenir une atmosphère particulière dans un espace communiquant avec l'extérieur grâce à au moins une ouverture protégée par un rideau de gaz à double jet. Ladite atmosphère est particulière en ce qu'elle se distingue de l'atmosphère ambiante par au moins un élément de différenciation qui, par exemple, peut consister en une concentration en particules, une concentration en gaz, une température... Ladite atmosphère particulière ou atmosphère différenciée est donc confinée dans ledit espace. Selon le contexte, ladite atmosphère particulière est une atmosphère propre ou une atmosphère polluée, par rapport à l'atmosphère ambiante. Le jet lent du rideau de gaz est disposé du côté de ladite atmosphère confinée pour éviter les transferts turbulents dus aux passages des traversants. Le plan axial de la buse d'émission du jet lent et celui de la buse d'émission du jet rapide sont parallèles. Lesdites buses peuvent être disposées sur l'un quelconque des côtés de l'ouverture.
Plus précisément, le procédé de l'invention est un procédé de confinement d'une atmosphère dans un espace communiquant avec l'extérieur grâce à au moins une ouverture ; procédé dans lequel:
  • a) un rideau de gaz est généré au niveau de ladite ouverture ; ledit rideau de gaz comportant :
    • un premier jet dit jet lent situé du côté de ladite atmosphère confinée ; ledit jet lent présentant un dard de portée (L) et d'envergure suffisantes pour couvrir ladite ouverture ;
    • un second jet dit jet rapide, situé du côté de l'extérieur, de même sens que ledit jet lent, dont le plan axial est parallèle à celui dudit jet lent ; ledit jet rapide ayant un débit induit par sa face interne au contact du jet lent inférieur ou égal au débit dudit jet lent à une distance (L), égale à la portée dudit jet lent, de son injection ;
  • b) au moins une partie du gaz insufflé sous forme desdits jets lent et rapide ainsi qu'une fraction de l'atmosphère confinée sont reprises, au niveau de ladite ouverture, en vis-à-vis de la zone d'injection desdits jets ;
  • c) une alimentation en atmosphère adéquate dudit espace est avantageusement prévue, pour au moins compenser ladite fraction de l'atmosphère confinée reprise ;
  • d) une fraction du débit du jet lent est injectée dans ladite atmosphère confinée et contribue au débit d'induction dudit jet lent ; l'importance de ladite fraction variant avec la pression au sein dudit espace.
  • Selon le procédé de l'invention, il intervient donc un rideau de gaz à double jet, le jet lent dudit rideau étant situé du côté de l'atmosphère particulière confinée (point a) ci-dessus) et, en vis-à-vis de la zone d'injection des jets, un dispositif, incluant une bouche d'aspiration pour la reprise du gaz insufflé sous forme desdits jets et d'une fraction de ladite atmosphère confinée (point b) ci-dessus). On reprend également, de manière générale, au niveau de ladite bouche d'aspiration, une fraction de l'atmosphère ambiante. Lesdits jets et ladite bouche d'aspiration sont disposés de façon à maintenir dans l'atmosphère confinée des caractéristiques constantes ou comprises entre des valeurs précises. Leur disposition particulière permet, comme cela va être explicité ci-après, de minimiser les pertes de matière et/ou d'énergie par le débit de reprise et par conséquent de minimiser les apports continus nécessaires au maintien desdites caractéristiques particulières de l'atmosphère confinée. En effet, dans la mesure où l'on souhaite assurer ledit maintien, on prévoit une alimentation adéquate dudit espace, pour au moins compenser la fraction de l'atmosphère confinée reprise (point c) ci-dessus) et avantageusement contribuer à maintenir l'espace confiné en légère surpression. On protège ainsi efficacement ledit espace de l'atmosphère ambiante.
    L'homme du métier comprendra toutefois que le procédé de l'invention peut également être mis en oeuvre sans une telle alimentation (point c) ci-dessus) dans la mesure où la reprise de l'atmosphère confinée est, selon l'invention, minimisée et est, en tout état de cause, compensée par du gaz insufflé prélevé dans la zone d'induction du jet lent. De telles conditions de mise en oeuvre (sans alimentation), qui ne sont pas exclues du cadre de la présente invention, n'assurent toutefois pas un résultat optimum. A plus ou moins long terme, dans ces conditions, l'atmosphère confinée perdra ses caractéristiques de différenciation. Ceci peut être fortement préjudiciable dans le contexte d'un traitement continu de produits traversants par un réactif présent dans ladite atmosphère confinée... Ceci l'est beaucoup moins, par exemple, dans un contexte où l'on souhaite simplement maintenir ladite atmosphère confinée à une température donnée et où le jet lent apporte du gaz à ladite température... On prévoit donc, comme indiqué ci-dessus, selon une variante avantageuse du procédé de l'invention, une alimentation en atmosphère adéquate de l'espace confiné.
