EP0797323A1 - Emetteur de signaux de radiophonie digitale - Google Patents

Emetteur de signaux de radiophonie digitale Download PDF

Info

Publication number
EP0797323A1
EP0797323A1 EP97400598A EP97400598A EP0797323A1 EP 0797323 A1 EP0797323 A1 EP 0797323A1 EP 97400598 A EP97400598 A EP 97400598A EP 97400598 A EP97400598 A EP 97400598A EP 0797323 A1 EP0797323 A1 EP 0797323A1
Authority
EP
European Patent Office
Prior art keywords
signal
clipping
signals
transmitter
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97400598A
Other languages
German (de)
English (en)
Inventor
Didier Thomson-CSF SCPI Martineau
Samir Thomson-CSF SCPI Behiche
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THOMSON LICENSING
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0797323A1 publication Critical patent/EP0797323A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/44Arrangements characterised by circuits or components specially adapted for broadcast
    • H04H20/46Arrangements characterised by circuits or components specially adapted for broadcast specially adapted for broadcast systems covered by groups H04H20/53-H04H20/95
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H2201/00Aspects of broadcast communication
    • H04H2201/10Aspects of broadcast communication characterised by the type of broadcast system
    • H04H2201/20Aspects of broadcast communication characterised by the type of broadcast system digital audio broadcasting [DAB]

