EP0791798A1 - Boîte collectrice en matière plastique pour échangeur de chaleur - Google Patents

Boîte collectrice en matière plastique pour échangeur de chaleur Download PDF

Info

Publication number
EP0791798A1
EP0791798A1 EP97102249A EP97102249A EP0791798A1 EP 0791798 A1 EP0791798 A1 EP 0791798A1 EP 97102249 A EP97102249 A EP 97102249A EP 97102249 A EP97102249 A EP 97102249A EP 0791798 A1 EP0791798 A1 EP 0791798A1
Authority
EP
European Patent Office
Prior art keywords
box according
collector box
internal coating
plastic material
basic structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97102249A
Other languages
German (de)
English (en)
Inventor
Michel Jacquet
Laurence Gavoret
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Climatisation SA
Original Assignee
Valeo Climatisation SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Climatisation SA filed Critical Valeo Climatisation SA
Publication of EP0791798A1 publication Critical patent/EP0791798A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/04Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of rubber; of plastics material; of varnish
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/067Details

Definitions

  • the invention relates to a plastic manifold suitable for being part of a heat exchanger, in particular for a motor vehicle.
  • Collector boxes of this type also called “water boxes”, comprise a basic structure obtained by molding a plastic material.
  • This basic structure essentially comprises a wall forming a box and capable of being capped by a collecting plate, also called a "hole plate”, into which the ends of the tubes of a bundle are introduced.
  • Such a manifold must have good mechanical strength to resist impact and to allow assembly of the manifold plate, by means of lugs of the latter, which are folded against a heel of the manifold.
  • the heat transfer fluid usually glycol water
  • the heat transfer fluid can reach temperatures of around 120 to 130 ° C.
  • the heat exchanger, and in particular the manifold, must be able to withstand temperatures which can even reach 150-200 ° C.
  • plastic manifolds currently used on heat exchangers are made of a single material and formed from polyamide.
  • This plastic material has the advantage of having a high impact resistance.
  • this plastic has the disadvantage of having a low resistance to hydrolysis.
  • it is necessary to oversize the thickness of the manifold to avoid rupture or premature fatigue as a result of the hydrolysis, even partial, of its internal face in contact with the heat transfer fluid.
  • this material is suitable for the manufacture of brazed heat exchangers, that is to say a technique different from that of mechanically assembled heat exchangers, the manifolds of which are made of plastic.
  • the object of the invention is in particular to overcome the aforementioned drawbacks.
  • this base structure is provided with an internal coating of a chemically inert material capable of forming a chemical barrier between the base structure and a heat transfer fluid passing through the heat exchanger.
  • the manifold of the invention combines a basic structure of plastic and an internal coating of a chemically inert material.
  • the plastic of the basic structure is chosen above all for its mechanical strength qualities, in particular impact resistance.
  • the chemically inert material As for the chemically inert material, it need not in itself have good mechanical strength. It is chosen for its qualities of chemical inertness, in order to constitute a chemical barrier between the basic structure and the heat transfer fluid which flows through the heat exchanger, and thus prevent the degradation of the basic structure by hydrolysis.
  • the basic structure is made of a plastic material, in particular a thermoplastic material, having good mechanical strength.
  • this plastic material can be chosen in particular from polypropylene or polyamide.
  • polypropylene because its cost price is more economical than that of polyamide and especially that of phenylene polysulfide.
  • the plastic of the basic structure is advantageously reinforced with a reinforcing material, for example glass fibers.
  • the plastic material of the basic structure is a polypropylene reinforced with glass fibers, the content of glass fibers being between 10% and 60% by weight.
  • the glass fibers used can be long or short fibers.
  • the internal coating of the manifold of the invention is preferably a plastic material, in particular a thermoplastic material, capable of withstanding temperatures which can range up to 150-200 ° C. This plastic material must be chemically inert with respect to the heat transfer fluid.
  • the coating can, for example, be made of phenylene polysulphide, taking into account the hydrolysis resistance properties of this particular material.
  • phenylene polysulphide is that it can be easily used, in particular by molding, and that it is compatible with the plastics used in the manufacture of manifolds for heat exchangers.
  • the internal coating can have a small thickness, which also reduces its cost and constitutes a non-negligible advantage, in particular in the case of phenylene polysulfide, the material cost is high.
  • the internal coating will have a thickness of less than 1 mm, preferably less than 0.5 mm.
  • the manifold of the invention can be obtained by different manufacturing methods.
  • the basic structure is injection molded on the internal coating present in the form of a thin film.
  • the basic structure can have a minimum thickness of 2 mm and the internal coating a minimum thickness of 0.2 mm.
  • the basic structure and the internal coating are molded by bi-injection. This means that the respective materials of the base structure and the internal coating are injection molded almost simultaneously.
  • the basic structure advantageously has a minimum thickness of 2 mm and the internal coating a minimum thickness of 0.4 mm.
  • the minimum thickness of the internal coating is in principle greater than the minimum thickness of the first method, in which this internal coating is produced in the form of a pre-existing film.
  • the heat exchanger shown in the drawing comprises a plastic collecting box 1 mechanically assembled to a metal collecting plate 2.
  • This collecting plate also called “plate with holes”, receives the ends of a plurality of tubes 3 forming a bundle and crossing a multiplicity of fins 4.
  • the manifold 1 comprises a basic structure 5, that is to say essentially a wall, of molded plastic material provided with an internal coating 6 intended to come into contact with a heat transfer fluid passing through the heat exchanger.
  • the internal coating 6 forms an interface or barrier between the base structure 5 and the heat transfer fluid.
  • the heat exchanger is intended to be used as a radiator for cooling an internal combustion engine of a motor vehicle or also as a radiator for heating the passenger compartment of a motor vehicle.
  • the heat transfer fluid is generally water, added with antifreeze, for example glycol water, the temperature of which can reach values as high as 120-130 ° C. and even exceptionally limit values which can reach 150-200 ° C. .
  • the plastic material of structure 5 is, in the example, a thermoplastic material chosen from polypropylene and polyamide.
  • a polypropylene reinforced with glass fibers is used, the content of which is between 10% and 60% by weight.
  • the minimum thickness of the structure 5 is usually of the order of 2 mm.
  • the internal coating 6 is a plastic material and, more precisely, a thermoplastic material. In the example, it is phenylene polysulfide.
  • This material is chemically inert and forms a chemical barrier which protects the structure from degradation, in particular by hydrolysis, on the part of the heat transfer fluid.
  • the internal coating 6 has, in the example, a thickness of less than 0.5 mm.
  • the coating 6 can be used in the form of a thin film, typically of the order of 0.2 mm, applied in a mold base. Next, the plastic intended to form the structure 5 is injected. The two materials make it possible to obtain a manifold which combines the mechanical strength properties of the plastic of the basic structure 5 and the hydrolysis resistance of the plastic material of the internal coating 6.
  • the base structure 5 and the inner lining 6 are molded together by a bi-injection method.
  • the basic structure must, in such cases, have a minimum thickness of 2 mm, as in the previous case.
  • the internal coating 6 must have a minimum thickness slightly greater than that of the film.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