    Enfin, et il s'agit là de la principale caractéristique du procédé de l'invention, une fraction du débit du jet lent est envoyée dans ladite atmosphère confinée (point d) ci-dessus). Ladite fraction est prélevée dans la zone d'induction du jet lent, côté espace confiné bien évidemment. Elle n'est pas directement reprise par la bouche d'aspiration. Elle pénètre dans ladite atmosphère confinée, y génère des turbulences et se trouve au moins en partie reprise par le jet lent pour son induction. Ainsi, le débit d'induction du jet lent est-il de façon caractéristique selon l'invention prélevé en partie sur lui-même (côté espace confiné). Côté espace confiné, ledit jet lent s'autostabilise. En fait, une partie de celui-ci est "recyclée", dans l'espace confiné, à cette fin. Côté atmosphère ambiante, on rappelle ici que ledit jet lent est stabilisé par le jet rapide.
    Ce gaz injecté dans l'atmosphère confinée, prélevé sur le jet lent, est utilisé :
    • pour homogénéiser ladite atmosphère confinée ;
    • pour créer une certaine surpression en son sein ;
    • pour régulariser la reprise dudit gaz injecté et de ladite atmosphère confinée.
    Le procédé de confinement avec rideau de gaz double jet est en effet mis en oeuvre selon l'invention dans des conditions telles que l'on observe un effet de régularisation du débit d'atmosphère confinée extrait, avec maintien de conditions homogènes dans ladite atmosphère confinée. Cet effet de régularisation est particulièrement intéressant lorsque le rideau de gaz délimite une chambre de traitement dans laquelle un réactif spécifique doit être maintenu en concentration suffisante dans l'atmosphère, pendant la durée du traitement. En effet, l'incurvation du rideau provoquée par la surpression (due principalement à l'injection dans l'espace confiné d'une fraction du débit du jet lent) ne laisse échapper qu'une fraction faiblement concentrée en ledit réactif spécifique du mélange entre le gaz soufflé par le jet lent et l'atmosphère de traitement (ladite atmosphère de traitement ayant été diluée par l'apport de gaz "pur" du jet lent) et n'entraíne donc qu'une consommation négligeable en ledit réactif. De plus, comme indiqué ci-dessus, la turbulence générée à l'intérieur de la chambre de traitement (par l'injection d'une fraction du débit du jet lent en son sein) homogénéise la répartition dudit réactif dans l'atmosphère de la chambre, réactif avantageusement ajouté en continu dans ladite chambre pour compenser les pertes.
    Par ailleurs, on insistera sur le fait que, selon le procédé de l'invention, le rideau de gaz n'est pas figé, stabilisé en une position fixe. Sous l'effet d'une variation de pression au sein de l'atmosphère confinée (variation de pression qui peut être due à une variation du débit d'alimentation en atmosphère adéquate et/ou à l'arrivée d'un objet de gros volume dans l'espace confiné) les jets se déplacent et une fraction plus ou moins importante du débit du jet lent est envoyée dans l'atmosphère confinée.
    Selon l'invention, on a adapté la technologie du rideau de gaz à double jet de façon à minimiser les pertes de matières et/ou d'énergie provenant de l'atmosphère confinée, par la bouche d'aspiration, tout en homogénéisant les caractéristiques de ladite atmosphère confinée.
    L'homme du métier aura déjà compris que le principe du procédé de confinement selon l'invention, tel qu'exposé ci-dessus - avec injection d'une fraction du débit du jet lent dans l'atmosphère confinée, ce qui autorise une régulation du débit de ladite atmosphère confinée aspirée (alors que, selon l'art antérieur, on n'observe pas de régulation dudit débit d'atmosphère confinée extrait) - peut être mis en oeuvre selon différentes configurations et ce dans différents contextes, notamment à l'entrée et/ou à la sortie de tunnels de peinture, de tunnels de stérilisation, de fours de traitement, de fours de séchage...
    On peut rechercher simplement un confinement thermique de l'espace, les autres caractéristiques des atmosphères séparées étant identiques. Le rideau de gaz sera dans ce contexte généré à partir de la même atmosphère avec au moins un jet lent thermostaté qui maintiendra la température dans l'espace confiné. A titre d'exemple, on peut citer la réalisation de tunnels froids ou chauds sur des éléments de convoyage d'objets. Le procédé de l'invention permet, dans ce contexte, de faire circuler les objets en continu, en limitant les pertes d'énergie et les gradients de température au niveau des entrées et sorties desdits tunnels.
    On peut également mettre en oeuvre le procédé de l'invention pour le conditionnement de produits pulvérulents, éventuellement toxiques et/ou dangereux, et pour des traitements avantageusement en continu de différents types de produits. A titre d'exemple de tels traitements, on peut citer le fumage de produits en agro-alimentaire ou la stérilisation d'objets par pulvérisation de désinfectants liquides et/ou gazeux dans les industries pharmaceutiques.
