EP0806509A1 - Trägereinlage, Verfahren zu deren Herstellung und deren Verwendung - Google Patents

Trägereinlage, Verfahren zu deren Herstellung und deren Verwendung Download PDF

Info

Publication number
EP0806509A1
EP0806509A1 EP97106878A EP97106878A EP0806509A1 EP 0806509 A1 EP0806509 A1 EP 0806509A1 EP 97106878 A EP97106878 A EP 97106878A EP 97106878 A EP97106878 A EP 97106878A EP 0806509 A1 EP0806509 A1 EP 0806509A1
Authority
EP
European Patent Office
Prior art keywords
reinforcement
carrier
carrier insert
fabric
web according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97106878A
Other languages
English (en)
French (fr)
Other versions
EP0806509B2 (de
EP0806509B1 (de
Inventor
Werner Dr. Groh
Hans-Jürgen Profé
Michael Schöps
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johns Manville
Original Assignee
Hoechst Trevira GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7793897&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0806509(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hoechst Trevira GmbH and Co KG filed Critical Hoechst Trevira GmbH and Co KG
Publication of EP0806509A1 publication Critical patent/EP0806509A1/de
Application granted granted Critical
Publication of EP0806509B1 publication Critical patent/EP0806509B1/de
Publication of EP0806509B2 publication Critical patent/EP0806509B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4374Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece using different kinds of webs, e.g. by layering webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/48Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/48Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation
    • D04H1/485Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation in combination with weld-bonding
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/48Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation
    • D04H1/488Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation in combination with bonding agents
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • D04H3/011Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/10Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically
    • D04H3/105Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically by needling
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/12Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with filaments or yarns secured together by chemical or thermo-activatable bonding agents, e.g. adhesives, applied or incorporated in liquid or solid form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/902High modulus filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/24994Fiber embedded in or on the surface of a polymeric matrix
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/643Including parallel strand or fiber material within the nonwoven fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/643Including parallel strand or fiber material within the nonwoven fabric
    • Y10T442/644Parallel strand or fiber material is glass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/643Including parallel strand or fiber material within the nonwoven fabric
    • Y10T442/645Parallel strand or fiber material is inorganic [e.g., rock wool, mineral wool, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/654Including a free metal or alloy constituent
    • Y10T442/655Metal or metal-coated strand or fiber material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/681Spun-bonded nonwoven fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/682Needled nonwoven fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/696Including strand or fiber material which is stated to have specific attributes [e.g., heat or fire resistance, chemical or solvent resistance, high absorption for aqueous compositions, water solubility, heat shrinkability, etc.]