L'invention concerne une boîte collectrice pour échangeur de chaleur. La boîte collectrice (1) comprend une structure de base (5) en matière plastique et un revêtement interne (6) en une matière chimiquement inerte propre à former une barrière chimique entre la structure de base (5) et un fluide caloporteur parcourant l'échangeur de chaleur, ce qui permet d'obtenir une boîte collectrice possédant à la fois une bonne tenue mécanique et une bonne résistance à l'hydrolyse vis-à-vis du fluide caloporteur parcourant l'échangeur de chaleur. Application aux échangeurs de chaleur pour véhicules automobiles. <IMAGE>

Description

  • L'invention concerne une boîte collectrice en matière plastique propre à faire partie d'un échangeur de chaleur, notamment de véhicule automobile.
  • Les boîtes collectrices de ce type, encore appelées "boîtes à eau", comprennent une structure de base obtenue par moulage d'une matière plastique. Cette structure de base comprend essentiellement une paroi formant boîte et pouvant être coiffée par une plaque collectrice, encore appelée "plaque à trous", dans laquelle sont introduites les extrémités des tubes d'un faisceau.
  • Une telle boîte collectrice doit posséder une bonne tenue mécanique pour résister aux chocs et pour permettre l'assemblage de la plaque collectrice, par l'intermédiaire de pattes de cette dernière, qui sont repliées contre un talon de la boîte collectrice.
  • Par ailleurs, une telle boîte collectrice doit pouvoir résister à la pression et à la température du fluide caloporteur qui parcourt l'échangeur de chaleur.
  • Lorsqu'un tel échangeur de chaleur est utilisé en tant que radiateur de refroidissement d'un moteur thermique ou radiateur de chauffage de l'habitacle d'un véhicule automobile, le fluide caloporteur, habituellement de l'eau glycolée, peut atteindre des températures de l'ordre de 120 à 130°C. L'échangeur de chaleur, et en particulier la boîte collectrice, doit pouvoir résister à des températures pouvant même atteindre 150-200°C.
  • Un autre problème lié aux boîtes collectrices réside dans le fait que ces dernières doivent également résister à la dégradation, notamment par hydrolyse, sous l'action du fluide caloporteur.
  • La plupart des boîtes collectrices en matière plastique utilisées actuellement sur les échangeurs de chaleur sont en une seule matière et formées à partir de polyamide. Cette matière plastique a pour avantage de présenter une résistance élevée aux chocs. Par contre, cette matière plastique a pour inconvénient de présenter une faible résistance à l'hydrolyse. Pour surmonter cet inconvénient, il est nécessaire de surdimensionner l'épaisseur de la boîte collectrice pour éviter une rupture ou une fatigue prématurée par suite de l'hydrolyse, même partielle, de sa face interne au contact du fluide caloporteur.
  • Par ailleurs, il est connu aussi d'utiliser des boîtes collectrices en polysulfure de phénylène, car cette matière plastique particulière présente l'avantage de résister à la dégradation par hydrolyse, sous l'action du fluide caloporteur. Malheureusement, cette matière plastique présente une faible résistance aux chocs.
  • C'est la raison pour laquelle on préfère généralement utiliser des boîtes collectrices en polyamide, en surdimensionnant l'épaisseur de la structure de base, notamment de la paroi dont la face interne est au contact du liquide caloporteur.
  • En outre, un autre inconvénient des boîtes collectrices connues est que le coût de la matière plastique utilisée est élevé, notamment pour les boîtes en polysulfure de phénylène dont le coût de la matière est sensiblement le triple de celui d'une boîte en polyamide.
  • Il est connu par ailleurs, d'après la publication FR-A-2 461 916, de fabriquer des échangeurs de chaleur à partir d'un matériau composite comprenant une couche de support en un alliage à base d'aluminium et une couche de revêtement en un autre alliage à base d'aluminium, et cela pour résister à la corrosion.