    On insistera tout particulièrement sur l'intérêt de la mise en oeuvre du procédé de l'invention pour le confinement d'un espace de traitement en continu de produits ou objets traversants, avantageusement intégré dans une ligne de convoyage desdits produits ou objets. Un tel espace de traitement comporte un rideau de gaz à l'entrée et un rideau de gaz à la sortie ; rideaux de gaz généralement plans que franchissent successivement les objets ou produits à traiter, transportés par le système de convoyage. Si les espaces en amont et en aval de l'espace de traitement sont à la même pression, les deux rideaux de gaz fonctionnent de façon symétrique et l'on obtient le même effet de régulation du débit d'aspiration d'atmosphère confinée sur lesdits deux rideaux.
    La mise en oeuvre du procédé de l'invention peut se faire selon différentes variantes. Avantageusement, le résultat escompté est obtenu avec un plan du rideau de gaz, incliné, par rapport au plan de l'ouverture, vers l'intérieur de l'espace confiné. Ledit plan du rideau de gaz fait un angle avec ledit plan de l'ouverture, de sorte que l'extrémité du dard du jet lent soit orientée vers l'intérieur de l'espace confiné. Ledit angle d'inclinaison des plans médians des jets de gaz par rapport au plan de l'ouverture demeure généralement inférieur ou égal à 30°. Il permet avantageusement, pour certaines applications, de majorer la pression dans l'espace confiné par rapport à la pression extérieure. Cette majoration de pression (qui reste généralement de l'ordre du Pascal) est due à la transformation de la pression dynamique de la fraction recyclée de gaz en pression statique. Elle est fonction de la valeur dudit angle d'inclinaison et de la forme de la bouche d'aspiration.
    Le (ou les) rideau(x) de gaz intervenant(s) dans le procédé de l'invention peut (peuvent) présenter des géométries variées. n peut s'agir de rideaux de gaz générés par des buses linéaires, polygonales ou en arc de cercle. Le plan du rideau de gaz décrira, par conséquent, avec éventuellement l'inclinaison mentionnée ci-dessus soit un plan, soit une portion de polyèdre, soit une portion de surface tronconique. La géométrie du rideau de gaz est évidemment adaptée à celle de l'ouverture à couvrir ou à celle de l'espace confiné.
    D'une manière générale, le rideau de gaz constitué par les deux jets est généré à partir de buses qui peuvent être situées sur un côté horizontal ou vertical de l'ouverture d'accès à l'espace confiné.
    Par ailleurs, comme indiqué ci-dessus, selon une variante de l'invention, au moins un des jets dudit rideau de gaz, généralement le jet lent (et avantageusement le jet lent et le jet rapide) est alimenté en gaz thermostaté. D'une manière générale, les gaz alimentant lesdits jets lent et rapide peuvent présenter les mêmes caractéristiques (par exemple : nature desdits gaz, température de ceux-ci...) ou des caractéristiques différentes.
    Enfin, on précise que le rideau de gaz (ou les rideaux de gaz), tel(s) qu'il(s) intervien(nen)t dans le procédé de l'invention - rideau(x) de gaz à régulation de débit de reprise - consiste(nt) généralement en un rideau à double jet d'air. On n'exclut toutefois nullement que, pour certaines applications, l'air soit remplacé par tout autre gaz approprié, notamment un gaz inerte dans un seul ou les deux jets. On n'exclut nullement aussi, comme indiqué ci-dessus, que les gaz injectés, de même nature ou de nature différente, puissent présenter des caractéristiques différentes notamment de température, d'hygrométrie, de concentration en particules liquides ou solides en suspension.
    Selon son deuxième objet, l'invention concerne un dispositif utile à la mise en oeuvre du procédé décrit ci-dessus. Ledit dispositif comprend les moyens classiques nécessaires à la génération et au fonctionnement d'un rideau de gaz à double jet au niveau d'une ouverture. De façon caractéristique, au sein dudit dispositif, lesdits moyens sont agencés pour assurer l'effet escompté décrit ci-dessus, c'est-à-dire l'injection d'une fraction du débit du jet lent, pour son auto-induction, dans l'espace confiné.
    Plus précisément, ledit dispositif comprend :
    • deux buses disposées côte à côte sur un côté de ladite ouverture et munies de moyens pour leur alimentation en gaz ; la longueur desdites buses étant au moins égale à la longueur de ladite ouverture, la largeur desdites buses étant déterminée en fonction de la vitesse des jets et de la portée du rideau à obtenir ; la buse située du côté de l'atmosphère confinée convenant pour l'émission du jet lent et l'autre pour l'émission du jet rapide ;
    • une bouche d'aspiration d'au moins une partie du gaz insufflé sous forme de jets et d'une fraction de l'atmosphère confinée, ladite bouche d'aspiration étant reliée à un système d'aspiration et étant située au niveau de ladite ouverture, en vis-à-vis desdites deux buses ;
    • avantageusement un système d'alimentation en atmosphère adéquate de l'espace confiné.
    De façon caractéristique, ladite bouche d'aspiration des gaz est positionnée par rapport auxdites deux buses de telle façon que et présente une géométrie telle que une fraction du débit du jet lent est injectée dans ladite atmosphère confinée et contribue au débit d'induction dudit jet lent ; l'importance de ladite fraction variant avec la pression au sein dudit espace confiné.