Definitions

  • the present invention relates to the emission of digital radio signals more commonly called DAB signals according to the acronym of their Anglo-Saxon designation: Digital Audio Broadcast; it relates more particularly to the power amplification of such signals in the output stages of the transmitters.
  • the object of the present invention is to reduce this drawback.
  • a transmitter of digital radio signals comprising, coupled in a serial arrangement, coding means for receiving a signal to be transmitted and providing in exchange a pair of quadrature signals representing, in Cartesian coordinates, a complex number of inputs, a modulator with four phase states, amplification means, characterized in that that it comprises, inserted in series between the coding means and the amplification means, clipping means followed by low-pass filtering means, the clipping means performing clipping at a predetermined value of the module of the number entrance complex.
  • FIG. 1 represents a DAB signal transmitter according to the known art in the case of an embodiment without passing through an intermediate frequency, the baseband signal directly modulating the transmission frequency.
  • the transmitter according to FIG. 1 receives a useful audio signal on an input E of a DAB coder, 1; the encoder 1 delivers, on two outputs, respectively two digital signals in baseband, in quadrature, I and Q, sampled at 2.048 MHz in the example described. These two digital signals are converted to analog, respectively in two converters 21, 22, then filtered in x sin x , respectively in two filters F1, F2.
  • the two quadrature signals from the filters F1, F2 are applied to a modulator with four phase states, 3, called the QPSK modulator in what follows, according to the acronym of the English words Quadrature Phase Shift Keying which mean modulation at four phase states.
  • the quadrature signals modulate a carrier signal supplied by an oscillator not shown; the frequency of this carrier signal is 1472 MHz in the example described.
  • the output signal of the modulator 3 is amplified in a preamplifier PO followed by five amplifiers P1 to P5 mounted in parallel.
  • An adder circuit, Ad sums the output signals from amplifiers P1 to P5; its output is coupled through a bandpass filter Fs to a transmitting antenna, S.
  • bit error rate and crest factor we talk about bit error rate and crest factor; the meaning of these terms is recalled below.
  • the bit or BER error rate of a transmitted signal is the ratio of the number of false bits of the signal to the total number of bits of the signal.
  • the crest factor of a signal is equal to the ratio of its peak power to its average power; it is generally expressed in decibels.
  • a DAB signal having, for example, a crest factor of 11 dB requires a power drop, back off in the Anglo-Saxon literature, of 11 dB during amplification in order to limit the distortions non-linear and keep the nature of the DAB signal.
  • This clipped DAB signal requires a power drop of 7 dB during amplification in order to limit non-linear distortions and to preserve the nature of the DAB signal. This means that using, for example, an amplifier with a power of 100 W defined at 1 dB of compression, the average power at the output can reach up to 100 W - 7 dB, or approximately 20 W.
  • the gain of 11-7 4 dB on the power recoil allows, compared to the previous case, to use 2.5 times less amplifiers (4 dB ⁇ 10 log 2.5) to obtain an amplified signal similarly power and comprising intermodulation products out of bands, intermodulation products or shoulders in Anglo-Saxon literature, equivalent; this is true provided, in order not to have more significant intermodulation products, to take certain specific precautions upstream of the amplifiers; these precautions will be indicated later.
  • the clipping mentioned above, for the DAB signal can be performed anywhere, between the encoder and the output amplifiers, in the DAB signal transmitter: just at the output of encoder 1 or at output digital-analog converters 21, 22 or at the output of the modulator 3 or even at the output of the mixer in the case where the signal to be transmitted is modulated in intermediate frequency before being transposed, by mixing, in transmission frequency; depending on whether this clipping will be done upstream or downstream of the modulator, it will therefore relate to a DAB signal made of two quadrature signals or of a single signal. It is the clipping at the output of the encoder 1 which was chosen in the embodiment according to FIG. 2 for its relative ease of implementation and the results which it gives.
