EP0790076B1 - Catalysts containing metallocenes with arylsubstituted indenyl derivatives as ligands, process and intermediates for the preparation of these metallocenes and their use - Google Patents

Catalysts containing metallocenes with arylsubstituted indenyl derivatives as ligands, process and intermediates for the preparation of these metallocenes and their use Download PDF

Info

Publication number
EP0790076B1
EP0790076B1 EP97107297A EP97107297A EP0790076B1 EP 0790076 B1 EP0790076 B1 EP 0790076B1 EP 97107297 A EP97107297 A EP 97107297A EP 97107297 A EP97107297 A EP 97107297A EP 0790076 B1 EP0790076 B1 EP 0790076B1
Authority
EP
European Patent Office
Prior art keywords
group
formula
metallocene
catalyst
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97107297A
Other languages
German (de)
French (fr)
Other versions
EP0790076A2 (en
EP0790076A3 (en
Inventor
Frank Dr. Küber
Bernd Dr. Bachmann
Walter Dr. Spaleck
Andreas Dr. Winter
Jürgen Dr. Rohrmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Basell Polyolefine GmbH
Original Assignee
Basell Polyolefine GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6462039&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0790076(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Basell Polyolefine GmbH filed Critical Basell Polyolefine GmbH
Publication of EP0790076A2 publication Critical patent/EP0790076A2/en
Publication of EP0790076A3 publication Critical patent/EP0790076A3/en
Application granted granted Critical
Publication of EP0790076B1 publication Critical patent/EP0790076B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/06Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type
    • C08F297/08Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • B01J31/143Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/10Preparation of halogenated hydrocarbons by replacement by halogens of hydrogen atoms
    • C07C17/14Preparation of halogenated hydrocarbons by replacement by halogens of hydrogen atoms in the side-chain of aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/45Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by condensation
    • C07C45/46Friedel-Crafts reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/587Unsaturated compounds containing a keto groups being part of a ring
    • C07C49/657Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings
    • C07C49/665Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings a keto group being part of a condensed ring system
    • C07C49/67Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings a keto group being part of a condensed ring system having two rings, e.g. tetralones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/06Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type
    • C08F297/08Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins
    • C08F297/083Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins the monomers being ethylene or propylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/642Component covered by group C08F4/64 with an organo-aluminium compound
    • C08F4/6428Component covered by group C08F4/64 with an organo-aluminium compound with an aluminoxane, i.e. a compound containing an Al-O-Al- group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/10Polymerisation reactions involving at least dual use catalysts, e.g. for both oligomerisation and polymerisation
    • B01J2231/12Olefin polymerisation or copolymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/48Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/50Complexes comprising metals of Group V (VA or VB) as the central metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/60Complexes comprising metals of Group VI (VIA or VIB) as the central metal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/639Component covered by group C08F4/62 containing a transition metal-carbon bond
    • C08F4/63912Component covered by group C08F4/62 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/639Component covered by group C08F4/62 containing a transition metal-carbon bond
    • C08F4/63916Component covered by group C08F4/62 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/639Component covered by group C08F4/62 containing a transition metal-carbon bond
    • C08F4/6392Component covered by group C08F4/62 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/63922Component covered by group C08F4/62 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/63927Component covered by group C08F4/62 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/904Monomer polymerized in presence of transition metal containing catalyst at least part of which is supported on a polymer, e.g. prepolymerized catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/905Polymerization in presence of transition metal containing catalyst in presence of hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/943Polymerization with metallocene catalysts

