EP0796920A1 - Quenching device for metal workpieces - Google Patents

Quenching device for metal workpieces Download PDF

Info

Publication number
EP0796920A1
EP0796920A1 EP96110117A EP96110117A EP0796920A1 EP 0796920 A1 EP0796920 A1 EP 0796920A1 EP 96110117 A EP96110117 A EP 96110117A EP 96110117 A EP96110117 A EP 96110117A EP 0796920 A1 EP0796920 A1 EP 0796920A1
Authority
EP
European Patent Office
Prior art keywords
workpieces
nozzle field
quenching
nozzle
nozzles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96110117A
Other languages
German (de)
French (fr)
Other versions
EP0796920B1 (en
Inventor
Wolfgang Peter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ipsen International GmbH
Original Assignee
Ipsen International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ipsen International GmbH filed Critical Ipsen International GmbH
Publication of EP0796920A1 publication Critical patent/EP0796920A1/en
Application granted granted Critical
Publication of EP0796920B1 publication Critical patent/EP0796920B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/767Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material with forced gas circulation; Reheating thereof
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/613Gases; Liquefied or solidified normally gaseous material

Definitions

  • the invention relates to a device for quenching metallic workpieces with a quenching chamber with a space for receiving the workpieces that is at least partially delimited by a nozzle field.
  • Generic devices for quenching metallic workpieces are used in order to be able to subject the workpieces to specific cooling after heat treatment, in order to achieve the desired hardness profile in the workpiece.
  • a quenching intensity similar to that of oil or water quenching in gas quenching it is known in practice to use gas nozzle arrays with a small nozzle diameter, so that with a correspondingly high gas pressure in front of the nozzle, the gas velocity as it emerges from the nozzle is greatly increased that heat transfer numbers> 1000 watts / m 2 K can be achieved.
  • a generic quenching device with a nozzle field is known for example from DE-PS 42 08 485.
  • the space used to hold individual workpieces is designed to be essentially closed and the nozzle field is adapted to the shape of the surface of the workpiece to be cooled.
  • This individual adaptation of the nozzle field to the shape of the workpiece to be quenched, together with the horizontal flow of the workpieces with the quenching gas on both sides, enables a very effective and targeted quenching of the workpieces to be treated, but a disadvantage of this known device is that the nozzle field must always be adapted exactly to the work piece to be quenched.
  • the invention has for its object to improve a device for quenching metallic workpiece of the type mentioned in such a way that the device can be used for a wide variety of workpiece shapes and workpiece sizes while maintaining the quenching performance.
  • the height of the nozzle field, arranged above the workpieces to be cooled and arranged on a grate allows the workpieces with the quenching gas to flow essentially vertically, the distance a between the nozzle field and the workpiece surface being a maximum of 7 times is the diameter of the nozzles and the nozzle field and the workpieces are movable relative to each other.
  • the quenching device With the quenching device according to the invention, an optimal combination of the good quenching performance is achieved when using a nozzle array with a variably usable device.
  • the nozzle field As an essentially flat nozzle field above the workpieces to be quenched, the workpieces to be quenched can have a wide variety of shapes and sizes, since the nozzle field can be adapted to the workpieces to be quenched by simply adjusting the height of the nozzle field.
  • the nozzle field of the quenching device according to the invention in contrast to the nozzle field of the device known from DE-PS 42 08 485, is not designed according to the shape of the surface to be cooled, but instead the Workpieces to be cooled are only subjected to the quenching gas in the vertical direction, no individual adaptation of the nozzle field to new workpiece shapes and / or workpiece sizes is necessary.
  • the distance a between the nozzle field and the workpiece surface is dimensioned such that the core jet of the gas flow emerging from the nozzle still hits the workpiece surface at approximately the nozzle exit velocity.
  • Experimental tests have shown that the speed in the core of the gas flow emerging from the nozzle remains constant up to about 7 times the diameter of the nozzle.
  • the nozzle field and the workpieces can be moved relative to one another. This relative movement between the nozzle field on the one hand and workpieces on the other hand ensures that the gas jets emerging from the individual separate nozzles sweep at least over the entire workpiece surface facing the nozzle field.
  • the surface of the nozzle field facing the workpieces is formed parallel to the grate carrying the workpieces, the nozzles being oriented perpendicularly in the direction of the grate surface.
  • the surface of the nozzle field facing the workpieces is designed in a wave-like manner symmetrically with surface strips oriented at an angle to one another, the included angle of each wave crest and each wave trough having the same amount of at least 130 ° and the nozzles being arranged at right angles in the surface strips are.
  • the arrangement of the nozzles in the surface strips aligned at an angle to one another can ensure that the flow of the quenching gas emerging from the nozzles is deflected from the vertical at an angle of up to 25 °, which in addition to the mainly vertical Inflow onto the surfaces of the workpieces to be cooled can also be achieved against the side surfaces of the workpieces.
  • a nozzle field is still arranged above the workpieces to be cooled, such a nozzle field is also suitable for quenching different workpiece shapes and workpiece sizes.
  • the nozzles of two surface strips facing one another are arranged offset from one another along these surface strips, viewed in the longitudinal direction of the surface strips.
  • the relative movement between the nozzle field and the workpieces can be achieved in a quenching device designed according to the invention in that the nozzle field and / or the grate for receiving the workpieces to be cooled can be driven to perform an oscillating or circular movement.
  • rotational speeds for the nozzle field or the grate rotational speeds of 10 to 300 revolutions / min have proven to be particularly suitable.
  • the quenching gas strikes the workpieces to be cooled over the entire operating time of the quenching device with a uniform gas pressure and a uniform gas outlet speed.
  • a storage space is formed in the flow direction in front of the nozzle field. This storage space serves to supply the entire nozzle field with gas evenly.
  • flaps are arranged in the gas duct in front of the storage space and in front of the fan. With these flaps, on the one hand a loss of quenching gas during the batch change can be avoided and on the other hand it can be achieved that the fan always runs at nominal speed, so that the full cooling capacity is available.
  • the nozzles are designed as bores with a diameter d of preferably ⁇ 5 mm. This diameter has proven to be particularly advantageous in order to achieve the desired high gas outlet velocities.
  • the nozzles are designed as rectangular slots.
  • the quenching device shown in FIG. 1 has a quenching chamber 1 which, for example, is arranged at the end of a roller hearth furnace and can be operated both in vacuum mode and under atmospheric pressure.
  • a grate 2 for receiving workpieces 3 to be cooled is arranged in the quenching chamber 1.
  • a nozzle field 5 is arranged in a nozzle plate 4, via the nozzles 6 of which quenching gas circulated through a gas channel 7 can flow onto the workpieces 3 from above.
  • the height of the nozzle plate 4 with the nozzle field 5 relative to the grate 2 is arranged in the quenching chamber 1, as shown in FIG. 1 by a double arrow.
  • the quenching gas is so in via a fan 9 driven by a motor 8 the quenching chamber 1 circulates that the quenching gas reaches the storage space 10 via the gas channel 7 in the flow direction shown by the arrow.
  • flaps 11 are opened, which allow the quenching gas to flow from the gas channel 7 via the storage space 10 to the nozzle field 5 and via the workpieces 3 back to the fan 9.
  • the nozzles 6 of the nozzle array 5 have a diameter d of ⁇ 5 mm, as a result of which the quenching gas circulated via the fan 9 through the gas channel 7 is accelerated so strongly in the nozzles 6 that heat transfer coefficients of approximately 1000 watts / m 2 K on the workpiece surfaces can be achieved.
  • the best quenching intensities are achieved when the distance a between the nozzle field 5 and the workpiece surface of the workpieces 3 is at most 7 times the diameter d of a nozzle 6.
  • the quenching gas flows after passing through the grate 2 via a heat exchanger 12, which is necessary to cool the quenching gas back again, via the fan 9 back into the gas channel 7.
  • the workpieces 3 and the nozzle array 5 can be moved relative to one another.
  • the grate 2 for receiving the workpieces 3 is mounted on rollers 13, via which the grate 2 can be rotated under the nozzle field 5. It is also possible to move the nozzle field 5 relative to the workpieces 3 by rotating the nozzle plate 4.
  • the nozzle field 5 is shown as a flat nozzle field, the surface of which facing the workpieces 3 is formed parallel to the grate 2.
  • the nozzle field 5 can, as shown in FIG. 2, be designed such that the surface of the nozzle field 5 facing the workpieces 3 is wave-shaped symmetrical with angularly aligned surface strips 14 is formed.
  • the wave-shaped structure of the nozzle field 5 is designed such that the included angle ⁇ of each wave crest and each wave trough has the same amount of at least 130 °.
  • the Nozzles 6 arranged at right angles in the surface strips 14 thus have a maximum displacement of 25 ° from the vertical flow plane according to FIG. 1.
  • the nozzles 6 are arranged offset with respect to one another in the longitudinal direction of the surface strips 14.
  • the nozzle plates 4 can be easily pulled out of receptacles 15 in the manner of a drawer and inserted into these receptacles 15 again.
  • a quenching device designed in this way is characterized in that the device can be adapted to different workpiece shapes and workpiece sizes by simple height adjustment of the nozzle field 5, without lengthy conversion work being necessary on the one hand and the shape of the nozzle field 5 to the special shape of the workpiece 3 to be quenched on the other hand should be adjusted.

