EP1044543A1 - Modulation d'un signal numerique a spectre etroit et a enveloppe sensiblement constante - Google Patents

Modulation d'un signal numerique a spectre etroit et a enveloppe sensiblement constante

Info

Publication number
EP1044543A1
EP1044543A1 EP98962536A EP98962536A EP1044543A1 EP 1044543 A1 EP1044543 A1 EP 1044543A1 EP 98962536 A EP98962536 A EP 98962536A EP 98962536 A EP98962536 A EP 98962536A EP 1044543 A1 EP1044543 A1 EP 1044543A1
Authority
EP
European Patent Office
Prior art keywords
signal
modulation
function
transmission signal
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98962536A
Other languages
German (de)
English (en)
Inventor
Jean-Louis Dornstetter
Eric Georgeaux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nortel Networks France SAS
Original Assignee
Nortel Matra Cellular SCA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nortel Matra Cellular SCA filed Critical Nortel Matra Cellular SCA
Publication of EP1044543A1 publication Critical patent/EP1044543A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2003Modulator circuits; Transmitter circuits for continuous phase modulation
    • H04L27/2007Modulator circuits; Transmitter circuits for continuous phase modulation in which the phase change within each symbol period is constrained
    • H04L27/2017Modulator circuits; Transmitter circuits for continuous phase modulation in which the phase change within each symbol period is constrained in which the phase changes are non-linear, e.g. generalized and Gaussian minimum shift keying, tamed frequency modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03828Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties
    • H04L25/03834Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties using pulse shaping