Definitions

  • the invention relates to a carrier insert which is particularly suitable as a carrier insert for producing roofing sheets or as a tarpaulin or surface.
  • Carrier inserts for the production of roofing membranes must meet a wide range of requirements. On the one hand, sufficient mechanical stability is required, such as good perforation resistance and good tensile strength, in order, for example, to withstand the mechanical loads during further processing, such as bituminization or laying. In addition, a high level of resistance to thermal stress, for example when bituminizing or to radiant heat, and resistance to flying flames are required. There has been no shortage of attempts to improve existing core inserts.
  • nonwovens based on synthetic fiber nonwovens with reinforcing fibers for example with glass fibers.
  • sealing sheets can be found in GB-A-1,517,595, DE-Gbm-77-39,489, EP-A-160,609, EP-A-176-847, EP-A-403,403 and EP-A-530,769.
  • the connection between the nonwoven fabric and the reinforcing fibers takes place either by gluing with a binder or by needling the layers of different material.
  • DE-A-3,417,517 discloses a textile interlining material with anisotropic properties and a process for its production.
  • the interlining consists of a substrate which has a surface melting below 150 ° C and associated reinforcement filaments melting above 180 ° C, which are fixed on this surface parallel to each other.
  • the substrate can be a nonwoven fabric, on one surface of which there are hot-melt adhesive fibers or filaments which are provided for producing a bond between the reinforcing fibers arranged in parallel with the nonwoven fabric.
  • EP-A-0,281,643 discloses a combination of reinforcing fibers in the form of a network of bicomponent fibers with nonwovens based on synthetic fibers, the weight fraction of the network of bicomponent fibers being at least 15% by weight.
  • a filter material made of inorganic non-woven material and metal wires is known, which is used for exhaust air purification at high temperatures (higher than 300 ° C).
  • DE-Gbm-295 00 830 describes the reinforcement of a glass fleece with synthetic monofilaments. These reinforcing monofilaments do not contribute significantly to the reference force at low strains in the sealing membrane. However, they have a significantly higher maximum tensile strength expansion than the glass fleece; thus the areal connection of the geomembrane also becomes guaranteed in the event of deformations that can lead to breakage of the glass fleece.
  • the shrinkage of the synthetic monofilaments is higher than the shrinkage of the glass fleece and can lead to waviness in the sealing membrane.
  • DE-A-3,941,189 also discloses a combination of reinforcing fibers in the form of a thread chain with nonwovens based on synthetic fibers, which can be connected to one another in a wide variety of ways.
  • the Young module of the reinforced carrier insert does not change compared to an unreinforced base fleece.
  • the reference force of the reinforced carrier insert can be distributed in different proportions on the textile fabric or on the reinforcements in the case of slight stretching.
  • a suitable measure for the distribution of the reference forces is the quotient of these reference forces at a measuring temperature of 20 ° C divided by the reference force at 180 ° C.
  • the reference force improves with strains below 1%, significantly also at room temperature, if this quotient falls below the value 3 (three).
  • the present invention relates to a carrier insert containing a textile fabric and a reinforcement, characterized in that the reinforcement absorbs a force so that the reference force of the carrier insert with reinforcement compared to the carrier insert is shown in the force-elongation diagram (at 20 ° C.) without reinforcement in the range between 0 and 1% elongation at least at one point by at least 10%, preferably by at least 20%, particularly preferably by at least 30%.
  • the reinforcement is such that the reference scratch of the carrier insert at room temperature (20 ° C.) divided by the reference force of the carrier insert at 180 °, measured at at least one point in the range between 0 and 1% elongation, has a quotient of at most 3 ( three), preferably at most 2.5, particularly preferably less than 2.
  • textile fabric is to be understood in its broadest meaning within the scope of this description. These can be all structures made of fibers from synthesized polymers that have been manufactured using a surface-forming technique.
  • notch depth and notch protrusion are defined in a brochure from Groz-Beckert from 1994 with the name "felting and structuring needles”.
  • the reference force is measured in accordance with EN 29073, Part 3, on 5 cm wide samples with a measuring length of 100 mm.
  • textile fabrics are fabrics, scrims, knits and knitted fabrics, and preferably nonwovens.
  • spunbonded fabrics which are produced by randomly depositing freshly melt-spun filaments are preferred. They consist of continuous synthetic fibers made of melt-spinnable polymer materials.
  • Suitable polymer materials are, for example, polyamides, such as e.g. Polyhexamethylene diadipamide, polycaprolactam, aromatic or partially aromatic polyamides ("aramids"), aliphatic polyamides, such as e.g. Nylon, partially aromatic or fully aromatic polyester, polyphenylene sulfide (PPS), polymers with ether and keto groups, e.g. Polyether ketones (PEK) and poly ether ketones (PEEK), or polybenzimidazoles.
  • PEK Polyether ketones
  • PEEK poly ether ketones
  • the spunbonded fabrics preferably consist of melt-spinnable polyesters.
  • polyester material consist predominantly of building blocks which are derived from aromatic dicarboxylic acids and from aliphatic diols.
  • Common aromatic dicarboxylic acid building blocks are the divalent residues of benzenedicarboxylic acids, especially terephthalic acid and isophthalic acid;
  • Common diols have 2 to 4 carbon atoms, with the ethylene glycol being particularly suitable.
  • Spunbonded fabrics which consist of at least 85 mol% of polyethylene terephthalate are particularly advantageous.
  • dicarboxylic acid units and glycol units which act as so-called modifying agents and which allow the person skilled in the art to specifically influence the physical and chemical properties of the filaments produced.
  • dicarboxylic acid units are residues of isophthalic acid or of aliphatic dicarboxylic acid such as, for example, glutaric acid, adipic acid, sebacic acid;
  • diol residues with a modifying action are those of longer-chain diols, e.g. B. of propanediol or butanediol, of di- or triethylene glycol or, if in small amount available, of polyglycol with a molecular weight of approx. 500 to 2000.
  • Polyesters which contain at least 95 mol% of polyethylene terephthalate (PET), in particular those made of unmodified PET, are particularly preferred.
  • the carrier inlays according to the invention are also to have a flame-retardant effect, it is advantageous if they have been spun from flame-retardant modified polyesters.
  • flame-retardant modified polyesters are known. They contain additives of halogen compounds, in particular bromine compounds, or, which is particularly advantageous, they contain phosphonic compounds which are condensed into the polyester chain.
  • the spunbonded fabrics particularly preferably contain flame-retardant modified polyesters which in the chain contain assemblies of the formula (I) wherein R is alkylene or polymethylene with 2 to 6 carbon atoms or phenyl and R 1 is alkyl with 1 to 6 carbon atoms, aryl or aralkyl, contained in condensed form.
  • R is preferably ethylene and R 1 is methyl, ethyl, phenyl, or o-, m- or p-methylphenyl, in particular methyl.
  • Such spunbonded fabrics are described, for example, in DE-A-39 40 713.
  • the polyesters contained in the spunbonded fabrics preferably have a molecular weight corresponding to an intrinsic viscosity (IV), measured in a solution of 1 g of polymer in 100 ml of dichloroacetic acid at 25 ° C., from 0.6 to 1.4.
  • IV intrinsic viscosity
  • the individual titer of the polyester filaments in the spunbonded fabric is between 1 and 16 dtex, preferably 2 to 8 dtex.
  • the spunbonded nonwoven can also be a nonwoven bond strengthened by melt binder, which contains carrier and hot-melt adhesive fibers.
  • the carrier and hot-melt adhesive fibers can be derived from any thermoplastic thread-forming polymers.
  • Carrier fibers can also be derived from non-melting thread-forming polymers.
  • melt-bond-strengthened spunbonded fabrics are described, for example, in EP-A-0,446,822 and EP-A-0,590,629.
  • polymers from which the carrier fibers can be derived are polyacrylonitrile, polyolefins, such as polyethylene, essentially aliphatic polyamides, such as nylon 6.6, essentially aromatic polyamides (aramids), such as poly (p-phenylene terephthalamide) or copolymers containing a proportion on aromatic m-diamine units to improve solubility or poly- (m-phenylene isophthalamide), essentially aromatic polyesters, such as poly- (p-hydroxybenzoate), or preferably essentially aliphatic polyesters, such as polyethylene terephthalate.
  • the proportion of the two types of fibers to one another can be selected within wide limits, it being important to ensure that the proportion of hot-melt adhesive fibers is chosen so high that the nonwoven fabric is given sufficient strength for the desired application by bonding the carrier fibers to the hot-melt adhesive fibers.
  • the proportion of hot melt adhesive originating from the hot melt adhesive fiber in the nonwoven fabric is usually less than 50% by weight, based on the weight of the nonwoven fabric.
  • Modified polyesters with a 10 to 50 ° C., preferably 30 to 50.degree 50 ° C lowered melting point into consideration.
  • hot melt adhesive examples include polypropylene, polybutylene terephthalate or by condensing longer-chain diols and / or polyethylene terephthalate modified by isophthalic acid or aliphatic dicarboxylic acids.
  • the hot melt adhesives are preferably introduced into the nonwovens in fiber form.
  • Carrier and hot-melt adhesive fibers are preferably constructed from one polymer class. This means that all fibers used are selected from a class of substances so that they can be easily recycled after the fleece has been used.
  • the carrier fibers consist of polyester
  • the hot melt adhesive fibers are also made of polyester or a mixture of polyesters, e.g. B. selected as a bicomponent fiber with PET in the core and a lower melting polyethylene terephthalate copolymer as a sheath:
  • bicomponent fibers are also possible which are made up of different polymers. Examples include bicomponent fibers made of polyester and polyamide (core / shell).
  • the individual fiber titers of the carrier and hot melt adhesive fibers can be selected within wide limits. Examples of common titer ranges are 1 to 16 dtex, preferably 2 to 6 dtex.
  • the carrier inserts according to the invention with flame-retardant properties are additionally bound, they preferably contain flame-retardant hot-melt adhesives.
  • flame retardant hot melt adhesive z. B. a modified by incorporation of chain links of the formula (I) indicated polyethylene terephthalate in the laminate according to the invention.
  • the filaments or staple fibers making up the nonwovens can have a practically round cross section or can also have other shapes, such as dumbbell, kidney-shaped, triangular, tri or multilobal cross-sections. Hollow fibers can also be used. Furthermore, the hot-melt adhesive fiber can also be used in the form of bi- or multicomponent fibers.
  • the fibers forming the textile fabric can be modified by conventional additives, for example by antistatic agents such as carbon black.
  • the surface area of the spunbonded fabric is between 20 and 500 g / m 2 , preferably 40 and 250 g / m 2 .
  • the above properties are obtained, for example, from threads and / or yarns whose Young's modulus is at least 5 Gpa, preferably at least 10 Gpa, particularly preferably at least 20 Gpa.
  • the reinforcing threads mentioned above have a diameter between 0.1 and 1 mm, preferably 0.1 and 0.5 mm, in particular 0.1 and 0.3 mm and have an elongation at break of 0.5 to 100%, preferably 1 to 60 %.
  • the carrier inlays according to the invention particularly advantageously have an expansion reserve of less than 1%.
  • the stretch reserve refers to the stretch that acts on the carrier insert before the force acting on the reinforcing threads is dissipated, ie a stretch reserve of 0% would mean that tensile forces acting on the carrier insert would be dissipated immediately on the reinforcing threads. This means that forces acting on the spunbonded fabric do not first bring about an alignment or orientation of the reinforcing threads, but rather are derived directly on the reinforcing threads, so that damage to the textile fabric can be avoided. This is particularly evident in a steep increase in the force to be applied with small strains (force-strain diagram at room temperature).
  • Suitable reinforcing threads are, for example, high-strength monofilaments made of polyester or wires made of metals or metallic alloys whose elongation at break is at least 10%.
  • Preferred reinforcing threads are multifilaments and / or monofilaments based on aramids, preferably so-called high-modulus aramids, carbon, glass, high-strength polyester monofilaments, as well as so-called hybrid multifilament yarns (yarns containing reinforcing fibers and low-melting binding fibers) or wires (monofilaments) made of metals or metallic alloys used.
  • preferred reinforcements consist of glass multifilaments in the form of parallel thread sheets or scrims.
  • the nonwovens are only reinforced in the longitudinal direction by thread sheets running in parallel.
  • the reinforcing threads can be used as such or in the form of a textile fabric, for example as a woven fabric, scrim, knitted fabric, knitted fabric or as a fleece. Reinforcements with reinforcing yarns running parallel to one another, that is, warp thread sheets, as well as scrims or fabrics are preferred.
  • the thread density can vary within wide limits depending on the desired property profile.
  • the thread density is preferably between 20 and 200 threads per meter.
  • the thread density is measured perpendicular to the thread running direction.
  • the reinforcing threads are preferably fed in during the formation of spunbonded fabric and thus embedded in the spunbonded fabric.
  • a nonwoven layer on the reinforcement or a subsequent layer formation from reinforcement and nonwoven fabric by assembly is preferred.
  • the spunbonded nonwovens are usually subjected to chemical or thermal and / or mechanical consolidation in a known manner.
  • the spunbonded fabrics are preferably mechanically consolidated by needling.
  • the spunbonded fabric which advantageously already contains the reinforcing threads, is usually needled with a needle density of 20 to 100 stitches / cm 2 .
  • the needling is advantageously carried out by needles whose notch protrusion, preferably the sum of the notch protrusion and notch depth, is smaller than the diameter of the reinforcing threads. As a result, the reinforcing threads are not damaged.
  • the spunbonded webs, which already contain reinforcing threads are then subjected to further consolidation steps, for example a thermal treatment.
  • the spunbonded nonwovens which can be bonded with melt binders and which also contain binder fibers in addition to carrier fibers, are thermally bonded in a manner known per se with a calender or in an oven. If the spunbonded fabrics do not contain any binding fibers capable of thermal consolidation, these spunbonded fabrics are impregnated with a chemical binder. Acrylic binders are particularly suitable for this. The proportion of binder is expediently up to 30% by weight, preferably 2 to 25% by weight. The exact choice of the binder is based on the special interests of the processor. Hard binders allow high processing speeds with impregnation, especially bituminization, while a soft binder gives particularly high values of tear and nail tear resistance.
  • flame-retardant modified binders can also be used.
  • the carrier web according to the invention has an embossing pattern of statistically distributed or repeat arranged, small-area embossments, preferably a canvas embossing, in which the pressing surface, ie the totality of all thin, compacted areas of the spunbonded fabric makes up 30 to 60%, preferably 40 to 45% of its total area, and the thickness of the compacted areas of the nonwoven fabric is at least 20%, preferably 25 to 50%, the thickness of the non-compacted areas of the nonwoven.
  • this embossing pattern can advantageously be applied during calender bonding.
  • the embossing pattern can also be embossed using a calender.
  • This embossing pattern which is applied to both surfaces of the spunbonded fabric, but preferably only to one surface of the spunbonded fabric, when it passes through the spunbonded fabric, has a large number of small embossments which have a size of 0.2 to 40 mm 2 , preferably 0 , 2 to 10 mm 2 , and are separated from one another by interposed, approximately the same size, non-embossed surface elements of the fleece.
  • the area of the compacted areas of the nonwoven and the non-compacted areas of the nonwoven can be determined, for example, by means of microscopic cross-sectional images.
  • the carrier inlays according to the invention can be combined with other textile fabrics, so that their properties are variable.
  • Such composites, which contain the carrier insert according to the invention, are also the subject of the invention.
  • the reinforcement can be supplied before, during and / or after the formation of the textile surface.
  • the process is characterized by the supply of the reinforcement and any thermal treatment in the manufacturing process of the carrier insert under tension, in particular under longitudinal tension.
  • Thermal treatment under tension occurs when the position of the reinforcement in the carrier insert remains unchanged during a thermal step; the preservation of the longitudinal threads by applying a longitudinal tension is of particular interest.
  • the formation of the textile fabric can take place on a tapered reinforcement or the reinforcement can during the surface formation process, for. B. in the manufacture of nonwovens, or a textile fabric can be finished and connected with a reinforcement by subsequent assembly.
  • the combination of the textile fabric with the reinforcement can take place by measures known per se, for example by needling or gluing, including hot melt gluing. The advantages of the process are particularly evident in the production of needled carrier inserts.
  • the formation of a textile fabric as described in a) can be carried out by spunbonding by means of spinning apparatus known per se.
  • the molten polymer is passed through several series of spinnerets or groups of spinneret series cleverly. If a melt-bond-strengthened spunbonded nonwoven is to be produced, polymers are alternately loaded, which form the carrier fiber and the hot-melt adhesive fibers.
  • the spun polymer streams are stretched in a conventional manner, and z. B. deposited using a rotating baffle in scattering texture on a conveyor belt.
  • the carrier inserts according to the invention can also be combined with other components to form multilayer composites.
  • other components are glass fleeces, thermoplastic or metallic foils, insulation materials, etc.
  • the carrier inserts according to the invention can be used for the production of bituminized roofing and waterproofing membranes.
  • the carrier material is treated with bitumen in a manner known per se and then optionally sprinkled with a granular material, for example with sand.
  • the roofing and waterproofing membranes produced in this way are easy to process.
  • the bituminized webs contain at least one carrier web embedded in a bitumen matrix - described above - the weight fraction of the bitumen in the basis weight of the bituminized roofing web preferably being 40 to 90% by weight and that of the spunbonded fabric 10 to 60% by weight.
  • These membranes can also be a so-called roof membrane.
  • bitumen another material, e.g. Polyethylene or polyvinyl chloride can be used to coat the carrier insert according to the invention.
  • PET threads with a filament titer of 4 dtex manufactured and laid down to a tangled fleece of 2 m width.
  • steel wires are continuously fed at a distance of 2 cm (50 wires / m) in the longitudinal direction.
  • the wires manufactured by Bekaert
  • the wires are supplied on spools and have a diameter of 0.18 mm, a strength of 2300 N / mm 2 and an elongation at break of 1.5%.
  • the nonwoven / wire bond is needled with 40 stitches / cm 2 at a penetration depth of 12.5 mm (needle type from Foster, 15x18x38x3 CB) and then impregnated with an acrylate binder, the weight proportion of which in the finished nonwoven is 20%.
  • the binder is cured in a screen drum oven at 210 ° C. This gives a reinforced fleece of 190 g / m 2 basis weight.
  • PET threads with a filament titer of 4 dtex are produced and laid down to a tangled fleece of 1 m in width.
  • steel wires are continuously in the longitudinal direction (Material no. 1.4301) at a distance of 6.7 mm (150 wires / m).
  • the wires manufactured on spools and have a diameter of 0.15 mm, a strength of 14 N and an elongation at break of 34%.
  • the nonwoven / wire bond is needled with 40 stitches / cm 2 at a penetration depth of 12.5 mm (needle type from Foster, 15x18x38x3 CB) and then impregnated with an acrylate binder, the weight percentage of which in the finished nonwoven is 20%.
  • the binder is cured in a screen drum oven at 210 ° C. A reinforced fleece of 165 g / m 2 basis weight is obtained in this way.
  • PET threads with a filament titer of 4 dtex are produced and laid down to a tangled fleece of 2 m width.
  • wires consisting of an alloy of the CuZn37 type are continuously fed in at a distance of 2 cm (50 wires / m).
  • the wires (manufactured by J.G. Dahmen) are supplied on spools and have a diameter of 0.25 mm, a strength of 47 N and an elongation at break of 1.4%.
  • the composite fleece / wires is needled with 40 stitches / cm 2 at a penetration depth of 12.5 mm (needle type from Foster, 15x18x38x3 CB) and then impregnated with an acrylic binder, the weight proportion of which in the finished fleece is 20%.
  • the binder is cured in a screen drum oven at 210 ° C.
  • a reinforced fleece of 192 g / m 2 basis weight is obtained in this way.
  • PET threads with a filament titer of 4 dtex manufactured and filed to a tangled fleece of 2 m width.
  • wires consisting of an alloy of the CuSn6 type are continuously fed in at a distance of 1.2 cm (83 wires / m).
  • the wires (manufacturer JG Dahmen) are supplied on spools and have a diameter of 0.25 mm, a strength of 21 N and an elongation at break of 54%.
  • the composite fleece / wires is needled with 40 stitches / cm 2 at a penetration depth of 12.5 mm (needle type from Foster, 15x18x38x3 CB) and then impregnated with an acrylic binder, the weight proportion of which in the finished fleece is 20%.
  • the binder is cured in a screen drum oven at 210 ° C.
  • a reinforced fleece of 165 g / m 2 basis weight is obtained in this way.
  • PET threads with a filament titer of 4 dtex are produced and laid down to a tangled fleece of 2 m width.
  • wires consisting of a type CUZn37 alloy are continuously fed in at a distance of 2 cm (50 wires / m).
  • the wires (manufacturer JG Dahmen) are supplied on spools and have a diameter of 0.25 mm, a strength of 25 N and an elongation at break of 15%.
  • the composite fleece / wires is needled with 40 stitches / cm 2 at a penetration depth of 12.5 mm (needle type from Foster, 15x18x38x3 CB) and then impregnated with an acrylic binder, the weight proportion of which in the finished fleece is 20%.
  • the binder is cured in a screen drum oven at 210 ° C.
  • a reinforced fleece of 160 g / m 2 basis weight is obtained in this way.
  • PET threads with a filament titer of 4 dtex manufactured and deposited to a tangled fleece of 1 m width.
  • glass multifilaments of the type EC 934T6Z28 from Vetrotex are fed in at a distance of 6.25 mm (160 threads per meter).
  • the glass threads are supplied on spools and have a strength of 20 N and an elongation at break of 2.5%.
  • the composite of fleece and threads is needled with 40 stitches / cm 2 at a penetration depth of 12.5 mm (needle type from Foster, 15x18x38x3 CB) and then impregnated with an acrylate binder, the weight proportion of which in the finished fleece is 20%.
  • the binder is cured in a screen drum oven at 210 ° C.
  • a reinforced fleece of 110 g / m 2 basis weight is obtained in this way.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nonwoven Fabrics (AREA)
  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)