Abstract

Gas quenching equipment for metal parts, having a vertically adjustable nozzle plate (5) above the parts (3) arranged on a grid (2), allowing a substantially vertical flooding of the parts (3) with a quenching gas, the distance between the nozzle plate and the top surface of the parts (3) being variable up to 7 times the nozzle diameter d.

Description

Die Erfindung betrifft eine Vorrichtung zum Abschrecken metallischer Werkstücke mit einer Abschreckkammer mit einem wenigstens teilweise von einem Düsenfeld begrenzten Raum zur Aufnahme der Werkstücke.The invention relates to a device for quenching metallic workpieces with a quenching chamber with a space for receiving the workpieces that is at least partially delimited by a nozzle field.

Gattungsgemäße Vorrichtungen zum Abschrecken metallischer Werkstücke werden verwendet, um die Werkstücke nach einer Wärmebehandlung einer gezielten Abkühlung unterziehen zu können, um so den gewünschten Härteverlauf in dem Werkstück zu erzielen. Um bei der Gasabschreckung eine ähnlich hohe Abschreckintensität wie bei der Öl- oder Wasserabschreckung zu erzielen, ist es aus der Praxis bekannt, Gasdüsenfelder mit einem kleinen Düsendurchmesser zu verwenden, so daß bei entsprechend hohem Gasdruck vor der Düse die Gasgeschwindigkeit beim Austritt aus der Düse so stark erhöht wird, daß Wärmeübergangszahlen > 1000 Watt/m2K erzielt werden können.Generic devices for quenching metallic workpieces are used in order to be able to subject the workpieces to specific cooling after heat treatment, in order to achieve the desired hardness profile in the workpiece. In order to achieve a quenching intensity similar to that of oil or water quenching in gas quenching, it is known in practice to use gas nozzle arrays with a small nozzle diameter, so that with a correspondingly high gas pressure in front of the nozzle, the gas velocity as it emerges from the nozzle is greatly increased that heat transfer numbers> 1000 watts / m 2 K can be achieved.