Definitions

  • the present invention relates to a technique for modulating a digital signal. It therefore applies in the field of transmissions, in particular in that of radio frequencies.
  • a typical application is aimed at radiocommunication systems, in particular so-called “broadband” systems.
  • Such systems are naturally designed to offer a high capacity and it is therefore necessary to adopt a modulation with high spectral efficiency, which amounts to saying that the spectrum of a given channel must be as narrow as possible given the technical specifications.
  • constant envelope modulation is generally used, which makes it possible to minimize the complexity of the transmitters. Indeed, if the signal has relatively large amplitude variations, the amplification stages, in particular the power amplifier, must be perfectly linear. However, it appears that all of the constant envelope modulations known up to now have a spectrum which has a lateral lobe.
  • This lateral lobe if it is located in the spectrum of a neighboring channel, will increase the level of interference in this neighboring channel.
  • the GMSK modulation for "Gaussian Minimum Shift Keying" used in the GSM system has a side lobe located at -40 dBc and 200 kHz from the main lobe, while the spacing between two adjacent channels is also 200 kHz. It is clear that the spectral efficiency is reduced accordingly.
  • the present invention thus relates to a modulation technique which presents a spectrum without lateral lobe while retaining a practically constant envelope.
  • the invention therefore applies to a transmission signal resulting from the modulation of a digital data signal by a modulation function dependent on time t, this data signal being formed of a series of bits each bjç identified by its rank k and having a duration T, this transmission signal consisting of a summation indexed on rank k of the product of the complex constant j at the power k, of the modulation function h (t-kT) and of a signal d 'Entrance.
  • the input signal being a function of the data signal
  • the modulation function is a Gaussian function of time t.
  • this modulation function is thus defined: t 2
  • the parameter ⁇ is a form factor which determines the spread of a bit.
  • the invention consists in defining the input signal as being equal to the data signal.
  • the transmission signal still presents amplitude variations which, although minimal, always bring some constraints on the amplifiers of the transmitter.
  • the input signal is worth:
  • level of correction is a strictly positive natural integer
  • - a is a constant of positive correction
  • the correction constant has for 1_ value e ⁇ 2 •
  • the invention also relates to a modulator for producing the transmission signal.
  • the modulator comprises a digital processor which receives the input signal to produce the real part and the imaginary part of the transmission signal, a first mixer to multiply the real part by a carrier, a phase shifter receiving this carrier for the phase shift of ⁇ / 2, a second mixer to multiply the imaginary part by the output signal of the phase shifter, and an adder to sum the output signals of the two mixers.
  • the digital processor comprises a first module for producing the polynomials B ⁇ 11 .
  • the invention also relates to a demodulator for restoring the data signal from the transmission signal.
  • this demodulator comprises a base band transposition member which receives a signal which has been the subject of a modulation by the modulation function, a complex multiplier for multiplying the output signal
  • This transposition organ is commonly a Hubert filter.
  • FIG. 1 a diagram of a modulator according to the invention
  • FIG. 2 a diagram of a first module of an embodiment of the modulator
  • FIG. 3 a diagram of a second module of this same embodiment of the modulator
  • FIG. 4 a diagram of a demodulator 1 according to the invention. It is therefore a question of modulating a digital data signal which consists of a series of bits bj ⁇ taking the value + or -1.
  • h is a Gaussian function which for example takes the following form: t 2
  • the parameter ⁇ is a form factor which determines the spread of a bit.
  • Adopting a Gaussian as a modulation function makes it possible to suppress the lateral lobe which is present in the constant envelope modulation spectra.
  • the modulated signal is still subject to amplitude variations although these are significantly reduced compared to a QAM type modulation.
  • a corrective term C is added to the modulated signal as defined above:
  • N is an integer representing a level of correction
  • the polynomials B k n are constructed as follows. We search, for a given value of n, all families of relative integers p ⁇ _ j_ so that there is a natural integer M which allows us to verify the following relationships: MM
  • this expression is negative or zero.
  • equation (2) can be written: z 1 million. 5 réelle . . , . 2 réelle . ,.
  • equation (2) can be written: z-3
  • pi 2M is ⁇ less than or equal to n.
  • n is greater than l, we find all families in the same way by successively incrementing all p ⁇ _ j. In this case, 1 varies from 1 to L.
  • the invention naturally relates to a modulator for producing the modulated signal S and injecting it on a carrier.
  • a modulator for producing the modulated signal S and injecting it on a carrier.
  • a DEP phase shifter receives this carrier to inject it on the second mixer M2.
  • the modulator comprises a time base BDT which supplies on the one hand the clock signals Ck to the digital processor PR and, on the other hand, the carrier to the first mixer M1 and to the phase shifter DEP. It operates for the most varied values of the various constants and in particular with a level of correction N equal to 0. However, in order to obtain good performance and to facilitate the task of the PR processor, the following values are retained as 'example:
  • the modulated signal S therefore results from a series of digital samples produced at the rate of four per bit time T.
  • the modulation function h (t) is also represented by a series of positive numbers hq of 11 bits. An appropriate scale factor is chosen so that the modulated signal S can indeed be coded on 12 bits:
  • the processor PR comprises a first module for calculating the expressions Bj ⁇ 1 and Bj.
  • the corresponding calculations are here carried out by means of a shift register which, at a reference instant, comprises the bits bjç + 2 to bj ⁇ -2 •
  • B ⁇ 1 is obtained by a first multiplier PI which produces the product of the bits, bj ⁇ _ ⁇ , bj ⁇ , and bj ⁇ + i •
  • is provided a second multiplier P2 which makes the product of bits bj ⁇ -2, b kl 'and bj ⁇ + i
  • a third multiplier P3 which makes the product of bits bj ⁇ -i, bjç + i, and bj ⁇ + 2 and a summator R to sum the outputs of the second P2 and third P3 multipliers.
  • the processor PR also includes a second module shown in FIG. 3. This second module is responsible for calculating the digital samples of the modulated signal S, this by filtering the oversampled input signals by means of an impulse response filter h (t ).
  • the numbers XQ, YO, x i Yi / x 2 'and y2 are real numbers.
  • the second module comprises a first sampler EQ which receives the bit b k to supply it to a first switcher A Q synchronized with this sampler.
  • the first switcher produces as output signal I Q successively the first sample of the bit b k then the third sample of this same bit b k changed sign. It also produces as output signal Q Q successively the second sample of bit b k then the fourth sample of this same bit b k changed sign.
  • the second module then correlates (marked by the operator * in the figure) the output signal I Q with the modulation function h according to equation (4) to produce the first real component x 0 . Note that only the terms corresponding to an even index q are non-zero.
  • the discrete correlation operation is not more detailed since it is a technique well known to one skilled in the art.
  • the second module also correlates the output signal Q Q with the modulation function h according to
  • the second module includes a second sampler E ⁇ which receives the signal Bjç 1 to supply it to a second switcher A ⁇ synchronized with this sampler.
  • the second switcher produces as output signal 1 ⁇ successively the first sample of the term Bj ⁇ 1 then the third sample of this same term changed sign. It also produces as output signal Q ⁇ successively the second sample of the term Bjç 1 then the fourth sample of this same term changed sign.
  • the second module then correlates the output signal I ⁇ with the modulation function h multiplied by the constant a (1/8 in this case) according to equation (5) to produce the second real component x ⁇ .
  • the second module also correlates the output signal Q ⁇ with the modulation function h multiplied by 1/8 according to equation (5) to produce the second imaginary component y ⁇ .
  • the second module produces the third real 2 and imaginary component y2 from the expression B k 2 according to equation (6).
  • the real part I of the modulated signal results from the sum of the three real components x 0 , x ⁇ f X 2 and its imaginary part Q results from the sum of the three imaginary components yo, y and ⁇ 2 .
  • the invention also quite naturally relates to a demodulator for recovering the data signal from the modulated signal S.
  • the demodulator comprises a transposition member in base band FIL which receives a signal r (t) which has been the subject of a modulation as described above. This transposition device is commonly produced using a Hubert filter.
  • the demodulator also includes a complex multiplier MUL to multiply the output signal of the organ
  • ⁇ t_ of transposition FIL by the expression e 2T and thus produce a signal of frequency equal to the quarter of bit time. It also includes a convolution operator CONV which performs the convolution of the output signal of the complex multiplier MUL and of the modulation function h (t) defined above.
  • the invention therefore relates to a digital modulation technique which applies regardless of how the modulation function is represented, including using a compression law. It is not limited to the examples of embodiments described above. In particular, it is possible to replace any means with equivalent means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Dc Digital Transmission (AREA)

Abstract

L'invention concerne un signal de transmission (S) résultant de la modulation d'un signal numérique de données par une fonction de modulation dépendant du temps t, ce signal de données étant formé d'une suite de bits chacun (bk)identifié par son rang k et présentant une durée T, ce signal de transmission (S) consistant en une sommation indexée sur le rang k du produit de la constante complexe j à la puissance k, de la fonction de modulation h(t-kT) et d'un signal d'entrée. Le signal d'entrée F(k) étant une fonction du signal de données (bk), la fonction de modulation h(t-kT) est une fonction gaussienne du temps t.