  • FIG. 2 is a diagram of a transmitter according to the invention which is distinguished from the transmitter according to FIG. 1 only by the introduction, between the encoder 1 and the digital-analog converters 21, 22, of additional circuits, and by the absence of the amplifiers P3 to P5, that is to say three out of five of the amplifiers.
  • the signals 1 and Q delivered by the encoder 1 are not, in reality, directly clipped but are respectively applied to the inputs of two interpolation circuits M1, M2.
  • a clipping circuit, T has two inputs respectively connected to the outputs of the two interpolation circuits and two outputs respectively coupled to the inputs of the converters 21, 22 through low-pass filters Fb1, Fb2; thus the converters 21, 22 respectively receive signals l ′ and Q ′ which come to it from the clipping circuit only after having been filtered.
  • the role of the interpolation circuits M1, M2 is to increase the useful bandwidth of the signal compared to the signal coming from the coder in order to correct the phenomenon of aliasing, aliasing in the Anglo-Saxon literature, caused by the circuit d 'clipping.
  • the role of the clipping circuit T is to carry out the three operations which have been discussed above in order to reduce to a predetermined value, ⁇ e , the modules of those of the complex signals DAB which have a value greater than ⁇ e , but without changing the argument of these signals.
  • the low-pass filters F1 and F2 are, in the example described, filters with 64 coefficients coded on 12 bits. Their role is to eliminate the intermodulation products caused by the clipping circuit.
  • Figures 3, 4 and 5 are oscillograms obtained at the output of modulator 3, that is to say after modulation of the carrier signal at 1472 MHz; the scale of these oscillograms is 300 kHz per square in horizontal and 10 dB per square in vertical; the frequency of 1472 MHz was placed in the middle of the oscillogram.
  • the oscillogram in FIG. 3 shows the spectrum of the signal at the output of the modulator 3 in a circuit configuration according to FIG. 1, that is to say without clipping; as it appears on figure 3 the products of intermodulation are with -56dB. Furthermore, the measurement of the crest factor of this modulator output signal gives a value of 11dB. As for the measurements made by placing a receiver in series with the transmitter, they show that a bit error rate of 10 -4 leads to an increase in the carrier-to-noise ratio, C / N, of 0.1 dB compared to the C / N ratio that would be obtained with a perfect transmitter and receiver.
  • the oscillogram of FIG. 4 shows the spectrum of the signal at the output of the modulator 3 in a circuit configuration which is distinguished from that of FIG. 2 only by the absence of the low-pass filters Fb1, Fb2, replaced by short circuits; in this configuration and for a clipping at 6 dB of the peak value, the intermodulation products are at -26 dB.
  • the low-pass filtering performed with the filters Fb1, Fb2 according to FIG. 2 makes it possible to lower these intermodulation products to -55 dB, as it appears in FIG. 5.
  • This value of 0.4 dB is the maximum value currently authorized, according to standards; it allows to go from a crest factor of 11 dB to a crest factor of 7 dB and thus, as explained above, allows to reduce the number of output amplifiers from five to two for average power unchanged transmitter output.
  • the standard which fixes the maximum degradation to carrier-to-noise ratio, C / N at 0.4 dB is not final and the maximum degradation value will probably be increased to 0.8 dB in the future, more clipping severe will then be possible, which will lead to a reduction in the crest factor greater than that of the example described using FIGS. 2 and 5.
  • clipping can be performed anywhere between the encoder and the output amplifiers; in the event that clipping is performed on the DAB signal while it is in analog, the interpolation circuits have no longer any reason to be; of even if the sampling in the encoder 1 is at a frequency sufficient to avoid that the aliasing of the spectrum after clipping is annoying, the interpolation circuits are no longer necessary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)