Eine gattungsgemäße Abschreckvorrichtung mit einem Düsenfeld ist beispielsweise aus der DE-PS 42 08 485 bekannt. Bei dieser bekannten Abschreckvorrichtung ist der zur Aufnahme einzelner Werkstücke dienende Raum im wesentlichen geschlossen ausgebildet und das Düsenfeld an die Gestalt der zu kühlenden Oberfläche des eingebrachten Werkstückes angepaßt ausgestaltet. Diese individuelle Anpassung des Düsenfeldes an die Form des abzuschreckenden Werkstückes ermöglicht zusammen mit dem beidseitigen horizontalen Anströmen der Werkstücke mit dem Abschreckgas zwar eine sehr effektive und gezielte Abschreckung der zu behandelnden Werkstücke, nachteilig bei dieser bekannten Vorrichtung ist jedoch, daß das Düsenfeld immer genau an die abzuschreckenden Werkstücke angepaßt werden muß. Dies bedeutet, daß bei jeder Änderung der Form des abzuschreckenden Werkstückes auch das Düsenfeld der neuen Werkstückform entsprechend geändert werden muß. Für einen variablen Betrieb einer Abschreckvorrichtung, die zur Abschreckung unterschiedlichster Werkstückformen und Werkstückgrößen dienen soll, ist diese aus der DE-PS 42 08 485 bekannte Abschreckvorrichtung somit nicht geeignet, da die Vorhaltung unterschiedlichster Düsenfeldformen sowie die laufende Umrüstung der Abschreckvorrichtung einen wirtschaftlichen Betrieb einer solchen Vorrichtung nicht erlauben.A generic quenching device with a nozzle field is known for example from DE-PS 42 08 485. In this known quenching device, the space used to hold individual workpieces is designed to be essentially closed and the nozzle field is adapted to the shape of the surface of the workpiece to be cooled. This individual adaptation of the nozzle field to the shape of the workpiece to be quenched, together with the horizontal flow of the workpieces with the quenching gas on both sides, enables a very effective and targeted quenching of the workpieces to be treated, but a disadvantage of this known device is that the nozzle field must always be adapted exactly to the work piece to be quenched. This means that with every change in the shape of the workpiece to be quenched, the nozzle field of the new workpiece shape must also be changed accordingly. For variable operation of a quenching device, which is intended to quench a wide variety of workpiece shapes and workpiece sizes, this quenching device known from DE-PS 42 08 485 is therefore not suitable, since the provision of a wide variety of nozzle field shapes and the ongoing retrofitting of the quenching device make such a device economical to operate do not allow.

Ausgehend von diesem bekannten Stand der Technik liegt der Erfindung die Aufgabe zugrunde, eine Vorrichtung zur Abschreckung metallischer Werkstück der Eingangs genannten Art dahingehend zu verbessern, daß bei Beibehaltung der Abschreckleistung die Vorrichtung für unterschiedlichste Werkstückformen und Werkstückgrößen verwendbar ist.Based on this known prior art, the invention has for its object to improve a device for quenching metallic workpiece of the type mentioned in such a way that the device can be used for a wide variety of workpiece shapes and workpiece sizes while maintaining the quenching performance.

Als technische Lösung dieser Aufgabe wird erfindungsgemäß vorgeschlagen, daß das Düsenfeld höhenverstellbar oberhalb der zu kühlenden, auf einem Rost angeordneten Werkstücke angeordnet, eine im wesentlichen vertikale Anströmung der Werkstücke mit dem Abschreckgas ermöglicht, wobei der Abstand a zwischen dem Düsenfeld und der Werkstückoberfläche maximal 7 mal den Durchmesser der Düsen beträgt und das Düsenfeld und die Werkstücke relativ zueinander bewegbar sind.As a technical solution to this problem it is proposed according to the invention that the height of the nozzle field, arranged above the workpieces to be cooled and arranged on a grate, allows the workpieces with the quenching gas to flow essentially vertically, the distance a between the nozzle field and the workpiece surface being a maximum of 7 times is the diameter of the nozzles and the nozzle field and the workpieces are movable relative to each other.

Mit der erfindungsgemäßen Abschreckvorrichtung wird eine optimale Kombination der guten Abschreckleistung bei Verwendung eines Düsenfeldes mit einer variabel verwendbaren Vorrichtung erreicht. Durch die Ausbildung des Düsenfeldes als im wesentlichen ebenes Düsenfeld oberhalb der abzuschreckenden Werkstücke können die abzuschreckenden Werkstücke die unterschiedlichsten Formen und Größen aufweisen, da durch einfaches Höhenverstellen des Düsenfeldes eine Anpassung des Düsenfeldes an die abzuschreckenden Werkstücke erreicht wird. Da das Düsenfeld der erfindungsgemäßen Abschreckvorrichtung im Gegensatz zu dem Düsenfeld der aus der DE-PS 42 08 485 bekannten Vorrichtung nicht entsprechend der Gestalt der zu kühlenden Oberfläche ausgebildet ist, sondern statt dessen die abzukühlenden Werkstücke im wesentlichen nur in vertikaler Richtung mit dem Abschreckgas beaufschlagt, ist keine individuelle Anpassung des Düsenfeldes an neue Werkstückformen und/oder Werkstückgrößen notwendig.With the quenching device according to the invention, an optimal combination of the good quenching performance is achieved when using a nozzle array with a variably usable device. By designing the nozzle field as an essentially flat nozzle field above the workpieces to be quenched, the workpieces to be quenched can have a wide variety of shapes and sizes, since the nozzle field can be adapted to the workpieces to be quenched by simply adjusting the height of the nozzle field. Since the nozzle field of the quenching device according to the invention, in contrast to the nozzle field of the device known from DE-PS 42 08 485, is not designed according to the shape of the surface to be cooled, but instead the Workpieces to be cooled are only subjected to the quenching gas in the vertical direction, no individual adaptation of the nozzle field to new workpiece shapes and / or workpiece sizes is necessary.

Der Abstand a zwischen dem Düsenfeld und der Werkstückoberfläche ist so bemessen, daß der Kernstrahl der aus der Düse austretenden Gasströmung noch mit etwa der Düsenaustrittsgeschwindigkeit auf die Werkstückoberfläche trifft. Experimentelle Versuche haben dabei ergeben, daß die Geschwindigkeit im Kern der aus der Düse austretenden Gasströmung bis etwa zum 7fachen Durchmesser der Düse konstant bleibt.The distance a between the nozzle field and the workpiece surface is dimensioned such that the core jet of the gas flow emerging from the nozzle still hits the workpiece surface at approximately the nozzle exit velocity. Experimental tests have shown that the speed in the core of the gas flow emerging from the nozzle remains constant up to about 7 times the diameter of the nozzle.

Zur Vergleichmäßigung der Abkühlung wird erfindungsgemäß vorgeschlagen, daß das Düsenfeld und die Werkstücke relativ zueinander bewegbar sind. Durch diese Relativbewegung zwischen Düsenfeld einerseits und Werkstücken andererseits wird erreicht, daß die aus den einzelnen separaten Düsen austretenden Gasstrahlen zumindest die gesamte dem Düsenfeld zugewandte Werkstückoberfläche überstreichen.To even out the cooling, it is proposed according to the invention that the nozzle field and the workpieces can be moved relative to one another. This relative movement between the nozzle field on the one hand and workpieces on the other hand ensures that the gas jets emerging from the individual separate nozzles sweep at least over the entire workpiece surface facing the nozzle field.