Definitions

  • the present invention relates to new aryl-substituted metallocenes Indenyl derivatives as ligands, which are very advantageous as catalyst components in the Production of polyolefins with high isotacticity, narrow molecular weight distribution and very high molecular weight can be used.
  • High molecular weight polyolefins are particularly important for production of foils, plates or large hollow bodies or molded parts, such as pipes.
  • Soluble metallocene compounds based on bis (cyclopentadienyl) zirconium dialkyl or dihalide in combination with oligomeric aluminoxanes can ethylene with Polymerize good and propylene with moderate activity. Polyethylene is obtained with narrow molecular weight distribution and medium molecular weight. The manufactured in this way Polypropylene is atactic and has a very low molecular weight.
  • Isotactic polypropylene can be produced with the aid of ethylene bis (4,5,6,7-tetrahydro-1-indenyl) zirconium dichloride together with an aluminoxane in a suspension polymerization (cf. EP-A-185 918).
  • the polymer has a tight Molar mass distribution.
  • a particular disadvantage of this method is that with technical relevant polymerization temperatures only polymers with very low molecular weight can be produced.
  • catalysts based on ethylene bisindenyl hafnium dichloride and ethylene bis (4,5,6,7-tetrahydro-1-indenyl) hafnium dichloride and methylaluminoxane are known, with which higher molecular weight polypropylenes can be produced by suspension polymerization (cf. J. Am. Chem. Soc. (1987) 109 , 6544).
  • suspension polymerization cf. J. Am. Chem. Soc. (1987) 109 , 6544.
  • the commorphology of the polymers produced in this way is unsatisfactory and the activity of the catalyst systems used is comparatively low. Coupled with the high catalyst costs, low-cost polymerization is therefore not possible with these systems.
  • a significant increase in the molar mass could be achieved by using metallocenes in which the aromatic ⁇ ligands fixed by a bridge are in the 2-position (see DE 40 35 886) or in the 2- and 4-position (see DE 41 28 238) bear substituents.
  • a common disadvantage of soluble (homogeneous) metallocene / methylaluminoxane catalyst systems in processes in which the polymer formed is a solid is the formation of thick deposits on the reactor walls and stirrers. This Coatings arise from agglomeration of the polymer particles when the metallocene, or aluminoxane, or both are present dissolved in the suspension medium. Such Deposits in the reactor systems must be removed regularly, as these are quick achieve considerable strengths, have high strength and heat exchange to prevent coolant.
  • metallocenes in a supported form.
  • An efficient one and simple process for the support of metallocenes, which is universal in all Polymerization process can be used has been proposed (see EP-A-578 838).
  • metallocenes with special indenyl derivatives as Ugands suitable catalysts in the production of polyolefins with high molecular weight, especially when using prochiral monomers of areotactic polyolefins with very high molecular weight and very high isotaxy.
  • R a and R b can form one or more rings with the atoms connecting them, at a temperature of -60 to 200 ° C, at a pressure of 0.5 to 100 bar, in solution, in suspension or in the gas phase, in the presence of a catalyst which is formed from a metallocene as transition metal compound and a cocatalyst, characterized in that the metallocene is a compound of the formula I.
  • the compounds according to the invention are metallocenes of the formula I. wherein M 1 is a metal from group IVb, Vb or Vlb of the periodic table, for example titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum or tungsten, preferably zirconium, hafnium and titanium.
  • M 1 is a metal from group IVb, Vb or Vlb of the periodic table, for example titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum or tungsten, preferably zirconium, hafnium and titanium.
  • R 1 and R 2 are the same or different and represent a hydrogen atom, a C 1 -C 10 , preferably C 1 -C 3 alkyl group, a C 1 -C 10 , preferably C 1 -C 3 alkoxy group, a C.
  • the radicals R 3 to R 12 are the same or different and represent a hydrogen atom, a halogen atom, preferably fluorine, chlorine or bromine, a C 1 -C 10 -, preferably C 1 -C 4 -alkyl group, which can be halogenated, a C.
  • R 16 is a Halogen atom, preferably chlorine, or a C 1 -C 10 , preferably C 1 -C 4 alkyl group or a C 6 -C 10 , preferably C 6 -C 8 aryl group.
  • R 4 and R 7 are hydrogen and R 5 , R 6 and R 8 to R 12 are a C 1 -C 4 alkyl group or hydrogen.
  • the 2-phenyl-benzyl halide derivatives of the formula A are commercially available or can be produced by methods known from the literature.
  • the conversion to the compounds of formula B takes place by reaction with substituted ones Malonic esters under basic conditions, such as in ethanolic solutions of sodium ethanolate.
  • the compounds of formula B are mixed with alkali hydroxides such as potassium hydroxide or Saponified sodium hydroxide and by treating the resulting dicarboxylic acids with Heat decarboxylated to the compounds of formula C.
  • alkali hydroxides such as potassium hydroxide or Saponified sodium hydroxide
  • the ring closure to the corresponding phenyl-1-indanones of the formula D is carried out by reaction with chlorinating agents such as SOCl 2 to give the corresponding acid chlorides and subsequent cyclization with a Friedel-Crafts catalyst in an inert solvent such as AICl 3 or polyphosphoric acid in methylene chloride or CS 2 .
  • the conversion to the 7-phenyl-indene derivatives of the formula E takes place by reduction with a hydride transferring reagent, such as sodium borohydride or Lithium aluminum hydride or hydrogen and a corresponding catalyst in an inert solvent such as diethyl ether or tetrahydrofuran the corresponding alcohols and dehydration of the alcohols under acidic Conditions such as p-toluenesulfonic acid or an aqueous mineral acid or by reaction with dehydrating substances such as magnesium sulfate, anhydrous copper sulfate or molecular sieves.
  • a hydride transferring reagent such as sodium borohydride or Lithium aluminum hydride or hydrogen and a corresponding catalyst in an inert solvent such as diethyl ether or tetrahydrofuran
  • an inert solvent such as diethyl ether or tetrahydrofuran
  • the pure enantiomer in the (+) or (-) form can also be used.
  • An optically active polymer can be produced with the pure enantiomers. Detached However, the meso form of the metallocenes should be used, since the polymerization-active Center (the metal atom) in these compounds because of mirror symmetry is no longer chiral on the central metal atom and is therefore not a highly isotactic polymer can generate. If the meso form is not separated, isotactic forms arise Polymers also atactic polymer. For certain applications, for example soft moldings, this can be quite desirable.
  • an aluminoxane of the formula IIa for the linear type and / or of the formula IIb for the cyclic type is preferably used as cocatalyst,
  • R 17 radicals are different, they are preferably methyl and hydrogen or alternatively methyl and isobutyl, with hydrogen or isobutyl preferably containing 0.01-40% (number of the R 17 radicals).
  • the aluminoxane can be prepared in various ways by known methods.
  • One of the methods is, for example, that an aluminum hydrocarbon compound and / or a hydridoaluminum hydrocarbon compound is reacted with water (gaseous, solid, liquid or bound - for example as water of crystallization) in an inert solvent (such as toluene).
  • an inert solvent such as toluene
  • two different aluminum trialkyls are reacted with water in accordance with the desired composition.
  • the transition metal compound is preactivated in solution.
  • An aliphatic hydrocarbon is suitable as the inert hydrocarbon or aromatic hydrocarbon.
  • Toluene is preferably used.
  • the concentration of the aluminoxane in the solution is in the range from about 1% by weight to the saturation limit, preferably from 5 to 30% by weight, based in each case on the total amount of solution.
  • the metallocene can be used in the same concentration, but preferably it is used in an amount of 10 -4 - 1 mol per mol of aluminoxane.
  • the preactivation is 5 minutes to 60 hours, preferably 5 to 60 minutes. One works at a temperature of -78 to 100 ° C, preferably 0 to 70 ° C.
  • a prepolymerization can be carried out using the metallocene.
  • preference is given to (or one of the) olefin (s) used in the polymerization used.
  • the metallocene can also be applied to a support.
  • Suitable carrier materials are, for example, silica gels, aluminum oxides, solid aluminoxane or others inorganic carrier materials such as magnesium chloride.
  • a suitable carrier material is also a polyolefin powder in finely divided form.
  • the cocatalyst i.e. the organoaluminum compound a carrier such as silica gels, aluminum oxides, solid aluminoxane, others inorganic carrier materials or a polyolefin powder in finely divided form applied and then implemented with the metallocene.
  • a carrier such as silica gels, aluminum oxides, solid aluminoxane, others inorganic carrier materials or a polyolefin powder in finely divided form applied and then implemented with the metallocene.
  • Oxides that are flame-pyrolytic can be used as inorganic carriers generated by burning element halides in a detonating gas flame were, or as silica gels in certain grain size distributions and grain shapes are producible.
  • the supported cocatalyst can be prepared, for example, as in EP-A-578 838 described in the following manner in a stainless steel reactor explosion-proof version with a pumping system of pressure level 60 bar, with inert gas supply, temperature control through jacket cooling and second cooling circuit via a heat exchanger on the pump system.
  • the pump system sucks the reactor contents via a connection in the reactor bottom with a pump and presses it into a mixer and through a riser pipe via a heat exchanger the reactor back.
  • the mixer is designed so that there is a constricted in the inlet Pipe cross-section is located where there is an increased flow velocity, and in whose turbulence zone has a thin feed line axially and counter to the direction of flow is guided, through which - clocked - a defined amount of water each 40 bar argon can be fed.
  • the reaction is controlled via a Sampler on the pump circuit.
  • the supported cocatalyst produced in this way is used as a 10% suspension in n-decane.
  • the aluminum content is 1.06 mmol Al per cm 3 suspension.
  • the isolated solid contains 31% by weight of aluminum, the suspension medium contains 0.1% by weight of aluminum.
  • the metallocene according to the invention on the supported cocatalyst applied by stirring the dissolved metallocene with the supported cocatalyst becomes.
  • the solvent is removed and replaced by a hydrocarbon in which both the cocatalyst and the metallocene are insoluble.
  • the reaction to the supported catalyst system takes place at a temperature of -20 ° to + 120 ° C, preferably 0-100 ° C, particularly preferably at 15 ° to 40 ° C.
  • the Metallocene is reacted with the supported cocatalyst in such a way that the Cocatalyst as a suspension with 1 to 40% by weight, preferably with 5 to 20% by weight in an aliphatic, inert suspending agent such as n-decane, hexane, heptane, diesel oil with a solution of the metallocene in an inert solvent such as toluene, hexane, Heptane, dichloromethane or with the finely ground solid of the metallocene is brought together.
  • a solution of the metallocene can also be used the solid of the cocatalyst are implemented.
  • the reaction is carried out by intensive mixing, for example by stirring at a molar Al / M 1 ratio of 100/1 to 10000/1, preferably from 100/1 to 3000/1 and a reaction time from 5 to 120 minutes, preferably 10 to 60 Minutes, particularly preferably 10 to 30 minutes under inert conditions.
  • the supernatant solution is separated off, for example by filtration or decanting.
  • the remaining solid becomes 1 to 5 times with an inert suspending agent such as toluene, n-decane, hexane, diesel oil, dichloromethane to remove soluble components in the catalyst formed, in particular for the removal of unreacted and thus soluble metallocene, washed.
  • an inert suspending agent such as toluene, n-decane, hexane, diesel oil, dichloromethane to remove soluble components in the catalyst formed, in particular for the removal of unreacted and thus soluble metallocene, washed.
  • the supported catalyst system thus produced can be dried in vacuo as Powder or solvent still resuspended and as a suspension in one of the aforementioned inert suspending agents in the polymerization system be dosed.
  • x is a number from 1 to 4, preferably 3, the radicals R 18 are the same or different, preferably the same, and are C 1 -C 10 alkyl, C 6 -C 18 aryl or form 2 radicals R 18 together with the atom connecting them a ring, and the radicals R 19 are the same or different, preferably the same, and represent C 6 -C 18 aryl, which can be substituted by alkyl, haloalkyl or fluorine.
  • R 18 represents ethyl, propyl, butyl or phenyl and R 19 represents phenyl, pentafluorophenyl, 3,5-bistrifluoromethylphenyl, mesityl, xylyl or tolyl (cf. EP 277 003, EP 277 004 and EP 426 638).
  • the actual (active) Polymerization catalyst from the reaction product of metallocene and one of the mentioned connections.
  • This reaction product is therefore preferred first outside of the polymerization reactor in a separate step using a suitable solvent.
  • any compound is suitable as a cocatalyst according to the invention convert the neutral metallocene into a cation due to its Lewis acidity and this can stabilize ("unstable coordination").
  • the cocatalyst or the anion formed from it no further reactions with the formed Enter metallocene (see EP 427 697).
  • an aluminum alkyl for example trimethyl aluminum or triethyl aluminum advantageous. This cleaning can take place both in the polymerization system itself, or the olefin is mixed with the Al compound before being added to the polymerization system brought into contact and then separated again.
  • the polymerization or copolymerization is carried out in a known manner in solution, in suspension or in the gas phase, continuously or batchwise, in one or more stages at a temperature of -60 to 200 ° C., preferably 30 to 80 ° C., particularly preferably 50 to 80 ° C.
  • R a and R b are the same or different and represent a hydrogen atom or an alkyl radical having 1 to 14 carbon atoms. However, R a and R b can also form a ring with the C atoms connecting them.
  • olefins examples include ethylene, propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, norbornene or norbomadiene.
  • propylene and ethylene are polymerized.
  • the total pressure in the polymerization system is 0.5 to 100 bar. Polymerization in the technically particularly interesting is preferred Pressure range from 5 to 64 bar.
  • the metallocene is used in a concentration, based on the transition metal, of 10 -3 to 10 -8 , preferably 10 -4 to 10 -7 mol, of transition metal per dm 3 of solvent or per dm 3 of reactor volume.
  • the aluminoxane is used in a concentration of 10 -5 to 10 -1 mol, preferably 10 -4 to 10 -2 mol per dm 3 solvent or per dm 3 reactor volume.
  • the other cocatalysts mentioned are used in approximately equimolar amounts to the metallocene. In principle, however, higher concentrations are also possible.
  • the polymerization is carried out as a suspension or solution polymerization becomes an inert solvent customary for the Ziegler low pressure process used.
  • an inert solvent customary for the Ziegler low pressure process used.
  • an aliphatic or cycloaliphatic Hydrocarbon as such, for example, propane, butane, hexane, heptane, Isooctane, cyclohexane, methylcyclohexane.
  • a petrol or hydrogenated diesel oil fraction can be used.
  • Toluene can also be used. Is preferred polymerized in the liquid monomer.
  • the monomers become gaseous or liquid added.
  • the duration of the polymerization is arbitrary, since that to be used according to the invention Catalyst system only a small time-dependent drop in the polymerization activity shows.
  • the supported catalyst system Before adding the catalyst, in particular the supported catalyst system (from a metallocene according to the invention and a supported cocatalyst or from a metallocene according to the invention and an organoaluminum compound on a polyolefin powder in finely divided form), another aluminum alkyl compound such as trimethyl aluminum, triethyl aluminum, triisobutyl aluminum, trioctyl aluminum can also be added or isoprenylaluminum can be added to the reactor to make the polymerization system inert (for example to separate catalyst poisons present in the olefin). This is added to the polymerization system in a concentration of 100 to 0.01 mmol Al per kg reactor content.
  • another aluminum alkyl compound such as trimethyl aluminum, triethyl aluminum, triisobutyl aluminum, trioctyl aluminum can also be added or isoprenylaluminum can be added to the reactor to make the polymerization system inert (for example to separate catalyst poisons present
  • Triisobutyl aluminum and triethyl aluminum are preferred in a concentration of 10 to 0.1 mmol Al per kg reactor content.
  • the molar Al / M 1 ratio can be chosen to be small in the synthesis of a supported catalyst system.
  • the inventive method is characterized in that the described Metallocenes in the technically particularly interesting temperature range from 50 to 80 ° C with high catalyst activity polymers with very high molecular weight, in the case produce prochiral monomers of very high molecular weight and very high stereotacticity.
  • zirconocenes according to the invention are characterized in that in the case of stereospecific polymerization of prochiral olefins, for example from Propylene, polymers with high isotaxy can be obtained.
  • the Al / CH 3 ratio in the aluminoxane was determined by decomposing the sample with H 2 SO 4 and determining the volume of the hydrolysis gases formed under normal conditions, and by complexometric titration of the aluminum in the then dissolved sample according to Schwarzenbach.
  • Toluene-soluble methylaluminoxane was used as a 10% strength by weight toluene solution for the examples of suspension polymerization and bulk polymerization with unsupported metallocene and, according to aluminum determination, contained 36 mg Al / cm 3 .
  • the acid chloride was taken up in 400 cm 3 of toluene and added dropwise at 10 ° C. to a suspension of 133 g (1.0 mol) of AlCl 3 in 2000 cm 3 of toluene and heated to 80 ° C. for 1 h.
  • the reaction mixture was poured onto 2000 g of ice and concentrated with. aq. HCl acidified to pH 1.
  • the organic phase was separated and the aq. Phase extracted 3 times with 200 cm 3 Et 2 O each.
  • the combined organic phases were washed with saturated aq. NaHCO 3 -, saturated aq. Washed NaCl solution and then dried (MgSO 4 ).
  • a dry 16 dm 3 reactor was first flushed with nitrogen and then with propylene and filled with 10 dm 3 of liquid propylene. Then 30 cm 3 of toluene methylaluminoxane solution were added and the mixture was stirred at 30 ° C. for 15 minutes.
  • Example 2 The polymerization from Example 1 was repeated, with the difference that 0.9 mg of rac-5 was used as the catalyst and the polymerization temperature was 70.degree. 1.4 kg of polypropylene were obtained.
  • the reactor showed heavy deposits on the inner wall and stirrer.
  • a dry 16 dm 3 reactor was flushed first with nitrogen and then with propylene and filled with 10 dm 3 of liquid propylene. Then 3 cm 3 of triisobutylaluminum (pure, 12 mmol) were diluted with 30 cm 3 of hexane, added to the reactor and the mixture was stirred at 30 ° C. for 15 minutes. The catalyst suspension was then added to the reactor, heated to the polymerization temperature of 50 ° C. (4 ° C./min) and the polymerization system was kept at 50 ° C. for 1 hour by cooling. The polymerization was stopped by adding 20 cm 3 of isopropanol. The excess monomer was vented and the polymer was dried in vacuo.
  • the result was 300 g of polypropylene powder.
  • the reactor showed no deposits on the inner wall or stirrer.
  • Example 3 The synthesis of the supported catalyst system from Example 3 was repeated with the difference that 150 cm 3 (335 mmol Al) of the suspension "MAO on SiO 2 " and 44.2 mg rac-5 (70.3 ⁇ mol Zr) were used and that Reaction mixture was stirred at room temperature for 60 minutes. The solid was then filtered off and washed 3 times with 50 cm 3 of hexane. The remaining, hexane-moist filter residue was dried in vacuo to a free-flowing, pale pink powder. 33.3 g of supported, dry catalyst were obtained.
  • the polymerization was carried out analogously to Example 3 at 70 ° C.
  • the result was 1.05 kg of polypropylene powder.
  • the reactor showed no deposits on the inner wall or stirrer.
  • a dry 1.5 dm 3 reactor was flushed with N 2 and filled at 20 ° C. with 750 cm 3 of a dearomatized gasoline cut with the boiling range 100-120 ° C. ("®Exxsol 100/120"). Then the gas space of the reactor was flushed nitrogen-free by pressing 8 bar propylene 5 times and relaxing. Then 3.75 cm 3 of toluene solution of methylaluminoxane (10% by weight of MAO) were added. The contents of the reactor were heated to 30 ° C. in the course of 15 minutes with stirring and the total pressure was adjusted to 8 bar by adding propylene at a stirring speed of 500 rpm.
  • 0.1 mg rac-5 was dissolved in 1.25 cm 3 toluene methylaluminoxane solution and brought to a complete reaction by standing for 15 minutes. The solution was then added to the reactor, the polymerization system brought to a temperature of 50 ° C. and kept at this temperature for 1 h by appropriate cooling. The pressure was kept at 8 bar during this time by appropriate addition of propylene, then the reaction was stopped by adding 2 cm 3 of isopropanol, the polymer was filtered off and dried in vacuo.
  • Example 6 The polymerization from Example 6 was repeated with the difference that the Polymerization temperature was 60 ° C.
  • Example 6 The polymerization from Example 6 was repeated with the difference that the Polymerization temperature was 70 ° C.
  • Example 2 The procedure was as in Example 2. However, hydrogen was metered in before filling with liquid propylene: example Ndm 2 H 2 Metallocene activity VZ [kgPP / gMet * h] [cm 3 / g] 9 1.5 1640 495 10 3rd 1590 212 11 4.5 1720 142 12th 200 1580 17th
  • Examples 9-12 show the good hydrogen responsiveness of the invention Metallocens. It is a molecular weight control down to the wax area (see example 12) possible.
  • a dry 150 dm 3 reactor was flushed with nitrogen and filled at 20 ° C. with 80 dm 3 of a dearomatized gasoline cut with a boiling range of 100-120 ° C.
  • VZ 230cm 3 / g
  • MFI (230/5) 11dg / min
  • MFI (230 / 2.16) 3.7 dg / min
  • the block copolymer contained 5% ethylene. Fractionation of the product gave the following composition: 69% by weight homopolymer, 31% by weight copolymer, the copolymer having an ethylene content of 15% by weight, the average block length C 2 being 2.2.
  • a dry 16 dm 3 reactor was flushed with nitrogen and filled at 20 ° C. with 10 dm 3 of a dearomatized gasoline cut with a boiling range of 100-120 ° C. Then the gas space of the reactor was flushed nitrogen-free by pressing 2 bar of ethylene 5 times and relaxing. Then 30 cm 3 of toluene methylaluminoxane solution (corresponding to 45 mmol Al, molecular weight after cryoscopic determination 700 g / mol) were added. The contents of the reactor were heated to 30 ° C. in the course of 15 minutes with stirring, and the total pressure was adjusted to 5 bar by adding ethylene at a stirring speed of 250 rpm.
  • Polymerization For the polymerization, 2.08 g of the catalyst were suspended in 50 cm 3 of a dearomatized gasoline cut with a boiling range of 100-120 ° C. The polymerization was carried out analogously to Example 3 at 60 ° C. 1100 g of polypropylene powder were obtained. The reactor showed no deposits on the inner wall or stirrer.
  • Activity 165 kg PP / (g metallocene xh).
  • Example 26 The support from Example 26 was repeated with the difference that 0.845 g of rac-5 dissolved in 500 cm 3 of toluene was reacted with 90 g of "F-MAO on SiO 2 " suspended in 500 cm 3 of toluene. 84 g of red, powdery catalyst were obtained. The analysis showed a content of 9 mg metallocene per gram of solid, the red filtrate contained 13 mg zirconium.
  • Polymerization 1.1 g of the supported catalyst were suspended in 50 ml of a dearomatized gasoline cut with the boiling range 100-120 ° C. The polymerization was carried out analogously to Example 3 at 70 ° C. 2850 g of polypropylene powder were obtained. The reactor showed no deposits on the inner wall or stirrer.
  • a microporous polypropylene powder (AKZO) having a particle size less than 100 ⁇ m was freed by extraction with toluene in a Soxhlet extractor under inert conditions of impurities and then with 20 wt.% Strength trimethylaluminum solution in toluene is washed and dried in vacuo.
  • 51.1 mg of rac-5 were dissolved in 40 cm 3 of toluene methylaluminoxane solution and brought to a complete reaction by standing for 15 minutes.
  • 16.5 g of the PP powder were metered in and by briefly applying a vacuum, the gas in the pores of the support and part of the solvent were removed and the catalyst solution was completely absorbed.
  • Polymerization 4.6 g of the supported, prepolymerized catalyst were suspended in 50 cm 3 of a dearomatized gasoline cut with the boiling range 100-120 ° C. The polymerization was carried out analogously to Example 3 at 70 ° C. The result was 250 g of polypropylene powder. The reactor showed no deposits on the inner wall or stirrer, the average particle diameter was 1000 ⁇ m .
  • Example 29 1 g of the supported, unpolymerized catalyst from Example 29 was suspended in 50 cm 3 of n-decane for the polymerization.
  • the polymerization was carried out analogously to Example 3 at 70 ° C. 600 g of polypropylene resulted.
  • the reactor showed thin deposits on the inner wall and stirrer, the average particle diameter was> 2000 ⁇ m .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Catalysts consisting of a metallocene of formula (I) and a cocatalyst are claimed, M<1> = a Group IVb, Vb or VIb metal; R<1>, R<2> = H, 1-10C alkyl or alkoxy, 6-10C aryl or aryloxy, 2-10C alkenyl, 7-40C aralkyl or alkaryl, 8-40C aralkenyl, OH or halogen; R<3> = H, halogen, optionally halogenated 1-10C alkyl, 6-10C aryl, N(R<16>)2, SR<16>, OSi(R<16>)3, Si(R<16>)3 or P(R<16>)2 (with R<16> = halogen, 1-10C alkyl or 6-10C aryl); R<4>-R<12> = as for R<3>, or adjacent groups may form part of one or more aromatic or aliphatic rings, or the groups R<5> and R<8> or R<12> may form such rings with the attached atoms; R<13> = -X-, -X-X-, -Y-Y-, -O-X-O- -Y-, -O-X-, -Y-X-, -Y-Y-Y-, =BR<14>, =AlR<14>, -O-, -S-, =SO, =SO2, =NR<14>, =CO, =PR<14> or =P(O)R<14>; X = -M<2>R<14>R<15>-; Y = -CR<14>R<15>; R<14>, R<15> = H, halogen, 1-10C alkyl, fluoroalkyl or alkoxy, 6-10C aryl, fluoroaryl or aryloxy, 2-10C alkenyl, 7-40C aralkyl or alkaryl, or 8-40C aralkenyl, or R<14> + R<15> + the attached atoms may form ring(s); M<2> = silicon, germanium or tin. Also claimed are: (i) polyolefins obtained by (co)polymerisation of olefins of formula Ra-CH=CH-Rb (with Ra, Rb = H or 1-14C hydrocarbyl, or Ra + Rb may form part of one or more rings) at -60 to 200 degrees C and 0.5-100 bar in solution, suspension or gas phase, in presence of these catalysts; (ii) a process for the production of metallocenes (I); and (iii) intermediate indanones, indenes and bridged ligand systems formed in this process.

Description

Die vorliegende Erfindung bezieht sich auf neue Metallocene mit arylsubstituierten Indenylderivaten als Liganden, die sehr vorteilhaft als Katalysatorkomponenten bei der Herstellung von Polyolefinen mit hoher Isotaktizität, enger Molmassenverteilung und sehr hoher Molmasse verwendet werden können.The present invention relates to new aryl-substituted metallocenes Indenyl derivatives as ligands, which are very advantageous as catalyst components in the Production of polyolefins with high isotacticity, narrow molecular weight distribution and very high molecular weight can be used.

Polyolefine mit hoher Molmasse besitzen insbesondere Bedeutung für die Herstellung von Folien, Platten oder Großhohlkörpern oder Formteilen, wie beispielsweise Rohren.High molecular weight polyolefins are particularly important for production of foils, plates or large hollow bodies or molded parts, such as pipes.