Abstract

Die vorliegende Erfindung beschreibt eine Trägereinlage enthaltend ein textiles Flächengebilde und eine Verstärkung, dadurch gekennzeichnet, daß die Verstärkung eine Kraft aufnimmt, so daß sich im Kraft-Dehnungs-Diagramm (bei 20 °C) die Bezugskraft der Trägereinlage mit Verstärkung verglichen mit der Trägereinlage ohne Verstärkung im Bereich zwischen 0 und 1 % Dehnung an mindestens einer Stelle um mindestens 10 %, vorzugsweise um mindestens 20 %, insbesondere bevorzugt um mindestens 30 % unterscheidet. Weiterer Gegenstand der Erfindung ist die Verwendung der Trägereinlage zur Herstellung von gegebenenfalls bituminierten Dach- und Dichtungsbahnen, sowie die entsprechenden Endprodukte.

Description

  • Die Erfindung betrifft eine Trägereinlage, die sich insbesondere als Trägereinlage zur Herstellung von Dachbahnen oder als Plane oder Fläche eignet.
  • Trägereinlagen zur Herstellung von Dachbahnen müssen vielfältigen Anforderungen genügen. So ist einerseits eine ausreichende mechanische Stabilität gefordert, wie gute Perforationsfestigkeit und gute Zugfestigkeit, um beispielsweise den mechanischen Belastungen bei der Weiterverarbeitung, wie Bituminierung oder Verlegen, standzuhalten. Außerdem wird eine hohe Beständigkeit gegen thermische Belastung, beispielsweise beim Bituminieren oder gegen strahlende Wärme, und Widerstandsfähigkeit gegen Flugfeuer verlangt. Es hat daher nicht an Versuchen gefehlt, bestehende Trägereinlagen zu verbessern.
  • So ist es bereits bekannt, Vliesstoffe auf der Basis von Synthesefaservliesen mit Verstärkungsfasern, beispielsweise mit Glasfasern zu kombinieren. Beispiele für solche Dichtungsbahnen findet man in den GB-A-1,517,595, DE-Gbm-77-39,489, EP-A-160,609, EP-A-176-847, EP-A-403,403 und EP-A-530,769. Die Verbindung zwischen Faservlies und Verstärkungsfasern erfolgt nach diesem Stand der Technik entweder durch Verkleben mittels eines Bindemittel oder durch Vernadeln der Schichten aus unterschiedlichem Material.
  • Es ist ferner bekannt, Verbundstoffe durch Wirk- oder Nähwirktechniken herzustellen. Beispiele dafür finden sich in den DE-A-3,347,280, US-A-4,472,086, EP-A-333,602 und EP-A-395,548.
  • Aus der DE-A-3,417,517 ist ein textiler Einlagestoff mit anisotropen Eigenschaften und ein Verfahren zu dessen Herstellung bekannt. Der Einlagestoff besteht aus einem Substrat, das eine unter 150 °C schmelzende Oberfläche besitzt, und damit verbundenen über 180 °C schmelzenden Verstärkungsfilamenten, die auf dieser Oberfläche parallel zueinander fixiert sind. Gemäß einer Ausführungsform kann es sich bei dem Substrat um einen Vliesstoff handeln, auf dessen einer Oberfläche sich Schmelzklebefasern oder -fäden befinden, die zur Herstellung einer Verklebung der parallel angeordneten Verstärkungsfasern mit dem Vliesstoff vorgesehen sind.
  • Aus der US-A-4,504,539 ist eine Kombination von Verstärkungsfasern in Form von Bikomponentenfasern mit Vliesstoffen aus der Basis von Synthesefasern bekannt.
  • Aus der EP-A-0,281,643 ist eine Kombination von Verstärkungsfasern in Form eines Netzes aus Bikomponentenfasern mit Vliesstoffen auf der Basis von Synthesefasern bekannt, wobei der Gewichtsanteil des Netzes aus Bikomponentenfasern mindestens 15 Gew.-% beträgt.
  • Aus der JP-A-81-5879 ist ein Verbundstoff bekannt, der mit einem netzförmigen Verstärkungsmaterial versehen ist.
  • Aus der GB-A-2,017,180 ist ein Filtermaterial aus anorganischem Vliesmaterial und Metalldrähten bekannt, das zur Abluftreinigung bei hohen Temperaturen (höher 300 °C) eingesetzt wird.
  • DE-Gbm-295 00 830 beschreibt die Verstärkung eines Glasvlieses mit synthetischen Monofilen. Diese Verstärkungsmonofile tragen in der Dichtungsbahn nicht wesentlich zur Bezugskraft bei geringen Dehnungen bei. Sie weisen aber eine deutlich höhere Höchstzugkraftdehnung auf als das Glasvlies; somit wird der flächige Zusammenhang der Dichtungsbahn auch noch bei Verformungen gewährleistet, die zum Bruch des Glasvlieses führen können. Der Schrumpf der synthetischen Monofile ist höher als der Schrumpf des Glasvlieses und kann in der Dichtungsbahn zur Welligkeit führen.
  • Auch aus der DE-A-3,941,189 ist eine Kombination von Verstärkungsfasern in Form einer Fadenkette mit Vliesstoffen auf der Basis von Synthesefasern bekannt, die auf verschiedenste Arten miteinander verbunden werden können. In dieser Anmeldung wird betont, daß sich der Young-Modul der verstärkten Trägereinlage sich gegenüber einem unverstärkten Basisvlieses nicht ändert.
  • Für eine Reihe von Anwendungen wird aber ein hoher Modul bei geringen Dehnungen auch bei Zimmertemperatur gewünscht. Dieser hohe Modul verbessert die Handhabbarkeit, insbesondere bei leichten Vliesstoffen.
  • Je nach Anforderungsprofil und auch nach Kostengesichtspunkten kann die Bezugskraft der verstärkten Trägereinlage bei geringen Dehnungen in unterschiedlichen Anteilen auf das textile Flächengebilde bzw. auf die Verstärkungen verteilt sein.
  • Eine geeignete Maßzahl für die Aufteilung der Bezugskräfte ist der Quotient dieser Bezugskräfte bei einer Meßtemperatur von 20 °C dividiert durch die Bezugskraft bei 180 °C.
  • Trägereinlagen mit einem derart definierten Quotient von 3,3, wie sie in DE-A-3,941,189 beschrieben sind zeigen keine feststellbare Verbesserung der Bezugskraft bei Zimmertemperatur.
  • Es bestand daher die Aufgabe, eine Trägereinlage zu entwickeln, die im gesamten Temperaturbereich eine deutlich verbesserte Bezugskraft bei geringer Dehnung aufweist.
  • Überraschenderweise verbessert sich die Bezugskraft bei Dehnungen unter 1 %, deutlich auch bei Zimmertemperatur, wenn dieser Quotient den Wert 3 (drei) unterschreitet.
  • Gegenstand der vorliegenden Erfindung ist eine Trägereinlage enthaltend ein textiles Flächengebilde und eine Verstärkung, dadurch gekennzeichnet, daß die Verstärkung eine Kraft aufnimmt, so daµ sich im Kraft-Dehnungs-Diagramm (bei 20 °C) die Bezugskraft der Trägereinlage mit Verstärkung verglichen mit der Trägereinlage ohne Verstärkung im Bereich zwischen 0 und 1 % Dehnung an mindestens einer Stelle um mindestens 10 %, vorzugsweise um mindestens 20 %, insbesondere bevorzugt um mindestens 30 % unterscheidet.
  • Darüber hinaus ist die Verstärkung derart, daß die Bezugskratt der Trägereinlage bei Raumtemperatur (20 °C), dividiert durch die Bezugskraft der Trägereinlage bei 180°, gemessen an mindestens einem Punkt im Bereich zwischen 0 und 1 % Dehnung, einen Quotienten von höchsten 3 (drei), vorzugsweise höchstens 2,5, insbesondere bevorzugt kleiner 2, ergibt.
  • Der Begriff "textiles Flächengebilde" ist im Rahmen dieser Beschreibung in seiner breitesten Bedeutung zu verstehen. Dabei kann es sich um alle Gebilde aus Fasern aus synthetisierten Polymeren handeln, die nach einer flächenbildenden Technik hergestellt worden sind.
  • Die Begriffe Kerbentiefe und Kerbenüberstand sind in einem Prospekt mit der Bezeichnung "Filz- und Strukturierungsnadeln" der Fa. Groz-Beckert aus dem Jahr 1994 definiert.
  • Die Messung der Bezugskraft erfolgt nach EN 29073, Teil 3, an 5 cm breiten Proben bei 100 mm Meßlänge. Der Zahlenwert der Vorspannkraft, angegeben in Centinewton entspricht dabei dem Zahlenwert der Flächenmasse der Probe, angegeben in Gramm pro Quadratmeter.
  • Beispiele für solche textilen Flächengebilde sind Gewebe, Gelege, Gestricke und Gewirke, sowie vorzugsweise Vliese.
  • Von den Vliesen aus Fasern aus synthetischen Polymeren sind Spinnvliese, sogenannte Spunbonds, die durch eine Wirrablage frisch schmelzgesponnener Filamente erzeugt werden, bevorzugt. Sie bestehen aus Endlos-Synthesefasern aus schmelzspinnbaren Polymermaterialien. Geeignete Polymermaterialien sind beispielsweise Polyamide, wie z.B. Polyhexamethylen-diadipamid, Polycaprolactam, aromatische oder teilaromatische Polyamide ("Aramide"), aliphatische Polyamide, wie z.B. Nylon, teilaromatische oder vollaromatische Polyester, Polyphenylensulfid (PPS), Polymere mit Ether- und Keto-gruppen, wie z.B. Polyetherketone (PEK) und Poly-etheretherketon (PEEK), oder Polybenzimidazole.
  • Bevorzugt bestehen die Spinnvliese aus schmelzspinnbaren Polyestern. Als Polyestermaterial kommen im Prinzip alle zur Faserherstellung geeigneten bekannten Typen in Betracht. Derartige Polyester bestehen überwiegend aus Bausteinen, die sich von aromatischen Dicarbonsäuren und von aliphatischen Diolen ableiten. Gängige aromatische Dicarbonsäurebausteine sind die zweiwertigen Reste von Benzoldicarbonsäuren, insbesondere der Terephthalsäure und der Isophthalsäure; gängige Diole haben 2 bis 4 C-Atome, wobei das Ethylenglycol besonders geeignet ist. Besonders vorteilhaft sind Spinnvliese, die zu mindestens 85 mol % aus Polyethylenterephthalat bestehen. Die restlichen 15 mol % bauen sich dann aus Dicarbonsäureeinheiten und Glycoleinheiten auf, die als sogenannte Modifizierungsmittel wirken und die es dem Fachmann gestatten, die physikalischen und chemischen Eigenschaften der hergestellten Filamente gezielt zu beeinflussen. Beispiele für solche Dicarbonsäureeinheiten sind Reste der Isophthalsäure oder von aliphatischen Dicarbonsäure wie z.B. Glutarsäure, Adipinsäure, Sebazinsäure; Beispiele für modifizierend wirkende Diolreste sind solche von längerkettigen Diolen, z. B. von Propandiol oder Butandiol, von Di- oder Triethylenglycol oder, sofern in geringer Menge vorhanden, von Polyglycol mit einem Molgewicht von ca. 500 bis 2000.
  • Besonders bevorzugt sind Polyester, die mindestens 95 mol % Polyethylenterephthalat (PET) enthalten, insbesondere solche aus unmodifiziertem PET.
  • Sollen die erfindungsgemäßen Trägereinlagen zusätzlich eine flammhemmende Wirkung haben, so ist es von Vorteil, wenn sie aus flammhemmend modifizierten Polyestern ersponnen wurden. Derartige flammhemmend modifizierten Polyester sind bekannt. Sie enthalten Zusätze von Halogenverbindungen, insbesondere Bromverbindungen, oder, was besonders vorteilhaft ist, sie enthalten Phosphonverbindungen, die in die Polyesterkette einkondensiert sind.
  • Besonders bevorzugt enthalten die Spinnvliese flammhemmend modifizierte Polyester, die in der Kette Baugruppen der Formel (I)
    Figure imgb0001
    worin R Alkylen oder Polymethylen mit 2 bis 6 C-Atomen oder Phenyl und R1 Alkyl mit 1 bis 6 C-Atomen, Aryl oder Aralkyl bedeutet, einkondensiert enthalten. Vorzugsweise bedeuten in der Formel (I) R Ethylen und R1 Methyl, Ethyl, Phenyl, oder o-, m- oder p-Methyl-phenyl, insbesondere Methyl. Derartige Spinnvliese werden z.B. in der DE-A-39 40 713 beschrieben.
  • Die in den Spinnvliesen enthaltenen Polyester haben vorzugsweise ein Molekulargewicht entsprechend einer intrinsischen Viskosität (IV), gemessen in einer Lösung von 1 g Polymer in 100 ml Dichloressigsäure bei 25 °C, von 0,6 bis 1,4.
  • Die Einzeltiter der Polyesterfilamente im Spinnvlies betragen zwischen 1 und 16 dtex, vorzugsweise 2 bis 8 dtex.