Description

Modulation d'un siσnal numérique à spectre étroit et à enveloppe sensiblement constante
La présente invention concerne une technique de modulation d'un signal numérique. Elle s'applique donc dans le domaine des transmissions, notamment dans celui des radiofréquences .
Une application typique vise les systèmes de radiocommunication, en particulier les systèmes dits "large bande" . De tels systèmes sont naturellement conçus pour offrir une forte capacité et il convient donc d'adopter une modulation à efficacité spectrale élevée, ce qui revient à dire que le spectre d'un canal donné doit être le plus étroit possible compte tenu des spécifications techniques.
De plus, on utilise généralement une modulation à enveloppe constante, ce qui permet de minimiser la complexité des émetteurs. En effet, si le signal présente des variations d'amplitude relativement importantes, il faut que les étages d'amplification, en particulier l'amplificateur de puissance, soient parfaitement linéaires. II apparaît cependant que toutes les modulations à enveloppe constante connues jusqu'à présent ont un spectre qui présente un lobe latéral.
Ce lobe latéral, s'il est situé dans le spectre d'un canal voisin, va augmenter le niveau d'interférences dans ce canal voisin.
A titre d'exemple, la modulation GMSK (pour "Gaussian Minimum Shift Keying" ) employée dans le système GSM présente un lobe latéral situé à -40 dBc et à 200 kHz du lobe principal , alors que 1 ' espacement entre deux canaux adjacents est lui aussi de 200 kHz. On comprend bien que l'efficacité spectrale est réduite en conséquence.
On connaît par ailleurs les modulations QAM (pour "Quadrature Amplitude Modulation") dont le spectre ne présente pas de lobe latéral pour peu qu'on utilise un filtre de mise en forme approprié. Cependant, ces modulations provoquent de fortes variations de l'amplitude du signal modulé. Comme mentionné plus haut, il convient dans ce cas d'utiliser des amplificateurs plus complexes et, partant, plus coûteux. La présente invention a ainsi pour objet une technique de modulation qui présente un spectre sans lobe latéral tout en conservant une enveloppe pratiquement constante.
L'invention s'applique donc à un signal de transmission résultant de la modulation d'un signal numérique de données par une fonction de modulation dépendant du temps t, ce signal de données étant formé d'une suite de bits chacun bjç identifié par son rang k et présentant une durée T, ce signal de transmission consistant en une sommation indexée sur le rang k du produit de la constante complexe j à la puissance k, de la fonction de modulation h(t-kT) et d'un signal d'entrée. Selon l'invention, le signal d'entrée étant une fonction du signal de données, la fonction de modulation est une fonction gaussienne du temps t. Avantageusement, cette fonction de modulation est ainsi définie : t2
2T2 h ( t ) = — e , où
G 27T le paramètre σ est un facteur de forme qui détermine l'étalement d'un bit. La forme la plus simple de mise en oeuvre de
1 ' invention consiste à définir le signal d' entrée comme étant égal au signal de données.
Toutefois, en adoptant cette solution, le signal de transmission présente encore des variations d'amplitude qui, bien que minimes, apportent toujours quelques contraintes sur les amplificateurs de l'émetteur. Ainsi, de préférence, le signal d'entrée vaut :
N F(k) = ∑a" B n , où n =0
- N, niveau de correction, est un entier naturel strictement positif, - a est une constante de correction positive,
- le polynôme _ est ainsi défini :
L 2 M
B k n = Σ ( π » k + p > < «*
1 =1 i =0 1 > une famille d'entiers relatifs pτ_ j_ est construite de sorte qu'il existe un entier naturel M qui permette de vérifier les relations suivantes:
M M
M M
Y p — ∑ p = 2n
^ 1 ,2 i ^ 1 ,2 i -1 i =0 i =1 p < p quel que soit i
1 ,i 1 ,i +1
- L représente le nombre total de ces familles.
A titre d'exemple, la constante de correction a pour 1_ valeur e σ2 • L'invention concerne également un modulateur pour produire le signal de transmission.
Selon un mode de réalisation privilégié, le modulateur comprend un processeur numérique qui reçoit le signal d'entrée pour produire la partie réelle et la partie imaginaire du signal de transmission, un premier mélangeur pour multiplier la partie réelle par une porteuse, un dephaseur recevant cette porteuse pour la déphaser de π/2, un deuxième mélangeur pour multiplier la partie imaginaire par le signal de sortie du dephaseur, et un additionneur pour faire la somme des signaux de sortie des deux mélangeurs .
Avantageusement, lorsque le niveau de correction est supérieur à zéro, le processeur numérique comprend un premier module pour produire les polynômes B^11.