Abstract

Un émetteur de signaux de radiophonie digitale plus couramment appelés signaux DAB, dans lequel, pour ne pas dégrader le signal DAB dont le facteur de crête est de 11 dB, les amplificateurs devaient être utilisés pour fournir une puissance moyenne de sortie au moins à 11 dB au-dessous de la puissance maximum qu'ils peuvent fournir en régime linéaire. En effectuant un écrêtage (T) suivi d'un filtrage passe-bas (Fb1, Fb2), il est possible, tout en conservant un taux d'erreur bit acceptable, selon les normes actuellement en vigueur, de réduire le facteur de crête à 7 dB. Ce gain de 11-7=4 dB sur le facteur de crête permet, pour obtenir une puissance de sortie donnée, d'employer 2,5 fois moins d'amplificateurs (4 dB≃20 log 2,5). Application à l'amplification de puissance des signaux DAB. <IMAGE>

Description

  • La présente invention se rapporte à l'émission de signaux de radiophonie digitale plus couramment appelés signaux DAB selon le sigle de leur appellation anglo-saxonne : Digital Audio Broadcast; elle se rapporte plus particulièrement à l'amplification de puissance de tels signaux dans les étages de sortie des émetteurs.
  • Lors de l'amplification d'un signal DAB par un module dont la caractéristique de transfert doit être utilisée dans sa partie linéaire il faut veiller à ce que les tensions crêtes du signal DAB appliqué à ce module soient traitées dans la partie linéaire de la caractéristique de transfert. Avec un amplificateur de puissance, du fait que le signal DAB qui lui est appliqué présente généralement un écart de 11 dB entre ses puissances moyenne et de crête, cela entraîne que, pour amplifier les crêtes les plus grandes dans la partie linéaire de la caractéristique de l'amplificateur, il ne faut pas que la puissance moyenne de sortie dépasse la puissance maximale de l'amplificateur moins 11 dB ; à titre d'exemple un amplificateur de 100 W délivrera un signal DAB amplifié dont la puissance moyenne ne devra pas dépasser 100 W - 11 dB c'est-à-dire environ 8 W et cela afin de pouvoir amplifier linéairement des crêtes de puissance à 100 W.
  • Sachant que les amplificateurs de puissance sont coûteux et représentent souvent plus de la moitié du prix d'un émetteur de puissance DAB, il apparaît que l'utilisation d'un amplificateur pour en obtenir une puissance moyenne au plus égale à 8% de ses possibilités, constitue un lourd handicap sur le plan financier.
  • Le but de la présente invention est de réduire cet inconvénient.
  • Ceci est obtenu par un traitement du signal DAB, avant amplification de puissance, destiné à diminuer l'écart entre sa puissance crête et sa puissance moyenne.
  • Selon l'invention il est proposé un émetteur de signaux de radiophonie digitale, comportant, couplés en un montage série, des moyens de codage pour recevoir un signal à émettre et fournir en échange une paire de signaux en quadrature représentant, en coordonnées cartésiennes, un nombre complexe d'entrée, un modulateur à quatre états de phase, des moyens d'amplification, caractérisé en ce qu'il comporte, insérés en série entre les moyens de codage et les moyens d'amplification, des moyens d'écrêtage suivis de moyens de filtrage passe-bas, les moyens d'écrêtage réalisant un écrêtage à une valeur prédéterminée du module du nombre complexe d'entrée.
  • La présente invention sera mieux comprise et d'autres caractéristiques apparaîtront à l'aide de la description ci-après et des figures s'y rapportant qui représentent
    • la figure 1, un émetteur selon l'art connu,
    • la figure 2, un émetteur selon l'invention
    • les figures 3 à 5, des oscillogrammes de signaux rencontrés lors de l'étude qui a conduit à passer de l'émetteur selon la figure 1 à l'émetteur selon la figure 2.
  • Sur les figures 1 et 2 les éléments correspondants sont désignés par les mêmes repères.
  • La figure 1 représente un émetteur de signaux DAB selon l'art connu dans le cas d'une réalisation sans passage par une fréquence intermédiaire, le signal en bande de base modulant directement la fréquence d'émission.
  • L'émetteur selon la figure 1 reçoit un signal utile audio sur une entrée E d'un codeur DAB, 1 ; le codeur 1 délivre, sur deux sorties, respectivement deux signaux numériques en bande de base, en quadrature, I et Q, échantillonnés à 2,048 MHz dans l'exemple décrit. Ces deux signaux numériques sont convertis en analogique, respectivement dans deux convertisseurs 21, 22, puis filtrés en x sin x
    Figure imgb0001
    , respectivement dans deux filtres F1, F2. Les deux signaux en quadrature issus des filtres F1, F2 sont appliqués sur un modulateur à quatre états de phase, 3, dit modulateur QPSK dans ce qui suit, d'après le sigle des mots anglo-saxons Quadrature Phase Shift Keying qui signifient modulation à quatre états de phase. Dans le modulateur 3 les signaux en quadrature modulent un signal porteur fourni par un oscillateur non représenté ; la fréquence de ce signal porteur est de 1472 MHz dans l'exemple décrit.