Aus der Literatur ist die Herstellung von Polyolefinen mit löslichen Metallocenverbindungen in Kombination mit Aluminoxanen oder anderen Cokatalysatoren, die aufgrund ihrer Lewis-Acidität das neutrale Metallocen in ein Kation überführen und stabilisieren können, bekannt.The production of polyolefins with soluble metallocene compounds is known from the literature in combination with aluminoxanes or other cocatalysts convert the neutral metallocene into a cation due to its Lewis acidity and can stabilize, known.

Lösliche Metallocenverbindungen auf der Basis von Bis(cyclopentadienyl)zirkon-dialkyl bzw. dihalogenid in Kombination mit oligomeren Aluminoxanen können Ethylen mit guter und Propylen mit mäßiger Aktivität polymerisieren. Man erhält Polyethylen mit enger Molmassenverteilung und mittlerer Molmasse. Das auf diese Weise hergestellte Polypropylen ist ataktisch und hat eine sehr niedrige Molmasse.Soluble metallocene compounds based on bis (cyclopentadienyl) zirconium dialkyl or dihalide in combination with oligomeric aluminoxanes can ethylene with Polymerize good and propylene with moderate activity. Polyethylene is obtained with narrow molecular weight distribution and medium molecular weight. The manufactured in this way Polypropylene is atactic and has a very low molecular weight.

Die Herstellung von isotaktischem Polypropylen gelingt mit Hilfe des Ethylen-bis(4,5,6,7-tetrahydro-1-indenyl)zirkoniumdichlorids zusammen mit einem Aluminoxan in einer Suspensionspolymerisation (vgl. EP-A- 185 918). Das Polymer besitzt eine enge Molmassenverteilung. Besonderer Nachteil dieses Verfahrens ist, daß bei technisch relevanten Polymerisationstemperaturen nur Polymere mit sehr niedriger Molmasse hergestellt werden können. Isotactic polypropylene can be produced with the aid of ethylene bis (4,5,6,7-tetrahydro-1-indenyl) zirconium dichloride together with an aluminoxane in a suspension polymerization (cf. EP-A-185 918). The polymer has a tight Molar mass distribution. A particular disadvantage of this method is that with technical relevant polymerization temperatures only polymers with very low molecular weight can be produced.

Es wurde auch eine spezielle Voraktivierungsmethode des Metallocens mit einem Aluminoxan vorgeschlagen, welche zu einer beachtlichen Steigerung der Aktivität des Katalysatorsystems und zu einer deutlichen Verbesserung der Kornmorphologie des Polymeren führt (vgl. DE 37 26 067). Die Voraktivierung erhöht die Molmasse jedoch nicht wesentlich.A special pre-activation method of the metallocene with a Aluminoxan proposed, which leads to a considerable increase in the activity of the Catalyst system and to a significant improvement in the grain morphology of the Polymer leads (see. DE 37 26 067). The preactivation increases the molecular weight not essential.

Weiterhin sind Katalysatoren auf der Basis von Ethylenbisindenylhafniumdichlorid und Ethylenbis(4,5,6,7-tetrahydro-1-indenyl)hafniumdichlorid und Methylaluminoxan bekannt, mit denen durch Suspensionspolymerisation höhermolekulare Polypropylene hergestellt werden können (vgl. J. Am. Chem. Soc. (1987), 109, 6544). Unter technisch relevanten Polymerisationsbedingungen ist jedoch die Kommorphologie der derart erzeugten Polymere nicht befriedigend und die Aktivität der eingesetzten Katalysatorsysteme vergleichsweise gering. Verbunden mit den hohen Katalysatorkosten ist somit mit diesen Systemen eine kostengünstige Polymerisation nicht möglich.Furthermore, catalysts based on ethylene bisindenyl hafnium dichloride and ethylene bis (4,5,6,7-tetrahydro-1-indenyl) hafnium dichloride and methylaluminoxane are known, with which higher molecular weight polypropylenes can be produced by suspension polymerization (cf. J. Am. Chem. Soc. (1987) 109 , 6544). Under technically relevant polymerization conditions, however, the commorphology of the polymers produced in this way is unsatisfactory and the activity of the catalyst systems used is comparatively low. Coupled with the high catalyst costs, low-cost polymerization is therefore not possible with these systems.

Eine deutliche Steigerung der Molmasse konnte durch die Verwendung von Metallocenen erreicht werden, bei denen die durch eine Brücke fixierten aromatischen π-Liganden in 2-Stellung (vgl. DE 40 35 886) oder in 2- und 4-Stellung (vgl. DE 41 28 238) Substituenten tragen.A significant increase in the molar mass could be achieved by using metallocenes in which the aromatic π ligands fixed by a bridge are in the 2-position (see DE 40 35 886) or in the 2- and 4-position (see DE 41 28 238) bear substituents.

Eine weitere Steigerung der Molmasse wurde durch die Verwendung aromatischer π-Liganden mit Substituenten in 2-, 4- und 6-Stellung (vgl. DE 41 39 596) sowie aromatischer π-Liganden vom 4,5- Benzoindenyltyp erreicht (vgl. DE 41 39 595).A further increase in the molecular weight was achieved by using aromatic π ligands with substituents in the 2-, 4- and 6-position (see DE 41 39 596) and aromatic π ligands of the 4,5-benzoindenyl type (see DE 41 39 595).

Die letztgenannten Metallocene mit den genannten Substituenten sind in dieser Hinsicht bei einer Polymerisationstemperatur von 70°C bereits sehr leistungsfähig. Trotzdem sind die erzielbaren Molmassen bei der technisch optimalen Polymerisationstemperatur von 70°C für viele technische Anwendungen wie beispielsweise die Herstellung von Polymeren für Rohre und Großhohlkörper sowie spezielle Fasern noch zu gering. Auch die in EP 0 485 823 A1 offenbarten Metallocene liefern noch nicht Polymere, die über einen großen Molmassenbereich gewünseht hohe Schmelzpunkte haben. Unter dem Zwang großtechnisch kostengünstiger Produktion muß bei möglichst hohen Reaktionstemperaturen polymerisiert werden, da bei höheren Polymerisationstemperaturen die entstehende Reaktionswärme mit weniger Kühlmedium abgeführt werden kann. Daher kann der Kühlwasserkreislauf deutlich geringer dimensioniert werden.The latter metallocenes with the substituents mentioned are in this In terms of a polymerization temperature of 70 ° C already very powerful. Nevertheless, the molar masses that can be achieved are at the technically optimal polymerization temperature of 70 ° C for many technical applications such as Production of polymers for tubes and large hollow bodies as well as special fibers still too low. Also those disclosed in EP 0 485 823 A1 Metallocenes do not yet provide polymers that have a large molecular weight range have high melting points. Under the constraint of large-scale, cost-effective production must be possible high reaction temperatures are polymerized because at higher polymerization temperatures the resulting heat of reaction is dissipated with less cooling medium can be. Therefore, the cooling water circuit can be dimensioned significantly smaller become.

Ein häufig auftretender Nachteil der löslichen (homogenen) Metallocen-/Methylaluminoxan-Katalysatorsysteme in Verfahren, bei denen das gebildete Polymer als Feststoff anfällt, ist die Ausbildung von starken Belägen an Reaktorwänden und Rührer. Diese Beläge entstehen durch Agglomeration der Polymerpartikel, wenn das Metallocen, oder Aluminoxan, oder beide gelöst im Suspensionsmedium vorliegen. Derartige Beläge in den Reaktorsystemen müssen regelmäßig entfernt werden, da diese rasch erhebliche Stärken erreichen, eine hohe Festigkeit besitzen und den Wärmeaustausch zum Kühlmedium verhindern.A common disadvantage of soluble (homogeneous) metallocene / methylaluminoxane catalyst systems in processes in which the polymer formed is a solid is the formation of thick deposits on the reactor walls and stirrers. This Coatings arise from agglomeration of the polymer particles when the metallocene, or aluminoxane, or both are present dissolved in the suspension medium. Such Deposits in the reactor systems must be removed regularly, as these are quick achieve considerable strengths, have high strength and heat exchange to prevent coolant.

Es ist daher vorteilhaft, Metallocene in geträgerter Form einzusetzen. Ein effizientes und einfaches Verfahren zur Trägerung von Metallocenen, das universell in allen Polymerisationsverfahren einsetzbar ist, ist vorgeschlagen worden (vgl.EP-A- 578 838).It is therefore advantageous to use metallocenes in a supported form. An efficient one and simple process for the support of metallocenes, which is universal in all Polymerization process can be used has been proposed (see EP-A-578 838).

Ein weiterer Nachteil im Fall der stereospezifischen Polymerisation prochiraler Monomere, z.B. von Propylen, mit Metallocenkatalysatoren ist die relativ niedrige Isotaxie, die sich im Falle von isotaktischem Polypropylen in niedrigen Schmelzpunkten auswirkt. Insbesondere Metallocene mit Substituenten in 2- und 4-Stellung und speziell rac-Dimethylsilylbis(2-Methyl-4-isopropyl-indenyl)zirkondichlorid in Kombination mit Methylaluminoxan liefern im Fall von Propylen ein Polymer mit hoher Isotaktizität und daher hohem Schmelzpunkt (vgl. EP-A- 530 647). Trotzdem sind die erzielbaren Schmelzpunkte bei technisch relevanten Polymerisationstemperaturen (z.B. 70°C) für einige technische Anwendungen zu niedrig.Another disadvantage in the case of stereospecific polymerization of prochiral monomers, e.g. of propylene, with metallocene catalysts is the relatively low isotaxy, which affects low melting points in the case of isotactic polypropylene. In particular metallocenes with substituents in the 2- and 4-position and especially rac-dimethylsilylbis (2-methyl-4-isopropyl-indenyl) zirconium dichloride in combination with In the case of propylene, methylaluminoxane provide a polymer with high isotacticity and therefore high melting point (cf. EP-A-530 647). Nevertheless, the achievable Melting points at technically relevant polymerization temperatures (e.g. 70 ° C) for some technical applications too low.

Es gibt allerdings auch technische Anwendungen, bei denen niedrige Schmelzpunkte erwünscht sind.However, there are also technical applications where low melting points are desired.

Es bestand die Aufgabe, ein Verfahren und/oder ein Katalysatorsystem zu finden, das Polymere mit sehr hoher Molmasse und im Fall der isospezifischen Polymerisation prochiraler Monomere Polymere mit hoher Isotaxie in großer Ausbeute erzeugt. Durch Trägerung könnten die aus dem Stand der Technik bekannten Nachteile durch Belagsbildung und hohen Feinkornanteil vermieden werden. Durch Verwendung von Wasserstoff als Molmassenregler sollte dann der gesamte Bereich der technisch interessanten Molmassen mit nur einem Metallocen abgedeckt werden können.The task was to find a process and / or a catalyst system that Polymers with very high molecular weight and in the case of isospecific polymerization prochiral monomeric polymers with high isotaxy produced in high yield. By Carrying could cause the disadvantages known from the prior art The formation of deposits and a high proportion of fine grains can be avoided. By using Hydrogen as a molecular weight regulator should then cover the entire technical area interesting molar masses can be covered with just one metallocene.

Es wurde nun gefunden, daß Metallocene mit speziellen Indenylderivaten als Uganden geeignete Katalysatoren (Katalysatorkomponenten) bei der Herstellung von Polyolefinen mit hoher Molmasse, insbesondere bei Verwendung prochiraler Monomere von isotaktischen Polyolefinen mit sehr hoher Molmasse und sehr hoher Isotaxie sind.It has now been found that metallocenes with special indenyl derivatives as Ugands suitable catalysts (catalyst components) in the production of polyolefins with high molecular weight, especially when using prochiral monomers of areotactic polyolefins with very high molecular weight and very high isotaxy.

Durch Umsetzung dieser löslichen Metallocene mit einer geträgerten aluminiumorganischen Katalysator-Komponente entsteht ein Katalysatorsystem, das zur Aktivierung keinen zusätzlichen Cokatalysator benötigt und die Ausbildung von Reaktorbelägen vollständig vermeidet.By reacting these soluble metallocenes with a supported organoaluminum Catalyst component creates a catalyst system that is used for activation no additional cocatalyst required and the formation of reactor coatings completely avoided.

Die vorliegende Erfindung betrifft daher Verbindungen der Formel I:

Figure 00040001
worin

  • M1 ein Metall der Gruppe IVb, Vb oder VIb des Periodensystems ist,
  • R1 und R2 gleich oder verschieden sind und ein Wasserstoffatom, eine C1-C10-Alkyl-, eine C1-C10-Alkoxy-, eine C6-C10-Aryl-, eine C6-C10-Aryloxy-, eine C2-C10-Alkenyl-, eine C7-C40-Arylalkyl-, eine C7-C40-Alkylaryl-, eine C8-C40-Arylalkenyl-, eine OH-Gruppe oder ein Halogenatom bedeuten,
  • die Reste R3 gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine C1-C10-Alkylgruppe, die halogeniert sein kann, eine C6-C10-Arylgruppe, einen NR16 2-, -SR16-, -OSiR16 3-, -SiR16 3- oder -PR16 2-Rest bedeuten, worin R16 ein Halogenatom, eine C1-C10-Alkylgruppe oder eine C6-C10-Arylgruppe ist,
  • R4 bis R12 gleich oder verschieden sind und die für R3 genannten Bedeutungen besitzen, oder benachbarte Reste R4 bis R12 mit den sie verbindenden Atomen einen oder mehrere aromatische oder aliphatische Ringe bilden, oder die Reste R5 und R8 oder R12 mit den sie verbindenden Atomen einen aromatischen oder aliphatischen Ring bilden,
  • R13
    Figure 00050001
    Figure 00050002
    =BR14, =AIR14, -Ge-, -O-, -S-, =SO, =SO2, =NR14, =CO, =PR14 oder =P(O)R14 ist,
  • wobei R14 und R15 gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine C1-C10-Alkyl-, eine C1-C10-Fluoralkyl-, eine C1-C10-Alkoxy-, eine C6-C10-Aryl-, eine C6-C10-Fluoraryl-, eine C6-C10-Aryloxy-, eine C2-C10-Alkenyl-, eine C7-C40-Arylalkyl-, eine C7-C40-Alkylaryl-, eine C8-C40-Arylalkenylgruppe bedeuten, oder
  • R14 und R15 jeweils mit den sie verbindenden Atomen einen oder mehrere Ringe bilden und
  • M2 Silizium, Germanium oder Zinn ist.
  • The present invention therefore relates to compounds of the formula I:
    Figure 00040001
    wherein
  • M 1 is a metal from group IVb, Vb or VIb of the periodic table,
  • R 1 and R 2 are identical or different and are a hydrogen atom, a C 1 -C 10 alkyl, a C 1 -C 10 alkoxy, a C 6 -C 10 aryl, a C 6 -C 10 - Aryloxy, a C 2 -C 10 alkenyl, a C 7 -C 40 arylalkyl, a C 7 -C 40 alkylaryl, a C 8 -C 40 arylalkenyl, an OH group or a halogen atom mean,
  • the radicals R 3 are identical or different and are a hydrogen atom, a halogen atom, a C 1 -C 10 alkyl group which may be halogenated, a C 6 -C 10 aryl group, an NR 16 2 -, -SR 16 -, - OSiR 16 3 -, -SiR 16 3 - or -PR 16 2 radical, in which R 16 is a halogen atom, a C 1 -C 10 alkyl group or a C 6 -C 10 aryl group,
  • R 4 to R 12 are the same or different and have the meanings given for R 3 , or neighboring radicals R 4 to R 12 form one or more aromatic or aliphatic rings with the atoms connecting them, or the radicals R 5 and R 8 or R 12 form an aromatic or aliphatic ring with the atoms connecting them,
  • R 13
    Figure 00050001
    Figure 00050002
    = BR 14 , = AIR 14 , -Ge-, -O-, -S-, = SO, = SO 2 , = NR 14 , = CO, = PR 14 or = P (O) R 14 ,
  • wherein R 14 and R 15 are the same or different and are a hydrogen atom, a halogen atom, a C 1 -C 10 alkyl, a C 1 -C 10 fluoroalkyl, a C 1 -C 10 alkoxy, a C 6 -C 10 aryl, a C 6 -C 10 fluoroaryl, a C 6 -C 10 aryloxy, a C 2 -C 10 alkenyl, a C 7 -C 40 arylalkyl, a C 7 -C 40 alkylaryl, a C 8 -C 40 arylalkenyl group, or
  • R 14 and R 15 each form one or more rings with the atoms connecting them and
  • M 2 is silicon, germanium or tin.
  • Die vorliegende Erfindung betrifft auch ein Verfahren zur Herstellung eines Olefinpolymers durch Polymerisation oder Copolymerisation eines Olefins der Formel Ra-CH=CH-Rb, worin Ra und Rb gleich oder verschieden sind und ein Wasserstoffatom oder einen Kohlenwasserstoffrest mit 1 bis 14 C-Atomen bedeuten, oder Ra und Rb mit den sie verbindenden Atomen einen oder mehrere Ringe bilden können, bei einer Temperatur von -60 bis 200°C, bei einem Druck von 0,5 bis 100 bar, in Lösung, in Suspension oder in der Gasphase, in Gegenwart eines Katalysators, welcher aus einem Metallocen als Übergangsmetallverbindung und einem Cokatalysator gebildet wird, dadurch gekennzeichnet, daß das Metallocen eine Verbindung der Formel I ist.The present invention also relates to a process for the preparation of an olefin polymer by polymerization or copolymerization of an olefin of the formula R a -CH = CH-R b , in which R a and R b are identical or different and a hydrogen atom or a hydrocarbon radical with 1 to 14 C. -Atoms mean, or R a and R b can form one or more rings with the atoms connecting them, at a temperature of -60 to 200 ° C, at a pressure of 0.5 to 100 bar, in solution, in suspension or in the gas phase, in the presence of a catalyst which is formed from a metallocene as transition metal compound and a cocatalyst, characterized in that the metallocene is a compound of the formula I.