De plus, le processeur numérique comprend un deuxième module pour produire des échantillons numériques du signal de transmission, quatre échantillons E^+i étant associés au bit bjς pour i variant de 0 à 3 et valant : k ~5 q 1 i 1 7 E = V j .( b +—. B + .B ). h
4k+i ^ q 8 q 54 q 4(k~q )+i q =k
L'invention concerne aussi un démodulateur pour restituer le signal de données à partir du signal de transmission.
De préférence, ce démodulateur comprend un organe de transposition en bande de base qui reçoit un signal ayant fait l'objet d'une modulation par la fonction de modulation, un multiplieur complexe pour multiplier le signal de sortie
_ JEÈ. de cet organe de transposition par l'expression e 2T, un opérateur de convolution qui effectue la convolution du signal de sortie du multiplieur complexe et de la fonction de modulation, et un organe de décision qui restitue le signal de données en fonction du signe de la partie réelle du résultat de cette convolution.
Cet organe de transposition est couramment un filtre de Hubert.
La présente invention apparaîtra maintenant de manière plus détaillée dans le cadre de la description qui suit d'exemples de réalisation donnés à titre illustratif en référence aux figures annexées qui représentent : - la figure 1, un schéma d'un modulateur selon l'invention,
- la figure 2, un schéma d'un premier module d'un mode de réalisation du modulateur, - la figure 3, un schéma d'un deuxième module de ce même mode de réalisation du modulateur,
- la figure 4, un schéma d'un démodulateur selon 1 ' invention . II s'agit donc de moduler un signal numérique de données qui consiste en une suite de bits bjς prenant la valeur + ou -1.
On connaît 1 ' expression suivante d'un signal de transmission modulé S qui recouvre plusieurs types de modulation :
S=∑jk.h( t-kT ).bk , où k k est l'indice du bit courant bjς, j , la constante complexe telle que j =-l , T, la durée d'un bit, t représente le temps, et h la fonction de modulation. Lorsque h est une fonction rectangle, on parle de modulation "offset QPSK" .
Selon l'invention, h est une fonction gaussienne qui prend par exemple la forme suivante : t2
1 2σ T h(t) = e
Le paramètre σ est un facteur de forme qui détermine l'étalement d'un bit.
En notant B la demi bande passante à 3dB du spectre et en adoptant le terme In pour figurer le logarithme népérien, on a la relation suivante :
Vin 2
B . T =
2 πσ
Le fait d'adopter une gaussienne comme fonction de modulation permet de supprimer le lobe latéral qui est présent dans les spectres de modulation a enveloppe constante.
On remarque toutefois que le signal modulé est encore sujet à des variations d'amplitude bien que celles-ci soient notablement réduites par rapport a une modulation de type QAM.
Ainsi, selon un autre aspect de l'invention, on ajoute un terme correctif C au signal modulé tel que défini ci- dessus :
• N est un entier figurant un niveau de correction, 1_
• a est une constante qui vaut e 2 •
Les polynômes Bk n sont construits de la manière suivante. On recherche, pour une valeur donnée de n, toutes les familles d'entiers relatifs pτ_ j_ de sorte qu'il existe un entier naturel M qui permette de vérifier les relations suivantes : M M
1 =0 1 =1
M M
= 2 n ( 2)
1 ,2 i - Σ 1 ,2 i —1
1 =0 1 =1 p < p quel que soit i (3)
1 ,i 1 ,i +1
Il convient de rechercher les valeurs limites de p^ ^ c'est à dire pi Q et pτ_ 2M*
De l'équation (1) il vient que pj Q es^ négatif ou nul, en effet : M
Or d ' après 1 ' équation ( 3 ) , cette expression est négative ou nulle.
De même, le terme Pi,2M est positif ou nul.
En effet, l'équation (1) peut s'écrire :
M
P = Σ ( P . ~~ P )
1 ,2 M l ,2 i -1 1 ,2 i -2 i =1 Or d ' après 1 ' équation ( 3 ) , cette expression est positive ou nulle. Par ailleurs, les entiers relatifs pi -^ constituant une suite strictement croissante, il existe un seul entier naturel z pour lequel le produit Pi,z«Pl,z-l est négatif ou nul.
Si z est pair, l'équation (2) peut s'écrire : z 1 M . 5. . , . 2„ . ,.
-r.2 4- r.2 + f n2 - pr.?2 Λ . , ) = 2n - ^Pl,2i Pl,2i -1 Pl,z ^ ^Pl,2i rl,2i +l i=- +l i=0
2
Si z est impair, l'équation (2) peut s'écrire : z-3
!+ 1<PÏ,2i-Pl,2i-J + Pï,Z-l+ i=
2 Dans les deux expressions ci-dessus, le membre de gauche de l'équation se présente sous la forme d'une somme de termes positifs, ce qui implique que chacun de ces termes soit au plus égal à 2n. Ainsi : SI Z < 2M, 2
1,2M 1,2 M < 2n
(P 1,2M '1,2M )(P 1, 2M + P ) ≤ 2n,
1.2M - 1 en posant (p1 2M - P1/2M ) = a , avec 1 < a < 2n
On vérifie aisément que (n/a+a/2) (n+l/2) lorsque a est compris entre 1 et 2n.
Il s'ensuit que pi 2M es^ inférieur ou égal à n.
On démontre de la même manière que p^ Q est supérieur ou égal à - n.
Il résulte de ce qui précède que l'ensemble des familles d'entiers relatifs p^ j_ est un ensemble fini.