  • Le signal de sortie du modulateur 3 est amplifié dans un préamplificateur PO suivi de cinq amplificateurs P1 à P5 montés en parallèle. Un circuit additionneur, Ad, fait la somme des signaux de sortie des amplificateurs P1 à P5 ; sa sortie est couplée à travers un filtre passe-bande Fs à une antenne d'émission, S.
  • Dans ce qui suit il est question de taux d'erreur bit et de facteur de crête ; la signification de ces termes est rappelée ci-après.
  • Le taux d'erreur bit ou TEB d'un signal transmis est le rapport du nombre de bits faux du signal sur le nombre total de bits du signal.
  • Le facteur de crête d'un signal est égal au rapport de sa puissance crête à sa puissance moyenne; il est exprimé généralement en décibels.
  • Dans le cas de la figure 1 un signal DAB présentant, par exemple, un facteur de crête de 11 dB nécessite un recul de puissance, back off dans la littérature anglo-saxonne, de 11 dB lors de l'amplification afin de limiter les distorsions non linéaires et de conserver la nature du signal DAB. Cela signifie qu'en utilisant, par exemple, un amplificateur d'une puissance de 100 W définie à 1 dB de compression, la puissance moyenne à la sortie ne peut dépasser 100 W - 11 dB soit environ 8 W ; le recul de puissance est de 92 W.
  • En écrêtant le signal DAB à 6 dB par rapport à une puissance crête considérée à 11 dB au-dessus de la puissance moyenne, il a été constaté, dans l'exemple qui sera décrit plus loin, que le facteur de crête du signal considéré passe de 11 dB à 7 dB ; avec un tel écrêtage le taux d'erreur bit ou TEB subit une légère dégradation mais, malgré cette dégradation, sa valeur reste dans les normes.
  • Ce signal DAB écrêté nécessite un recul de puissance de 7 dB lors de l'amplification afin de limiter les distorsions non linéaires et de conserver la nature du signal DAB. Cela signifie qu'en utilisant, par exemple, un amplificateur d'une puissance de 100 W définie à 1 dB de compression, la puissance moyenne à la sortie peut atteindre jusqu'à 100 W - 7 dB, soit environ 20 W.
  • Le gain de 11-7=4 dB sur le recul de puissance permet, par rapport au cas précédent, d'utiliser 2,5 fois moins d'amplificateurs (4 dB≃10 log 2,5) pour obtenir un signal amplifié de même puissance et comportant des produits d'intermodulation hors bandes, intermodulation products ou shoulders dans la littérature anglo-saxonne, équivalents ; ceci est vrai sous réserve, pour ne pas avoir des produits d'intermodulation plus importants, de prendre certaines précautions spécifiques en amont des amplificateurs; ces précautions seront indiquées plus loin.
  • L'écrêtage dont il a été question ci-avant, pour le signal DAB, peut être effectué à tout endroit, entre le codeur et les amplificateurs de sortie, dans l'émetteur de signaux DAB : juste en sortie du codeur 1 ou en sortie des convertisseurs numériques-analogiques 21, 22 ou en sortie du modulateur 3 ou même en sortie de mélangeur dans le cas où le signal à émettre est modulé en fréquence intermédiaire avant d'être transposé, par mélange, en fréquence d'émission ; selon que cet écrêtage se fera en amont ou en aval du modulateur, il portera donc sur un signal DAB fait de deux signaux en quadrature ou d'un seul signal. C'est l'écrêtage en sortie du codeur 1 qui a été choisi dans la réalisation selon la figure 2 pour sa relative facilité de mise en oeuvre et les résultats qu'il donne.
  • ll s'agit d'effectuer un écrêtage sur le signal DAB fait d'une paire de signaux en quadrature, I et Q, représentant les coordonnées cartésiennes d'un nombre complexe (l, Q). Pour cela un circuit d'écrêtage qui est, en fait, constitué de moyens de calcul effectue les opérations suivantes
    • calcul du module : ρ = I 2 + Q 2
      Figure imgb0002
    • calcul du module, ρ', après écrêtage à une valeur d'écrêtage ρe : ρ'=ρ e    si ρ ≥ ρ e
      Figure imgb0003
      ρ'=ρ    si ρ < ρ e
      Figure imgb0004
      il est à noter que cet écrêtage à la valeur ρe représenté en décibels par 20 log (ρme), où ρm est la valeur maximum prise par le module de (I, Q)
    • calcul du signal complexe écrêté (I', Q'), en coordonnées cartésiennes, en lui conservant l'argument du signal complexe d'origine (I, Q) : I '=ρ'.sin[ Arc tg ( I / Q )]
      Figure imgb0005
      Q '=ρ'.cos[ Arc tg ( I / Q ) ]
      Figure imgb0006