    Die erfindungsgemäßen Verbindungen sind Metallocene der Formel I

    Figure 00060001
    worin M1 ein Metall der Gruppe IVb, Vb oder Vlb des Periodensystems, beispielsweise Titan, Zirkonium, Hafnium, Vanadium, Niob, Tantal, Chrom, Molybdän oder Wolfram, vorzugsweise Zirkonium, Hafnium und Titan ist. The compounds according to the invention are metallocenes of the formula I.
    Figure 00060001
    wherein M 1 is a metal from group IVb, Vb or Vlb of the periodic table, for example titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum or tungsten, preferably zirconium, hafnium and titanium.

    R1 und R2 sind gleich oder verschieden und bedeuten ein Wasserstoffatom, eine C1-C10-, vorzugsweise C1-C3-Alkylgruppe, eine C1-C10-, vorzugsweise C1-C3-Alkoxygruppe, eine C6-C10-, vorzugsweise C6-C8-Arylgruppe, eine C6-C10-, vorzugsweise C6-C8-Aryloxygruppe, eine C2-C10-, vorzugsweise C2-C4-Alkenylgruppe, eine C7-C40-, vorzugsweise C7-C10-Arylalkylgruppe, eine C7-C40-, vorzugsweise C7-C12-Alkylarylgruppe, eine C8-C40-, vorzugsweise C8-C12-Arylalkenylgruppe, oder ein Halogenatom, vorzugsweise Chlor.R 1 and R 2 are the same or different and represent a hydrogen atom, a C 1 -C 10 , preferably C 1 -C 3 alkyl group, a C 1 -C 10 , preferably C 1 -C 3 alkoxy group, a C. 6 -C 10 -, preferably C 6 -C 8 aryl group, a C 6 -C 10 -, preferably C 6 -C 8 aryloxy group, a C 2 -C 10 -, preferably C 2 -C 4 alkenyl group, a C 7 -C 40 -, preferably C 7 -C 10 arylalkyl group, a C 7 -C 40 -, preferably C 7 -C 12 alkylaryl group, a C 8 -C 40 -, preferably C 8 -C 12 arylalkenyl group, or a halogen atom, preferably chlorine.

    Die Reste R3 bis R12 sind gleich oder verschieden und bedeuten ein Wasserstoffatom, ein Halogenatom, bevorzugt Fluor, Chlor oder Brom, eine C1-C10-, vorzugsweise C1-C4-Alkylgruppe, die halogeniert sein kann, eine C6-C10-, vorzugsweise C6-C8-Arylgruppe, einen - NR16 2-, -SR16-, -OSiR16 3-, -SiR16 3- oder -PR16 2-Rest, wobei R16 ein Halogenatom, vorzugsweise Chlor, oder eine C1-C10-, vorzugsweise C1-C4-Alkylgruppe oder eine C6-C10-, vorzugsweise C6-C8-Arylgruppe sein kann.The radicals R 3 to R 12 are the same or different and represent a hydrogen atom, a halogen atom, preferably fluorine, chlorine or bromine, a C 1 -C 10 -, preferably C 1 -C 4 -alkyl group, which can be halogenated, a C. 6 -C 10 -, preferably C 6 -C 8 aryl group, a - NR 16 2 -, -SR 16 -, -OSiR 16 3 -, -SiR 16 3 - or -PR 16 2 radical, where R 16 is a Halogen atom, preferably chlorine, or a C 1 -C 10 , preferably C 1 -C 4 alkyl group or a C 6 -C 10 , preferably C 6 -C 8 aryl group.

    Die benachbarten Reste R4 bis R12 können mit den sie verbindenden Atomen einen aromatischen, vorzugsweise 6-gliedrigen aromatischen oder aliphatischen, vorzugsweise 4-8-gliedrigen aliphatischen Ring bilden.

  • R13 ist
    Figure 00070001
    Figure 00070002
    =BR14, =AIR14, -Ge-, -O-, -S-, =SO, =SO2, =NR14, =CO, =PR14 oder =P(O)R14, vorzugsweise
    Figure 00080001
    Figure 00080002
    =BR14, =AIR14, -Ge-, -O-, -S-, =SO, =SO2, =NR14, =CO, =PR14, oder =P(O)R14, wobei R14 und R15 gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine C1-C10-, vorzugsweise C1-C4-Alkylgruppe insbesondere Methylgruppe, eine C1-C10-Fluoralkyl-, vorzugsweise CF3-Gruppe, eine C6-C10-, vorzugsweise C6-C8-Aryl-, eine C6- C10-Fluoraryl-, vorzugsweise Pentafluorphenylgruppe, eine C1-C10-, vorzugsweise C1-C4-Alkoxygruppe, insbesondere Methoxygruppe, eine C2-C10-, vorzugsweise C2-C4-Alkenylgruppe, eine C7-C40-, vorzugsweise C7-C10-Arylalkylgruppe, eine C8-C40-, vorzugsweise C8-C12-Arylalkenylgruppe, eine C7-C40-, vorzugsweise C7-C12-Alkylarylgruppe bedeuten oder R14 und R15 jeweils mit den sie verbindenden Atomen einen Ring bilden.
  • M2 ist Silizium, Germanium oder Zinn, vorzugsweise Silizium oder Germanium.
  • Für Verbindungen der Formel I gilt bevorzugt, daß
  • M1 Zirkonium oder Hafnium ist,
  • R1 und R2 gleich sind und eine C1-C3-Alkylgruppe oder ein Halogenatom bedeuten, die Reste R3 gleich sind und eine C1-C4-Alkylgruppe bedeuten,
  • R4 bis R12 gleich oder verschieden sind und Wasserstoff oder eine C1-C4-Alkylgruppe bedeuten,
  • R13 für
    Figure 00090001
    steht, wobei M2 Silizium oder Germanium ist und R14 und R15 gleich oder verschieden sind und für eine C1-C4- Alkylgruppe oder eine C6-C10-Arylgruppe stehen.
  • The adjacent radicals R 4 to R 12 can form an aromatic, preferably 6-membered aromatic or aliphatic, preferably 4-8-membered aliphatic ring with the atoms connecting them.
  • R 13 is
    Figure 00070001
    Figure 00070002
    = BR 14 , = AIR 14 , -Ge-, -O-, -S-, = SO, = SO 2 , = NR 14 , = CO, = PR 14 or = P (O) R 14 , preferably
    Figure 00080001
    Figure 00080002
    = BR 14 , = AIR 14 , -Ge-, -O-, -S-, = SO, = SO 2 , = NR 14 , = CO, = PR 14 , or = P (O) R 14 , where R 14 and R 15 are identical or different and are a hydrogen atom, a halogen atom, a C 1 -C 10 , preferably C 1 -C 4 alkyl group, in particular methyl group, a C 1 -C 10 fluoroalkyl, preferably CF 3 group C 6 -C 10 -, preferably C 6 -C 8 -aryl, a C 6 - C 10 -Fluoraryl-, preferably pentafluorophenyl group, a C 1 -C 10 -, preferably C 1 -C 4 alkoxy, in particular methoxy, a C 2 -C 10 , preferably C 2 -C 4 alkenyl group, a C 7 -C 40 , preferably C 7 -C 10 arylalkyl group, a C 8 -C 40 , preferably C 8 -C 12 arylalkenyl group mean a C 7 -C 40 , preferably C 7 -C 12 alkylaryl group or R 14 and R 15 each form a ring with the atoms connecting them.
  • M 2 is silicon, germanium or tin, preferably silicon or germanium.
  • For compounds of formula I it is preferred that
  • M 1 is zirconium or hafnium,
  • R 1 and R 2 are identical and denote a C 1 -C 3 alkyl group or a halogen atom, the radicals R 3 are identical and denote a C 1 -C 4 alkyl group,
  • R 4 to R 12 are identical or different and denote hydrogen or a C 1 -C 4 alkyl group,
  • R 13 for
    Figure 00090001
    stands, wherein M 2 is silicon or germanium and R 14 and R 15 are identical or different and stand for a C 1 -C 4 alkyl group or a C 6 -C 10 aryl group.
  • Weiterhin bevorzugt sind Verbindungen der Formel I, bei denen die Reste R4 und R7 Wasserstoff bedeuten und R5, R6 und R8 bis R12 für eine C1-C4-Alkylgruppe oder Wasserstoff stehen.Also preferred are compounds of the formula I in which the radicals R 4 and R 7 are hydrogen and R 5 , R 6 and R 8 to R 12 are a C 1 -C 4 alkyl group or hydrogen.

    Besonders bevorzugt sind Verbindungen der Formel I, bei denen M1 Zirkon ist, R1 und R2 gleich sind und Chlor bedeuten, die Reste R3 gleich sind und eine C1-C4-Alkylgruppe bedeuten, R4 und R7 für Wasserstoff steht, R5, R6 und R8 bis R12 gleich oder verschieden und eine C1-C4- Alkylgruppe oder Wasserstoff bedeuten und R13 für

    Figure 00090002
    steht, wobei M2 Silizium bedeutet, und R14 und R15 gleich oder verschieden sind und für eine C1-C4-Alkylgruppe oder eine C6-C10-Arylgruppe stehen.Particularly preferred are compounds of the formula I in which M 1 is zirconium, R 1 and R 2 are the same and are chlorine, the radicals R 3 are the same and represent a C 1 -C 4 alkyl group, R 4 and R 7 are hydrogen R 5 , R 6 and R 8 to R 12 are identical or different and are a C 1 -C 4 alkyl group or hydrogen and R 13 is
    Figure 00090002
    stands, where M 2 is silicon, and R 14 and R 15 are identical or different and represent a C 1 -C 4 alkyl group or a C 6 -C 10 aryl group.

    Die Herstellung der Metallocene I erfolgt nach literaturbekannten Verfahren und ist im nachfolgenden Reaktionsschema wiedergegeben

    Figure 00100001
    Figure 00100002
    Figure 00110001
    Figure 00110002
    X = nukleophile Abgangsgruppe, beispielsweise Halogen oder Tosyl.
    Figure 00120001
    The metallocenes I are prepared by processes known from the literature and are reproduced in the reaction scheme below
    Figure 00100001
    Figure 00100002
    Figure 00110001
    Figure 00110002
    X = nucleophilic leaving group, for example halogen or tosyl.
    Figure 00120001

    Die 2-Phenyl-benzylhalogenidderivate der Formel A sind im Handel erhältlich oder können nach literaturbekannten Methoden hergestellt werden.The 2-phenyl-benzyl halide derivatives of the formula A are commercially available or can be produced by methods known from the literature.

    Die Umsetzung zu den Verbindungen der Formel B erfolgt durch Reaktion mit substituierten Malonsäureestern unter basischen Bedingungen, wie beispielsweise in ethanolischen Lösungen von Natriumethanolat.The conversion to the compounds of formula B takes place by reaction with substituted ones Malonic esters under basic conditions, such as in ethanolic solutions of sodium ethanolate.

    Die Verbindungen der Formel B werden mit Alkalihydroxiden wie Kaliumhydroxid oder Natriumhydroxid verseift und durch Behandeln der entstandenen Dicarbonsäuren mit Wärme zu den Verbindungen der Formel C decarboxyliert.The compounds of formula B are mixed with alkali hydroxides such as potassium hydroxide or Saponified sodium hydroxide and by treating the resulting dicarboxylic acids with Heat decarboxylated to the compounds of formula C.

    Der Ringschluß zu den entsprechenden Phenyl-1-indanonen der Formel D erfolgt durch Umsetzung mit Chlorierungsreagentien wie beispielsweise SOCl2 zu den entsprechenden Säurechloriden und anschließender Cyclisierung mit einem Friedel-Crafts-Katalysator in einem inerten Solvent, wie z.B. AICl3 oder Polyphosphorsäure in Methylenchlorid oder CS2.The ring closure to the corresponding phenyl-1-indanones of the formula D is carried out by reaction with chlorinating agents such as SOCl 2 to give the corresponding acid chlorides and subsequent cyclization with a Friedel-Crafts catalyst in an inert solvent such as AICl 3 or polyphosphoric acid in methylene chloride or CS 2 .

    Die Umsetzung zu den 7-Phenyl-indenderivaten der Formel E erfolgt durch Reduktion mit einem hydridübertragenden Reagenz, wie beispielsweise Natriumborhydrid oder Lithiumaluminiumhydrid oder Wasserstoff und einem entsprechenden Katalysator in einem inerten Lösungsmittel wie beispielsweise Diethylether oder Tetrahydrofuran zu den entsprechenden Alkoholen und Dehydratisierung der Alkohole unter sauren Bedingungen, wie beispielsaweise p-Toluolsulfonsäure oder einer wässrigen Mineralsäure oder durch Umsetzung mit wasserentziehenden Substanzen wie Magnesiumsulfat, wasserfreiem Kupfersulfat oder Molekularsiebe.The conversion to the 7-phenyl-indene derivatives of the formula E takes place by reduction with a hydride transferring reagent, such as sodium borohydride or Lithium aluminum hydride or hydrogen and a corresponding catalyst in an inert solvent such as diethyl ether or tetrahydrofuran the corresponding alcohols and dehydration of the alcohols under acidic Conditions such as p-toluenesulfonic acid or an aqueous mineral acid or by reaction with dehydrating substances such as magnesium sulfate, anhydrous copper sulfate or molecular sieves.