Pour une valeur de n donnée, on considère maintenant la première famille pi i qui est obtenue pour 1=1. Pour construire cette famille, on part de p^ o=-n puis on recherche empiriquement la suite des entiers relatifs p^ ι , •••'Pi 2M 1^ satisfait aux équations (1), (2) et(3).
A titre d'exemple, lorsque n=l, il existe une seule famille F1={p1/0, plfl, Pιf2}={-1, 0, +1}.
Si n est supérieur a l, on recherche toutes les familles de la même manière en incrémentant successivement tous les pτ_ j.. Dans ce cas, 1 varie de 1 à L.
Pour les premières valeurs de n, ces familles sont :
- n=2, F1={p1/0 ={-2, -1, +1}
F2={P2,0 ={-l, +1, +2}
"I, 0, +1, +2}
F3={P3,0 ={-l, +2, +3}
- n=4, F!={p1/0 ={-4, -3, +1}
F2={P2,0 P2,3' P2,4}={"3' "2, 0, +1, +2} F3={P3,0 ={-2, 0, +2} F4=(P4,0 P4,3' P ,4}={-2. "I, 0, +2, +3} 5=(P5,0 ={-!, +3, +4} Finalement, le polynôme Bk n est obtenu par 1 ' expression suivante :
En reprenant les exemples précédents :
Bk1 = bk-l-bk-bk+l
Bk2 = bk-2-bk-l-bk+l + bk-l-bk+l-bk+2
Bk3 ≈ bk-3-bk-2-bk+l + bk-2-bk-l-bk-bk+l-bk+2 + bk-l-bk+2-bk+3 Bk4 = bk-4-bk-3-bk+l + bk-3-bk-2-bk-bk+l-bk+2 + bk-2-bk-bk+2 + bk-2-bk-l-bk-bk+2-bk+3 + bk-l-bk+3-bk+4 On peut maintenant reprendre 1 ' équation du signal modulé S :
eut s'écrire :
On peut ainsi définir un signal d ' entrée F ( k ) :
F ( k ) = ∑ a n B k π n =0 Lorsque N=0, on retrouve le mode de réalisation le plus simple de l'invention tandis que, plus N est grand, plus les variations d'amplitude du signal modulé S sont limitées .
On remarquera que le spectre de ce signal est indépendant de N. Il vaut :
L'invention concerne naturellement un modulateur pour produire le signal modulé S et l'injecter sur une porteuse. Bien que la réalisation d'un modulateur ainsi spécifié soit à la portée de 1 'homme du métier, on donne maintenant un exemple parmi tant d'autres d'une telle réalisation.
En référence à la figure 1, le modulateur comprend un processeur numérique PR qui reçoit les bits bjς pour produire la partie réelle I et la partie imaginaire Q du signal modulé S : S = I + jQ.
Il comprend aussi un premier mélangeur Ml pour multiplier la partie réelle I par la porteuse C et un second mélangeur M2 pour multiplier la partie imaginaire Q par la porteuse déphasée de π/2. A cet effet, un dephaseur DEP reçoit cette porteuse pour l'injecter sur le deuxième mélangeur M2.
Il comprend également un additionneur AD pour faire la somme des signaux de sortie des deux mélangeurs Ml, M2.
Finalement, le modulateur comporte une base de temps BDT qui fournit d'une part les signaux d'horloge Ck au processeur numérique PR et, d'autre part, la porteuse au premier mélangeur Ml et au dephaseur DEP. II fonctionne pour les valeurs les plus variées des différentes constantes et notamment avec un niveau de correction N égal a 0. Cependant, en vue d ' obtenir de bonnes performances et pour faciliter la tâche du processeur PR, les valeurs suivantes sont retenues à titre d'exemple :
1 - facteur de forme : Q" — —= ; de ce fait, la 3 In 2 1_ constante a = e 2 vaut 1/8, ce qui permet de réaliser une multiplication par a en procédant à un décalage de trois bits vers la droite,
- niveau de correction N = 2, - valeur des bits bjς : + ou - 1,
- signal modulé S exprimé sur 12 bits,
- facteur de suréchantillonnage : 4. Le signal modulé S résulte donc d'une suite d'échantillons numériques produits au rythme de quatre par temps bit T.
La fonction de modulation h(t) est elle aussi représentée par une suite de nombre positifs hq de 11 bits. On choisit un facteur d'échelle approprié de sorte que le signal modulé S puisse bien être codé sur 12 bits :
(nq)θ<q ll = {0,1,5,17,47,116,253,485,816,1205,1563,1780} La fonction h(t) est paire, si bien que pour tout q compris en 0 et 11, h23-q = hq. Compte tenu du facteur d'échelle adopté, q est nul pour q < 0 ou q > 23 : la fonction est mémorisée pour -3T < t < 3T.
Par ailleurs, du fait du suréchantillonnage, on peut poser que q = 4.k + i, i variant de 0 à 3 ; autrement dit, k est la partie entière de q/4.
En référence à la figure 2 et à titre d'exemple, le processeur PR comprend un premier module pour calculer les expressions Bjζ 1 et Bj . Les calculs correspondants sont ici réalisés au moyen d'un registre à décalage qui, à un instant de référence, comprend les bits bjç+2 à bjς-2 • B^1 est obtenu par un premier multiplieur PI qui fait le produit des bits, bjζ_ι , bjς, et bjς+i • Pour obtenir Bjζ , ϋ est prévu un deuxième multiplieur P2 qui fait le produit des bits bjζ-2, bk-l' et bjς+i un troisième multiplieur P3 qui fait le produit des bits bjζ-i, bjç+i, et bjς+2 et un sommateur R pour faire la somme des sorties des deuxième P2 et troisième P3 multiplieurs.