  • Toutefois, ce matériau convient à la fabrication d'échangeurs de chaleur brasés, c'est-à-dire à une technique différente de celle des échangeurs de chaleur assemblés mécaniquement, dont les boîtes collectrices sont en matière plastique.
  • L'invention a notamment pour but de surmonter les inconvénients précités.
  • Elle propose à cet effet une boîte collectrice pour échangeur de chaleur, du type comprenant une structure de base en matière plastique moulée.
  • Conformément à l'invention, cette structure de base est munie d'un revêtement interne en une matière chimiquement inerte propre à former une barrière chimique entre la structure de base et un fluide caloporteur parcourant l'échangeur de chaleur.
  • Ainsi, la boîte collectrice de l'invention combine une structure de base en matière plastique et un revêtement interne en une matière chimiquement inerte.
  • La matière plastique de la structure de base est choisie avant tout pour ses qualités de tenue mécanique, notamment de résistance aux chocs.
  • Quant à la matière chimiquement inerte, il n'est pas nécessaire qu'elle possède en elle-même une bonne tenue mécanique. Elle est choisie pour ses qualités d'inertie chimique, afin de constituer une barrière chimique entre la structure de base et le fluide caloporteur qui parcourt l'échangeur de chaleur, et empêcher ainsi la dégradation de la structure de base par hydrolyse.
  • Dans une forme de réalisation préférée de l'invention, la structure de base est en une matière plastique, en particulier une matière thermoplastique, possédant une bonne tenue mécanique.
  • A titre d'exemple, cette matière plastique peut être choisie notamment parmi un polypropylène ou un polyamide.
  • A cet égard, on préfère utiliser le polypropylène car son prix de revient est plus économique que celui du polyamide et surtout celui du polysulfure de phénylène.
  • La matière plastique de la structure de base est avantageusement armée d'un matériau de renfort, par exemple des fibres de verre.
  • Dans une forme de réalisation préférée de l'invention, la matière plastique de la structure de base est un polypropylène armé de fibres de verre, la teneur en fibres de verre étant comprise entre 10% et 60% en poids. Les fibres de verre utilisées peuvent être des fibres longues ou courtes.
  • Le revêtement interne de la boîte collectrice de l'invention est de préférence une matière plastique, en particulier une matière thermoplastique, propre à résister à des températures pouvant aller jusqu'à 150-200°C. Cette matière plastique doit être chimiquement inerte à l'égard du fluide caloporteur.
  • Le revêtement peut, à titre d'exemple, être réalisé en polysulfure de phénylène, compte tenu des propriétés de résistance à l'hydrolyse de cette matière particulière.
  • En outre, le polysulfure de phénylène a pour avantage de pouvoir être facilement utilisé, notamment par moulage, et d'être compatible avec les matières plastiques utilisées dans la fabrication des boîtes collectrices d'échangeurs de chaleur.
  • Du fait que la tenue mécanique de la boîte collectrice est assurée essentiellement par la structure de base, le revêtement interne peut présenter une faible épaisseur, ce qui diminue également son coût et constitue un avantage non négligeable, notamment dans le cas du polysulfure de phénylène dont le coût de matière est élevé.
  • Généralement, le revêtement interne aura une épaisseur inférieure à 1 mm, de préférence inférieure à 0,5 mm.
  • La boîte collectrice de l'invention peut être obtenue par différents procédés de fabrication.
  • Dans un premier procédé, la structure de base est moulée par injection sur le revêtement interne présent sous forme d'un film mince.
  • On peut ainsi appliquer ce film sur un fond de moule et injecter ensuite la matière plastique destinée à constituer la structure de base.
  • A titre d'exemple, la structure de base peut posséder une épaisseur minimale de 2 mm et le revêtement interne une épaisseur minimale de 0,2 mm.
  • Dans un second procédé, la structure de base et le revêtement interne sont moulés par bi-injection. Cela signifie que les matières respectives de la structure de base et du revêtement interne sont moulées pratiquement en même temps par injection.