  • In einer weiteren Ausführungsform der Erfindung kann das Spinnvlies auch ein schmelzbinderverfestigter Vliesstoff sein, welcher Träger- und Schmelzklebefasern enthält. Die Träger- und Schmelzklebefasern können sich von beliebigen thermoplastischen fadenbildenden Polymeren ableiten. Trägerfasern können sich darüber hinaus auch von nicht schmelzenden fadenbildenden Polymeren ableiten. Derartige schmelzbinderverfestigte Spinnvliese sind beispielsweise in EP-A-0,446,822 und EP-A-0,590,629 beschrieben.
  • Beispiele für Polymere, von denen sich die Trägerfasern ableiten können, sind Polyacrylnitril, Polyolefine, wie Polyethylen, im wesentlichen aliphatische Polyamide, wie Nylon 6.6, im wesentlichen aromatische Polyamide (Aramide), wie Poly-(p-phenylenterephthalamid) oder Copolymere enthaltend einen Anteil an aromatischen m-Diamineinheiten zur Verbesserung der Löslichkeit oder Poly-(m-phenylenisophthalamid), im wesentlichen aromatische Polyester, wie Poly-(p-hydroxybenzoat) oder vorzugsweise im wesentlichen aliphatische Polyester, wie Polyethylenterephthalat.
  • Der Anteil der beiden Fasertypen zueinander kann in weiten Grenzen gewählt werden, wobei darauf zu achten ist, daß der Anteil der Schmelzklebefasern so hoch gewählt wird, daß der Vliesstoff durch Verklebung der Trägerfasern mit den Schmelzklebefasern eine für die gewünschte Anwendung ausreichende Festigkeit erhält. Der Anteil des aus der Schmelzklebgefaser stammenden Schmelzklebers im Vliesstoff beträgt üblicherweise weniger als 50 Gew.-%, bezogen auf das Gewicht des Vliesstoffes.
  • Als Schmelzkleber kommen insbesondere modifizierte Polyester mit einem gegenüber dem Vliesstoff-Rohstoff um 10 bis 50 °C, vorzugsweise 30 bis 50 °C abgesenkten Schmelzpunkt in Betracht. Beispiele für einen derartigen Schmelzkleber sind Polypropylen, Polybutylenterephthalat oder durch Einkondensieren längerkettiger Diole und/oder von Isophthalsäure oder aliphatischen Dicarbonsäuren modifiziertes Polyethylenterephthalat.
  • Die Schmelzkleber werden vorzugsweise in Faserform in die Vliese eingebracht.
  • Vorzugsweise sind Träger- und Schmelzklebefasern aus einer Polymerklasse aufgebaut. Darunter ist zu verstehen, daß alle eingesetzten Fasern aus einer Substanzklasse so ausgewählt werden, daß diese nach Gebrauch des Vlieses problemlos recycliert werden können. Bestehen die Trägerfasern beispielsweise aus Polyester, so werden die Schmelzklebefasern ebenfalls aus Polyester oder aus einer Mischung von Polyestern, z. B. als Bikomponentenfaser mit PET im Kern und einen niedriger schmelzenden Polyethylenterephthalat-Copolymeren als Mantel ausgewählt: Darüber hinaus sind jedoch auch Bikomponentenfasern möglich, die aus unterschiedlichen Polymeren aufgebaut sind. Beispiele hierfür sind Bikomponentenfasern aus Polyester und Polyamid (Kern/Hülle).
  • Die Einzelfasertiter der Träger- und der Schmelzklebefasern können innerhalb weiter Grenzen gewählt werden. Beispiele für übliche Titerbereiche sind 1 bis 16 dtex, vorzugsweise 2 bis 6 dtex.
  • Sofern die erfindungsgemäßen Trägereinlagen mit flammhemmenden Eigenschaften zusätzlich gebunden sind, enthalten sie vorzugsweise flammhemmende Schmelzkleber. Als flammhemmender Schmelzkleber kann z. B. ein durch Einbau von Kettengliedern der oben angegebenen Formel (I) modifiziertes Polyethylenterephthalat in dem erfindungsgemäßen Schichtstoff vorhanden sein.
  • Die die Vliesstoffe aufbauenden Filamente oder Stapelfasern können einen praktisch runden Querschnitt besitzen oder auch andere Formen aufweisen, wie hantel-, nierenförmige, dreieckige bzw. tri- oder multilobale Querschnitte. Es sind auch Hohlfasern einsetzbar. Ferner läßt sich die Schmelzklebefaser auch in Form von Bi- oder Mehrkomponentenfasern einsetzen.
  • Die das textile Flächengebilde bildenden Fasern können durch übliche Zusätze modifiziert sein, beispielsweise durch Antistatika, wie Ruß.
  • Das Flächengewicdht des Spinnvlieses beträgt zwischen 20 und 500 g/m2, vorzugsweise 40 und 250 g/m2.
  • Die vorstehenden Eigenschaften werden beispielsweise durch Fäden und/oder Garne erhalten, deren Young-Modul mindestens 5 Gpa, bevorzugt mindestens 10 Gpa, besonders bevorzugt mindestens 20 Gpa, beträgt. Die vorstehend genannten Verstärkungsfäden haben einen Durchmesser zwischen 0,1 und 1 mm, vorzugsweise 0,1 und 0,5 mm, insbesondere 0,1 und 0,3 mm und besitzen eine Bruchdehnung von 0,5 bis 100 %, vorzugsweise 1 bis 60 %. Besonders vorteilhaft weisen die erfindungsgemäßen Trägereinlagen eine Dehnungsreserve von weniger als 1 % auf.
  • Als Dehnungsreserve wird die Dehnung bezeichnet, die auf die Trägereinlage einwirkt bevor die einwirkende Kraft auf die Verstärkungsfäden abgeleitet wird, d.h. eine Dehnungsreserve von 0 % würde bedeuten, das auf die Trägereinlage einwirkende Zugkräfte sofort auf die Verstärkungsfäden abgeleitet werden würden. Dies bedeutet, daß auf das Spinnvlies einwirkende Kräfte nicht erst eine Ausrichtung bzw. Orientierung der Verstärkungsfäden bewirken sondern vielmehr direkt auf die Verstärkungsfäden abgeleitet werden, so daß eine Schädigung des textilen Flächengebildes vermieden werden kann. Dies zeigt sich insbesondere in einem steilen Anstieg der aufzuwendenden Kraft bei kleinen Dehnungen (Kraft-Dehnungs-Diagramm bei Raumtemperatur). Zusätzlich kann mit Hilfe geeigneter Verstärkungsfäden, die eine hohe Bruchdehnung aufweisen, die Höchstzugkraftdehnung der Trägereinlage erheblich verbessert werden. Geeignete Verstärkungsfäden sind beispielsweise hochfeste Monofilamente aus Polyester oder Drähte aus Metallen oder metallischen Legierungen deren Bruchdehnung mindestens 10 % beträgt.
  • Bevorzugt werden als Verstärkungsfäden Multifilamente und/oder Monofilamente auf Basis von Aramiden, vorzugsweise sogenannte Hoch-Modul-Aramide, Kohlenstoff, Glas, hochfeste Polyester-Monofilamente, sowie sogenannte Hybridmultifilamentgarne (Garne enthaltend Verstärkungsfasern und tieferschmelzende Bindefasern) oder Drähte (Monofilamente) aus Metallen oder metallischen Legierungen eingesetzt.
  • Bevorzugte Verstärkungen bestehen aus wirtschaftlichen Gründen aus Glas-Multifilamenten in Form von parallelen Fadenscharen oder Gelegen. Meist erfolgt nur eine Verstärkung in Längsrichtung der Vliesstoffe durch parallel laufende Fadenscharen.
  • Die Verstärkungsfäden können als solche oder auch in Form eines textilen Flächengebildes, beispielsweise als Gewebe, Gelege, Gestrick, Gewirke oder als Vlies eingesetzt werden. Bevorzugt werden Verstärkungen mit zueinander parallel laufenden Verstärkungsgarnen, also Kettfadenscharen, sowie Gelege oder Gewebe.
  • Die Fadendichte kann in Abhängigkeit vom gewünschten Eigenschaftsprofil in weiten Grenzen schwanken. Bevorzugt beträgt die Fadendichte zwischen 20 und 200 Fäden pro Meter. Die Fadendichte wird senkrecht zur Fadenlaufrichtung gemessen. Die Verstärkungsfäden werden vorzugsweise während der Spinnvliesbildung zugeführt und somit in das Spinnvlies eingebettet. Ebenso bevorzugt ist eine Vliesablage auf die Verstärkung oder eine nachträgliche Schichtbildung aus Verstärkung und Vliesstoff durch Assemblieren.
  • Üblicherweise werden die Spinnvliese nach ihrer Herstellung in bekannter Weise einer chemischen oder thermischen und/oder mechanischen Verfestigung unterworfen. Bevorzugt werden die Spinnvliese mechanisch durch Vernadeln verfestigt. Hierzu wird das Spinnvlies, das vorteilhafterweise bereits die Verstärkungsfäden enthält, üblicherweise mit einer Nadeldichte von 20 bis 100 Stichen/cm2 vernadelt. Die Vernadelung erfolgt vorteilhafterweise durch Nadeln deren Kerbenüberstand, bevorzugt der Summe aus Kerbenüberstand und Kerbentiefe, kleiner ist als der Durchmesser der Verstärkungsfäden. Hierdurch Werden die Verstärkungsfäden nicht geschädigt. Anschließend werden die Spinnvliese, die bereits Verstärkungsfäden enthalten, weiteren Verfestigungsschritten, beispielsweise einer thermischen Behandlung unterworfen.
  • Hierzu werden die schmelzbinderverfestigbaren Spinnvliese, die neben Trägerfasern auch Bindefasern enthalten, in an sich bekannter Weise mit einem Kalander oder in einem Ofen thermisch verfestigt.
    Enthalten die Spinnvliese keine zur thermischen Verfestigung befähigten Bindefasern, so werden diese Spinnvliese mit einem chemischen Binder imprägniert. Hierzu kommen insbesondere Acrylatbinder in Frage. Der Binderanteil beträgt zweckmäßigerweise bis zu 30 Gew.-%, vorzugsweise 2 bis 25 Gew.-%. Die genaue Wahl des Binders erfolgt nach der speziellen Interessenlage des Weiterverarbeiters. Harte Binder erlauben hohe Verarbeitungsgeschwindigkeiten bei einer Imprägnierung, insbesondere Bituminierung, während ein weicher Binder besonders hohe Werte der Weiterreiß- und Nagelausreißfestigkeit ergibt.
  • In einer weiteren Ausführungsform können auch flammhemmend modifizierte Binder verwendet werden.
  • In einer weiteren Ausführungsform der Erfindung weist die erfindungsgemäße Trägerbahn ein Prägemuster aus statistisch verteilten oder rapportmäßig angeordneten, kleinflächigen Einprägungen, vorzugsweise eine Leinwandprägung auf, bei der die Preßfläche, d.h. die Gesamtheit aller dünnen verdichteten Stellen des Spinnvlieses 30 bis 60 %, vorzugsweise 40 bis 45 % seiner Gesamtfläche ausmacht, und die Dicke der verdichteten Stellen des Vlieses mindestens 20 %, vorzugsweise 25 bis 50 %, der Dicke der nicht verdichteten Stellen des Vlieses beträgt. Dieses Prägemuster kann im Fall der schmelzbinderverfestigten Spinnvliese vorteilhafterweise bei der Kalander-Verfestigung aufgebracht werden. Wird die Trägereinlage durch einen chemischen Binder endverfestigt kann das Prägemuster ebenfalls mittels eines Kalanders aufgeprägt werden. Dieses Prägemuster, das beim Durchlaufen des Spinnvlieses durch einen beheizten Kalander auf beide Oberflächen des Spinnvlieses, vorzugsweise aber nur auf eine Oberfläche des Spinnvlieses aufgebracht wird, weist eine Vielzahl kleiner Einprägungen auf, die eine Größe von 0,2 bis 40 mm2, vorzugsweise 0,2 bis 10 mm2, haben und durch dazwischen liegende, etwa gleich große, nicht geprägte Flächenelemente des Vlieses voneinander getrennt sind. Die Bestimmung der Fläche der verdichteten Stellen des Vlieses und der nicht verdichteten Stellen des Vlieses kann beispielsweise mittels mikroskopischer Querschnittsaufnahmen erfolgen.
  • Die erfindungsgemäßen Trägereinlagen können mit weiteren textilen Flächengebilden kombiniert werden, so daß deren Eigenschaften variabel sind. Derartige Verbundstoffe, die die erfindungsgemäße Trägereinlage enthalten, sind ebenfalls Gegenstand der Erfindung.
  • Die Zuführung der Verstärkung kann vor, während und/oder nach der Bildung der textilen Fläche erfolgen.
  • Die Herstellung der erfindungsgemäßen Trägereinlage umfaßt an sich bekannte Maßnahmen
    • a) Bildung eines textilen Flächengebildes,
    • b) Zuführen der Verstärkung,
    • c) gegebenenfalls Zuführen oder Herstellung eines weiteren textilen Flächengebildes, so daß die Verstärkung sandwich-artig von textilen Flächengebilden umgeben ist,