Le processeur PR comprend également un deuxième module représenté dans la figure 3. Ce deuxième module est chargé de calculer les échantillons numériques du signal modulé S, ceci par filtrage des signaux d'entrée suréchantillonnés au moyen d'un filtre de réponse impulsionnelle h(t) . Les quatre échantillons E^+i associés au bit bjς pour i variant de 0 à 3 valant donc : k ~ 5 Q 1 i 1 2
E = ∑ j .( b + -. B + . B ). h
4 k + i ^ Q 8 q 64 q 4 ( k ~ q ) + i q = k
Cette expression peut encore s ' écrire :
F4k+i = Eki° + Eki l + Eki2, avec k -5
E,ki- = Σ j ' b n ' h 4Λ(t ,k-q x)_+ι_ι- = X0υ +^0υ <4> q=k k -5
E = ∑ Jq.--Bq 1. 4(k_q )+. =x1+jy1 (5) ki q =k k "~5 q 1
= ∑ j • -B -h =x2+jy (6) ki ^ 64 q 4(k-q)+ι z q =k
Les nombres XQ, YO, xi Yi/ x2' et y2 sont des nombres réels.
A titre d'exemple, le deuxième module comprend un premier echantillonneur EQ qui reçoit le bit bk pour le fournir à un premier aiguilleur AQ synchronisé avec cet echantillonneur. Le premier aiguilleur produit comme signal de sortie IQ successivement le premier échantillon du bit bk puis le troisième échantillon de ce même bit bk changé de signe. Il produit également comme signal de sortie QQ successivement le deuxième échantillon du bit bk puis le quatrième échantillon de ce même bit bk changé de signe. Le deuxième module fait ensuite la corrélation (repérée par l'opérateur * dans la figure) du signal de sortie IQ avec la fonction de modulation h selon 1 ' équation ( 4 ) pour produire la première composante réelle x0. On remarque que seuls les termes correspondant à un indice q pair sont non nuls.
L'opération de corrélation discrète n'est pas plus détaillée car il s'agit là d'une technique bien connue de 1 'homme du métier . Le deuxième module procède aussi à la corrélation du signal de sortie QQ avec la fonction de modulation h selon
1 ' équation ( 4 ) pour produire la première composante imaginaire YQ. On remarque que seuls les termes correspondant à un indice q impair sont non nuls.
De même, le deuxième module comprend un deuxième echantillonneur E^ qui reçoit le signal Bjç1 pour le fournir à un deuxième aiguilleur A^ synchronisé avec cet echantillonneur. Le deuxième aiguilleur produit comme signal de sortie 1^ successivement le premier échantillon du terme Bjς1 puis le troisième échantillon de ce même terme changé de signe. Il produit également comme signal de sortie Q^ successivement le deuxième échantillon du terme Bjç1 puis le quatrième échantillon de ce même terme changé de signe. Le deuxième module fait ensuite la corrélation du signal de sortie Iχ avec la fonction de modulation h multipliée par la constante a (1/8 dans le cas présent) selon l'équation (5) pour produire la deuxième composante réelle x^ .
Le deuxième module procède aussi à la corrélation du signal de sortie Q^ avec la fonction de modulation h multipliée par 1/8 selon l'équation (5) pour produire la deuxième composante imaginaire y^ .
De manière analogue, le deuxième module produit les troisièmes composante réelle 2 et imaginaire y2 à partir de l'expression Bk 2 selon l'équation (6).
La partie réelle I du signal modulé résulte de la somme des trois composantes réelles x0, xχf X2 et sa partie imaginaire Q résulte de la somme des trois composantes imaginaires yo, y et γ2. L'invention concerne tout aussi naturellement un démodulateur pour récupérer le signal de données à partir du signal modulé S. Bien que la réalisation d'un démodulateur ainsi spécifié soit à la portée de l'homme du métier, on donne maintenant un exemple parmi tant d'autres d'une telle réalisation. En référence à la figure 4, le démodulateur comprend un organe de transposition en bande de base FIL qui reçoit un signal r(t) ayant fait l'objet d'une modulation telle que décrite ci-dessus. Cet organe de transposition est couramment réalisé à l'aide d'un filtre de Hubert.
Le démodulateur comprend également un multiplieur complexe MUL pour multiplier le signal de sortie de l'organe
. πt_ de transposition FIL par l'expression e 2T et produire ainsi un signal de fréquence égale au quart de temps bit. II comporte aussi un opérateur de convolution CONV qui effectue la convolution du signal de sortie du multiplieur complexe MUL et de la fonction de modulation h(t) définie plus haut.
Le résultat de cette convolution est interprété par un organe de décision DEC qui restitue le bit bk en fonction du signe de la partie réelle de ce résultat.
L'invention concerne donc une technique de modulation numérique qui s'applique quelle que soit la manière dont est représentée la fonction de modulation, y compris à l'aide d'une loi de compression. Elle ne se limite pas aux exemples de réalisations décrits ci-dessus. En particulier, il est possible de remplacer tout moyen par un moyen équivalent.