  • En pareil cas, la structure de base possède avantageusement une épaisseur minimale de 2 mm et le revêtement interne une épaisseur minimale de 0,4 mm.
  • Dans le second procédé, l'épaisseur minimale du revêtement interne est en principe supérieure à l'épaisseur minimale du premier procédé, dans lequel ce revêtement interne est réalisé sous la forme d'un film préexistant.
  • Dans la description qui suit, faite à titre d'exemple, on se réfère au dessin annexé, sur lequel la figure unique représente une vue partielle en élévation, avec arrachement, d'un échangeur de chaleur équipé d'une boîte collectrice selon l'invention.
  • L'échangeur de chaleur représenté sur le dessin comprend une boîte collectrice 1 en matière plastique assemblée mécaniquement à une plaque collectrice métallique 2. Cette plaque collectrice, encore appelée "plaque à trous", reçoit les extrémités d'une pluralité de tubes 3 formant faisceau et traversant une multiplicité d'ailettes 4.
  • La boîte collectrice 1 comprend une structure de base 5, c'est-à-dire essentiellement une paroi, en matière plastique moulée munie d'un revêtement interne 6 destiné à venir au contact d'un fluide caloporteur traversant l'échangeur de chaleur. Autrement dit, le revêtement interne 6 forme une interface ou barrière entre la structure de base 5 et le fluide caloporteur.
  • Dans l'exemple représenté, l'échangeur de chaleur est destiné à être utilisé comme radiateur de refroidissement d'un moteur à combustion interne d'un véhicule automobile ou encore comme radiateur de chauffage de l'habitacle d'un véhicule automobile. Le fluide caloporteur est généralement de l'eau, additionnée d'antigel, par exemple de l'eau glycolée dont la température peut atteindre des valeurs aussi élevées que 120-130°C et même exceptionnellement des valeurs limites pouvant atteindre 150-200°C.
  • La matière plastique de la structure 5 est, dans l'exemple, une matière thermoplastique choisie parmi un polypropylène et un polyamide.
  • On utilise avantageusement un polypropylène armé de fibres de verre dont la teneur est comprise entre 10% et 60% en poids. Pour un radiateur d'un véhicule de tourisme, l'épaisseur minimale de la structure 5 est habituellement de l'ordre de 2 mm.
  • Le revêtement interne 6 est une matière plastique et, plus précisément, une matière thermoplastique. Dans l'exemple, il s'agit de polysulfure de phénylène.
  • Cette matière est chimiquement inerte et forme une barrière chimique qui protège la structure 5 vis-à-vis de la dégradation, notamment par hydrolyse, de la part du fluide caloporteur.
  • Le revêtement interne 6 a, dans l'exemple, une épaisseur inférieure à 0,5 mm.
  • Le revêtement 6 peut être utilisé sous la forme d'un film de faible épaisseur, typiquement de l'ordre de 0,2 mm, appliqué dans un fond de moule. Ensuite, on injecte la matière plastique destinée à former la structure 5. Les deux matières permettent d'obtenir une boîte collectrice qui combine les propriétés de tenue mécanique de la matière plastique de la structure de base 5 et la résistance à l'hydrolyse de la matière plastique du revêtement interne 6.
  • Dans un autre procédé, la structure de base 5 et le revêtement interne 6 sont moulés conjointement par un procédé de bi-injection. La structure de base doit, en pareil cas, posséder une épaisseur minimale de 2 mm, comme dans le cas précédent.
  • Par contre, le revêtement interne 6 doit posséder une épaisseur minimale légèrement supérieure à celle du film. A titre d'exemple, on peut utiliser une épaisseur de 0,4 mm pour le revêtement interne 6 et une épaisseur de 2,1 mm pour la structure de base 5, ce qui donne une épaisseur totale de l'ordre de 2,5 mm.
  • Bien entendu, l'invention n'est pas limitée aux formes de réalisation décrites précédemment à titre d'exemple.
  • Il est possible d'envisager d'autres variantes, notamment en ce qui concerne le choix de la matière plastique de la structure de base et le choix de la matière du revêtement interne.