    Die Herstellung der Ligandsysteme der Formel G und die Umsetzung zu den verbrückten chiralen Metallocenen der Formel H sowie die Isolierung der gewünschten racemischen Form ist im Prinzip bekannt. Hierzu wird das Phenylindenderivat der Formel E mit einer starken Base wie beispielsweise Butyllithium oder Kaliumhydrid in einem inerten Lösungsmittel deprotoniert und mit einem Reagenz der Formel F zu dem Ligandsystem der Formel G umgesetzt. Dieses wird anschließend mit zwei Äquivalenten einer starken Base wie beispielsweise Butyllithium oder Kaliumhydrid in einem inerten Lösungsmittel deprotoniert und mit dem entsprechenden Metalltetraha-Olefinpolymerisation. Die chiralen Metallocene werden bevorzugt als Racemat eingesetzt. Verwendet werden kann aber auch das reine Enantiomere in der (+)- oder (-)-Form. Mit den reinen Enantiomeren ist ein optisch aktives Polymer herstellbar. Abgetrennt werden sollte jedoch die meso-Form der Metallocene, da das polymerisationsaktive Zentrum (das Metallatom) in diesen Verbindungen wegen der Spiegelsymmetrie am Zentralmetallatom nicht mehr chiral ist und daher kein hochisotaktisches Polymeres erzeugen kann. Wird die meso-Form nicht abgetrennt, ensteht neben isotaktischen Polymeren auch ataktisches Polymer. Für bestimmte Anwendungen, beispielsweise weiche Formkörper, kann dies durchaus wünschenswert sein.The preparation of the ligand systems of formula G and the implementation of the bridged chiral metallocenes of the formula H and the isolation of the desired Racemic form is known in principle. For this, the phenolene derivative of Formula E with a strong base such as butyllithium or potassium hydride in deprotonated with an inert solvent and with a reagent of formula F. implemented the ligand system of formula G. This is then done with two Equivalents of a strong base such as butyllithium or potassium hydride in deprotonated with an inert solvent and with the corresponding metal tetra-olefin polymerization. The chiral metallocenes are preferably used as a racemate. However, the pure enantiomer in the (+) or (-) form can also be used. An optically active polymer can be produced with the pure enantiomers. Detached However, the meso form of the metallocenes should be used, since the polymerization-active Center (the metal atom) in these compounds because of mirror symmetry is no longer chiral on the central metal atom and is therefore not a highly isotactic polymer can generate. If the meso form is not separated, isotactic forms arise Polymers also atactic polymer. For certain applications, for example soft moldings, this can be quite desirable.

    Erfindungsgemäß wird als Cokatalysator bevorzugt ein Aluminoxan der Formel IIa für den linearen Typ und/oder der Formel IIb für den cyclischen Typ verwendet,

    Figure 00140001
    According to the invention, an aluminoxane of the formula IIa for the linear type and / or of the formula IIb for the cyclic type is preferably used as cocatalyst,
    Figure 00140001

    Sind die Reste R17 verschieden, so sind sie bevorzugt Methyl und Wasserstoff oder alternativ Methyl und Isobutyl, wobei Wasserstoff oder Isobutyl bevorzugt zu 0,01-40% (Zahl der Reste R17) enthalten sind.If the R 17 radicals are different, they are preferably methyl and hydrogen or alternatively methyl and isobutyl, with hydrogen or isobutyl preferably containing 0.01-40% (number of the R 17 radicals).

    Das Aluminoxan kann auf verschiedene Arten nach bekannten Verfahren hergestellt werden. Eine der Methoden ist beispielsweise, daß eine Aluminiumkohlenwasserstoffverbindung und/oder ein Hydridoaluminiumkohlenwasserstoffverbindung mit Wasser (gasförmig, fest, flüssig oder gebunden - beispielsweise als Kristallwasser) in einem inerten Lösungsmittel (wie beispielsweise Toluol) umgesetzt wird. Zur Herstellung eines Aluminoxans mit verschiedenen Resten R17 werden beispielsweise entsprechend der gewünschten Zusammensetzung zwei verschiedene Aluminiumtrialkyle mit Wasser umgesetzt.The aluminoxane can be prepared in various ways by known methods. One of the methods is, for example, that an aluminum hydrocarbon compound and / or a hydridoaluminum hydrocarbon compound is reacted with water (gaseous, solid, liquid or bound - for example as water of crystallization) in an inert solvent (such as toluene). To produce an aluminoxane with different radicals R 17 , for example, two different aluminum trialkyls are reacted with water in accordance with the desired composition.

    Die genaue Struktur der Aluminoxane lla und IIb ist nicht bekannt.The exact structure of the aluminoxanes IIa and IIb is not known.

    Unabhängig von der Art der Herstellung ist allen Aluminoxanlösungen ein wechselnder Gehalt an nicht umgesetzter Aluminiumausgangsverbindung, die in freier Form oder als Addukt vorliegt, gemeinsam.Regardless of the type of manufacture, all aluminoxane solutions are changing Content of unreacted aluminum starting compound, which in free form or is present as an adduct, together.

    Es ist möglich, das Metallocen vor dem Einsatz in der Polymerisationsreaktion mit einem Aluminoxan der Formel IIa und/oder IIb vorzuaktivieren. Dadurch wird die Polymerisationsaktivität deutlich erhöht und die Kornmorphologie verbessert. Die Voraktivierung der Übergangsmetallverbindung wird in Lösung vorgenommen. Bevorzugt wird dabei das Metallocen in einer Lösung des Aluminoxans in einem inerten Kohlenwasserstoff aufgelöst. Als inerter Kohlenwasserstoff eignet sich ein aliphatischer oder aromatischer Kohlenwasserstoff. Bevorzugt wird Toluol verwendet.It is possible to include the metallocene in the polymerization reaction before use preactivate an aluminoxane of the formula IIa and / or IIb. This will make the Polymerization activity increased significantly and the grain morphology improved. The The transition metal compound is preactivated in solution. Prefers the metallocene is in a solution of the aluminoxane in an inert Dissolved hydrocarbon. An aliphatic hydrocarbon is suitable as the inert hydrocarbon or aromatic hydrocarbon. Toluene is preferably used.

    Die Konzentration des Aluminoxans in der Lösung liegt im Bereich von ca. 1 Gew.-% bis zur Sättigungsgrenze, vorzugsweise von 5 bis 30 Gew.%, jeweils bezogen auf die Gesamtlösungsmenge. Das Metallocen kann in der gleichen Konzentration eingesetzt werden, vorzugsweise wird es jedoch in einer Menge von 10-4 - 1 mol pro mol Aluminoxan eingesetzt. Die Voraktivierung beträgt 5 Minuten bis 60 Stunden, vorzugsweise 5 bis 60 Minuten. Man arbeitet bei einer Temperatur von - 78 bis 100°C, vorzugsweise 0 bis 70°C.The concentration of the aluminoxane in the solution is in the range from about 1% by weight to the saturation limit, preferably from 5 to 30% by weight, based in each case on the total amount of solution. The metallocene can be used in the same concentration, but preferably it is used in an amount of 10 -4 - 1 mol per mol of aluminoxane. The preactivation is 5 minutes to 60 hours, preferably 5 to 60 minutes. One works at a temperature of -78 to 100 ° C, preferably 0 to 70 ° C.

    Mit Hilfe des Metallocens kann eine Vorpolymerisation erfolgen. Zur Vorpolymerisation wird bevorzugt das (oder eines der) in der Polymerisation eingesetzte(n) Olefin(e) verwendet.A prepolymerization can be carried out using the metallocene. For prepolymerization preference is given to (or one of the) olefin (s) used in the polymerization used.

    Das Metallocen kann auch auf einen Träger aufgebracht werden. Geeignete Trägermaterialien sind beispielsweise Silikagele, Aluminiumoxide, festes Aluminoxan oder andere anorganische Trägermaterialien wie beispielsweise Magnesiumchlorid. Ein geeignetes Trägermaterial ist auch ein Polyolefinpulver in feinverteilter Form.The metallocene can also be applied to a support. Suitable carrier materials are, for example, silica gels, aluminum oxides, solid aluminoxane or others inorganic carrier materials such as magnesium chloride. On A suitable carrier material is also a polyolefin powder in finely divided form.

    Vorzugsweise wird der Cokatalysator, d.h. die aluminiumorganische Verbindung, auf einen Träger wie beispielsweise Silikagele, Aluminiumoxide, festes Aluminoxan, andere anorganische Trägermaterialien oder auch ein Polyolefinpulver in feinverteilter Form aufgebracht und dann mit dem Metallocen umgesetzt.Preferably the cocatalyst, i.e. the organoaluminum compound a carrier such as silica gels, aluminum oxides, solid aluminoxane, others inorganic carrier materials or a polyolefin powder in finely divided form applied and then implemented with the metallocene.

    Als anorganische Träger können Oxide eingesetzt werden, die flammenpyrolytisch durch Verbrennung von Element-Halogeniden in einer Knallgas-Flamme erzeugt wurden, oder als Kieselgele in bestimmten Korngrößen-Verteilungen und Kornformen herstellbar sind.Oxides that are flame-pyrolytic can be used as inorganic carriers generated by burning element halides in a detonating gas flame were, or as silica gels in certain grain size distributions and grain shapes are producible.

    Die Herstellung des geträgerten Cokatalysators kann beispielsweise wie in EP-A-578 838 beschrieben in der folgenden Weise in einem Edelstahl-Reaktor in explosionsgeschützter Ausführung mit einem Umpumpsystem der Druckstufe 60 bar, mit Inertgasversorgung, Temperierung durch Mantelkühlung und zweitem Kühlkreislauf über einen Wärmetauscher am Umpumpsystem erfolgen. Das Umpumpsystem saugt den Reaktorinhalt über einen Anschluß im Reaktorboden mit einer Pumpe an und drückt ihn in einen Mischer und durch eine Steigleitung über einen Wärmetauscher in den Reaktor zurück. Der Mischer ist so gestaltet, daß sich in dem Zulauf ein verengter Rohrquerschnitt befindet, wo eine erhöhte Strömungsgeschwindigkeit entsteht, und in dessen Turbulenzzone axial und entgegen der Strömungsrichtung eine dünne Zuleitung geführt ist, durch welche - getaktet - jeweils eine definierte Menge Wasser unter 40 bar Argon eingespeist werden kann. Die Kontrolle der Reaktion erfolgt über einen Probennehmer am Umpumpkreislauf.The supported cocatalyst can be prepared, for example, as in EP-A-578 838 described in the following manner in a stainless steel reactor explosion-proof version with a pumping system of pressure level 60 bar, with inert gas supply, temperature control through jacket cooling and second cooling circuit via a heat exchanger on the pump system. The pump system sucks the reactor contents via a connection in the reactor bottom with a pump and presses it into a mixer and through a riser pipe via a heat exchanger the reactor back. The mixer is designed so that there is a constricted in the inlet Pipe cross-section is located where there is an increased flow velocity, and in whose turbulence zone has a thin feed line axially and counter to the direction of flow is guided, through which - clocked - a defined amount of water each 40 bar argon can be fed. The reaction is controlled via a Sampler on the pump circuit.

    Im Prinzip sind jedoch auch andere Reaktoren geeignet.In principle, however, other reactors are also suitable.

    Im vorstehend beschriebenen Reaktor mit 16 dm3 Volumen werden 5 dm3 Decan unter Inertbedingungen vorgelegt. 0,5 dm3 (=5,2 mol) Trimethylaluminium werden bei 25°C zugefügt. Danach werden 250 g Kieselgel SD 3216-30 (Grace AG), welche vorher bei 120°C in einem Argonfließbett getrocknet wurden, durch einen Feststofftrichter in den Reaktor eindosiert und mit Hilfe des Rührers und des Umpumpsystems homogen verteilt. Eine Gesamtmenge von 76,5 g Wasser wird in Portionen von 0,1 cm3 während 3,25 h jeweils alle 15 s in den Reaktor gegeben. Der Druck, herrührend vom Argon und den entwickelten Gasen, wird durch ein Druckregelventil konstant bei 10 bar gehalten. Nachdem alles Wasser eingebracht worden ist, wird das Umpumpsystem abgeschaltet und das Rühren noch 5 h bei 25°C fortgesetzt.In the above-described reactor with 16 dm 3 volume, 5 dm 3 decane are placed under inert conditions. 0.5 dm 3 (= 5.2 mol) trimethyl aluminum are added at 25 ° C. Then 250 g of silica gel SD 3216-30 (Grace AG), which had previously been dried in an argon fluid bed at 120 ° C., are metered into the reactor through a solids funnel and homogeneously distributed using the stirrer and the pumping system. A total of 76.5 g of water is added to the reactor in portions of 0.1 cm 3 for 3.25 h every 15 s. The pressure, resulting from the argon and the evolved gases, is kept constant at 10 bar by a pressure control valve. After all the water has been introduced, the pumping system is switched off and stirring is continued at 25 ° C. for 5 hours.

    Der in dieser Weise hergestellte geträgerte Cokatalysator wird als eine 10 %ige Suspension in n-Decan eingesetzt. Der Aluminiumgehalt ist 1,06 mmol Al pro cm3 Suspension. Der isolierte Feststoff enthält 31 Gew.% Aluminium, das Suspensionsmittel enthält 0,1 Gew.% Aluminium.The supported cocatalyst produced in this way is used as a 10% suspension in n-decane. The aluminum content is 1.06 mmol Al per cm 3 suspension. The isolated solid contains 31% by weight of aluminum, the suspension medium contains 0.1% by weight of aluminum.

    Weitere Möglichkeiten der Herstellung eines geträgerten Cokatalysators sind in EP-A-578 838 beschrieben.Further possibilities for the production of a supported cocatalyst are in EP-A-578 838.

    Danach wird das erfindungsgemäße Metallocen auf den geträgerten Cokatalysator aufgebracht, indem das gelöste Metallocen mit dem geträgerten Cokatalysator gerührt wird. Das Lösemittel wird entfernt und durch einen Kohlenwasserstoff ersetzt, in dem sowohl Cokatalysator als auch das Metallocen unlöslich sind.Thereafter, the metallocene according to the invention on the supported cocatalyst applied by stirring the dissolved metallocene with the supported cocatalyst becomes. The solvent is removed and replaced by a hydrocarbon in which both the cocatalyst and the metallocene are insoluble.