Claims

REVENDICATIONS
1) Signal de transmission (S) résultant de la modulation d'un signal numérique de données par une fonction de modulation dépendant du temps t, ledit signal de données étant formé d'une suite de bits chacun (bk) identifié par son rang k et présentant une durée T, ce signal de transmission (S) consistant en une sommation indexée sur ledit rang k du produit de la constante complexe j à la puissance k, de ladite fonction de modulation h(t-kT) et d'un signal d'entrée, caractérisé en ce que, ledit signal d'entrée F(k) étant une fonction dudit signal de données (bk), ladite fonction de modulation h(t-kT) est une fonction gaussienne du temps t. 2) Signal de transmission selon la revendication 1, caractérisé en ce que ladite fonction de modulation est ainsi définie : t2
2T2 h ( t ) = e , où le paramètre σ est un facteur de forme qui détermine l'étalement d'un bit.
3) Signal de transmission selon la revendication 1 ou 2, caractérisé en ce que ledit signal d'entrée est ledit signal de données (F(k)=b ) .
4) Signal de transmission selon la revendication 1 ou 2, caractérisé en ce que ledit signal d'entrée E(k) vaut :
N
F ( k ) = ∑ a B , où k n =0
- N est un entier naturel strictement positif,
- a est une constante de correction positive,
- le polynôme Bk n est ainsi défini :
L 2 M
B k n = ∑ ( n k + p ) ,
1 =1 i =0 ! 'i - une famille (F^) d'entiers relatifs pi j_ est construite de sorte qu'il existe un entier naturel M qui permette de vérifier les relations suivantes:
M M
p < p quel que soit i
1 ,i 1 ,i +1 - L représente le nombre total de ces familles.
5) Signal de transmission selon la revendication 4, caractérisé en ce que ladite constante de correction a pour 1_ valeur e 2 • σ
6) Modulateur pour produire un signal de transmission (S) selon l'une quelconque des revendications 1 à 3.
7) Modulateur selon la revendication 6, caractérisé en ce qu'il comprend un processeur numérique (PR) qui reçoit ledit signal d'entrée F(k) pour produire la partie réelle (I) et la partie imaginaire (Q) dudit signal de transmission (S), un premier mélangeur (Ml) pour multiplier ladite partie réelle (I) par une porteuse (C), un dephaseur (DEP) recevant cette porteuse pour la déphaser de π/2, un deuxième mélangeur (M2) pour multiplier ladite partie imaginaire (Q) par le signal de sortie du dephaseur, et un additionneur (AD) pour faire la somme des signaux de sortie des deux mélangeurs (Ml, M2).
8) Modulateur pour produire un signal de transmission (S) selon la revendication 4 ou 5.
9) Modulateur selon la revendication 8, caractérisé en ce qu'il comprend un processeur numérique (PR) qui reçoit ledit signal d'entrée F(k) pour produire la partie réelle (I) et la partie imaginaire (Q) dudit signal de transmission (S), un premier mélangeur (Ml) pour multiplier ladite partie réelle (I) par une porteuse (C), un dephaseur (DEP) recevant cette porteuse pour la déphaser de π/2, un deuxième mélangeur (M2) pour multiplier ladite partie imaginaire (Q) par le signal de sortie du dephaseur, et un additionneur (AD) pour faire la somme des signaux de sortie des deux mélangeurs (Ml, M2).
10) Modulateur selon la revendication 9, caractérisé en ce que ledit processeur numérique (PR) comprend un premier module pour produire lesdits polynômes Bk n. 11) Modulateur selon la revendication 10, caractérisé en ce que ledit processeur numérique (PR) comprend un deuxième module pour produire des échantillons numériques dudit signal de transmission (S), quatre échantillons E4k+j_ étant associés au bit bk pour i variant de 0 à 3 et valant : k ~5 q 1 i 1 2 E = Y j .( b +-. B + .B ). h
4k+i ^ q 8 q 64 q 4(k~q)+i q =k
12) Démodulateur recevant un signal de transmission (S) selon l'une quelconque des revendications 1 à 5 pour restituer ledit signal de données (bk) .
13) Démodulateur selon la revendication 12, caractérisé en ce qu'il comprend un organe de transposition en bande de base (FIL) qui reçoit un signal r(t) ayant fait l'objet d'une modulation par ladite fonction de modulation h(t-kτ), un multiplieur complexe (MUL) pour multiplier le signal de sortie de cet organe de transposition (FIL) par l'expression _ -ϋE e 2T , un opérateur de convolution (CONV) qui effectue la convolution du signal de sortie du multiplieur complexe (MUL) et de ladite fonction de modulation, et un organe de décision (DEC) qui restitue ledit signal de données (bk) en fonction du signe de la partie réelle du résultat de ladite convolution.
14) Démodulateur selon la revendication 13, caractérisé en ce que ledit filtre (FIL) est un filtre de Hubert.
EP98962536A 1997-12-22 1998-12-21 Modulation d'un signal numerique a spectre etroit et a enveloppe sensiblement constante Withdrawn EP1044543A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9716454A FR2773032B1 (fr) 1997-12-22 1997-12-22 Modulation d'un signal numerique a spectre etroit et a enveloppe sensiblement constante
FR9716454 1997-12-22
PCT/FR1998/002812 WO1999033238A1 (fr) 1997-12-22 1998-12-21 Modulation d'un signal numerique a spectre etroit et a enveloppe sensiblement constante

Publications (1)

Publication Number Publication Date
EP1044543A1 true EP1044543A1 (fr) 2000-10-18

Family

ID=9515087

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98962536A Withdrawn EP1044543A1 (fr) 1997-12-22 1998-12-21 Modulation d'un signal numerique a spectre etroit et a enveloppe sensiblement constante

Country Status (7)