    • d) Verfestigung der gemäß Maßnahme c) erhaltenen Trägereinlage,
    • e) gegebenenfalls Imprägnieren der gemäß d) verfestigten Trägereinlage mit einem Binder, und
    • f) gegebenenfalls Verfestigung des gemäß d) erhaltenen Zwischenproduktes durch erhöhte Temperatur und/oder Druck, wobei die Reihenfolge der Schritte a) und b) auch umgekehrt sein kann.
  • Kennzeichnend für das Verfahren ist die Zuführung der Verstärkung und jede thermische Behandlung im Herstellverfahren der Trägereinlage unter Spannung, insbesondere unter Längsspannung. Eine thermische Behandlung unter Spannung liegt vor, wenn die Lage der Verstärkung in der Trägereinlage bei einem thermischen Schritt unverändert bleibt; dabei ist insbesondere der Erhalt der Längsfäden durch Anlegen einer Längsspannung von Interesse. Die Bildung des textilen Flächengebildes kann auf einer gespannt zulaufenden Verstärkung erfolgen oder die Verstärkung kann während des Flächenbildungsprozesses, z. B. bei der Vliesherstellung, zulaufen oder es kann ein textiles Flächengebilde fertiggestellt werden und durch nachträgliches Assemblieren mit einer Verstärkung verbunden werden. Der Verbund des textilen Flächengebildes mit der Verstärkung kann durch an sich bekannte Maßnahmen erfolgen, beispielsweise durch Nadeln oder Kleben einschließlich Schmelzkleben. Die Vorteile des Verfahrens zeigen sich besonders bei der Herstellung von vernadelten Trägereinlagen.
  • Die gemäß a) beschriebene Bildung eines textilen Flächengebildes kann durch Spinnvliesbildung mittels an sich bekannter Spinnapparate erfolgen.
  • Hierzu wird das geschmolzene Polymer durch mehrere hintereinander geschaltete Reihen von Spinndüsen bzw. Gruppen von Spinndüsenreihen geschickt. Soll ein schmelzbinderverfestigtes Spinnvlies erzeugt werden, so wird abwechselnd mit Polymeren beschickt, die die Trägerfaser und die Schmelzklebefasern bilden. Die ausgesponnenen Polymerströme werden in an sich bekannter Weise verstreckt, und z. B. unter Verwendung einer rotierenden Prallplatte in Streutextur auf einem Transportband abgelegt.
  • Um speziellen Anforderungen zu genügen, wie z.B. Brandschutz oder extreme thermomechanische Beanspruchung, können die erfindungsgemäßen Trägereinlagen noch mit weiteren Komponenten zu mehrschichtigen Verbundstoffen kombiniert werden. Beispiele für weitere Komponenten sind Glasvliese, thermoplastische oder metallische Folien, Dämmstoffe, etc..
  • Die erfindungsgemäßen Trägereinlagen lassen sich zur Herstellung von bituminierten Dach- und Dichtungsbahnen verwenden. Dies ist ebenfalls ein Gegenstand der vorliegenden Erfindung. Dazu wird das Trägermaterial in an sich bekannter Weise mit Bitumen behandelt und anschließend gegebenenfalls mit einem körnigen Material, beispielsweise mit Sand, bestreut. Die auf diese Weise hergestellten Dach- und Dichtungsbahnen zeichnen sich durch gute Verarbeitbarkeit aus. Die bituminierten Bahnen enthalten mindestens eine in eine Bitumenmatrix eingebettete - vorstehend beschriebene - Trägerbahn, wobei der Gewichtsanteil des Bitumens am Flächengewicht der bituminierten Dachbahn vorzugsweise 40 bis 90 Gew.-% und der des Spinnvlieses 10 bis 60 Gew.-% beträgt. Bei diesen Bahnen kann es sich auch um eine sogenannte Dachunterspannbahn handeln.
  • Anstelle von Bitumen kann auch ein anderes Material, z.B. Polyethylen oder Polyvinylchlorid zur Beschichtung der erfindungsgemäßen Trägereinlage verwendet werden.
  • Beispiel 1
  • Es werden Polyethylen-Terephthalat (PET)-Fäden mit einem Filamenttiter von 4 dtex hergestellt und zu einem Wirrvlies von 2 m Breite abgelegt.
    Während des Ablegens werden in Längsrichtung kontinuierlich Stahldrähte im Abstand von 2 cm (50 Drähte/m) zugeführt. Die Drähte (Hersteller Fa. Bekaert) werden auf Spulen geliefert und haben einen Durchmesser von 0,18 mm, eine Festigkeit von 2300 N/mm2 und eine Bruchdehnung von 1,5 %.
    Der Verbund Vlies/Drähte wird mit 40 Stichen/cm2 bei einer Einstichtiefe von 12,5 mm vernadelt (Nadeltyp Fa. Foster, 15x18x38x3 CB) und anschließend mit einem Acrylatbinder imprägniert, dessen Gewichtsanteil im fertigen Vlies bei 20 % liegt. Die Aushärtung des Binders erfolgt in einem Siebtrommelofen bei 210 °C. Man erhält so ein verstärktes Vlies von 190 g/m2 Flächenmasse.
  • Für die Bezugskräfte des Vlieses bei Umgebungstemperatur (20 °C) mit und ohne Verstärkung wurden folgende Werte gemessen:
    Dehnung % Vlies ohne Verstärkung (N/5 cm) Vlies mit Verstärkung (N/5 cm)
    0,6 100 159
    0,8 129 208
    1,0 170 266
    1,2 191 302
    1,4 210 332
    1,6 230 240
    1,8 240 245
    2 252 255
    4 305 305
    6 337 340
  • Beispiel 2
  • Es werden Polyethylen-Terephthalat (PET)-Fäden mit einem Filamenttiter von 4 dtex hergestellt und zu einem Wirrvlies von 1 m Breite abgelegt.
    Während des Ablegens werden in Längsrichtung kontinuierlich Stahldrähte (Werkstoff-Nr. 1.4301) im Abstand von 6,7 mm (150 Drähte/m) zugeführt. Die Drähte (Hersteller Fa. Sprint Metal) werden auf Spulen geliefert und haben einen Durchmesser von 0,15 mm, eine Festigkeit von 14 N und eine Bruchdehnung von 34 %.
  • Der Verbund Vlies/Drähte wird mit 40 Stichen/cm2 bei einer Einstichtiefe von 12,5 mm vernadelt (Nadeltyp Fa. Foster, 15x18x38x3 CB) und anschließend mit einem Acrylatbinder imprägniert, dessen Gewichtsanteil im fertigen Vlies bie 20 % liegt. Die Aushärtung des Binders erfolgt in einem Siebtrommelofen bei 210 °C. Man erhält so ein verstärktes Vlies von 165 g/m2 Flächenmasse.
  • Für die Bezugskräfte des Vlieses bei Umgebungstemperatur (20 °C) mit und ohne Verstärkung wurden folgende Werte gemessen:
    Dehnung % Vlies ohne Verstärkung (N/5 cm) Vlies mit Verstärkung (N/5 cm)
    0,6 77 117
    1,0 120 163
    1,6 200 244
    2 220 266
    4 285 337
    6 330 388
    10 385 453
    15 440 518
    20 515 598
    25 577 664
    30 638 727
  • In diesem Beispiel wird deutlich, daß die Vliesfestigkeit nicht nur im Bereich geringer Dehnung, sondern auch ei hoher Dehnung verbessert wird.
  • Beispiel 3
  • Es werden Polyethylen-Terephthalat (PET)-Fäden mit einem Filamenttiter von 4 dtex hergestellt und zu einem Wirrvlies von 2 m Breite abgelegt. Während des Ablegens werden in Längsrichtung kontinuierlich Drähte, bestehend aus einer Legierung des Typs CuZn37, im Abstand von 2 cm (50 Drähte/m) zugeführt. Die Drähte (Hersteller Fa. J.G. Dahmen) werden auf Spulen geliefert und haben einen Durchmesse von 0,25 mm, eine Festigkeit von 47 N und eine Bruchdehnung von 1,4 %.
  • Der Verbund Vlies/Drähte wird mit 40 Stichen/cm2 bei einer Einstichtiefe von 12,5 mm vernadelt (Nadeltype Fa. Foster, 15x18x38x3 CB) und anschließend mit einem Acrylbinder imprägniert, dessen Gewichtsanteil im fertigen Vlies bei 20 % liegt. Die Aushärtung des Binders erfolgt in einem Siebtrommelofen bei 210 °C. Man erhält so ein verstärktes Vlies von 192 g/m2 Flächenmasse.
  • Für die Bezugskräfte des Vlieses bei Umgebungstemperatur (20 °C) mit und ohne Verstärkung wurden folgende Werte gemessen:
    Dehnung % Vlies ohne Verstärkung (N/5 cm) Vlies mit Verstärkung (N/5 cm)
    0,6 100 160
    0,8 129 203
    1,0 170 257
    1,2 191 287
    1,4 210 310
    1,6 230 235
    2 252 255
    4 305 300
  • Beispiel 4
  • Es werden Polyethylen-Terephthalat (PET)-Fäden mit einem Filamenttiter von 4 dtex hergestellt und zu einem Wirrvlies von 2 m Breite abgelegt. Während des Ablegens werden in Längsrichtung kontinuierlich Drähte, bestehend aus einer Legierung des Typs CuSn6, im Abstand von 1,2 cm (83 Drähte/m) zugeführt. Die Drähte (Hersteller Fa. J.G. Dahmen) werden auf Spulen geliefert und haben einen Durchmesser von 0,25 mm, eine Festigkeit von 21 N und eine Bruchdehnung von 54 %.
  • Der Verbund Vlies/Drähte wird mit 40 Stichen/cm2 bei einer Einstichtiefe von 12,5 mm vernadelt (Nadeltype Fa. Foster, 15x18x38x3 CB) und anschließend mit einem Acrylbinder imprägniert, dessen Gewichtsanteil im fertigen Vlies bei 20 % liegt. Die Aushärtung des Binders erfolgt in einem Siebtrommelofen bei 210 °C. Man erhält so ein verstärktes Vlies von 165 g/m2 Flächenmasse.
  • Für die Bezugskräfte des Vlieses bei Umgebungstemperatur (20 °C) mit und ohne Verstärkung wurden folgende Werte gemessen:
    Dehnung % Vlies ohne Verstärkung (N/5 cm) Vlies mit Verstärkung (N/5 cm)
    0,6 77 120
    1,0 120 162
    1,6 200 244
    2 220 264
    4 285 332
    6 330 381
    10 385 442
    20 515 582
    25 577 647
    30 638 710
  • In diesem Beispiel wird deutlich, daß die Vliesfestigkeit nicht nur im Bereich geringer Dehnung, sondern auch bei hoher Dehnung verbessert wird.
  • Beispiel 5
  • Es werden Polyethylen-Terephthalat (PET)-Fäden mit einem Filamenttiter von 4 dtex hergestellt und zu einem Wirrvlies von 2 m Breite abgelegt.
    Während des Ablegens werden in Längsrichtung kontinuierlich Drähte, bestehend aus einer Legierung des Typs CUZn37, im Abstand von 2 cm (50 Drähte/m) zugeführt. Die Drähte (Hersteller Fa. J.G. Dahmen) werden auf Spulen geliefert und haben einen Durchmesser von 0,25 mm, eine Festigkeit von 25 N und eine Bruchdehnung von 15 %.
  • Der Verbund Vlies/Drähte wird mit 40 Stichen/cm2 bei einer Einstichtiefe von 12,5 mm vernadelt (Nadeltype Fa. Foster, 15x18x38x3 CB) und anschließend mit einem Acrylbinder imprägniert, dessen Gewichtsanteil im fertigen Vlies bei 20 % liegt. Die Aushärtung des Binders erfolgt in einem Siebtrommelofen bei 210 °C. Man erhält so ein verstärktes Vlies von 160 g/m2 Flächenmasse.
  • Für die Bezugskräfte des Vlieses bei Umgebungstemperatur (20 °C) mit und ohne Verstärkung wurden folgende Werte gemessen:
    Dehnung % Vlies ohne Verstärkung (N/5 cm) Vlies mit Verstärkung (N/5 cm)
    0,6 77 114
    1,0 120 165
    1,6 200 247
    2 220 267
    4 285 334
    6 330 380
    10 385 436
    15 440 493
  • Beispiel 6
  • Es werden Polyethylenterephthalat (PET)-Fäden mit einem Filamenttiter von 4 dtex hergestellt und zu einem Wirrvlies von 1 m Breite abgelegt.
    Während des Ablegens werden in Längsrichtung Glasmultifilamente vom Typ EC 934T6Z28 der Firma Vetrotex in Abstand von 6,25 mm (160 Fäden pro Meter) zugeführt. Die Glasfäden werden auf Spulen geliefert und haben eine Festigkeit von 20 N und eine Bruchdehnung 2,5 %.
    Der Verbund aus Vlies und Fäden wird mit 40 Stichen/cm2 bei einer Einstichtiefe von 12,5 mm vernadelt (Nadeltype Fa. Foster, 15x18x38x3 CB) und anschließend mit einem Acrylatbinder imprägniert, dessen Gewichtsanteil im fertigen Vlies bei 20 % liegt. Die Aushärtung des Binders erfolgt in einem Siebtrommelofen bei 210 °C. Man erhält so ein verstärktes Vlies von 110 g/m2 Flächenmasse. Für die Bezugskräfte des Vlieses bei Umgebungstemperatur mit und ohne Verstärkung wurden folgende Werte gemessen:
    Dehnung % Vlies ohne Verstärkung (N/5 cm) Vlies mit Verstärkung (N/5 cm)
    0,5 2 39
    1,0 5,5 78
    2 11 151
    3 16 30
    4 22 25
    6 31 30
    10 44 42
    15 67 70
    20 100 106
    30 172 167
    60 390 380