Gemäß einer bevorzugten und besonders einfach realisierbaren Ausführungsform der Erfindung ist die den Werkstücken zugewandte Oberfläche des Düsenfeldes parallel zu dem die Werkstücke tragenden Rost ausgebildet, wobei die Düsen senkrecht in Richtung auf die Rostoberfläche ausgerichtet sind. Mit einem solchermaßen ausgebildeten Düsenfeld wird auf besonders einfache Weise ein Düsenfeld gebildet, über das die abzukühlenden Werkstücke vertikal mit dem Abschreckgas anströmbar sind.According to a preferred and particularly simple embodiment of the invention, the surface of the nozzle field facing the workpieces is formed parallel to the grate carrying the workpieces, the nozzles being oriented perpendicularly in the direction of the grate surface. With a nozzle field designed in this way, a nozzle field is formed in a particularly simple manner, via which the workpieces to be cooled can be flowed against vertically with the quenching gas.

Gemäß einer weiteren Ausführungsform der Erfindung ist die den Werkstücken zugewandte Oberfläche des Düsenfeldes wellenförmig symmetrisch mit winklig zueinander ausgerichteten Flächenstreifen ausgebildet, wobei der eingeschlossene Winkel eines jeden Wellenberges und eines jeden Wellentales den gleichen Betrag von minimal 130° aufweist und die Düsen rechtwinklig in den Flächenstreifen angeordnet sind. Durch die Anordnung der Düsen in den winklig zueinander ausgerichteten Flächenstreifen kann erreicht werden, daß die aus den Düsen austretende Strömung des Abschreckgases in einem Winkel von bis zu 25° aus der Senkrechten ausgelenkt wird, wodurch neben der hauptsächlich vertikalen Anströmung der Oberflächen der abzukühlenden Werkstücke auch eine Anströmung der Seitenflächen der Werkstücke erzielt werden kann. Da ein solchermaßen ausgebildetes Düsenfeld aber immer noch oberhalb der abzukühlenden Werkstücke angeordnet ist, ist auch ein solches Düsenfeld zum Abschrecken unterschiedlicher Werkstückformen und Werkstückgrößen geeignet.According to a further embodiment of the invention, the surface of the nozzle field facing the workpieces is designed in a wave-like manner symmetrically with surface strips oriented at an angle to one another, the included angle of each wave crest and each wave trough having the same amount of at least 130 ° and the nozzles being arranged at right angles in the surface strips are. The arrangement of the nozzles in the surface strips aligned at an angle to one another can ensure that the flow of the quenching gas emerging from the nozzles is deflected from the vertical at an angle of up to 25 °, which in addition to the mainly vertical Inflow onto the surfaces of the workpieces to be cooled can also be achieved against the side surfaces of the workpieces. However, since such a nozzle field is still arranged above the workpieces to be cooled, such a nozzle field is also suitable for quenching different workpiece shapes and workpiece sizes.

Um bei der Verwendung des Düsenfeldes mit der wellenförmig ausgebildeten Oberfläche eine gegenseitige Verwirblung der Düsenstrahlen zu vermeiden, sind die Düsen zweier einander zugewandter Flächenstreifen in Längsrichtung der Flächenstreifen betrachtet versetzt zueinander entlang dieser Flächenstreifen angeordnet.In order to avoid a mutual swirling of the nozzle jets when using the nozzle field with the undulating surface, the nozzles of two surface strips facing one another are arranged offset from one another along these surface strips, viewed in the longitudinal direction of the surface strips.

Die Relativbewegung zwischen dem Düsenfeld und den Werkstücken kann bei einer erfindungsgemäß ausgebildeten Abschreckvorrichtung dadurch erzielt werden, daß das Düsenfeld und/oder der Rost zur Aufnahme der abzukühlenden Werkstücke eine Schwing- oder Kreisbewegung ausführend antreibbar ist. Als Umdrehungsgeschwindigkeit für das Düsenfeld oder den Rost haben sich Umdrehungsgeschwindigkeiten von 10 bis 300 Umdrehungen/min als besonders geeignet erwiesen.The relative movement between the nozzle field and the workpieces can be achieved in a quenching device designed according to the invention in that the nozzle field and / or the grate for receiving the workpieces to be cooled can be driven to perform an oscillating or circular movement. As a rotational speed for the nozzle field or the grate, rotational speeds of 10 to 300 revolutions / min have proven to be particularly suitable.

Zum Zwecke einer gleichmäßigen und schnellen Gasabschreckung mit einer hohen Abschreckintensität ist es vorteilhaft, daß über die gesamte Betriebsdauer der Abschreckvorrichtung das Abschreckgas mit einem gleichmäßigen Gasdruck und einer gleichmäßigen Gasaustrittsgeschwindigkeit auf die abzukühlenden Werkstücke trifft. Zu diesem Zweck ist es vorteilhaft, daß in Strömungsrichtung vor dem Düsenfeld ein Stauraum ausgebildet ist. Dieser Stauraum dient dazu, das gesamte Düsenfeld gleichmäßig mit Gas zu versorgen.For the purpose of uniform and rapid gas quenching with a high quenching intensity, it is advantageous that the quenching gas strikes the workpieces to be cooled over the entire operating time of the quenching device with a uniform gas pressure and a uniform gas outlet speed. For this purpose, it is advantageous that a storage space is formed in the flow direction in front of the nozzle field. This storage space serves to supply the entire nozzle field with gas evenly.

Um die Abschreckkammer vom Gaskanal abtrennen zu können, sind im Gaskanal vor dem Stauraum und vor dem Ventilator Klappen angeordnet. Durch diese Klappen kann einerseits ein Verlust von Abschreckgas beim Chargenwechsel vermieden werden und andererseits erreicht werden, daß der Ventilator stets auf Nenndrehzahl läuft, so daß die volle Kühlleistung zur Verfügung steht.In order to be able to separate the quenching chamber from the gas duct, flaps are arranged in the gas duct in front of the storage space and in front of the fan. With these flaps, on the one hand a loss of quenching gas during the batch change can be avoided and on the other hand it can be achieved that the fan always runs at nominal speed, so that the full cooling capacity is available.