Country Link
US (1) US6868126B1 (fr)
EP (1) EP1044543A1 (fr)
JP (1) JP2001527330A (fr)
CN (1) CN1284228A (fr)
CA (1) CA2315902A1 (fr)
FR (1) FR2773032B1 (fr)
WO (1) WO1999033238A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7381807B2 (en) 2002-05-30 2008-06-03 Immunotech S.A. Immunostimulatory oligonucleotides and uses thereof
GB201819418D0 (en) 2018-11-29 2019-01-16 Daniel Calladine Ltd Anti-viral compositions

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1282278A1 (fr) * 2001-07-30 2003-02-05 Lucent Technologies Inc. Circuit digital pour la réalisation d'une modulation GMSK approximée
RU2210858C2 (ru) * 2001-10-08 2003-08-20 Дунаев Игорь Борисович Способ помехоустойчивой передачи информации
US20040213336A1 (en) * 2002-10-15 2004-10-28 Jandu Daljit S. Micro-modem
JP4875072B2 (ja) * 2005-06-09 2012-02-15 アイティーティー マニュファクチャリング エンタープライジーズ, インコーポレイテッド 電力効率および帯域幅効率に優れた通信のためのマルチキャリア一定エンベロープ信号方式

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2675001B1 (fr) * 1991-04-03 1993-07-30 Matra Communication Procede et dispositif de modulation numerique a composantes en phase et en quadrature et installation de transmission en comportant application.
US5255290A (en) * 1992-08-21 1993-10-19 Teknekron Communications System, Inc. Method and apparatus for combined frequency offset and timing offset estimation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9933238A1 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7381807B2 (en) 2002-05-30 2008-06-03 Immunotech S.A. Immunostimulatory oligonucleotides and uses thereof
GB201819418D0 (en) 2018-11-29 2019-01-16 Daniel Calladine Ltd Anti-viral compositions
WO2020109442A1 (fr) 2018-11-29 2020-06-04 Daniel Calladine Limited Compositions antivirales

Also Published As

Publication number Publication date
US6868126B1 (en) 2005-03-15
CA2315902A1 (fr) 1999-07-01
JP2001527330A (ja) 2001-12-25
FR2773032A1 (fr) 1999-06-25
FR2773032B1 (fr) 2001-12-21
CN1284228A (zh) 2001-02-14
WO1999033238A1 (fr) 1999-07-01

Similar Documents

Publication Publication Date Title
EP0421533B1 (fr) Dispositif de prédistorsion pour système de transmission numérique
EP0421532B1 (fr) Dispositif de prédistorsion pour système de transmission numérique
EP0361608B1 (fr) Circuit de prédistorsion adaptative
EP0797294B1 (fr) Procédé pour corriger des non-linéarités d&#39;un amplificateur, et émetteur radio mettant en oeuvre un tel procédé
EP0797293B1 (fr) Procédé pour corriger des non-linéarités d&#39;un amplificateur et émetteur radio mettant en oeuvre un tel procédé
EP0380167A1 (fr) &#34;Circuit de prédistorsion adaptative&#34;
CA2256177A1 (fr) Procede et systeme de linearisation numerique d&#39;un amplificateur
FR2705852A1 (fr) Modulateur auto-ajustable et procédé de modulation correspondant.
FR2709629A1 (fr) Processeur de signaux en bande de base modulés en amplitude à niveaux multiples superposés.
EP0329537A1 (fr) Système de transmission à modulation MSK et détection différentiellement cohérente
EP3254423A1 (fr) Procédé et dispositif de modulation de phase d&#39;une onde porteuse et application à la détection de signaux numériques multi-niveaux codés en phase
FR2767429A1 (fr) Dispositif permettant d&#39;apparier des retards dans un amplificateur de puissance
EP3785367B1 (fr) Systeme et procede de linearisation en bande de base pour un amplificateur de puissance radiofrequence de classe g
EP1044543A1 (fr) Modulation d&#39;un signal numerique a spectre etroit et a enveloppe sensiblement constante
EP0797884A1 (fr) Procede pour equilibrer les voies d&#39;un amplificateur de type &#34;linc&#34;
EP0011341A1 (fr) Système de transmission utilisant la modulation différentielle par codage d&#39;impulsions
EP0426560B1 (fr) Procédé et dispositif de modulation numérique à composantes en phase et en quadrature
FR2672454A1 (fr) Procede de demodulation coherente pour modulation a deplacement de phase et dispositif de mise en óoeuvre de ce procede.
CA2125444A1 (fr) Systeme de transmission numerique a etalement de spectre obtenu par codage pseudo-aleatoire basse frequence de l&#39;information utile et procede d&#39;etalement et de compression de spectre utilise dans un tel systeme
EP2504963B1 (fr) Systeme et procede d&#39;emission reception d&#39;un signal numerique sur voie radio
EP2351305B1 (fr) Procédé de modulation multi-états à phase continue et émetteur mettant en oeuvre le procédé
FR3023439A1 (fr) Procede ameliore de modulation a phase continue et emetteur mettant en oeuvre le procede
FR2675001A1 (fr) Procede et dispositif de modulation numerique a composantes en phase et en quadrature et installation de transmission en comportant application.
EP1478146A1 (fr) Réception de deux signaux décorrélés transmis sur un unique canal
EP0896456B1 (fr) Mise en forme d&#39;impulsions pour le réglage de variation en amplitude de signaux MDF

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000809

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FI GB SE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GEORGEAUX, ERIC

Inventor name: DORNSTETTER, JEAN-LOUIS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NORTEL NETWORKS SA

17Q First examination report despatched

Effective date: 20040310

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060701