    On notera que, de manière générale, au niveau de ladite bouche d'aspiration, on aspire également de l'atmosphère ambiante.
    De façon avantageuse, au sein dudit dispositif, les deux buses d'injection sont orientées de sorte que le plan du rideau de gaz est incliné, par rapport au plan de l'ouverture, vers l'intérieur de l'espace confiné. L'angle d'inclinaison comme indiqué ci-dessus est compris entre 0 et 30°.
    La position et la géométrie de la bouche d'aspiration doivent permettre un fonctionnement normal du rideau de gaz dès la mise en route et la création d'une légère surpression dans la zone confinée.
    La bouche d'aspiration des gaz est disposée, en vis-à-vis, généralement à l'aplomb de l'alimentation en gaz du rideau. Elle comprend en fait une cavité de réception de gaz qui communique avec une conduite d'évacuation de ceux-ci. Ladite cavité est avantageusement solidarisée à au moins une des parois matérielles qui délimitent l'ouverture.
    Dans le contexte le plus général du rideau de gaz vertical ou sensiblement vertical, alimenté par du gaz soufflé du haut vers le bas, la cavité de réception de gaz est avantageusement solidarisée à la base, au plancher de la zone confinée.
    Dans ce contexte, les buses sont disposées en partie haute de l'ouverture et ladite cavité est située en dessous du niveau de la base de la zone confinée (plancher de ladite zone). Elle est avantageusement délimitée, du côté du jet lent, par un bord à profil curviligne concave, relié à ladite base de la zone confinée. Ledit bord ne présente pas d'arête susceptible d'engendrer des turbulences. Son profil est concave, de sorte qu'il "accompagne" la déformation de l'extrémité du dard sous l'effet de la surpression.
    La position et la géométrie de ladite cavité doivent permettre un fonctionnement normal du rideau de gaz, en l'absence de surpression conséquente dans la zone confinée. Dans ce contexte de fonctionnement normal, l'extrémité amincie du dard du jet lent arrive en limite du bord curviligne de la cavité. Sous l'effet d'une surpression conséquente, ladite extrémité va se déformer et libérer le long dudit bord curviligne un passage pour l'atmosphère confinée (atmosphère, en fait diluée dans du gaz prélevé sur le jet lent).
    Le dispositif de l'invention et son fonctionnement seront décrits plus précisément en référence à l'unique figure annexée, plus avant dans le présent texte.
    Selon une variante dudit dispositif de l'invention, l'espace confiné est délimité par un plafond, un plancher et au moins deux parois latérales. On peut avoir trois parois latérales et une seule ouverture à couvrir par un rideau de gaz ou seulement deux parois latérales parallèles et deux ouvertures à couvrir par deux rideaux de gaz parallèles. Les buses d'injection du (des) rideau(x) de gaz sont généralement situées au niveau du plafond de l'ouverture (des ouvertures), le(s) rideau(x) de gaz est (sont) sensiblement vertical (verticaux) et la bouche d'aspiration est intégrée au plancher. La cavité de réception des gaz associée à ladite bouche d'aspiration est située sous le niveau dudit plancher et est délimitée en largeur par les parois de l'espace confiné.
    Selon une autre variante du dispositif de l'invention, l'espace confiné est délimité par un plafond circulaire, un plancher circulaire et un rideau de gaz cylindrique ou tronconique. Dans cette configuration du dispositif de l'invention, la cavité de la bouche d'aspiration, en vis-à-vis des buses d'injection de gaz circulaires, constitue un fossé autour de ladite base.
    Selon une autre variante du dispositif de l'invention, l'espace confiné est délimité par un plafond polygonal, un plancher polygonal et un rideau de gaz polyédrique. Dans cette configuration du dispositif de l'invention, la cavité de la bouche d'aspiration, en vis-à-vis des buses d'injection de gaz polygonales, constitue un fossé autour de ladite base.
    Les procédé et dispositif de l'invention sont illustrés sur la figure 1 annexée.
    On montre, en coupe, sur ladite figure 1, le confinement selon l'invention, de l'atmosphère B d'une chambre 4 de traitement en continu d'un produit P, par un réactif R injecté par la tubulure 8. Le produit P est transporté par le système de convoyage 11. La chambre 4 est délimitée par un plafond horizontal, un plancher horizontal, deux parois verticales non représentées et deux rideaux d'air verticaux plans. Les produits P à traiter arrivent de l'atmosphère A (atmosphère ambiante, par exemple), franchissent successivement le rideau d'air d'entrée et le rideau d'air de sortie et se retrouvent dans ladite atmosphère A. Chacun desdits rideaux d'air comporte un jet lent 2, situé du côté de la chambre 4, dont le dard 3 est incliné vers l'intérieur de ladite chambre 4 ainsi qu'un jet rapide 1, situé du côté de l'extérieur (atmosphère A). Le système d'aspiration du gaz insufflé et d'une fraction de l'atmosphère confinée B est disposé à l'aplomb des buses d'injection 9 et 10. Ledit système d'aspiration comprend la cavité de réception des gaz 6 et le conduit d'évacuation 7 desdits gaz aspirés. Ladite cavité 6 est délimitée du côté du jet lent 2 par un bord 5 à profil curviligne concave qui rejoint le plancher de la chambre 4.