Gemäß einer bevorzugten Ausführungsform der Erfindung sind die Düsen als Bohrungen mit einem Durchmesser d von vorzugsweise < 5 mm ausgebildet. Dieser Durchmesser hat sich als besonders vorteilhaft erwiesen, um die gewünschten hohen Gasaustrittsgeschwindigkeiten zu erzielen.According to a preferred embodiment of the invention, the nozzles are designed as bores with a diameter d of preferably <5 mm. This diameter has proven to be particularly advantageous in order to achieve the desired high gas outlet velocities.

Schließlich wird mit der Erfindung vorgeschlagen, daß die Düsen als rechteckige Schlitze ausgebildet sind.Finally, it is proposed with the invention that the nozzles are designed as rectangular slots.

Weitere Merkmale und Vorteile einer erfindungsgemäßen Vorrichtung zum Abschrecken metallischer Werkstücke werden anhand der zugehörigen Zeichnung beschrieben. In der Zeichnung zeigt:

Fig. 1
einen schematischen Querschnitt durch eine erfindungsgemäße Vorrichtung mit einer ersten Ausführungsform eines Düsenfeldes;
Fig. 2
eine Seitenansicht einer zweiten Ausführungsform eines Düsenfeldes und
Fig. 3
eine Draufsicht auf das Düsenfeld gemäß Fig. 2.
Further features and advantages of a device according to the invention for quenching metallic workpieces are described with reference to the accompanying drawing. The drawing shows:
Fig. 1
a schematic cross section through a device according to the invention with a first embodiment of a nozzle array;
Fig. 2
a side view of a second embodiment of a nozzle array and
Fig. 3
3 shows a plan view of the nozzle field according to FIG. 2.

Die in Fig. 1 dargestellte Abschreckvorrichtung weist eine Abschreckkammer 1 auf, die beispielsweise am Ende eines Rollenherdofens angeordnet sowohl im Vakuumbetrieb als auch unter Atmosphärendruck betreibbar ist.The quenching device shown in FIG. 1 has a quenching chamber 1 which, for example, is arranged at the end of a roller hearth furnace and can be operated both in vacuum mode and under atmospheric pressure.

In der Abschreckkammer 1 ist ein Rost 2 zur Aufnahme abzukühlender Werkstücke 3 angeordnet. Oberhalb der auf dem Rost 2 angeordneten Werkstücke 3 ist in einer Düsenplatte 4 ein Düsenfeld 5 angeordnet, über dessen Düsen 6 durch einen Gaskanal 7 umgewälztes Abschreckgas von oben her auf die Werkstücke 3 strömen kann. Zur Anpassung der Vorrichtung an unterschiedliche Werkstückformen und Werkstückgrößen ist die Düsenplatte 4 mit dem Düsenfeld 5 relativ zu dem Rost 2 höhenverstellbar in der Abschreckkammer 1 angeordnet, wie dies in Fig. 1 durch einen Doppelpfeil dargestellt ist.A grate 2 for receiving workpieces 3 to be cooled is arranged in the quenching chamber 1. Above the workpieces 3 arranged on the grate 2, a nozzle field 5 is arranged in a nozzle plate 4, via the nozzles 6 of which quenching gas circulated through a gas channel 7 can flow onto the workpieces 3 from above. In order to adapt the device to different workpiece shapes and workpiece sizes, the height of the nozzle plate 4 with the nozzle field 5 relative to the grate 2 is arranged in the quenching chamber 1, as shown in FIG. 1 by a double arrow.

Zum Abschrecken der auf dem Rost 2 angeordneten Werkstücke 3 wird das Abschreckgas über einen von einem Motor 8 angetriebenen Ventilator 9 so in der Abschreckkammer 1 umgewälzt, daß das Abschreckgas in der durch den Pfeil dargestellten Strömungsrichtung über den Gaskanal 7 zum Stauraum 10 gelangt. Sobald der Ventilator 9 die notwendige Betriebsumdrehungszahl erreicht hat, werden Klappen 11 geöffnet, die ermöglichen, daß das Abschreckgas vom Gaskanal 7 über den Stauraum 10 hin zum Düsenfeld 5 und über die Werkstücke 3 zurück zum Ventilator 9 strömt. Die Düsen 6 des Düsenfeldes 5 weisen einen Durchmesser d von < 5 mm auf, wodurch das über den Ventilator 9 durch den Gaskanal 7 umgewälzte Abschreckgas in den Düsen 6 so stark beschleunigt wird, daß Wärmeübergangszahlen von etwa 1000 Watt/m2K an den Werkstückoberflächen erreicht werden. Die besten Abschreckintensitäten werden erreicht, wenn der Abstand a zwischen dem Düsenfeld 5 und der Werkstückoberfläche der Werkstücke 3 maximal das 7fache des Durchmessers d einer Düse 6 aufweist.To quench the workpieces 3 arranged on the grate 2, the quenching gas is so in via a fan 9 driven by a motor 8 the quenching chamber 1 circulates that the quenching gas reaches the storage space 10 via the gas channel 7 in the flow direction shown by the arrow. As soon as the fan 9 has reached the required number of operating revolutions, flaps 11 are opened, which allow the quenching gas to flow from the gas channel 7 via the storage space 10 to the nozzle field 5 and via the workpieces 3 back to the fan 9. The nozzles 6 of the nozzle array 5 have a diameter d of <5 mm, as a result of which the quenching gas circulated via the fan 9 through the gas channel 7 is accelerated so strongly in the nozzles 6 that heat transfer coefficients of approximately 1000 watts / m 2 K on the workpiece surfaces can be achieved. The best quenching intensities are achieved when the distance a between the nozzle field 5 and the workpiece surface of the workpieces 3 is at most 7 times the diameter d of a nozzle 6.

Nach dem vertikalen Umströmen der Werkstücke 3 strömt das Abschreckgas nach dem Passieren des Rostes 2 über einen Wärmetauscher 12, der notwendig ist, um das Abschreckgas wieder zurückzukühlen, über den Ventilator 9 zurück in den Gaskanal 7.After the vertical flow around the workpieces 3, the quenching gas flows after passing through the grate 2 via a heat exchanger 12, which is necessary to cool the quenching gas back again, via the fan 9 back into the gas channel 7.