Claims (12)

  1. Boîte collectrice pour échangeur de chaleur, du type comprenant une structure de base (5) en matière plastique, caractérisée en ce que la structure de base (5) est munie d'un revêtement interne (6) en une matière chimiquement inerte propre à former une barrière chimique entre la structure de base (5) et un fluide caloporteur parcourant l'échangeur de chaleur.
  2. Boîte collectrice selon la revendication 1, caractérisée en ce que la structure de base (5) est en une matière plastique, en particulier une matière thermoplastique, possédant une bonne tenue mécanique.
  3. Boîte collectrice selon l'une des revendications 1 et 2, caractérisée en ce que la matière plastique de la structure de base (5) est choisie parmi un polypropylène et un polyamide.
  4. Boîte collectrice selon l'une des revendications 1 à 3, caractérisée en ce que la matière plastique de la structure de base (5) est armée d'un matériau de renfort, en particulier de fibres de verre.
  5. Boîte collectrice selon l'une des revendications 1 à 4, caractérisée en ce que la matière plastique de la structure de base est un polypropylène armé de fibres de verre, la teneur en fibres de verre étant comprise entre 10% et 60% en poids.
  6. Boîte collectrice selon l'une des revendications 1 à 5, caractérisée en ce que le revêtement interne (6) est en une matière plastique, en particulier une matière thermoplastique, propre à résister à des températures pouvant aller jusqu'à 150-200°C.
  7. Boîte collectrice selon l'une des revendications 1 à 6, caractérisée en ce que la matière plastique du revêtement interne est une matière chimiquement inerte à l'égard du fluide caloporteur, telle que le polysulfure de phénylène.
  8. Boîte collectrice selon l'une des revendications 1 à 7, caractérisée en ce que le revêtement interne (6) a une épaisseur inférieure à 1 mm, de préférence inférieure à 0,5 mm.
  9. Boîte collectrice selon l'une des revendications 1 à 8, caractérisée en ce que la structure de base (5) est moulée par injection sur le revêtement interne (6) présent sous forme d'un film mince.
  10. Boîte collectrice selon la revendication 9, caractérisée en ce que la structure de base (5) possède une épaisseur minimale de 2 mm et le revêtement interne (6) une épaisseur minimale de 0,2 mm.
  11. Boîte collectrice selon l'une des revendications 1 à 8, caractérisée en ce que la structure de base (5) et le revêtement interne (6) sont moulés par bi-injection.
  12. Boîte collectrice selon la revendication 11, caractérisée en ce que la structure de base (5) possède une épaisseur minimale de 2 mm et le revêtement interne une épaisseur minimale de 0,4 mm
EP97102249A 1996-02-21 1997-02-12 Boîte collectrice en matière plastique pour échangeur de chaleur Withdrawn EP0791798A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9602153A FR2745077B1 (fr) 1996-02-21 1996-02-21 Boite collectrice en matiere plastique pour echangeur de chaleur
FR9602153 1996-02-21