    Die Reaktion zu dem geträgerten Katalysatorsystem erfolgt bei einer Temperatur von -20° bis +120°C, bevorzugt 0-100°C, besonders bevorzugt bei 15° bis 40°C. Das Metallocen wird mit dem geträgerten Cokatalysator in der Weise umgesetzt, daß der Cokatalysator als Suspension mit 1 bis 40 Gew%, bevorzugt mit 5 bis 20 Gew% in einem aliphatischen, inerten Suspensionsmittel wie n-Decan, Hexan, Heptan, Dieselöl mit einer Lösung des Metallocens in einem inerten Lösungsmittel wie Toluol, Hexan, Heptan, Dichlormethan oder mit dem feingemahlenen Feststoff des Metallocens zusammengebracht wird. Umgekehrt kann auch eine Lösung des Metallocens mit dem Feststoff des Cokatalysators umgesetzt werden.The reaction to the supported catalyst system takes place at a temperature of -20 ° to + 120 ° C, preferably 0-100 ° C, particularly preferably at 15 ° to 40 ° C. The Metallocene is reacted with the supported cocatalyst in such a way that the Cocatalyst as a suspension with 1 to 40% by weight, preferably with 5 to 20% by weight in an aliphatic, inert suspending agent such as n-decane, hexane, heptane, diesel oil with a solution of the metallocene in an inert solvent such as toluene, hexane, Heptane, dichloromethane or with the finely ground solid of the metallocene is brought together. Conversely, a solution of the metallocene can also be used the solid of the cocatalyst are implemented.

    Die Umsetzung erfolgt durch intensives Mischen, beispielsweise durch Verrühren bei einem molaren Al/M1-Verhältnis von 100/1 bis 10000/1, bevorzugt von 100/1 bis 3000/1 sowie einer Reaktionszeit von 5 bis 120 Minuten, bevorzugt 10 bis 60 Minuten, besonders bevorzugt 10 bis 30 Minuten unter inerten Bedingungen.The reaction is carried out by intensive mixing, for example by stirring at a molar Al / M 1 ratio of 100/1 to 10000/1, preferably from 100/1 to 3000/1 and a reaction time from 5 to 120 minutes, preferably 10 to 60 Minutes, particularly preferably 10 to 30 minutes under inert conditions.

    Im Laufe der Reaktionszeit zur Herstellung des geträgerten Katalysatorsystems treten insbesondere bei der Verwendung der erfindungsgemäßen Metallocene mit Absorptionsmaxima im sichtbaren Bereich Veränderungen in der Farbe der Reaktionsmischung auf, an deren Verlauf sich der Fortgang der Reaktion verfolgen läßt.In the course of the reaction time to produce the supported catalyst system occur especially when using the metallocenes according to the invention with absorption maxima changes in the color of the reaction mixture in the visible range on the course of which the progress of the reaction can be followed.

    Nach Ablauf der Reaktionszeit wird die überstehende Lösung abgetrennt, beispielsweise durch Filtration oder Dekantieren. Der zurückbleibende Feststoff wird 1- bis 5-mal mit einem inerten Suspensionsmittel wie Toluol, n-Decan, Hexan, Dieselöl, Dichlormethan zur Entfernung löslicher Bestandteile im gebildeten Katalysator, insbesondere zur Entfernung von nicht umgesetzten und damit löslichem Metallocen, gewaschen.After the reaction time has elapsed, the supernatant solution is separated off, for example by filtration or decanting. The remaining solid becomes 1 to 5 times with an inert suspending agent such as toluene, n-decane, hexane, diesel oil, dichloromethane to remove soluble components in the catalyst formed, in particular for the removal of unreacted and thus soluble metallocene, washed.

    Das so hergestellte geträgerte Katalysatorsystem kann im Vakuum getrocknet als Pulver oder noch Lösemittel behaftet wieder resuspendiert und als Suspension in einem der vorgenannten inerten Suspensionsmittel in das Polymerisationssystem eindosiert werden.The supported catalyst system thus produced can be dried in vacuo as Powder or solvent still resuspended and as a suspension in one of the aforementioned inert suspending agents in the polymerization system be dosed.

    Erfindungsgemäß können an Stelle oder neben eines Aluminoxans Verbindungen der Formeln R18 xNH4-xBR19 4, R18 xPH4-xBR19 4, R18 3CBR19 4, BR19 3 als geeignete Cokatalysatoren verwendet werden. In diesen Formeln bedeutet x eine Zahl von 1 bis 4, bevorzugt 3, die Reste R18 sind gleich oder verschieden, bevorzugt gleich, und bedeuten C1-C10-Alkyl, C6-C18-Aryl oder 2 Reste R18 bilden zusammen mit dem sie verbindenden Atom einen Ring, und die Reste R19 sind gleich oder verschieden, bevorzugt gleich, und stehen für C6-C18-Aryl, das durch Alkyl, Haloalkyl oder Fluor substituiert sein kann.
    Insbesondere steht R18 für Ethyl, Propyl, Butyl oder Phenyl und R19 für Phenyl, Pentafluorphenyl, 3,5-Bistrifluormethylphenyl, Mesityl, Xylyl oder Tolyl (vgl. EP 277 003, EP 277 004 und EP 426 638).
    According to the invention, instead of or in addition to an aluminoxane, compounds of the formulas R 18 x NH 4-x BR 19 4 , R 18 x PH 4-x BR 19 4 , R 18 3 CBR 19 4 , BR 19 3 can be used as suitable cocatalysts. In these formulas, x is a number from 1 to 4, preferably 3, the radicals R 18 are the same or different, preferably the same, and are C 1 -C 10 alkyl, C 6 -C 18 aryl or form 2 radicals R 18 together with the atom connecting them a ring, and the radicals R 19 are the same or different, preferably the same, and represent C 6 -C 18 aryl, which can be substituted by alkyl, haloalkyl or fluorine.
    In particular, R 18 represents ethyl, propyl, butyl or phenyl and R 19 represents phenyl, pentafluorophenyl, 3,5-bistrifluoromethylphenyl, mesityl, xylyl or tolyl (cf. EP 277 003, EP 277 004 and EP 426 638).

    Bei Verwendung der obengenannten Cokatalysatoren besteht der eigentliche (aktive) Polymerisationskatalysator aus dem Reaktionsprodukt von Metallocen und einer der genannten Verbindungen. Daher wird zunächst dieses Reaktionsprodukt bevorzugt außerhalb des Polymerisationsreaktors in einem separaten Schritt unter Verwendung eines geeigneten Lösemittels hergestellt.When using the above-mentioned cocatalysts, the actual (active) Polymerization catalyst from the reaction product of metallocene and one of the mentioned connections. This reaction product is therefore preferred first outside of the polymerization reactor in a separate step using a suitable solvent.

    Prinzipiell ist als Cokatalysator erfindungsgemäß jede Verbindung geeignet, die aufgrund ihrer Lewis-Acidität das neutrale Metallocen in ein Kation überführen und dieses stabilisieren kann ("labile Koordination"). Darüberhinaus soll der Cokatalysator oder das aus ihm gebildete Anion keine weiteren Reaktionen mit dem gebildeten Metallocenkation eingehen (vgl. EP 427 697).In principle, any compound is suitable as a cocatalyst according to the invention convert the neutral metallocene into a cation due to its Lewis acidity and this can stabilize ("unstable coordination"). In addition, the cocatalyst or the anion formed from it no further reactions with the formed Enter metallocene (see EP 427 697).

    Zur Entfernung von im Olefin vorhandenen Katalysatorgiften ist eine Reinigung mit einem Aluminiumalkyl, beispielsweise Trimethylaluminium oder Triethylaluminium vorteilhaft. Diese Reinigung kann sowohl im Polymerisationssystem selbst erfolgen, oder das Olefin wird vor der Zugabe in das Polymerisationssystem mit der Al-Verbindung in Kontakt gebracht und anschließend wieder abgetrennt.To remove catalyst poisons present in the olefin, cleaning is also necessary an aluminum alkyl, for example trimethyl aluminum or triethyl aluminum advantageous. This cleaning can take place both in the polymerization system itself, or the olefin is mixed with the Al compound before being added to the polymerization system brought into contact and then separated again.

    Die Polymerisation oder Copolymerisation wird in bekannter Weise in Lösung, in Suspension oder in der Gasphase, kontinuierlich oder diskontinuierlich, ein- oder mehrstufig bei einer Temperatur von -60 bis 200°C, vorzugsweise 30 bis 80°C, besonders bevorzugt 50 bis 80°C, durchgeführt. Polymerisiert oder copolymerisiert werden Olefine der Formel Ra-CH=CH-Rb. In dieser Formel sind Ra und Rb gleich oder verschieden und bedeuten ein Wasserstoffatom, oder einen Alkylrest mit 1 bis 14 C-Atomen. Ra und Rb können jedoch auch mit den sie verbindenden C-Atomen einen Ring bilden. Beispiele für solche Olefine sind Ethylen, Propylen, 1-Buten, 1-Hexen, 4-Methyl-1-penten, 1-Octen, Norbornen oder Norbomadien. Insbesondere werden Propylen und Ethylen polymerisiert.The polymerization or copolymerization is carried out in a known manner in solution, in suspension or in the gas phase, continuously or batchwise, in one or more stages at a temperature of -60 to 200 ° C., preferably 30 to 80 ° C., particularly preferably 50 to 80 ° C. Olefins of the formula R a -CH = CH-R b are polymerized or copolymerized. In this formula, R a and R b are the same or different and represent a hydrogen atom or an alkyl radical having 1 to 14 carbon atoms. However, R a and R b can also form a ring with the C atoms connecting them. Examples of such olefins are ethylene, propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, norbornene or norbomadiene. In particular, propylene and ethylene are polymerized.

    Als Molmassenregler und/oder zur Steigerung der Aktivität wird, falls erforderlich, Wasserstoff zugegeben. Der Gesamtdruck im Polymerisationssystem beträgt 0,5 bis 100 bar. Bevorzugt ist die Polymerisation in dem technisch besonders interessanten Druckbereich von 5 bis 64 bar.As a molecular weight regulator and / or to increase the activity, if necessary, Hydrogen added. The total pressure in the polymerization system is 0.5 to 100 bar. Polymerization in the technically particularly interesting is preferred Pressure range from 5 to 64 bar.

    Dabei wird das Metallocen in einer Konzentration, bezogen auf das Übergangsmetall von 10-3 bis 10-8, vorzugsweise 10-4 bis 10-7 mol Übergangsmetall pro dm3 Lösemittel bzw. pro dm3 Reaktorvolumen angewendet. Das Aluminoxan wird in einer Konzentration von 10-5 bis 10-1 mol, vorzugsweise 10-4 bis 10-2 mol pro dm3 Lösemittel bzw. pro dm3 Reaktorvolumen verwendet. Die anderen genannten Cokatalysatoren werden in etwa äquimolaren Mengen zum Metallocen verwendet. Prinzipiell sind aber auch höhere Konzentrationen möglich.The metallocene is used in a concentration, based on the transition metal, of 10 -3 to 10 -8 , preferably 10 -4 to 10 -7 mol, of transition metal per dm 3 of solvent or per dm 3 of reactor volume. The aluminoxane is used in a concentration of 10 -5 to 10 -1 mol, preferably 10 -4 to 10 -2 mol per dm 3 solvent or per dm 3 reactor volume. The other cocatalysts mentioned are used in approximately equimolar amounts to the metallocene. In principle, however, higher concentrations are also possible.

    Wenn die Polymerisation als Suspensions- oder Lösungspolymerisation durchgeführt wird, wird ein für das Ziegler-Niederdruckverfahren gebräuchliches inertes Lösemittel verwendet. Beispielsweise arbeitet man in einem aliphatischen oder cycloaliphatischen Kohlenwasserstoff; als solcher sei beispielsweise Propan, Butan, Hexan, Heptan, Isooctan, Cyclohexan, Methylcyclohexan, genannt. Weiterhin kann eine Benzin- bzw. hydrierte Dieselölfraktion benutzt werden. Brauchbar ist auch Toluol. Bevorzugt wird im flüssigen Monomeren polymerisiert.If the polymerization is carried out as a suspension or solution polymerization becomes an inert solvent customary for the Ziegler low pressure process used. For example, one works in an aliphatic or cycloaliphatic Hydrocarbon; as such, for example, propane, butane, hexane, heptane, Isooctane, cyclohexane, methylcyclohexane. Furthermore, a petrol or hydrogenated diesel oil fraction can be used. Toluene can also be used. Is preferred polymerized in the liquid monomer.

    Werden inerte Lösemittel verwendet, werden die Monomeren gasförmig oder flüssig zudosiert.If inert solvents are used, the monomers become gaseous or liquid added.

    Die Dauer der Polymerisation ist beliebig, da das erfindungsgemäß zu verwendende Katalysatorsystem einen nur geringen zeitabhängigen Abfall der Polymerisationsaktivität zeigt.The duration of the polymerization is arbitrary, since that to be used according to the invention Catalyst system only a small time-dependent drop in the polymerization activity shows.

    Vor der Zugabe des Katalysators, insbesondere des geträgerten Katalysatorsystems (aus einem erfindungsgemäßen Metallocen und einem geträgerten Cokatalysator beziehungsweise aus einem erfindungsgemäßen Metallocen und einer aluminiumorganischen Verbindung auf einem Polyolefinpulver in feinverteilter Form), kann zusätzlich eine andere Aluminiumalkylverbindung wie beispielsweise Trimethylaluminium, Triethylaluminium, Triisobutylaluminium, Trioctylaluminium oder isoprenylaluminium zur Inertisierung des Polymerisationssystems (beispielsweise zur Abtrennung vorhander Katalysatorgifte im Olefin) in den Reaktor gegeben werden. Diese wird in einer Konzentration von 100 bis 0,01 mmol Al pro kg Reaktorinhalt dem Polymerisationssystem zugesetzt. Bevorzugt werden Triisobutylaluminium und Triethylaluminium in einer Konzentration von 10 bis 0,1 mmol Al pro kg Reaktorinhalt. Dadurch kann bei der Synthese eines geträgerten Katalysatorsystems das molare Al/M1-Verhältnis klein gewählt werden.Before adding the catalyst, in particular the supported catalyst system (from a metallocene according to the invention and a supported cocatalyst or from a metallocene according to the invention and an organoaluminum compound on a polyolefin powder in finely divided form), another aluminum alkyl compound such as trimethyl aluminum, triethyl aluminum, triisobutyl aluminum, trioctyl aluminum can also be added or isoprenylaluminum can be added to the reactor to make the polymerization system inert (for example to separate catalyst poisons present in the olefin). This is added to the polymerization system in a concentration of 100 to 0.01 mmol Al per kg reactor content. Triisobutyl aluminum and triethyl aluminum are preferred in a concentration of 10 to 0.1 mmol Al per kg reactor content. As a result, the molar Al / M 1 ratio can be chosen to be small in the synthesis of a supported catalyst system.

    Grundsätzlich ist jedoch der Einsatz weiterer Substanzen zur Katalyse der Polymerisationsreaktion nicht erforderlich, d.h., die erfindungsgemäßen Systeme können als alleinige Katalysatoren für die Olefinpolymerisation verwendet werden.Basically, however, the use of other substances to catalyze the polymerization reaction not required, i.e. the systems according to the invention can be used as sole catalysts for olefin polymerization can be used.

    Das erfindungsgemäße Verfahren zeichnet sich dadurch aus, daß die beschriebenen Metallocene im technisch besonders interessanten Temperaturbereich von 50 bis 80°C bei hohen Katalysatoraktivitäten Polymere mit sehr hoher Molmasse, im Fall prochiraler Monomere sehr hoher Molmasse und sehr hoher Stereotaktizität erzeugen.The inventive method is characterized in that the described Metallocenes in the technically particularly interesting temperature range from 50 to 80 ° C with high catalyst activity polymers with very high molecular weight, in the case produce prochiral monomers of very high molecular weight and very high stereotacticity.