Zur Vergleichmäßigung der Abschreckleistung an den Werkstücken 3 sind die Werkstücke 3 und das Düsenfeld 5 relativ zueinander bewegbar. Im darstellten Ausführungsbeispiel ist der Rost 2 zur Aufnahme der Werkstücke 3 auf Rollen 13 gelagert, über die der Rost 2 unter dem Düsenfeld 5 gedreht werden kann. Ebenso ist es möglich, das Düsenfeld 5 durch Drehen der Düsenplatte 4 relativ zu den Werkstücken 3 zu bewegen.In order to equalize the quenching performance on the workpieces 3, the workpieces 3 and the nozzle array 5 can be moved relative to one another. In the illustrated embodiment, the grate 2 for receiving the workpieces 3 is mounted on rollers 13, via which the grate 2 can be rotated under the nozzle field 5. It is also possible to move the nozzle field 5 relative to the workpieces 3 by rotating the nozzle plate 4.

Bei dem in Fig. 1 dargestellten Ausführungsbeispiel ist das Düsenfeld 5 als ebenes Düsenfeld dargestellt, dessen den Werkstücken 3 zugewandte Oberfläche parallel zum Rost 2 ausgebildet ist. Um nicht nur eine rein vertikale Anströmung der Werkstücke 3 mit dem Abschreckgas zu ermöglichen, kann das Düsenfeld 5 auch, wie in Fig. 2 dargestellt, so ausgebildet sein, daß die den Werkstücken 3 zugewandte Oberfläche des Düsenfeldes 5 wellenförmig symmetrisch mit winklig zueinander ausgerichteten Flächenstreifen 14 ausgebildet ist. Die wellenförmige Struktur des Düsenfeldes 5 ist dabei so ausgebildet, daß der eingeschlossene Winkel α eines jeden Wellenberges und eines jeden Wellentales den gleichen Betrag von minimal 130° aufweist. Die rechtwinklig in den Flächenstreifen 14 angeordneten Düsen 6 weisen somit eine maximale Verlagerung aus der senkrechten Strömungsebene gemäß Fig. 1 von 25° auf. Um eine Verwirbelung der aus den Düsen 6 austretenden Prallstrahlen zweier einander zugewandter Flächenstreifen 14 zu vermeiden, sind die Düsen 6 in Längsrichtung der Flächenstreifen 14 betrachtet versetzt zueinander angeordnet. Zum Einstellen eines neuen Düsenfeldes 5 sind die Düsenplatten 4 in der Art einer Schublade auf einfache Weise aus Aufnahmen 15 herausziehbar und in diese Aufnahmen 15 wieder einschiebbar.In the embodiment shown in FIG. 1, the nozzle field 5 is shown as a flat nozzle field, the surface of which facing the workpieces 3 is formed parallel to the grate 2. In order not only to allow a purely vertical flow of the workpieces 3 with the quenching gas, the nozzle field 5 can, as shown in FIG. 2, be designed such that the surface of the nozzle field 5 facing the workpieces 3 is wave-shaped symmetrical with angularly aligned surface strips 14 is formed. The wave-shaped structure of the nozzle field 5 is designed such that the included angle α of each wave crest and each wave trough has the same amount of at least 130 °. The Nozzles 6 arranged at right angles in the surface strips 14 thus have a maximum displacement of 25 ° from the vertical flow plane according to FIG. 1. In order to avoid swirling of the impact jets emerging from the nozzles 6 of two surface strips 14 facing one another, the nozzles 6 are arranged offset with respect to one another in the longitudinal direction of the surface strips 14. To set a new nozzle array 5, the nozzle plates 4 can be easily pulled out of receptacles 15 in the manner of a drawer and inserted into these receptacles 15 again.

Eine solchermaßen ausgestaltete Abschreckvorrichtung zeichnet sich dadurch aus, daß durch eine einfache Höhenverstellbarkeit des Düsenfeldes 5 die Vorrichtung an verschiedene Werkstückformen und Werkstückgrößen angepaßt werden kann, ohne daß einerseits langwierige Umrüstarbeiten notwendig sind und andererseits die Form des Düsenfeldes 5 an die spezielle Form des abzuschreckenden Werkstückes 3 angepaßt werden müßte.A quenching device designed in this way is characterized in that the device can be adapted to different workpiece shapes and workpiece sizes by simple height adjustment of the nozzle field 5, without lengthy conversion work being necessary on the one hand and the shape of the nozzle field 5 to the special shape of the workpiece 3 to be quenched on the other hand should be adjusted.

BezugszeichenlisteReference list

11
AbschreckkammerQuenching chamber
22nd
Rostrust
33rd
Werkstückworkpiece
44th
DüsenplatteNozzle plate
55
DüsenfeldNozzle field
66
Düsejet
77
GaskanalGas channel
88th
Motorengine
99
Ventilatorfan
1010th
StauraumStorage space
1111
Klappeflap
1212th
WärmetauscherHeat exchanger
1313
Rollerole
1414
FlächenstreifenArea strips
1515
Aufnahmeadmission
αα
Winkelangle
dd
Durchmesserdiameter
aa
Abstanddistance

Claims (10)