Claims (28)

  1. Trägereinlage enthaltend ein textiles Flächengebilde und eine Verstärkung, dadurch gekennzeichnet, daß die Verstärkung eine Kraft aufnimmt, so daß sich im Kraft-Dehnungs-Diagramm (bei 20 °C) die Bezugskraft der Trägereinlage mit Verstärkung verglichen mit der Trägereinlage ohne Verstärkung im Bereich zwischen 0 und 1 % Dehnung an mindestens einer Stelle um mindestens 10 % unterscheidet.
  2. Trägereinlage gemäß Anspruch 1, dadurch gekennzeichnet, daß sich im Kraft-Dehnungs-Diagramm (bei 20 °C) die Bezugskraft der Trägereinlage mit Verstärkung verglichen mit der Trägereinlage ohne Verstärkung im Bereich zwischen 0 und 1 % Dehnung an mindestens einer Stelle um mindestens 20 % unterscheidet.
  3. Trägereinlage gemäß Anspruch 2, dadurch gekennzeichnet, daß sich im Kraft-Dehnungs-Diagramm (bei 20 °C) die Bezugskraft der Trägereinlage mit Verstärkung verglichen mit der Trägereinlage ohne Verstärkung im Bereich zwischen 0 und 1 % Dehnung an mindestens einer Stelle um mindestens 30 % unterscheidet.
  4. Trägereinlage enthaltend ein textiles Flächengebilde und eine Verstärkung, dadurch gekennzeichnet, daß die Bezugskraft der Trägereinlage bei Raumtemperatur (20 °C), dividiert durch die Bezugskraft der Trägereinlage bei 180 °C, gemessen an mindestens einem Punkt im Bereich zwischen 0 und 1 % Dehnung, einen Quotienten von höchstens 3 ergibt.
  5. Trägerbahn gemäß Anspruch 1 oder 4, dadurch gekennzeichnet, daß das textile Flächengebilde ein Spinnvlies, vorzugsweise aus Polyester ist.
  6. Trägerbahn gemäß Anspruch 5, dadurch gekennzeichnet, daß das Spinnvlies mechanisch, thermisch und/oder chemisch verfestigt ist.
  7. Trägerbahn gemäß Anspruch 6, dadurch gekennzeichnet, daß die Verstärkung in Form von Vestärkungsfäden vorliegt und das Spinnvlies durch Vernadelung mechanisch verfestigt ist, wobei vorzugsweise der Kerbenüberstand, bzw. die Summe aus Kerbenüberstand und Kerbentiefe, der Nadeln kleiner ist als der Durchmesser der Verstärkungsfäden.
  8. Trägerbahn gemäß Anspruch 5, dadurch gekennzeichnet, daß der Polyester zu mindestens 85 mol-% aus Polyethylenterephthalat besteht.
  9. Trägerbahn gemäß Anspruch 6, dadurch gekennzeichnet, daß das Spinnvlies ein schmelzbinderverfestigtes Spinnvlies ist.
  10. Trägerbahn gemäß Anspruch 6, dadurch gekennzeichnet, daß das Spinnvlies durch einen chemischen Binder verfestigt ist.
  11. Trägerbahn gemäß Anspruch 1 oder 4, dadurch gekennzeichnet, daß das Flächengewicht des textilen Flächengebildes zwischen 20 und 500 g/m2 beträgt.
  12. Trägerbahn gemäß Anspruch 1 oder 4, dadurch gekennzeichnet, daß die Verstärkung in Form von Verstärkungsfäden vorliegt deren Durchmesser 0,1 bis 1 mm beträgt und deren Young-Modul mindestens 5 Gpa beträgt.
  13. Trägerbahn gemäß Anspruch 12, dadurch gekennzeichnet, daß die Verstärkungsfäden einen Durchmesser von 0,1 bis 0,5 mm haben.
  14. Trägerbahn gemäß Anspruch 12, dadurch gekennzeichnet, daß die Verstärkungsfäden eine Bruchdehnung von 0,5 bis 100 % aufweisen.
  15. Trägerbahn gemäß Anspruch 12, dadurch gekennzeichnet, daß die Trägerbahn eine Dehnungsreserve von weniger als 1 % aufweist.
  16. Trägerbahn gemäß Anspruch 1 oder 4, dadurch gekennzeichnet, daß die Verstärkung in Form von Verstärkungsfäden aus Monofilamenten oder Multifilamenten vorliegt.
  17. Trägerbahn gemäß Anspruch 16, dadurch gekennzeichnet, daß die Verstärkungsfäden aus Aramiden, Kohlenstoff, Glas, hochfesten Polyester-Monofilamenten, Hybridmultifilamenten, Metallen oder metallischen Legierungen bestehen.
  18. Trägerbahn gemäß Anspruch 1 oder 4, dadurch gekennzeichnet, daß die Verstärkung in Form eines Gewebes, Geleges, Gestrickes, Gewirkes, einer Folie oder als Vlies vorliegt.
  19. Trägerbahn gemäß Anspruch 5, dadurch gekennzeichnet, daß das Spinnvlies aus Polyester ein Prägemuster aufweist.
  20. Verfahren zur Herstellung der Trägereinlage definiert in Anspruch 1, umfassend die an sich bekannten Maßnahmen:
    a) Bildung eines textilen Flächengebildes,
    b) Zuführen der Verstärkung,
    c) gegebenenfalls Zuführen eines weiteren textilen Flächengebildes, so daß die Verstärkung sandwichartig von textilen Flächengebilden umgeben ist,
    d) Verfestigung der gemäß Maßnahme c) erhaltenen Trägereinlage,
    e) gegebenenfalls Imprägnieren der verfestigten Trägereinlage mit einem Binder und
    f) gegebenenfalls Verfestigung des gemäß d) erhaltenen Zwischenproduktes durch erhöhte Temperatur und/oder Druck, wobei die Reihenfolge der Schritte a) und b) auch umgekehrt sein kann, dadurch gekennzeichnet, daß die Zuführung der Verstärkung und jede thermische Behandlung im Herstellverfahren der Trägereinlage unter Spannung, vorzugsweise unter Längsspannung, erfolgt.
  21. Verfahren nach Anspruch 20, dadurch gekennzeichnet, daß die Bildung des textilen Flächengebildes auf einer gespannt zulaufenden Verstärkung erfolgt.
  22. Verfahren nach Anspruch 20, dadurch gekennzeichnet, daß die Zuführung der Verstärkung während des Flächenbildungsprozesses der textilen Fläche erfolgt.
  23. Verfahren nach Anspruch 20, dadurch gekennzeichnet, daß mindestens ein fertiggestelltes textiles Flächengebilde und mindestens eine Verstärkung assembliert und durch Nadeln und/oder Kleben verbunden werden.
  24. Verfahren gemäß Anspruch 20, dadurch gekennzeichnet, daß die Verfestigung gemäß Maßnahme d) durch Vernadelung, wobei vorzugsweise der Kerbenüberstand, bzw. die Summe aus Kerbenüberstand und Kerbentiefe, der Nadeln kleiner ist als der Durchmesser der Verstärkungsfäden oder durch Verkleben erfolgt.
  25. Verwendung der Trägereinlage definiert in Anspruch 1 zur Herstellung von Verbundstoffen, insbesondere Dach- und Dichtungsbahnen.
  26. Verwendung der Trägereinlage definiert in Anspruch 1 zur Herstellung von bituminierten Dach- und Dichtungsbahnen.
  27. Verbundstoffe enthaltend eine Trägereinlage definiert in Anspruch 1 oder 4.
  28. Dach- und Dichtungsbahn enthaltend eine Trägereinlage definiert in Anspruch 1 oder 4.
EP97106878A 1996-05-10 1997-04-25 Trägereinlage, Verfahren zu deren Herstellung und deren Verwendung Expired - Lifetime EP0806509B2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19618775A DE19618775A1 (de) 1996-05-10 1996-05-10 Trägereinlage, Verfahren zu deren Herstellung und deren Verwendung
DE19618775 1996-05-10