  • La figure 2 est un schéma d'un émetteur selon l'invention qui ne se distingue de l'émetteur selon la figure 1 que par l'introduction, entre le codeur 1 et les convertisseurs numériques-analogiques 21, 22, de circuits additionnels, et par l'absence des amplificateurs P3 à P5, c'est-à-dire de trois sur cinq des amplificateurs.
  • Les signaux 1 et Q délivrés par le codeur 1 ne sont pas, en réalité, directement écrêtés mais sont respectivement appliqués aux entrées de deux circuits d'interpolation M1, M2. Un circuit d'écrêtage, T, a deux entrées respectivement reliées aux sorties des deux circuits d'interpolation et deux sorties respectivement couplées aux entrées des convertisseurs 21, 22 à travers des filtres passe-bas Fb1, Fb2 ; ainsi les convertisseurs 21, 22 reçoivent respectivement des signaux l' et Q' qui ne lui viennent du circuit d'écrêtage qu'après avoir été filtrés.
  • Le rôle des circuits d'interpolation M1, M2 est d'augmenter la bande passante utile du signal par rapport au signal venant du codeur afin de corriger le phénomène de repliement de spectre, aliasing dans la littérature anglo-saxonne, occasionné par le circuit d'écrêtage.
  • Le rôle du circuit d'écrêtage T est d'effectuer les trois opérations dont il a été question plus avant pour réduire à une valeur prédéterminée, ρe, les modules de ceux des signaux complexes DAB qui ont une valeur supérieure à ρe, mais sans modifier l'argument de ces signaux.
  • Les filtres passe-bas F1 et F2 sont, dans l'exemple décrit, des filtres à 64 coefficients codés sur 12 bits. Leur rôle est d'éliminer les produits d'intermodulation occasionnés par le circuit d'écrêtage.
  • Les figures 3, 4 et 5 sont des oscillogrammes obtenus à la sortie du modulateur 3, c'est-à-dire après modulation du signal porteur à 1472 MHz ; l'échelle de ces oscillogrammes est de 300 kHz par carreau en horizontal et de 10 dB par carreau en vertical ; la fréquence de 1 472 MHz a été placée au milieu de l'oscillogramme.
  • L'oscillogramme de la figure 3 montre le spectre du signal à la sortie du modulateur 3 dans une configuration de circuits selon la figure 1 c'est-à-dire sans écrêtage ; comme il apparaît sur la figure 3 les produits d'intermodulation sont à -56dB. Par ailleurs la mesure du facteur de crête de ce signal de sortie du modulateur donne une valeur de 11dB. Quant aux mesures effectuées en plaçant un récepteur en série avec l'émetteur, elles montrent qu'un taux d'erreur bit de 10-4 entraîne une augmentation du rapport porteuse sur bruit, C/N, de 0,1 dB par rapport au rapport C/N que l'on obtiendrait avec un émetteur et un récepteur parfaits.
  • ll faut noter que cette façon de présenter le rapport C/N en fonction du taux d'erreur bit, et non le contraire qui paraîtrait plus logique, est due au fait que c'est une valeur de taux d'erreur bit qui est recherchée.
  • L'oscillogramme de la figure 4 montre le spectre du signal à la sortie du modulateur 3 dans une configuration de circuits qui ne se distingue de celle de la figure 2 que par l'absence des filtres passe-bas Fb1, Fb2, remplacés par des courts-circuits ; dans cette configuration et pour un écrêtage à 6 dB de la valeur crête, les produits d'intermodulation sont à -26 dB.
  • Le filtrage passe-bas effectué avec les filtres Fb1, Fb2 selon la figure 2 permet d'abaisser ces produits d'intermodulation à -55 dB, comme il apparaît sur la figure 5. La mesure du facteur de crête de ce signal du modulateur 3, dans la configuration selon la figure 2, donne une valeur de 7 dB ; et le taux d'erreur bit, toujours de 10-4, est obtenu avec un rapport C/N qui passe à 0,4 dB soit une dégradation de 0,3 dB par rapport à l'émetteur selon la figure 1.
  • Cette valeur de 0,4 dB est la valeur maximum autorisée actuellement, d'après les normes ; elle permet de passer d'un facteur de crête de 11 dB à un facteur de crête de 7 dB et ainsi, comme cela a été expliqué plus avant, permet de réduire le nombre d'amplificateurs de sortie de cinq à deux pour une puissance moyenne de sortie d'émetteur inchangée. La norme qui fixe à 0,4 dB la dégradation, maximum du rapport porteuse sur bruit, C/N, n'est pas définitive et la valeur de dégradation maximum sera vraisemblablement portée à 0,8 dB dans l'avenir, un écrêtage plus sévère sera alors possible ce qui conduira à une diminution du facteur de crête supérieure à celle de l'exemple décrit à l'aide des figures 2 et 5.
  • ll a été indiqué dans ce qui précède, que l'écrêtage pouvait être effectué n'importe où entre le codeur et les amplificateurs de sortie ; dans le cas où l'écrêtage est effectué sur le signal DAB alors qu'il est en analogique, les circuits d'interpolation n'ont plus de raison d'être ; de même si l'échantillonnage dans le codeur 1 est à une fréquence suffisante pour éviter que le repliement de spectre après écrêtage soit gênant, les circuits d'interpolation ne sont plus nécessaires.