    Insbesondere zeichnen sich die erfindungsgemäßen Zirkonocene dadurch aus, daß im Fall der stereospezifischen Polymerisation prochiraler Olefine, beispielsweise von Propylen, Polymere mit hoher Isotaxie erhalten werden.In particular, the zirconocenes according to the invention are characterized in that in the case of stereospecific polymerization of prochiral olefins, for example from Propylene, polymers with high isotaxy can be obtained.

    Insbesondere im Fall der isospezifischen Polymerisation von Propylen erhält man isotaktisches Polypropylen mit hohen isotaktischen Sequenzlängen und hohem Schmelzpunkt.In particular, in the case of isospecific polymerization of propylene, one obtains isotactic polypropylene with high isotactic sequence lengths and high Melting point.

    Darüber hinaus werden mit den erfindungsgemäß geträgerten Katalysatorsystemen Reaktorbeläge vermieden.In addition, with the supported catalyst systems according to the invention Avoided reactor coatings.

    Die nachfolgenden Beispiele sollen die Erfindung näher erläutern.The following examples are intended to explain the invention in more detail.

    Alle Glasgeräte wurden im Vakuum ausgeheizt und mit Argon gespült. Alle Operationen wurden unter Ausschluß von Feuchtigkeit und Sauerstoff in Schlenkgefäßen durchgeführt. Die verwendeten Lösemittel wurden unter Argon jeweils frisch über Na/K-Legierung destilliert und in Schlenk-Gefäßen aufbewahrt.All glassware was heated in vacuo and flushed with argon. All operations were in the absence of moisture and oxygen in Schlenk vessels carried out. The solvents used were fresh over under argon Na / K alloy distilled and stored in Schlenk vessels.

    Die Ermittlung des Al/CH3-Verhältnisses im Aluminoxan erfolgte durch Zersetzung der Probe mit H2SO4 und Bestimmung des Volumens der entstehenden Hydrolysegase unter Normalbedingungen sowie durch komplexometrische Titration des Aluminiums in der dann gelösten Probe nach Schwarzenbach.The Al / CH 3 ratio in the aluminoxane was determined by decomposing the sample with H 2 SO 4 and determining the volume of the hydrolysis gases formed under normal conditions, and by complexometric titration of the aluminum in the then dissolved sample according to Schwarzenbach.

    Für die Beispiele Nr. 3 bis 5 mit der geträgerten Aluminiumverbindung (Methylaluminoxan auf Kieselgel), im folgenden "MAO auf SiO2" genannt, wurde eine ca. 10 Gew.-% Suspension in n-Decan hergestellt, welche gemäß Aluminium-Bestimmung 60 mg Al/cm3 enthielt.For Examples Nos. 3 to 5 with the supported aluminum compound (methylaluminoxane on silica gel), hereinafter referred to as "MAO on SiO 2 ", an approx. 10% by weight suspension in n-decane was produced, which according to aluminum determination 60 mg Al / cm 3 contained.

    Für die Beispiele 26 bis 30 mit der geträgerten Aluminiumverbindung (Methylaluminoxan auf Kieselgel SD 3216-30/Grace), im folgenden "FMAO auf SiO2" genannt, wurde ein lösungsmittelfreies Pulver verwendet, das 20 Gew.-% Aluminium im Feststoff enthielt.For Examples 26 to 30 with the supported aluminum compound (methylaluminoxane on silica gel SD 3216-30 / Grace), hereinafter referred to as "FMAO on SiO 2 ", a solvent-free powder was used which contained 20% by weight of aluminum in the solid.

    Toluol lösliches Methylaluminoxan wurde für die Beispiele zur Suspensionspolymerisation und zur Massepolymerisation mit ungeträgertem Metallocen als 10 Gew.-%ige Toluol-Lösung eingesetzt und enthielt gemäß Aluminium-Bestimmung 36 mg Al/cm3. Der mittlere Oligomerisationsgrad gemäß Gefrierpunktserniedrigung in Benzol betrug n = 20. Für das Toluol lösliche Methylalumoxan wurde ein Verhältnis Al : CH3 = 1 : 1,55 ermittelt.Toluene-soluble methylaluminoxane was used as a 10% strength by weight toluene solution for the examples of suspension polymerization and bulk polymerization with unsupported metallocene and, according to aluminum determination, contained 36 mg Al / cm 3 . The mean degree of oligomerization according to freezing point depression in benzene was n = 20. A ratio Al: CH 3 = 1: 1.55 was determined for the toluene-soluble methylalumoxane.

    Es bedeuten:

    VZ =
    Viskositätszahl in cm3/g
    Mw =
    Molmassengewichtsmittel in g/mol (ermittelt durch Gelpermeationschromatographie)
    Mw/Mn =
    Molmassendispersität
    Schmp. =
    Schmelzpunkt in °C (ermittelt mit DSC, 20°C/min Aufheiz-/Abkühlgeschwindigkeit)
    II =
    Isotaktischer Index (II = mm + 1/2 mr, ermittelt durch 13C-NMR-Spektroskopie)
    MFI 230/5
    Schmelzindex, gemessen nach DIN 53735; in dg/min
    SD =
    Polymerschüttdichte in g/dm3.
    It means:
    VZ =
    Viscosity number in cm 3 / g
    M w =
    Molar mass weight average in g / mol (determined by gel permeation chromatography)
    M w / M n =
    Molar mass dispersity
    Mp =
    Melting point in ° C (determined with DSC, 20 ° C / min heating / cooling rate)
    II =
    Isotactic index (II = mm + 1/2 mr, determined by 13 C NMR spectroscopy)
    MFI 230/5
    Melt index, measured according to DIN 53735; in dg / min
    SD =
    Polymer bulk density in g / dm 3 .

    Synthese der in den Polymerisationsbeispielen verwendeten Metallocene I (die eingesetzten Edukte sind kommerziell erhältlich):Synthesis of the metallocenes I used in the polymerization examples (the ones used Educts are commercially available):

    A. rac-Dimethylsilyl-bis(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid (5)A. rac-dimethylsilyl-bis (2-methyl-4-phenyl-indenyl) zirconium dichloride (5) 1. (±)-2-(2-Phenyl-benzyl)-propionsäure (1).1. (±) -2- (2-phenylbenzyl) propionic acid (1).

    Zu 6,5 g (0,285 mol) Natrium in 160 cm3 H2O-freiem EtOH wurden bei Raumtemperatur 48,6 g (0,279 mol) Diethylmethylmalonat zugetropft. Anschließend wurden 70,4 g (0,285 mol) 2-Phenyl-benzylbromid in 20 cm3 H2O-freiem EtOH zugetropft und der Ansatz 3 h zum Rückfluß erhitzt. Das Lösemittel wurde abgezogen und der Rückstand mit 200 cm3 H2O versetzt. Die organische Phase wurde abgetrennt, die wässrige Phase mit NaCl gesättigt und 2mal mit je 200 cm3 Et2O extrahiert. Die mit den Extrakten vereinigte organische Phase wurde getrocknet (MgSO4).48.6 g (0.279 mol) of diethyl methylmalonate were added dropwise to 6.5 g (0.285 mol) of sodium in 160 cm 3 of H 2 O-free EtOH. 70.4 g (0.285 mol) of 2-phenylbenzylbromide in 20 cm 3 of H 2 O-free EtOH were then added dropwise and the mixture was heated to reflux for 3 h. The solvent was removed and the residue was mixed with 200 cm 3 H 2 O. The organic phase was separated, the aqueous phase was saturated with NaCl and extracted twice with 200 cm 3 Et 2 O each time. The organic phase combined with the extracts was dried (MgSO 4 ).

    Der nach Abziehen des Lösemittels verbliebene Rückstand wurde in 500 cm3 EtOH und 50 cm3 H2O aufgenommen und mit 56 g (1 mol) KOH versetzt. Die Reaktionsmischung wurde 4 h unter Rückfluß erhitzt. Das Lösemittel wurde im Vakuum abgezogen, der Rückstand in 500 cm3 H2O aufgenommen und mit konzentrierter wässriger HCI bis pH 1 angesäuert. Der ausgefallene Niederschlag wurde abgesaugt und am Kugelrohr 30 min unter starkem Aufschäumen auf 250°C erhitzt. Man erhielt 58,3 g (85%) 1 als zähflüssiges Öl.

  • 1H-NMR (100 MHz, CDCl3): 11,7 (s, 1H, COOH), 7,1-7,5 (m, 9H, arom. H), 2,3 - 3,2 (m, 3H, CH u. CH2), 0,9 (d, 3H, CH3).
  • The residue which remained after the solvent had been stripped off was taken up in 500 cm 3 of EtOH and 50 cm 3 of H 2 O, and 56 g (1 mol) of KOH were added. The reaction mixture was refluxed for 4 hours. The solvent was removed in vacuo, the residue was taken up in 500 cm 3 H 2 O and acidified to pH 1 with concentrated aqueous HCl. The precipitate which had separated out was filtered off with suction and heated to 250 ° C. in the bulb tube for 30 min with vigorous foaming. 58.3 g (85%) 1 were obtained as a viscous oil.
  • 1 H-NMR (100 MHz, CDCl 3 ): 11.7 (s, 1H, COOH), 7.1-7.5 (m, 9H, aromatic H), 2.3 - 3.2 (m, 3H, CH and CH 2 ), 0.9 (d, 3H, CH 3 ).
  • 2. (±)-2-Methyl-4-phenyl-indan-1-on (2)2. (±) -2-methyl-4-phenyl-indan-1-one (2)

    Eine Lösung von 58 g (0,242 mol) 1 in 60 cm3 (0,83 mol) Thionylchlorid wurde 18 h bei Raumtemperatur gerührt. Überschüssiges Thionylchlorid wurde bei 10 mbar entfernt und der ölige Rückstand durch mehrmaliges Lösen in je 100 cm3 Toluol und Abziehen im Vakuum von anhaftenden Resten Thionylchlorid befreit.A solution of 58 g (0.242 mol) 1 in 60 cm 3 (0.83 mol) thionyl chloride was stirred at room temperature for 18 h. Excess thionyl chloride was removed at 10 mbar and the oily residue was freed from adhering residues of thionyl chloride by repeatedly dissolving in 100 cm 3 of toluene and stripping in vacuo.

    Das Säurechlorid wurde in 150 cm3 Toluol aufgenommen und bei 10°C zu einer Suspension von 48 g (0,363 mol) AlCl3 in 400 cm3 Toluol getropft. Nach vollständiger Zugabe wurde das Gemisch noch 3 h unter Rückfluß erhitzt. Die Reaktionsmischung wurde auf 500 g Eis gegossen und mit konzentrierter wässriger HCl bis pH 1 angesäuert. Die organische Phase wurde abgetrennt und die wässrige Phase 3mal mit je 100 cm3 Et2O nachextrahiert. Die vereinigten organischen Phasen wurden mit gesättigter wässriger NaHCO3-, gesättigter wässriger NaCl-Lösung gewaschen und danach getrocknet (MgSO4). Es wurden 50,4 g (93%) 2 erhalten, das ohne weitere Reinigung weiter umgesetzt wurde.

  • 1H-NMR (100 MHz, CDCl3): 7,2-7,8 (m, 8H, arom. H), 3,3 (dd, 1H, β-H), 2,5 - 2,9 (m, 2H, α- und β-H), 1,3 (d, 3H, CH3).
  • The acid chloride was taken up in 150 cm 3 of toluene and added dropwise at 10 ° C. to a suspension of 48 g (0.363 mol) of AlCl 3 in 400 cm 3 of toluene. After the addition was complete, the mixture was heated under reflux for a further 3 h. The reaction mixture was poured onto 500 g of ice and acidified to pH 1 with concentrated aqueous HCl. The organic phase was separated off and the aqueous phase was extracted 3 times with 100 cm 3 Et 2 O each time. The combined organic phases were washed with saturated aqueous NaHCO 3 , saturated aqueous NaCl solution and then dried (MgSO 4 ). 50.4 g (93%) 2 were obtained, which was reacted further without further purification.
  • 1 H-NMR (100 MHz, CDCl 3 ): 7.2-7.8 (m, 8H, aromatic H), 3.3 (dd, 1H, β-H), 2.5 - 2.9 ( m, 2H, α - and β-H), 1.3 (d, 3H, CH 3 ).
  • 3. 2-Methyl-7-phenyl-inden (3)3. 2-methyl-7-phenyl-indene (3)

    50 g (0,226 mol) 2 wurden in 450 cm3 THF/MeOH (2:1) gelöst und bei 0°C unter Rühren portionsweise mit 12,8 g (0,34 mol) Natriumborhydrid versetzt und 18 h weiter gerührt. Die Reaktionsmischung wurde auf Eis gegossen, mit konzentrierter HCl bis pH 1 versetzt und mehrmals mit Et2O extrahiert. Die vereinigten organischen Phasen wurden mit gesättigter wässriger NaHCO3-, NaCl-Lösung gewaschen und danach getrocknet (MgSO4). Das Lösemittel wurde im Vakuum entfernt und das Rohprodukt ohne weitere Reinigung in 1 dm3 Toluol aufgenommen, mit 2 g p-Toluolsulfonsäure versetzt und 2 h zum Rückfluß erhitzt. Die Reaktionsmischung wurde mit 200 cm3 gesättigter wässriger NaHCO3-Lösung gewaschen und das Lösemittel im Vakuum entfernt. Das Rohprodukt wurde durch Filtration über 500 g Kieselgel (Hexan/CH2Cl2) gereinigt. Es wurden 42 g (90%) 3 als farbloses Öl erhalten.

  • 1H-NMR (100 MHz, CDCl3): 7,0-7,6 (m, 8H, arom. H), 6,5 (m, 1H, H- C(3)), 3,4 (s, 2H, CH2), 2,1 (s, 3H, CH3).
  • 50 g (0.226 mol) 2 were dissolved in 450 cm 3 of THF / MeOH (2: 1) and 12.8 g (0.34 mol) of sodium borohydride were added in portions at 0 ° C. while stirring and stirring was continued for 18 h. The reaction mixture was poured onto ice, concentrated HCl was added to pH 1 and extracted several times with Et 2 O. The combined organic phases were washed with saturated aqueous NaHCO 3 , NaCl solution and then dried (MgSO 4 ). The solvent was removed in vacuo and the crude product was taken up in 1 dm 3 of toluene without further purification, 2 g of p-toluenesulfonic acid were added and the mixture was heated under reflux for 2 h. The reaction mixture was washed with 200 cm 3 of saturated aqueous NaHCO 3 solution and the solvent was removed in vacuo. The crude product was purified by filtration over 500 g of silica gel (hexane / CH 2 Cl 2 ). 42 g (90%) 3 were obtained as a colorless oil.
  • 1 H-NMR (100 MHz, CDCl 3 ): 7.0-7.6 (m, 8H, aromatic H), 6.5 (m, 1H, H-C (3)), 3.4 (s , 2H, CH 2 ), 2.1 (s, 3H, CH 3 ).
  • 4. Dimethylbis(2-methyl-4-phenyl-indenyl)silan (4)4. Dimethylbis (2-methyl-4-phenyl-indenyl) silane (4)

    Eine Lösung von 15 g (72,7 mmol) 3 in 200 cm3 H2O- und O2-freiem Toluol und 10 cm3 H2O- und O2-freiem THF wurden bei Raumtemperatur unter Argon mit 29 cm3 (73 mmol) einer 2,5 M Lösung von Butyllithium in Hexan versetzt und 1 h auf 80°C erhitzt. Anschließend wurde der Ansatz auf O°C gekühlt und mit 4,7 g (36,4 mmol) Dimethyldichlorsilan versetzt. Das Gemisch wurde 1 h auf 80°C erhitzt und anschließend auf 100 cm3 H2O gegossen. Es wurde mehrmals mit Et2O extrahiert und die vereinigten organischen Phasen getrocknet (MgSO4). Das nach Abziehen des Lösemittels im Vakuum verbliebene Rohprodukt wurde an 300 g Kieselgel (Hexan/CH2Cl2) chromtographiert. Es wurden 12,0 g (70%) 4 erhalten.