Publications (1)

Publication Number Publication Date
EP0791798A1 true EP0791798A1 (fr) 1997-08-27

Family

ID=9489444

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97102249A Withdrawn EP0791798A1 (fr) 1996-02-21 1997-02-12 Boîte collectrice en matière plastique pour échangeur de chaleur

Country Status (5)

Country Link
EP (1) EP0791798A1 (fr)
KR (1) KR970062645A (fr)
CN (1) CN1168839A (fr)
BR (1) BR9701025A (fr)
FR (1) FR2745077B1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1245417A2 (fr) * 2001-03-27 2002-10-02 Behr GmbH & Co. Echangeur de chaleur, en particulier radiateur d'air de suralimentation
EP1650524A2 (fr) * 2004-09-14 2006-04-26 Behr GmbH & Co. KG Echangeur de chaleur et son procédé de fabrication
DE102004051227A1 (de) * 2004-10-20 2006-05-04 Behr Gmbh & Co. Kg Wärmeübertrager, insbesondere Ladeluftkühler
FR2931227A1 (fr) * 2008-05-16 2009-11-20 Peugeot Citroen Automobiles Sa Refroidisseur d'air suralimente pour moteur a egr basse pression

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2034351A1 (en) * 1969-03-19 1970-12-11 Chausson Usines Sa Cooling radiators for vehicles manufac - ture
FR2461916A1 (fr) 1979-07-23 1981-02-06 Sumitomo Light Metal Ind Metal recouvert d'un alliage a base d'aluminium pour la fabrication d'echangeurs de chaleur resistant a la corrosion
JPS62147299A (ja) * 1985-12-23 1987-07-01 Nippon Radiator Co Ltd 熱交換器用樹脂タンク
JPH05248237A (ja) * 1992-03-10 1993-09-24 Toray Ind Inc 自動車用ラジエタータンク部品

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2034351A1 (en) * 1969-03-19 1970-12-11 Chausson Usines Sa Cooling radiators for vehicles manufac - ture
FR2461916A1 (fr) 1979-07-23 1981-02-06 Sumitomo Light Metal Ind Metal recouvert d'un alliage a base d'aluminium pour la fabrication d'echangeurs de chaleur resistant a la corrosion
JPS62147299A (ja) * 1985-12-23 1987-07-01 Nippon Radiator Co Ltd 熱交換器用樹脂タンク
JPH05248237A (ja) * 1992-03-10 1993-09-24 Toray Ind Inc 自動車用ラジエタータンク部品