Claims (3)

  1. Emetteur de signaux de radiophonie digitale, comportant, couplés en un montage série, des moyens de codage (1) pour recevoir un signal à émettre et fournir une paire de signaux en quadrature, cette paire constituant les coordonnées cartésiennes d'un nombre complexe d'entrée représentatif du signal à émettre, un modulateur (3) à quatre états de phase, des moyens d'amplification (P0-P5), caractérisé en ce qu'il comporte, insérés en série dans le montage, entre les moyens de codage (1) et les moyens d'amplification (P0-P5), des moyens d'écrêtage (T) suivis de moyens de filtrage passe-bas (Fb1, Fb2), les moyens d'écrêtage réalisant un écrêtage à une valeur prédéterminée du module du nombre complexe d'entrée.
  2. Emetteur selon la revendication 1, caractérisé en ce que la paire de signaux en quadrature fournis par les moyens de codage (1) étant en valeur numérique, les moyens d'écrêtage (T) sont connectés aux moyens de codage pour recevoir cette paire, calculer le module et l'argument du nombre complexe d'entrée et délivrer une paire de signaux de sortie en quadrature constituant les coordonnées cartésiennes d'un nombre complexe de même argument que le nombre complexe d'entrée et de module égal à celui du nombre complexe d'entrée écrêté à une valeur prédéterminée.
  3. Emetteur selon la revendication 2, caractérisé en ce que les moyens de codage (1) comportent, en sortie, des moyens d'interpolation (M1, M2).
EP97400598A 1996-03-22 1997-03-18 Emetteur de signaux de radiophonie digitale Withdrawn EP0797323A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9603601A FR2746562B1 (fr) 1996-03-22 1996-03-22 Emetteur de signaux de radiophonie digitale
FR9603601 1996-03-22

Publications (1)

Publication Number Publication Date
EP0797323A1 true EP0797323A1 (fr) 1997-09-24

Family

ID=9490455

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97400598A Withdrawn EP0797323A1 (fr) 1996-03-22 1997-03-18 Emetteur de signaux de radiophonie digitale

Country Status (3)

Country Link
EP (1) EP0797323A1 (fr)
CA (1) CA2200774A1 (fr)
FR (1) FR2746562B1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6266320B1 (en) 1998-04-08 2001-07-24 Telefonaktiebolaget Lm Ericsson (Publ) Amplitude limitation in CDMA system
EP1253757A1 (fr) * 2001-04-23 2002-10-30 Lucent Technologies Inc. Modulateur par déplacement de phase (PSK) capable de réduire le rapport puissance crête/puissance moyenne
US6636555B1 (en) 1998-05-29 2003-10-21 Telefonaktiebolaget Lm Ericsson(Publ) Amplitude limitation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0388381A1 (fr) * 1989-03-13 1990-09-19 Telefonaktiebolaget L M Ericsson Générateur d'ondes
EP0441110A1 (fr) * 1990-01-22 1991-08-14 Telefonaktiebolaget L M Ericsson Procédé de compensation de non-linéarité pour un amplificateur de puissance d'un radio-émetteur
GB2270819A (en) * 1992-09-07 1994-03-23 British Broadcasting Corp Improvements relating to the transmission of frequency division multiplex signals
EP0632624A1 (fr) * 1993-06-29 1995-01-04 Laboratoires D'electronique Philips S.A.S. Système de transmission numérique à prédistorsion
EP0702466A2 (fr) * 1994-09-14 1996-03-20 AT&amp;T GLOBAL INFORMATION SOLUTIONS INTERNATIONAL INC. Réduction du rapport entre la puissance de crête et la puissance moyenne pour multiplexage par division en fréquences orthogonales

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0388381A1 (fr) * 1989-03-13 1990-09-19 Telefonaktiebolaget L M Ericsson Générateur d'ondes
EP0441110A1 (fr) * 1990-01-22 1991-08-14 Telefonaktiebolaget L M Ericsson Procédé de compensation de non-linéarité pour un amplificateur de puissance d'un radio-émetteur
GB2270819A (en) * 1992-09-07 1994-03-23 British Broadcasting Corp Improvements relating to the transmission of frequency division multiplex signals
EP0632624A1 (fr) * 1993-06-29 1995-01-04 Laboratoires D'electronique Philips S.A.S. Système de transmission numérique à prédistorsion
EP0702466A2 (fr) * 1994-09-14 1996-03-20 AT&amp;T GLOBAL INFORMATION SOLUTIONS INTERNATIONAL INC. Réduction du rapport entre la puissance de crête et la puissance moyenne pour multiplexage par division en fréquences orthogonales