Vorrichtung zum Abschrecken metallischer Werkstücke mit einer Abschreckkammer (1) mit einem wenigstens teilweise von einem Düsenfeld (5) begrenzten Raum zur Aufnahme der Werkstücke (3),
dadurch gekennzeichnet,
daß das Düsenfeld (5) höhenverstellbar oberhalb der zu kühlenden, auf einem Rost (2) angeordneten Werkstücke (3) angeordnet ist und eine im wesentlichen vertikale Anströmung der Werkstücke (3) mit einem Abschreckgas ermöglicht, wobei der Abstand a zwischen dem Düsenfeld (5) und der Werkstückoberfläche maximal 7 mal den Durchmeser d der Düsen (6) beträgt und das Düsenfeld (5) und die Werkstücke (3) relativ zueinander bewegbar sind.
Device for quenching metallic workpieces with a quenching chamber (1) with a space for receiving the workpieces (3), at least partially delimited by a nozzle field (5),
characterized,
that the nozzle field (5) is adjustable in height above the workpieces (3) to be cooled and arranged on a grate (2) and allows an essentially vertical flow of the workpieces (3) with a quenching gas, the distance a between the nozzle field (5 ) and the workpiece surface is a maximum of 7 times the diameter d of the nozzles (6) and the nozzle field (5) and the workpieces (3) are movable relative to one another.
Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die den Werkstücken (3) zugewandte Oberfläche des Düsenfeldes (5) parallel zu dem die Werkstücke (3) tragenden Rost (2) ausgebildet ist und die Düsen (6) senkrecht in Richtung auf die Rostoberfläche ausgerichtet sind.Apparatus according to claim 1, characterized in that the surface of the nozzle field (5) facing the workpieces (3) is formed parallel to the grate (2) carrying the workpieces (3) and the nozzles (6) are aligned perpendicularly in the direction of the grate surface are. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die den Werkstücken (3) zugewandte Oberfläche des Düsenfeldes (5) wellenförmig symmetrisch mit winklig zueinander ausgerichteten Flächenstreifen (14) ausgebildet ist, wobei der eingeschlossene Winkel α eines jeden Wellenberges und eines jeden Wellentales den gleichen Betrag von minimal 130° aufweist und die Düsen (6) rechtwinklig in den Flächenstreifen (14) angeordnet sind.Apparatus according to claim 1, characterized in that the surface of the nozzle field (5) facing the workpieces (3) is designed to be wave-shaped symmetrical with surface strips (14) oriented at an angle to one another, the included angle α of each wave crest and each wave trough being the same amount of at least 130 ° and the nozzles (6) are arranged at right angles in the surface strips (14). Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß die Düsen (6) zweier einander zugewandter Flächenstreifen (14) in Längsrichtung der Flächenstreifen (14) betrachtet versetzt zueinander entlang dieser Flächenstreifen (14) angeordnet sind.Apparatus according to claim 3, characterized in that the nozzles (6) of two facing surface strips (14), viewed in the longitudinal direction of the surface strips (14), are arranged offset to one another along these surface strips (14). Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Düsenfeld (5) und/oder der Rost (2) eine Schwing- oder Drehbewegung ausführend antreibbar ist.Device according to one of claims 1 to 4, characterized in that the nozzle field (5) and / or the grate (2) can be driven to perform an oscillating or rotary movement. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die Umdrehungsgeschwindigkeit des Düsenfeldes (5) und/oder des Rostes (2) 10 bis 300 Umdrehungen/min beträgt.Apparatus according to claim 5, characterized in that the speed of rotation of the nozzle field (5) and / or the grate (2) is 10 to 300 revolutions / min. Vorrichtung nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß in Strömungsrichtung vor dem Düsenfeld (5) ein Stauraum (10) ausgebildet ist.Device according to at least one of claims 1 to 6, characterized in that a storage space (10) is formed in the flow direction in front of the nozzle field (5). Vorrichtung nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß im Gaskanal (7) vor dem Stauraum (10) und vor dem Ventilator (9) Klappen (11) angeordnet sind.Device according to at least one of claims 1 to 7, characterized in that flaps (11) are arranged in the gas channel (7) in front of the storage space (10) and in front of the fan (9). Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Düsen (6) als Bohrungen mit einem Durchmesser d von vorzugsweise < 5 mm ausgebildet sind.Device according to claim 1, characterized in that the nozzles (6) are designed as bores with a diameter d of preferably <5 mm. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Düsen (6) als rechteckige Schlitze ausgebildet sind.Apparatus according to claim 1, characterized in that the nozzles (6) are designed as rectangular slots.
EP96110117A 1996-02-21 1996-06-22 Quenching device for metal workpieces Expired - Lifetime EP0796920B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE29603022U 1996-02-21
DE29603022U DE29603022U1 (en) 1996-02-21 1996-02-21 Device for quenching metallic workpieces

Publications (2)

Publication Number Publication Date
EP0796920A1 true EP0796920A1 (en) 1997-09-24
EP0796920B1 EP0796920B1 (en) 2001-08-01

Family

ID=8019785

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96110117A Expired - Lifetime EP0796920B1 (en) 1996-02-21 1996-06-22 Quenching device for metal workpieces

Country Status (4)

Country Link
EP (1) EP0796920B1 (en)
AT (1) ATE203779T1 (en)
DE (2) DE29603022U1 (en)
ES (1) ES2161317T3 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005123970A1 (en) * 2004-06-15 2005-12-29 Narasimhan Gopinath A process and device for hardening metal parts
WO2008121671A3 (en) * 2007-03-29 2008-12-18 Cons Eng Co Inc Vertical heat treatment system
EP1490524B2 (en) 2002-03-15 2009-01-21 Schwartz, Eva Method and device for convective heat transfer between a heat transfer medium and the surface of a workpiece
CN108120301A (en) * 2018-02-05 2018-06-05 中国重型机械研究院股份公司 A kind of new on-line heating guider
DE102019204869A1 (en) * 2019-04-05 2020-10-08 Audi Ag Quenching device for batch cooling of metal components

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29603022U1 (en) * 1996-02-21 1996-04-18 Ipsen Ind Int Gmbh Device for quenching metallic workpieces
GB9929956D0 (en) * 1999-12-17 2000-02-09 Boc Group Plc Qenching heated metallic objects
ATE262598T1 (en) 2000-04-14 2004-04-15 Ipsen Int Gmbh METHOD AND DEVICE FOR THE HEAT TREATMENT OF METAL WORKPIECES
US20060103059A1 (en) 2004-10-29 2006-05-18 Crafton Scott P High pressure heat treatment system
FR2917752B1 (en) * 2007-06-22 2019-06-28 Montupet Sa METHOD FOR THE HEAT TREATMENT OF FOUNDRY PARTS USING AIR TEMPERATURE AND SYSTEM FOR IMPLEMENTING THE PROCESS
FR2917751B1 (en) 2007-06-22 2011-04-01 Montupet Sa PROCESS FOR THE HEAT TREATMENT OF ALUMINUM-BASED ALLOY CUPS AND CULONS WITH IMPROVED FATIGUE RESISTANCE PROPERTIES
DE102009000201B4 (en) 2009-01-14 2018-06-21 Robert Bosch Gmbh Charging rack and quenching device with charging rack