    La cavité de réception des gaz 6 a une géométrie et un positionnement par rapport aux buses 9 et 10 tels qu'en régime stationnaire et en l'absence de perturbation, le dard 3 du jet lent 2 est dans la position d'équilibre, entre les atmosphères A et B, représentée en traits pleins sur la figure 1. Le débit de gaz entraíné par le jet lent 9 dans sa section droite située à la distance L de son origine se partage sur le bord curviligne 5 de la cavité 6 constituant la bouche de reprise du double jet 1 + 2.
    La majeure fraction du débit de gaz des jets rapide 1 et lent 2 est aspirée par la bouche de reprise 6 et évacuée par le conduit 7. Une fraction de ce débit est injectée dans l'espace confiné 4 en induisant un courant qui favorise l'homogénéisation de l'atmosphère B. Cette fraction "recyclée" s'ajoute au faible débit de réactif R introduit en 8 pour assurer le débit d'induction à l'interface entre le jet lent 2 et l'atmosphère B. Le produit de la concentration moyenne dans la fraction d'atmosphère B extraite par son débit correspond alors à l'apport de réactif R dans l'enceinte 4 par le conduit 8.
    Si une perturbation majore le débit de réactif R introduit en 8, l'augmentation de pression qui en résulte dans l'enceinte 4 a pour effet d'incurver l'ensemble des deux jets et de déplacer le dard 3 du jet lent 2 dans la position représentée en pointillé sur la figure 1. Ce déplacement entraíne une diminution de la fraction du débit du jet lent 2 injecté dans l'enceinte 4 associée à une majoration du débit d'atmosphère B extrait. Par ailleurs, la concentration moyenne en réactif R dudit débit d'atmosphère B extrait est d'autant plus élevée que ce débit est plus important.
    Symétriquement, si le débit de réactif R vient incidentellement à diminuer, le phénomène inverse se produit. Le dard 3 du jet lent 2 se déplace vers l'intérieur de l'enceinte 4. Ce déplacement entraíne une augmentation de la fraction du débit du jet lent 2 injectée dans l'enceinte 4 associée à une diminution du débit d'atmosphère B extrait. De la même façon, la concentration moyenne en réactif dudit débit d'atmosphère B extrait est d'autant plus faible que ce débit est moins important. Dans le cas où le débit de réactif R est entièrement consommé par le traitement des traversants P, le débit de la fraction du jet lent 2 injectée dans l'enceinte 4 devient égal au débit d'induction à l'interface entre le jet lent 2 et l'atmosphère B qu'il compense intégralement. Le procédé permet donc de limiter avantageusement la consommation de réactif.
    En référence à la figure 1, on illustre l'invention par l'exemple ci-après.
    On confine à l'aide de deux rideaux d'air une chambre 4 de stérilisation en continu de produits pharmaceutiques P. La stérilisation est obtenue par contact desdits produits P avec un gaz ou un liquide nébulisé stérilisant (H2O2) à une température optimale. Pour atteindre et maintenir ladite température optimale, on utilise deux jets lents thermostatés. Les deux rideaux d'air empêchent toute fuite de H2O2 vers les zones adjacentes (atmosphère A).
    L'inclinaison des dards 3 des jets lents 2 vers l'intérieur de la chambre 4 permet d'entraíner vers la zone de traitement stérilisant (atmosphère B), à l'entrée comme à la sortie, les particules contaminantes qui accompagnent les produits P.
    L'injection d'une partie de l'air du jet lent 2 dans la chambre 4 y engendre des mouvements tourbillonnaires qui contribuent à l'homogénéisation (concentration, température) du milieu stérilisant au centre de ladite chambre 4.
    L'effet d'appauvrissement en réactif stérilisant au voisinage du passage d'échappement limite les pertes en ledit réactif et maintient sa concentration au niveau requis pendant la durée du traitement en optimisant sa consommation.
    Ledit procédé de confinement est mis en oeuvre dans les conditions ci-après.
    La chambre 4 est un tunnel de section 0,5 x 0,5 m. On y maintient une atmosphère de H2O2 à 15 g/m3.
    Les jets lents 2 présentent les caractéristiques ci-après :
    Vitesse initiale vO = 0,5 m/s
    Débit QO = 0,025 m3/s
    ns sont injectés à travers des buses 9 d'une longueur de 50 cm (longueur de l'ouverture du tunnel) et d'une largeur (de fente) de 10 cm. La portée du dard 3 desdits jets lents 2 est de 60 cm.
    Les jets rapides 1 présentent les caractéristiques ci-après :
    Vitesse initiale vO = 8,17 m/s
    Vitesse à 0,5 m v = 2 m/s
    Débit initial QO = 0,020 m3/s
    Ils sont injectés à travers des buses 10 d'une longueur de 50 cm (longueur de l'ouverture du tunnel) et d'une largeur (de fente) de 5 mm.
    Au niveau des conduites d'évacuation 7, le débit de reprise correspond à la somme du débit du jet rapide 1, du jet lent 2, de l'alimentation en réactif stérilisant (débit variable), et éventuellement de l'atmosphère ambiante (A) aspirée (débit variable).