Publications (3)

Publication Number Publication Date
EP0806509A1 true EP0806509A1 (de) 1997-11-12
EP0806509B1 EP0806509B1 (de) 2003-07-02
EP0806509B2 EP0806509B2 (de) 2011-08-31

Family

ID=7793897

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97106878A Expired - Lifetime EP0806509B2 (de) 1996-05-10 1997-04-25 Trägereinlage, Verfahren zu deren Herstellung und deren Verwendung

Country Status (7)

Country Link
US (1) US6114262A (de)
EP (1) EP0806509B2 (de)
JP (1) JPH10131019A (de)
KR (1) KR100490187B1 (de)
CN (1) CN1122736C (de)
CA (1) CA2204967C (de)
DE (2) DE19618775A1 (de)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19935408A1 (de) * 1999-07-30 2001-02-08 Johns Manville Int Inc Mehrlagenschichtstoff
DE19950057A1 (de) * 1999-10-16 2001-04-26 Johns Manville Int Inc Zwei- oder Mehrlagenschichtstoffe aus Polyesterfilamentvliesen und Glasfasergeweben oder -gelegen
US6412154B1 (en) 1999-07-30 2002-07-02 Johns Manville International, Inc. Hydrodynamically bounded carrier webs and use thereof
DE102006060241A1 (de) * 2006-12-20 2008-06-26 Johns Manville Europe Gmbh Trägereinlage, Verfahren zu deren Herstellung und deren Verwendung
DE202008010258U1 (de) 2008-07-30 2008-10-30 Johns Manville, Denver Trägereinlage und beschichtete Dachbahnen
DE102009005587A1 (de) 2009-01-21 2010-07-22 Johns Manville Europe Gmbh Verfahren zur Qualitätssicherung von verstärkten flächigen Gebilden
DE102010007939A1 (de) 2010-02-12 2011-08-18 Johns Manville Europe GmbH, 86399 Vorkonfektionierte Trägereinlage und beschichtete Dachbahnen
DE202006021073U1 (de) 2006-12-20 2012-04-30 Johns Manville Europe Gmbh Trägereinlage und deren Verwendung
EP2455523A1 (de) 2010-11-22 2012-05-23 POLITEX s.a.s. di FREUDENBERG POLITEX s.r.l. Chemisch und thermisch gebundener textiler Träger, insbesondere für bitumenhaltige Membrane
WO2012065903A1 (en) 2010-11-15 2012-05-24 Politex S.A.S. Di Freudenberg Politex S.R.L. Reinforced textile support with cellulosic fiber multi-filaments, particularly for bituminous membranes
WO2015000975A1 (en) 2013-07-03 2015-01-08 Politex S.A.S. Di Freudenberg Politex S.R.L. Substrate for a support for bituminous membrane and method for the preparation thereof
EP3137294B1 (de) 2014-04-29 2018-04-11 Low & Bonar B.V. Trägermaterial für vinylbodenbelag

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6489805B1 (en) * 1998-12-09 2002-12-03 Cypress Semiconductor Corp. Circuits, architectures, and methods for generating a periodic signal in a memory
FR2804677B1 (fr) * 2000-02-09 2002-08-30 Vetrotex France Sa Voile de verre et son utilisation pour des revetements d'etancheite
US7125601B1 (en) * 2000-10-18 2006-10-24 3M Innovative Properties Company Integrated granule product
US6796115B1 (en) * 2001-12-19 2004-09-28 Gilbert Patrick Needle punched yarns
US7166671B2 (en) 2002-12-10 2007-01-23 Cellresin Technologies, Llc Grafted cyclodextrin
US8129450B2 (en) * 2002-12-10 2012-03-06 Cellresin Technologies, Llc Articles having a polymer grafted cyclodextrin
EP1447213A1 (de) * 2003-02-11 2004-08-18 Saint-Gobain Vetrotex France S.A. Struktur enthaltend einen trockengelegten Vliesstoff aus Glasfasern und einen Vliesstoff aus organischen Fasern
EP2311543B1 (de) * 2004-11-05 2015-07-01 Donaldson Company, Inc. Aerosol abscheider
US8057567B2 (en) 2004-11-05 2011-11-15 Donaldson Company, Inc. Filter medium and breather filter structure
MX2007009400A (es) 2005-02-04 2007-08-16 Donaldson Co Inc Separador de aerosol y metodo.
EP1858618B1 (de) 2005-02-22 2009-09-16 Donaldson Company, Inc. Aerosolabscheider
US7325262B2 (en) * 2005-03-02 2008-02-05 Standard Textile Co., Inc. Bedding hem with associated interlining
US20080233825A1 (en) * 2007-03-21 2008-09-25 Mohamed Walid Gamaleldin Articles Including High Modulus Fibrous Material
DE102007060494A1 (de) 2007-12-14 2009-06-18 Johns Manville Europe Gmbh Trägereinlage, Verfahren zu deren Herstellung und deren Verwendung
US10260197B2 (en) 2007-12-14 2019-04-16 Johns Manville Base interlining, methods for their manufacture and application thereof
US20100212272A1 (en) * 2009-02-24 2010-08-26 Hollingsworth & Vose Company Filter media suitable for ashrae applications
US8651286B2 (en) * 2010-12-15 2014-02-18 Johns Manville Spunbond polyester mat with binder comprising salt of inorganic acid
EP2679713A1 (de) 2012-06-26 2014-01-01 O.R.V. Ovattificio Resinatura Valpadana S.p.a. Stütze in mit Fäden verstärktem Vliesstoff und Verfahren zur Herstellung solch einer Stütze
DE102012025023A1 (de) * 2012-12-20 2014-06-26 Johns Manville Europe Gmbh Filtermedium
GB2524063B (en) 2014-03-13 2020-07-01 Advanced Risc Mach Ltd Data processing apparatus for executing an access instruction for N threads
CN105972813A (zh) * 2016-05-15 2016-09-28 夏维月 电热锅炉
US11618997B2 (en) 2020-10-30 2023-04-04 Johns Manville Reinforced polymeric nonwoven mat for carpet tiles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0359165A2 (de) * 1988-09-14 1990-03-21 Hoechst Aktiengesellschaft Trägerbahn für Dachunterspannbahnen
DE3941189A1 (de) * 1988-12-13 1990-06-21 Rhone Poulenc Fibres Traeger auf basis von nichtgewebtem vlies aus chemischer textilfaser und sein herstellungsverfahren
DE9207367U1 (de) * 1992-05-30 1992-09-10 Johns Manville International, Inc., Denver, Col. Schichtstoff aus Vlies und Gelege
DE4337984A1 (de) * 1993-11-06 1995-05-11 Hoechst Ag Textiler Verbundstoff, Verfahren zu dessen Herstellung und dessen Verwendung