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3321554C1 (en) * 1982-07-16 1984-02-16 Ipsen Industries International Gmbh, 4190 Kleve Industrial furnace for heat-treatment of metal workpieces
US4704167A (en) * 1985-02-21 1987-11-03 Nippon Steel Corporation Method and apparatus for cooling steel strip
JPS63241123A (en) * 1987-03-27 1988-10-06 Sumitomo Metal Ind Ltd Cooling method for steel strip
WO1992002316A1 (en) * 1990-08-02 1992-02-20 Wsp Ingenieurgesellschaft Für Wärmetechnik, Strömungstechnik Und Prozesstechnik Mbh Device for cooling extruded profiles
DE4208485C1 (en) * 1992-03-17 1993-02-11 Joachim Dr.-Ing. 7250 Leonberg De Wuenning
DE4234285A1 (en) * 1992-10-10 1994-04-14 Heimsoth Verwaltungen Process for the heat treatment of metallic goods
DE4312627A1 (en) * 1993-04-19 1994-10-20 Hauzer Holding Method and device for heat treatment of objects
DE29603022U1 (en) * 1996-02-21 1996-04-18 Ipsen Ind Int Gmbh Device for quenching metallic workpieces

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3322386A1 (en) * 1983-06-22 1985-01-10 Schmetz Industrieofenbau und Vakuum-Hartlöttechnik KG, 5750 Menden METHOD FOR COOLING A BATCH AFTER A HEAT TREATMENT, AND OVEN SYSTEM FOR CARRYING OUT THE METHOD
DE3935929C2 (en) * 1989-10-27 1997-02-20 Innova Zug Ag Device for the rapid cooling of cylindrical semi-finished products
DE4002546C2 (en) * 1990-01-29 1994-07-14 Wsp Ingenieurgesellschaft Fuer High-convection gas jet nozzle section for flat material guided over rollers, and method for their operation

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3321554C1 (en) * 1982-07-16 1984-02-16 Ipsen Industries International Gmbh, 4190 Kleve Industrial furnace for heat-treatment of metal workpieces
US4704167A (en) * 1985-02-21 1987-11-03 Nippon Steel Corporation Method and apparatus for cooling steel strip
JPS63241123A (en) * 1987-03-27 1988-10-06 Sumitomo Metal Ind Ltd Cooling method for steel strip
WO1992002316A1 (en) * 1990-08-02 1992-02-20 Wsp Ingenieurgesellschaft Für Wärmetechnik, Strömungstechnik Und Prozesstechnik Mbh Device for cooling extruded profiles
DE4208485C1 (en) * 1992-03-17 1993-02-11 Joachim Dr.-Ing. 7250 Leonberg De Wuenning
DE4234285A1 (en) * 1992-10-10 1994-04-14 Heimsoth Verwaltungen Process for the heat treatment of metallic goods
DE4312627A1 (en) * 1993-04-19 1994-10-20 Hauzer Holding Method and device for heat treatment of objects
DE29603022U1 (en) * 1996-02-21 1996-04-18 Ipsen Ind Int Gmbh Device for quenching metallic workpieces

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 013, no. 042 (C - 564) 30 January 1989 (1989-01-30) *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1490524B2 (en) 2002-03-15 2009-01-21 Schwartz, Eva Method and device for convective heat transfer between a heat transfer medium and the surface of a workpiece
WO2005123970A1 (en) * 2004-06-15 2005-12-29 Narasimhan Gopinath A process and device for hardening metal parts
WO2008121671A3 (en) * 2007-03-29 2008-12-18 Cons Eng Co Inc Vertical heat treatment system
EP2489452A3 (en) * 2007-03-29 2013-05-01 Consolidated Engineering Company, Inc. System and method for forming and heat treating metal castings
US20150343531A1 (en) * 2007-03-29 2015-12-03 Consolidated Engineering Company, Inc. Vertical heat treatment system
CN108120301A (en) * 2018-02-05 2018-06-05 中国重型机械研究院股份公司 A kind of new on-line heating guider
DE102019204869A1 (en) * 2019-04-05 2020-10-08 Audi Ag Quenching device for batch cooling of metal components

Also Published As

Publication number Publication date
ATE203779T1 (en) 2001-08-15
EP0796920B1 (en) 2001-08-01
ES2161317T3 (en) 2001-12-01
DE29603022U1 (en) 1996-04-18
DE59607412D1 (en) 2001-09-06

Similar Documents

Publication Publication Date Title
DE2844843C2 (en) Industrial furnace for the heat treatment of metallic workpieces
DE3346884C2 (en)
EP0796920B1 (en) Quenching device for metal workpieces
DE102016102093B3 (en) Continuous cooling device and method for cooling a metal strip
DE3607371C1 (en) Device for the floating guiding of material webs using a gaseous or liquid medium
DE3215509C2 (en)
EP3074150B1 (en) Method for heat-treating, and quenching device for cooling plate- or web-like sheet metal
EP1154024B1 (en) Process and device for heat treating metallic workpieces
DE102014109160A1 (en) Device and method for cleaning a body with a surface layer to be removed
DE202015104565U1 (en) Cooling and spraying water system for medium thick sheet after rolling
DE102018220304B3 (en) Quenching device with charging frame and charging frame
CH615948A5 (en)
WO2012037905A1 (en) Method and device for conducting the flow in industrial furnaces for the thermal treatment of metal materials/workpieces
DE2615433A1 (en) Regenerative heat exchanger cleaning gear - uses venturi jets to blow cleaning and heat exchanging medium mixture
DE4231453C1 (en)
DE19538364C5 (en) Device for rapid heating of metal press studs
EP0754768A1 (en) Furnace for heat treating batches of metal workpieces
DE2551048C2 (en) Method and device for hardening sheet metal
DE3735186C1 (en) Vacuum chamber furnace
DE1596492A1 (en) Process and system for hardening glass panes
EP1485509B1 (en) Method for cooling metal strips or plates and cooling device
DE573416C (en) Device for carrying out a heat exchange between gases and solid to liquid material
EP1490524B2 (en) Method and device for convective heat transfer between a heat transfer medium and the surface of a workpiece
DE10005969C1 (en) Machine for directing and hardening a corrugated longitudinal workpiece comprises a chamber surrounding the receiving device and the lower rollers so that cold gas can be introduced via nozzles
DE10140007C2 (en) Cooling furnace for tempering large glass parts

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970729

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB IT LI

17Q First examination report despatched

Effective date: 19991103

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI

REF Corresponds to:

Ref document number: 203779

Country of ref document: AT

Date of ref document: 20010815

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010801

ET Fr: translation filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. PATENTANWAELTE

REF Corresponds to:

Ref document number: 59607412

Country of ref document: DE

Date of ref document: 20010906

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2161317

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030520

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030530

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20030617

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040622

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040623

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20080616

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080625

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080620

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080425

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100101

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090622