    Claims (10)

    1. Procédé de confinement d'une atmosphère (B) dans un espace (4) communiquant avec l'extérieur grâce à au moins une ouverture, procédé dans lequel un rideau de gaz (1+2) est généré au niveau de ladite ouverture ; procédé caractérisé en ce que :
      ledit rideau de gaz (1+2) comporte :
      un premier jet dit jet lent (2) situé du côté de ladite atmosphère confinée (B) ; ledit jet lent (2) présentant un dard (3) de portée (L) et d'envergure suffisantes pour couvrir ladite ouverture ;
      un second jet dit jet rapide (1), situé du côté de l'extérieur, de même sens que ledit jet lent (2), dont le plan axial est parallèle à celui dudit jet lent (2) ; ledit jet rapide (1) ayant un débit induit par sa face interne au contact du jet lent (2) inférieur ou égal au débit dudit jet lent (2) à une distance (L), égale à la portée dudit jet lent (2), de son injection;
      au moins une partie du gaz insufflé sous forme desdits jets (1+2) ainsi qu'une fraction de l'atmosphère confinée (B) sont reprises, au niveau de ladite ouverture, en vis-à-vis de la zone d'injection desdits jets (1+2) ;
      une alimentation en atmosphère adéquate dudit espace (4) est avantageusement prévue, pour au moins compenser ladite fraction de l'atmosphère confinée (B) reprise ; et
      une fraction du débit du jet lent (2) est injectée dans ladite atmosphère confinée (B) et contribue au débit d'induction dudit jet lent (2) ; l'importance de ladite fraction variant avec la pression au sein dudit espace (4).
    2. Procédé selon la revendication 1, caractérisé en ce que l'espace (4) est un espace de traitement en continu de produits (P) traversants, avantageusement intégré dans une ligne de convoyage (11).
    3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que le plan du rideau de gaz (1+2) est incliné par rapport au plan de l'ouverture, vers l'intérieur de l'espace confiné (4).
    4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que ledit rideau de gaz (1+2) généré à partir d'un côté de l'ouverture est de forme plane.
    5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que ledit rideau de gaz (1+2) décrit une surface cylindrique, tronconique ou polyédrique.
    6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'au moins un des jets (1, 2) dudit rideau de gaz (1+2) est alimenté en gaz thermostaté.
    7. Pédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que les gaz alimentant les jets lent et rapide présentent les mêmes caractéristiques ou des caractéristiques différentes.
    8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que ledit rideau de gaz (1+2) est un rideau d'air.
    9. Dispositif pour la mise en oeuvre du procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce qu'il comprend :
      deux buses (9, 10), disposées côte à côte sur un côté de ladite ouverture et munies de moyens pour leur alimentation en gaz ; la longueur desdites buses (9, 10) étant au moins égale à la longueur de ladite ouverture, la largeur desdites buses (9, 10) étant déterminée en fonction de la vitesse des jets (1, 2) et de la portée du rideau (1+2) à obtenir ; la buse située du côté de l'atmosphère confinée (B) convenant pour l'émission du jet lent (2) et l'autre pour l'émission du jet rapide (1) ;
      une bouche d'aspiration (6) d'au moins une partie du gaz insufflé sous forme de jets (1+2) et d'une fraction de l'atmosphère confinée (B), ladite bouche d'aspiration (6) étant reliée à un système d'aspiration et étant située au niveau de ladite ouverture, en vis-à-vis desdites deux buses (9, 10) ;
      avantageusement, un système d'alimentation en atmosphère adéquate de l'espace (4);
      ladite bouche d'aspiration (6) des gaz étant positionnée par rapport auxdites deux buses (9, 10) et présentant une géométrie telle qu'une fraction du débit du jet lent (2) est injectée dans ladite atmosphère confinée (B) et contribue au débit d'induction dudit jet lent (2) ; l'importance de ladite fraction variant avec la pression au sein dudit espace (4).
    10. Dispositif selon la revendication 9, caractérisé en ce que lesdites deux buses (9, 10) sont orientées de sorte que le plan du rideau de gaz (1+2) est incliné par rapport au plan de l'ouverture, vers l'intérieur de l'espace confiné (4).
    EP96902323A 1995-02-02 1996-02-01 Procede et dispositif de confinement, notamment d'une atmosphere particuliere dans un espace de traitement en continu de produits traversants Expired - Lifetime EP0807228B1 (fr)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    FR9501211A FR2730297B1 (fr) 1995-02-02 1995-02-02 Procede et dispositif de confinement, notamment d'une atmosphere particuliere dans un espace de traitement en continu de produits traversants
    FR9501211 1995-02-02
    PCT/FR1996/000170 WO1996024011A1 (fr) 1995-02-02 1996-02-01 Procede et dispositif de confinement, notamment d'une atmosphere particuliere dans un espace de traitement en continu de produits traversants