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 11, no. 377 (M - 649) 9 December 1987 (1987-12-09) *
PATENT ABSTRACTS OF JAPAN vol. 18, no. 2 (M - 1536) 6 January 1994 (1994-01-06) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1245417A2 (fr) * 2001-03-27 2002-10-02 Behr GmbH & Co. Echangeur de chaleur, en particulier radiateur d'air de suralimentation
EP1245417A3 (fr) * 2001-03-27 2004-03-03 Behr GmbH & Co. Echangeur de chaleur, en particulier radiateur d'air de suralimentation
EP1650524A2 (fr) * 2004-09-14 2006-04-26 Behr GmbH & Co. KG Echangeur de chaleur et son procédé de fabrication
EP1650524A3 (fr) * 2004-09-14 2008-04-30 Behr GmbH & Co. KG Echangeur de chaleur et son procédé de fabrication
DE102004051227A1 (de) * 2004-10-20 2006-05-04 Behr Gmbh & Co. Kg Wärmeübertrager, insbesondere Ladeluftkühler
FR2931227A1 (fr) * 2008-05-16 2009-11-20 Peugeot Citroen Automobiles Sa Refroidisseur d'air suralimente pour moteur a egr basse pression

Also Published As

Publication number Publication date
KR970062645A (ko) 1997-09-12
BR9701025A (pt) 1998-11-03
CN1168839A (zh) 1997-12-31
FR2745077A1 (fr) 1997-08-22
FR2745077B1 (fr) 1998-04-10

Similar Documents

Publication Publication Date Title
EP3134246B1 (fr) Procédé de fabrication d&#39;une roue dentée allégée par surmoulage double
EP0446093B1 (fr) Réchauffeur de liquide de lave-glace sur circuit de liquide de refroidissement du moteur
EP0577492B1 (fr) Procédé de raccordement de tubes ou tuyaux, raccords et dispositifs analoques obtenus par sa mise en oeuvre
EP1163094B1 (fr) Articles mixtes comprenant une partie rigide et une partie a base d&#39;un materiau thermoplastique, et procede de fabrication
FR2967965A1 (fr) Ensemble de structure pour vehicule automobile comprenant une coupelle de support de systeme de suspension et une paroi de passage de roue
EP3887711B1 (fr) Enveloppe interne pour reservoir de stockage de fluide sous pression pour vehicule automobile
EP0791798A1 (fr) Boîte collectrice en matière plastique pour échangeur de chaleur
EP1644214A1 (fr) Vitrage comprenant un element de renfort
FR2672252A1 (fr) Roue en resine synthetique du type d&#39;une seule piece.
WO2016192888A1 (fr) Profilé creux tel qu&#39;un tube réalisé en matériaux composite thermodurcissable et son procédé
EP1550604B1 (fr) Procédé de fabrication d&#39;une pièce de structure de véhicule automobile, pièce de structure, traverse de face avant technique et poutre de pare-chocs
EP1067300B1 (fr) Réservoir en matériau composite destiné au stockage de gaz liquéfié sous pression
EP3152027A1 (fr) Procédé de fabrication de roue dentée avec cerclage de renfort
EP0434497B1 (fr) Procédé de réalisation par enroulement filamentaire d&#39;un caisson annulaire avec raidisseurs internes
EP3562656B1 (fr) Pièces structurelles comprenant un insert surmoulé
FR2853861A1 (fr) Systeme de reservoir de carburant et procede de fabrication d&#39;un systeme de reservoir de carburant
FR3076804A1 (fr) Piece structurelle pour caisse en blanc de vehicule et procede de fabrication associe
FR2679820A1 (fr) Procede pour la fabrication d&#39;une structure moulee complexe, notamment d&#39;un ski et structure moulee complexe ainsi obtenue.
EP0791775A1 (fr) Conduit de transport de fluide à pression et température élevées
FR3062805A1 (fr) Procede pour la fabrication d&#39;un element multi-composants pour un vehicule
FR2802274A1 (fr) Canalisation pour le transport de fluide de refroidissement dans un moteur a combustion interne
WO2024061800A1 (fr) Réservoir de gaz sous pression pour véhicule
EP2535215B1 (fr) Boîtier d&#39;une installation de ventilation comprenant une pluralité de zones à module d&#39;élasticité distinct
WO2018015281A1 (fr) Réservoir à urée avec élément chauffant et profilé
FR2710972A1 (fr) Récipient collecteur en matière plastique pour échangeur de chaleur et son procédé de fabrication.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT

17P Request for examination filed

Effective date: 19980123

17Q First examination report despatched

Effective date: 20000322

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20001003