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1517595A (en) * 1977-03-31 1978-07-12 Bp Aquaseal Ltd Bituminous material
DE7739489U1 (de) * 1977-12-24 1978-04-20 Hoechst Ag, 6000 Frankfurt Dach- und dichtungsbahn
US4181514A (en) * 1978-02-14 1980-01-01 Huyck Corporation Stitch knitted filters for high temperature fluids and method of making them
JPS565879A (en) * 1979-06-27 1981-01-21 Furukawa Electric Co Ltd:The Earthquake-proof and fire-proof putty composition
US4472086A (en) * 1981-02-26 1984-09-18 Burlington Industries Inc. Geotextile fabric construction
US4504539A (en) * 1983-04-15 1985-03-12 Burlington Industries, Inc. Warp yarn reinforced ultrasonic web bonding
DE3347280A1 (de) * 1983-12-28 1985-07-11 VEB Kombinat Glasseide Oschatz, DDR 7260 Oschatz Verfahren zur herstellung von traegermaterialien
FR2562472B1 (fr) * 1984-04-06 1986-06-06 Chomarat & Cie Materiau a base d'une nappe textile comportant un non-tisse en polyester qui sert de support a des fibres de verre implantees par aiguilletage, utilisable comme armature de renforcement de revetement d'etancheite bitumineux
DE3435643A1 (de) * 1984-09-28 1986-04-10 Hoechst Ag, 6230 Frankfurt Schichtstoff
EP0222610A3 (de) * 1985-11-13 1988-11-30 Teijin Limited Verbundbahn für Segel und Verfahren zu ihrer Herstellung
FI89189C (fi) * 1986-02-22 1994-07-12 Hoechst Ag Laminat foer anvaendning som stoedskikt foer taeck och isoleringsmaterial foer tak
DE3774869D1 (de) * 1987-03-09 1992-01-09 Chisso Corp Verstaerkter vliesstoff.
FR2628448B1 (fr) * 1988-03-14 1990-11-16 Chomarat & Cie Armature textile utilisable pour la realisation de complexes stratifies et complexes stratifies en forme comportant une telle armature
FR2646442B1 (fr) * 1989-04-28 1993-04-02 Chomarat & Cie Armature textile utilisable pour la realisation de materiaux composites et articles en forme comportant une telle armature
FR2648482B1 (fr) * 1989-06-16 1992-05-15 Chomarat & Cie Complexes textiles multicouches a base de nappes fibreuses ayant des caracteristiques differentes et procede pour leur obtention
DE4008043A1 (de) * 1990-03-14 1991-09-19 Hoechst Ag Traegerbahn fuer dachunterspannbahnen
WO1992005949A1 (en) * 1990-10-03 1992-04-16 Milliken Research Corporation Rigid fiber composite
DE4129188A1 (de) * 1991-09-03 1993-03-04 Spinnstoffabrik Zehlendorf Ag Schmelzfaserverklebter schichtstoff, verfahren und zwischenprodukt zu dessen herstellung und dessen verwendung
ATE148928T1 (de) * 1992-10-02 1997-02-15 Hoechst Ag Bituminierte dachunterspannbahn und trägerbahn dazu
EP0656254A1 (de) * 1993-11-06 1995-06-07 Hoechst Aktiengesellschaft Textiler Verbundstoff, Verfahren zu dessen Herstellung und dessen Verwendung
US5433028A (en) * 1994-06-24 1995-07-18 Novak; Vicente N. Gun's trigger locking mechanism
KR100295418B1 (ko) * 1996-07-11 2001-10-24 김기진 유리섬유 파사를 이용한 보강섬유 제조방법 및 구성

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0359165A2 (de) * 1988-09-14 1990-03-21 Hoechst Aktiengesellschaft Trägerbahn für Dachunterspannbahnen
DE3941189A1 (de) * 1988-12-13 1990-06-21 Rhone Poulenc Fibres Traeger auf basis von nichtgewebtem vlies aus chemischer textilfaser und sein herstellungsverfahren
DE9207367U1 (de) * 1992-05-30 1992-09-10 Johns Manville International, Inc., Denver, Col. Schichtstoff aus Vlies und Gelege
DE4337984A1 (de) * 1993-11-06 1995-05-11 Hoechst Ag Textiler Verbundstoff, Verfahren zu dessen Herstellung und dessen Verwendung

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19935408A1 (de) * 1999-07-30 2001-02-08 Johns Manville Int Inc Mehrlagenschichtstoff
US6412154B1 (en) 1999-07-30 2002-07-02 Johns Manville International, Inc. Hydrodynamically bounded carrier webs and use thereof
US6630046B1 (en) 1999-07-30 2003-10-07 Johns Manville International, Inc. Method of making wall and floor coverings
DE19935408B4 (de) * 1999-07-30 2004-04-22 Johns Manville International, Inc., Denver Mehrlagenschichtstoff
US7199065B1 (en) 1999-07-30 2007-04-03 Johns Manville Non-woven laminate composite
US7351673B1 (en) 1999-07-30 2008-04-01 Johns Manville Laminates including two or more layers of organic synthetic filament non-wovens and glass fiber webs and scrims
DE19950057A1 (de) * 1999-10-16 2001-04-26 Johns Manville Int Inc Zwei- oder Mehrlagenschichtstoffe aus Polyesterfilamentvliesen und Glasfasergeweben oder -gelegen
DE19950057B4 (de) * 1999-10-16 2005-10-13 Johns Manville International, Inc., Denver Zwei- oder Mehrlagenschichtstoffe aus Polyesterfilamentvliesen und Glasfasergeweben oder -gelegen
EP1939342A3 (de) * 2006-12-20 2008-09-03 Johns Manville Europe GmbH Trägereinlage, Verfahren zu deren Herstellung und deren Verwendung
EP1939342A2 (de) 2006-12-20 2008-07-02 Johns Manville Europe GmbH Trägereinlage, Verfahren zu deren Herstellung und deren Verwendung
DE102006060241A1 (de) * 2006-12-20 2008-06-26 Johns Manville Europe Gmbh Trägereinlage, Verfahren zu deren Herstellung und deren Verwendung
DE202006021073U1 (de) 2006-12-20 2012-04-30 Johns Manville Europe Gmbh Trägereinlage und deren Verwendung
DE202008010258U1 (de) 2008-07-30 2008-10-30 Johns Manville, Denver Trägereinlage und beschichtete Dachbahnen
EP2154281A2 (de) 2008-07-30 2010-02-17 Johns Manville Europe GmbH Basiszwischenschicht und beschichtete Dachmembrane
DE102009005587A1 (de) 2009-01-21 2010-07-22 Johns Manville Europe Gmbh Verfahren zur Qualitätssicherung von verstärkten flächigen Gebilden
EP2360304A1 (de) 2010-02-12 2011-08-24 Johns Manville Europe GmbH Vorkonfektionierte Trägereinlage und beschichtete Dachbahnen
DE102010007939A1 (de) 2010-02-12 2011-08-18 Johns Manville Europe GmbH, 86399 Vorkonfektionierte Trägereinlage und beschichtete Dachbahnen
WO2012065903A1 (en) 2010-11-15 2012-05-24 Politex S.A.S. Di Freudenberg Politex S.R.L. Reinforced textile support with cellulosic fiber multi-filaments, particularly for bituminous membranes
EP2455523A1 (de) 2010-11-22 2012-05-23 POLITEX s.a.s. di FREUDENBERG POLITEX s.r.l. Chemisch und thermisch gebundener textiler Träger, insbesondere für bitumenhaltige Membrane
WO2015000975A1 (en) 2013-07-03 2015-01-08 Politex S.A.S. Di Freudenberg Politex S.R.L. Substrate for a support for bituminous membrane and method for the preparation thereof
EP3137294B1 (de) 2014-04-29 2018-04-11 Low & Bonar B.V. Trägermaterial für vinylbodenbelag
US11623425B2 (en) 2014-04-29 2023-04-11 Low & Bonar B.V. Carrier material for vinyl floor covering

Also Published As

Publication number Publication date
CA2204967A1 (en) 1997-11-10
CA2204967C (en) 2006-08-01
KR100490187B1 (ko) 2005-09-28
US6114262A (en) 2000-09-05
JPH10131019A (ja) 1998-05-19
KR970075017A (ko) 1997-12-10
EP0806509B2 (de) 2011-08-31
DE59710363D1 (de) 2003-08-07
EP0806509B1 (de) 2003-07-02
DE19618775A1 (de) 1997-11-13
CN1122736C (zh) 2003-10-01
CN1174910A (zh) 1998-03-04

Similar Documents

Publication Publication Date Title
EP0806509B1 (de) Trägereinlage, Verfahren zu deren Herstellung und deren Verwendung
EP0572891B1 (de) Schichtstoff aus Vlies und Gelege
EP0761859B1 (de) Textiler Verbundstoff, Verfahren zu dessen Herstellung, dessen Verwendung sowie Gelege enthaltend Hybridgarne
EP1939342B1 (de) Trägereinlage, Verfahren zu deren Herstellung und deren Verwendung
DE60031546T2 (de) Verbundvliesmaterial
DE4129188A1 (de) Schmelzfaserverklebter schichtstoff, verfahren und zwischenprodukt zu dessen herstellung und dessen verwendung
EP0590629B1 (de) Bituminierte Dachunterspannbahn und Trägerbahn dazu
EP0435001B1 (de) Schichtstoff
DE19620361C2 (de) Trägereinlage und deren Verwendung
DE3941189A1 (de) Traeger auf basis von nichtgewebtem vlies aus chemischer textilfaser und sein herstellungsverfahren
EP0603633B1 (de) Dreikomponenten-Schichtstoff
DE202008010258U1 (de) Trägereinlage und beschichtete Dachbahnen
DE19521838A1 (de) Textiler Kompakt-Verbundstoff, Verfahren zu dessen Herstellung und dessen Verwendung
DE60005527T2 (de) Hydrodynamisch verfestigte trägerbahnen und deren verwendung
EP0506051A1 (de) Filamentverstärkte Polyestereinlage
DE4344707A1 (de) Wurzelfeste Trägereinlage
DE19935408B4 (de) Mehrlagenschichtstoff
DE3821011A1 (de) Mehrschichtige traegerbahn
DE202006021073U1 (de) Trägereinlage und deren Verwendung
DE29608372U1 (de) Trägereinlage
DE19952432B4 (de) Schichtstoff
DE19950057A1 (de) Zwei- oder Mehrlagenschichtstoffe aus Polyesterfilamentvliesen und Glasfasergeweben oder -gelegen
DE29609098U1 (de) Trägereinlage
DE9207368U1 (de) Schichtstoff aus Vlies und Gelege
DE29700810U1 (de) Vliesstoff mit verbesserter Oberflächengüte für Dachunterspannbahnen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT LU NL

17P Request for examination filed

Effective date: 19980331

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: JOHNS MANVILLE INTERNATIONAL, INC.

17Q First examination report despatched

Effective date: 20000117

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR GB IT LU NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59710363

Country of ref document: DE

Date of ref document: 20030807

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: FREUDENBERG POLITEX S.R.L.

Effective date: 20040331

NLR1 Nl: opposition has been filed with the epo

Opponent name: FREUDENBERG POLITEX S.R.L.

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20110831

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): BE DE FR GB IT LU NL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 59710363

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 59710363

Country of ref document: DE

Effective date: 20110831

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59710363

Country of ref document: DE

Representative=s name: MAI DOERR BESIER EUROPEAN PATENT ATTORNEYS - E, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 59710363

Country of ref document: DE

Representative=s name: MAI DOERR BESIER PATENTANWAELTE, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20160429

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20160426

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160427

Year of fee payment: 20

Ref country code: GB

Payment date: 20160427

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160421

Year of fee payment: 20

Ref country code: FR

Payment date: 20160425

Year of fee payment: 20

Ref country code: BE

Payment date: 20160427

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59710363

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20170424

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20170424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170424