    Publications (2)

    Publication Number Publication Date
    EP0807228A1 EP0807228A1 (fr) 1997-11-19
    EP0807228B1 true EP0807228B1 (fr) 1998-11-04

    Family

    ID=9475773

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP96902323A Expired - Lifetime EP0807228B1 (fr) 1995-02-02 1996-02-01 Procede et dispositif de confinement, notamment d'une atmosphere particuliere dans un espace de traitement en continu de produits traversants

    Country Status (8)

    Country Link
    US (1) US5934992A (fr)
    EP (1) EP0807228B1 (fr)
    AT (1) ATE173078T1 (fr)
    AU (1) AU4667896A (fr)
    DE (1) DE69600921T2 (fr)
    DK (1) DK0807228T3 (fr)
    FR (1) FR2730297B1 (fr)
    WO (1) WO1996024011A1 (fr)

    Families Citing this family (12)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2756910B1 (fr) * 1996-12-10 1999-01-08 Commissariat Energie Atomique Procede de separation dynamique de deux zones par un rideau d'air propre
    FR2757933B1 (fr) * 1996-12-27 1999-01-22 Commissariat Energie Atomique Dispositif de separation dynamique de deux zones par au moins une zone tampon et deux rideaux d'air propre
    FR2760199B1 (fr) * 1997-03-03 1999-05-21 Unir Ultra Propre Nutrition In Dispositif de separation de deux zones a ambiances differentes
    FR2770330B1 (fr) * 1997-10-24 2000-01-14 Cogema Procede et dispositif de confinement par stratification thermique
    US6390755B1 (en) * 2000-04-06 2002-05-21 Motorola, Inc. Exhaust device for use in a clean room, cleanroom, and method
    CN1193193C (zh) * 2000-12-21 2005-03-16 松下电器产业株式会社 净化室及半导体装置的制造方法
    DE10244463B4 (de) * 2002-09-24 2004-11-18 Siemens Ag Verfahren zum Abrechnen einer kostenpflichtigen Nutzung von durch einen Dienstanbieter angebotenen Diensten
    FI20065541L (fi) * 2006-09-01 2008-03-02 Sah Ko Oy Menetelmä lämmön siirtymisen rajoittamiseksi seinässä olevan aukon läpi ja ilma verho
    BRPI1011893A2 (pt) * 2009-07-03 2016-04-12 Tetra Laval Holdings & Finance método para manter uma barreira de fluxo de gás entre dois volumes de um canal em uma máquina de enchimento, e, dispositivo para manutenção de uma barreira de fluxo de gás entre dois volumes de um canal em uma máquina de enchimento
    ITPI20110138A1 (it) * 2011-12-06 2013-06-07 A R I A Engineering S R L Metodo e apparecchiatura per realizzare ambienti delimitati da pareti dâ''aria
    FR3032391B1 (fr) * 2015-02-06 2018-09-21 Alstom Transport Technologies Dispositif de generation de rideau d'air, notamment destine a equiper un vehicule ferroviaire
    CN106288126A (zh) * 2016-10-26 2017-01-04 广东绿岛风室内空气系统科技有限公司 一种双出风口风幕机

    Family Cites Families (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2530163B1 (fr) * 1982-07-15 1986-08-29 Commissariat Energie Atomique Procede de confinement de la pollution d'un local a l'aide d'une veine gazeuse
    FR2652520B1 (fr) * 1989-10-02 1992-02-07 Sgn Soc Gen Tech Nouvelle Procede et dispositif pour maintenir une atmosphere propre a temperature regulee sur un poste de travail.
    FR2659782B1 (fr) * 1990-03-14 1992-06-12 Sgn Soc Gen Tech Nouvelle Procede et dispositif de separation dynamique de deux zones.
    US5195888A (en) * 1991-08-19 1993-03-23 Praxair Technology, Inc. Multi-layer fluid curtains for furnace openings
    GB2268975B (en) * 1992-07-14 1996-04-24 Northampton Refrigeration Comp Fan assembly for refrigerated display case