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YIYAN WU ET AL: "Orthogonal frequency division multiplexing: a multi-carrier modulation scheme", IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, vol. 41, no. 3, 1 January 1995 (1995-01-01), pages 392 - 399, XP055115868, ISSN: 0098-3063, DOI: 10.1109/30.468055 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6266320B1 (en) 1998-04-08 2001-07-24 Telefonaktiebolaget Lm Ericsson (Publ) Amplitude limitation in CDMA system
US6636555B1 (en) 1998-05-29 2003-10-21 Telefonaktiebolaget Lm Ericsson(Publ) Amplitude limitation
EP1253757A1 (fr) * 2001-04-23 2002-10-30 Lucent Technologies Inc. Modulateur par déplacement de phase (PSK) capable de réduire le rapport puissance crête/puissance moyenne

Also Published As

Publication number Publication date
FR2746562B1 (fr) 1998-06-05
CA2200774A1 (fr) 1997-09-22
FR2746562A1 (fr) 1997-09-26

Similar Documents

Publication Publication Date Title
EP0941588B1 (fr) Procede et dispositif de radiodiffusion mixte analogique et numerique d&#39;emission radiophonique diffusee par un meme emetteur
EP0033256B1 (fr) Système de transmission radioélectrique en diversité, de structure simple et économique
EP0950306B1 (fr) Procede et dispositif de mise en forme d&#39;un bruit d&#39;ecretage d&#39;une modulation multiporteuse
CA2118976A1 (fr) Recepteur numerique a frequence intermediaire et procede de filtrage en bande de base mis en oeuvre dans ce recepteur
EP0632624A1 (fr) Système de transmission numérique à prédistorsion
EP2243268B1 (fr) Systeme d&#39;emission radiofrequence
EP3785367B1 (fr) Systeme et procede de linearisation en bande de base pour un amplificateur de puissance radiofrequence de classe g
EP3255802B1 (fr) Dispositif et procédé pour le traitement d&#39;un signal recu par un récepteur perturbé par un émetteur
FR2743228A1 (fr) Systeme de melange et de numerisation de signaux analogiques
FR2767429A1 (fr) Dispositif permettant d&#39;apparier des retards dans un amplificateur de puissance
EP2001126B1 (fr) Mélangeur bidirectionnel de fréquences, système émetteur/récepteur radiofréquences comportant au moins un tel mélangeur
EP0120786A1 (fr) Chaîne de réception hyperfréquence comportant un dispositif de démodulation directe en hyperfréquence
EP0797323A1 (fr) Emetteur de signaux de radiophonie digitale
JP5133172B2 (ja) Fm送信回路及びオーバーサンプリング処理回路
EP0121446B1 (fr) Dispositif de linéarisation d&#39;amplificateur haute fréquence à coefficients de non-linéarité complexes
EP1056208B1 (fr) Dispositif compensateur de la non-linéarité d&#39;un convertisseur analogue-numérique
EP2380322B1 (fr) Procede et dispositif de reduction du bruit de quantification pour la transmission d&#39;un signal multiporteuse
EP1044543A1 (fr) Modulation d&#39;un signal numerique a spectre etroit et a enveloppe sensiblement constante
FR2927202A1 (fr) Ponderation en puissance d&#39;un signal multiporteuse a la reception dans un systeme de communication.
EP1107528B1 (fr) Méthode de détection de blocs pour canal soumis à évanouissement
EP1190498B1 (fr) Procede et dispositif d&#39;emission d&#39;un signal radio dans un systeme de communication a acces multiple a repartition par codes
FR3115179A1 (fr) Procédé de linéarisation d’un signal de transmission et circuit intégré correspondant
EP3308465A1 (fr) Procede de synthese d&#39;un bruit analogique, synthetiseur de bruit et chaine de codage utilisant un tel synthetiseur
FR2813724A1 (fr) Circuit de reception multibandes dans un telephone mobile et procede de reception associe
EP0841758A1 (fr) Procédé d&#39;annulation d&#39;écho pour signal radio modulé à enveloppe constante et dispositifs associés

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

17P Request for examination filed

Effective date: 19980312

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON LICENSING

17Q First examination report despatched

Effective date: 20091118

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON LICENSING

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20161027