    Also Published As

    Publication number Publication date
    DK0807228T3 (da) 1999-07-19
    ATE173078T1 (de) 1998-11-15
    US5934992A (en) 1999-08-10
    WO1996024011A1 (fr) 1996-08-08
    AU4667896A (en) 1996-08-21
    FR2730297A1 (fr) 1996-08-09
    DE69600921D1 (de) 1998-12-10
    FR2730297B1 (fr) 1997-05-09
    DE69600921T2 (de) 1999-05-27
    EP0807228A1 (fr) 1997-11-19

    Similar Documents

    Publication Publication Date Title
    EP0807228B1 (fr) Procede et dispositif de confinement, notamment d'une atmosphere particuliere dans un espace de traitement en continu de produits traversants
    CA2275950C (fr) Dispositif de separation dynamique de deux zones
    EP1387989B1 (fr) Procede et dispositif pour diffuser un flux de protection a l'egard d'une ambiance environnante
    EP0944802B1 (fr) Procede de separation dynamique de deux zones par un rideau d'air propre
    EP0494921B1 (fr) Procede et dispositif pour maintenir une atmosphere propre a temperature regulee sur un poste de travail
    WO2020030419A1 (fr) Dispositif de mise en contact d'un flux gazeux et d'un flux de liquide
    CA2281967A1 (fr) Procede et appareil de congelation de produits en ligne
    EP1112217A1 (fr) Dispositif anti-contamination pour le transport de recipients et convoyeur pneumatique equipe d'un tel dispositif
    EP1321014B1 (fr) Dispositif de production d'un plasma, procede d'ionisation, utilisations du procede et realisations mettant en oeuvre le dispositif selon l'invention
    FR2626872A1 (fr) Procede et dispositif ameliores pour le revetement d'un substrat, tel un ruban de verre par un produit pulverulent
    FR2575679A1 (fr) Perfectionnement au procede de revetement d'un substrat tel un ruban de verre, par un produit pulverulent, et dispositif pour la mise en oeuvre de ce procede
    FR2634758A1 (fr) Procede et dispositif de reparation d'un corps refractaire
    FR2744042A1 (fr) Salle a empoussierement controle
    EP1133666B1 (fr) Dispositif pour le traitement thermique a haute temperature d'une matiere ligneuse
    FR2760199A1 (fr) Dispositif de separation de deux zones a ambiances differentes
    CA1332111C (fr) Enceinte et procede de traitement thermique comportant une phase de refroidissement
    FR2975920A1 (fr) Procede et dispositif pour la separation d'isotopes a partir d'un ecoulement gazeux
    FR2579487A1 (fr) Appareil pour reguler l'ecoulement de particules fines
    EP0970326A1 (fr) Incinerateur et procede d'incineration de dechets liquides, pateux et solides
    FR2733031A1 (fr) Incinerateur d'ordures menageres et autres combustibles solides
    FR2579488A1 (fr) Procede pour regler la densite de particules fines
    WO1998030849A1 (fr) Surgelateur pour produits alimentaires en vrac avec systeme de fluidisation et de transfert
    FR2878315A1 (fr) Installation pour menager une zone de travail sous atmosphere controlee au sein d'un local
    FR2700972A1 (fr) Dispositif de traitement thermique de particules réfractaires.
    FR2619953A1 (fr) Systeme de demantelement d'installations presentes dans un local, son procede de mise en oeuvre et hotte utilisable dans ce systeme

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19970730

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE DK ES FR GB IE IT LI LU MC NL SE

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 19971223

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE DK ES FR GB IE IT LI LU MC NL SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

    Effective date: 19981104

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

    Effective date: 19981104

    Ref country code: ES

    Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

    Effective date: 19981104

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 19981104

    REF Corresponds to:

    Ref document number: 173078

    Country of ref document: AT

    Date of ref document: 19981115

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19981113

    REF Corresponds to:

    Ref document number: 69600921

    Country of ref document: DE

    Date of ref document: 19981210

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: BOVARD AG PATENTANWAELTE

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: FRENCH

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19990201

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19990228

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19990301

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

    Effective date: 19990322

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: T3

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19990820

    BERE Be: lapsed

    Owner name: SOC. GENERALE POUR LES TECHNIQUES NOUVELLES SGN

    Effective date: 19990228

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    26N No opposition filed
    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: EBP

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000229

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000229

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20050118

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20050125

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20050208

    Year of fee payment: 10

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060201

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20060223

    Year of fee payment: 11

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060901

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060901

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20060201

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20060901

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20071030

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070228