  • 1H-NMR (100 MHz, CDCl3): 7,10 - 7,70 (m, 16H, arom. H), 6,80 (m, 2H, H-C(3)), 3,80 (s, 2H, H-C(1)), 2,20 (m, 6H, CH3), -0,20 (m, 6H, CH3Si).
  • A solution of 15 g (72.7 mmol) 3 in 200 cm 3 H 2 O- and O 2 -free toluene and 10 cm 3 H 2 O- and O 2 -free THF were mixed at room temperature under argon with 29 cm 3 ( 73 mmol) of a 2.5 M solution of butyllithium in hexane and heated to 80 ° C. for 1 h. The mixture was then cooled to 0 ° C. and 4.7 g (36.4 mmol) of dimethyldichlorosilane were added. The mixture was heated to 80 ° C. for 1 h and then poured onto 100 cm 3 H 2 O. It was extracted several times with Et 2 O and the combined organic phases were dried (MgSO 4 ). The crude product which remained after the solvent had been stripped off in vacuo was chromographed on 300 g of silica gel (hexane / CH 2 Cl 2 ). 12.0 g (70%) 4 were obtained.
  • 1 H-NMR (100 MHz, CDCl 3 ): 7.10 - 7.70 (m, 16H, aromatic H), 6.80 (m, 2H, HC (3)), 3.80 (s, 2H) , HC (1)), 2.20 (m, 6H, CH 3 ), -0.20 (m, 6H, CH 3 Si).
  • 5.rac-Dimethylsilylbis(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid (5)5.rac-dimethylsilylbis (2-methyl-4-phenyl-indenyl) zirconium dichloride (5)

    Eine Lösung von 6,0 g (12,9 mmol) 4 in 100 cm3 H2O- und O2-freiem Toluol wurde unter Argon bei Raumtemperatur mit 10,6 cm3 (26 mmol) einer 2,5 M Lösung von Butyllithium in Hexan versetzt und 3 h zum Rückfluß erhitzt. Anschließend wurde die Suspension des Dilithiosalzes auf -25°C abgekühlt und mit 3,2 g (13,6 mmol) Zirkoniumtetrachlorid versetzt. Man erwärmte den Ansatz innerhalb 1 h auf Raumtemperatur, rührte ihn noch 1 h und filtrierte dann über eine G3-Fritte. Der Rückstand wurde mit 50 cm3 Toluol extrahiert und die vereinigten Filtrate im Vakuum einer Ölpumpe vom Lösemittel befreit. Man erhielt 9,0 g des Metallocens als Mischung der racemischen und der meso-Form im Verhältnis 1:1 in Form eines gelben Pulvers. Das reine Racemat (5) konnte durch mehrfaches Verrühren der Rohmischung mit je 20 cm3 Methylenchlorid gewonnen werden, wobei das Racemat als gelbes Kristallpulver zurückblieb und die meso-Form ausgewaschen wurde. Man erhielt 2,74 g (33%) des reinen Racemats.

  • 1H-NMR (300 MHz, CDCl3): 7,0 - 7,7 (m, 16H, arom. H), 6,9 (s, 2H, H- C(3)), 2,2 (s, 6H, CH3), 1,3 (m, 6H, CH3Si).
    Molmasse: 626 M+, korrektes Zerfallsmuster.
  • A solution of 6.0 g (12.9 mmol) 4 in 100 cm 3 H 2 O- and O 2 -free toluene was dissolved under argon at room temperature with 10.6 cm 3 (26 mmol) of a 2.5 M solution of Butyllithium added in hexane and heated to reflux for 3 h. The suspension of the dilithio salt was then cooled to -25 ° C. and 3.2 g (13.6 mmol) of zirconium tetrachloride were added. The mixture was warmed to room temperature within 1 h, stirred for a further 1 h and then filtered through a G3 frit. The residue was extracted with 50 cm 3 of toluene and the combined filtrates were freed from the solvent in vacuo using an oil pump. 9.0 g of the metallocene were obtained as a mixture of the racemic and meso forms in a ratio of 1: 1 in the form of a yellow powder. The pure racemate (5) could be obtained by stirring the raw mixture several times with 20 cm 3 of methylene chloride, the racemate remaining as a yellow crystal powder and the meso form being washed out. 2.74 g (33%) of the pure racemate were obtained.
  • 1 H-NMR (300 MHz, CDCl 3 ): 7.0 - 7.7 (m, 16H, aromatic H), 6.9 (s, 2H, H-C (3)), 2.2 (s , 6H, CH 3 ), 1.3 (m, 6H, CH 3 Si).
    Molar mass: 626 M + , correct decay pattern.
  • Beispiel BExample B rac-Methylphenylsilandiylbis-(2-methyl-4-phenylindenyl)zirkoniumdichlorid (7)rac-methylphenylsilanediylbis- (2-methyl-4-phenylindenyl) zirconium dichloride (7) 1. Methylphenylbis-(2-methyl-4-phenylindenyl)silan (6)1. methylphenylbis- (2-methyl-4-phenylindenyl) silane (6)

    Eine Lsg. von 10,3 g (50 mmol) 3 in 90 ml H2O- und O2-freiem Toluol und 10 ml H2O-und O2-freiem THF wurden bei Raumtemperatur unter Argon mit 21 ml (52 mmol) eine 2,5 M Lsg. von Butyllithium in Hexan versetzt und 1 h auf 80°C erhitzt. Anschließend wurde auf 0°C gekühlt und mit 4,8 g (25 mmol) Methylphenyldichlorsilan versetzt und über Nacht bei RT weitergerührt. Das ausgefallene LiCl wurde durch Filtration abgetrennt und das nach Abziehen des Lösemittels im Vakuum verbleibende Rohprodukt an 300 g Kieselgel (Hexan/CH2Cl2 9:1) chromatographiert. Es wurden 4,6 g (35%) 6 erhalten.

  • 1H-NMR (100 MHz, CDCl3): 7,0 - 7,8 (m, 16H, arom. H), 6,9 (m, 2H, H- C(3)), 3,9 (m, 2H, H-C(1)), 2,3 (m, 6H, CH3), -0,1(s, 3H, CH3Si).
  • A solution of 10.3 g (50 mmol) 3 in 90 ml H 2 O- and O 2 -free toluene and 10 ml H 2 O- and O 2 -free THF were mixed with 21 ml (52 mmol ) a 2.5 M solution of butyllithium in hexane was added and the mixture was heated at 80 ° C. for 1 h. The mixture was then cooled to 0 ° C. and mixed with 4.8 g (25 mmol) of methylphenyldichlorosilane and stirring was continued at RT overnight. The precipitated LiCl was separated off by filtration and the crude product which remained after the solvent had been stripped off in vacuo was chromatographed on 300 g of silica gel (hexane / CH 2 Cl 2 9: 1). 4.6 g (35%) 6 were obtained.
  • 1 H-NMR (100 MHz, CDCl 3 ): 7.0 - 7.8 (m, 16H, aromatic H), 6.9 (m, 2H, H-C (3)), 3.9 (m , 2H, HC (1)), 2.3 (m, 6H, CH 3 ), -0.1 (s, 3H, CH 3 Si).
  • 2. rac-Methylphenylsilandiylbis(2-methyl-4-phenylindenyl)zirkoniumdichlorid (7)2. rac-methylphenylsilanediylbis (2-methyl-4-phenylindenyl) zirconium dichloride (7)

    2,3 g (4,4 mmol) 6 in 25 ml H2O- und O2-freiem Toluol wurden bei Raumtemperatur unter Argon mit 3,6 ml (8,9 mmol) einer 2,5 M Lsg. von Butyllithium in Hexan versetzt und 3h auf 80°C erhitzt. Anschließend wurde die Suspension des Dilithiosalzes auf -30°C abgekühlt und mit 1,1 g (4,5 mmol) Zirkoniumtetrachlorid versetzt. Man erwärmte innerhalb 1 h auf Raumtemperatur, rührte noch 1 h nach. Nach Filtration über eine G3-Fritte wurde das Lösemittel des Filtrats entfernt und der Rückstand aus 10 ml Methylenchlorid kristallisiert. Man erhielt 0,2 g der racemischen Form von 7 als orange Kristalle.

  • 1H-NMR (100 MHz, CDCl3): 7,0 - 8,2 (m, 21H, arom. H), 6,9 (m, 2H, H-C(3)), 2,4 (s, 3H, CH3), 2,0 (s, 3H, CH3), 1,3 (s, 3H, CH3Si). Massenspektrum: 690 M+, korrektes Zerfallsmuster.
  • 2.3 g (4.4 mmol) 6 in 25 ml H 2 O- and O 2 -free toluene were mixed at room temperature under argon with 3.6 ml (8.9 mmol) of a 2.5 M solution of butyllithium in Hexane added and heated to 80 ° C for 3h. The suspension of the dilithio salt was then cooled to -30 ° C. and 1.1 g (4.5 mmol) of zirconium tetrachloride were added. The mixture was warmed to room temperature within 1 h and stirred for a further 1 h. After filtration through a G3 frit, the solvent of the filtrate was removed and the residue was crystallized from 10 ml of methylene chloride. 0.2 g of the racemic form of 7 was obtained as orange crystals.
  • 1 H NMR (100 MHz, CDCl 3 ): 7.0 - 8.2 (m, 21H, aromatic H), 6.9 (m, 2H, HC (3)), 2.4 (s, 3H) , CH 3 ), 2.0 (s, 3H, CH 3 ), 1.3 (s, 3H, CH 3 Si). Mass spectrum: 690 M + , correct decay pattern.
  • Beispiel CExample C rac-Dimethylsilandiylbis(4-phenylindenyl)zirkoniumdichlorid (12)rac-dimethylsilanediylbis (4-phenylindenyl) zirconium dichloride (12) 1. 3-(2-Phenyl-phenyl)propionsäure (8)1. 3- (2-phenylphenyl) propionic acid (8)

    Zu 14 g (0,61 mmol) Natrium in 400 cm3 H2O-freiem EtOH wurden bei Raumtemperatur 93 cm3 (0,61 mmol)Malonsäurediethylester gelöst in 50 cm3 H2O-freiem EtOH zugetropft. Anschließend wurden 150 g (0,61 mmol) 2-Phenylbenzylbromid in 200 cm3 H2O-freiem EtOH zugetropft und 3 h zum Rückfluß erhitzt. Bei Raumtemperatur wurden 102 g (1,83 mol) KOH gelöst in 150 cm3 H2O zugesetzt und weitere 4 h zum Rückfluß erhitzt. Die Lösemittel wurden im Vakuum entfernt, der Rückstand bis zur vollständigen Lösung mit H2O versetzt und mit konzentrierter wässr. HCI bis pH 1 angesäuert. Der ausgefallene Niederschlag wurde abgesaugt, getrocknet und 1 h auf 130°C erhitzt. Man erhielt 112 g (81%) 8 als zähflüssiges Öl.

  • 1H-NMR (100 MHz, CDCl3): 9,1 (s, 1H, COOH), 6,9 - 7,5 (m, 9H, arom. H), 2,3 - 3,0 (m, 4H, 2 CH2).
  • 93 cm 3 (0.61 mmol) of diethyl malonate dissolved in 50 cm 3 of H 2 O-free EtOH were added dropwise to 14 g (0.61 mmol) of sodium in 400 cm 3 H 2 O-free EtOH at room temperature. 150 g (0.61 mmol) of 2-phenylbenzyl bromide in 200 cm 3 of H 2 O-free EtOH were then added dropwise and the mixture was heated under reflux for 3 h. 102 g (1.83 mol) of KOH dissolved in 150 cm 3 of H 2 O were added at room temperature and the mixture was heated under reflux for a further 4 h. The solvents were removed in vacuo, the residue was mixed with H 2 O until the solution was complete, and concentrated aqueous. HCl acidified to pH 1. The precipitate was filtered off, dried and heated at 130 ° C for 1 h. 112 g (81%) 8 were obtained as a viscous oil.
  • 1 H-NMR (100 MHz, CDCl 3 ): 9.1 (s, 1H, COOH), 6.9 - 7.5 (m, 9H, aromatic H), 2.3 - 3.0 (m, 4H, 2 CH 2 ).
  • 2. 4-Phenyl-1-indanon (9)2. 4-phenyl-1-indanone (9)

    Eine Lösung von 102 g (0,45 mol) 8 in 37 cm3 (0,5 mol) Thionylchlorid wurde 18 h bei Raumtemperatur gerührt. Überschüssiges Thionylchlorid wurde bei 10 mbar entfernt und der ölige Rückstand durch mehrmaliges Lösen in je 100 cm3 Toluol und Abziehen im Vakuum von anhaftenden Resten Thionylchlorid befreit. A solution of 102 g (0.45 mol) 8 in 37 cm 3 (0.5 mol) thionyl chloride was stirred at room temperature for 18 h. Excess thionyl chloride was removed at 10 mbar and the oily residue was freed from adhering residues of thionyl chloride by repeatedly dissolving in 100 cm 3 of toluene and stripping in vacuo.

    Das Säurechlorid wurde in 200 cm3 Toluol aufgenommen und bei 10°C zu einer Suspension von 72 g (0,54 mol) AlCl3 in 1000 cm3 Toluol getropft und 1 h auf 80°C erhitzt. Die Reaktionsmischung wurde auf 1000 g Eis gegossen und mit konz. wässr. HCI bis pH 1 angesäuert. Die organische Phase wurde abgetrennt und die wässr. Phase 3mal mit je 200 cm3 Et2O nachextrahiert. Die vereinigten organischen Phasen wurden mit gesättigter wässr. NaHCO3-, gesättigter wässr. NaCl-Lösung gewaschen und anschließend getrocknet (MgSO4). Es wurden 96 g (96%) 9 erhalten, das ohne weitere Reinigung weiter umgesetzt wurde.

  • 1H-NMR (100 MHz, CDCl3): 6,9 - 7,5 (m, 8H, arom. H), 2,5 - 3,4 (m, 4H, 2 CH2).
  • The acid chloride was taken up in 200 cm 3 of toluene and added dropwise at 10 ° C. to a suspension of 72 g (0.54 mol) of AlCl 3 in 1000 cm 3 of toluene and heated to 80 ° C. for 1 h. The reaction mixture was poured onto 1000 g of ice and concentrated with. aq. HCl acidified to pH 1. The organic phase was separated and the aq. Phase extracted 3 times with 200 cm 3 Et 2 O each. The combined organic phases were washed with saturated aq. NaHCO 3 -, saturated aq. Washed NaCl solution and then dried (MgSO 4 ). 96 g (96%) 9 were obtained, which was reacted further without further purification.
  • 1 H-NMR (100 MHz, CDCl 3 ): 6.9 - 7.5 (m, 8H, aromatic H), 2.5 - 3.4 (m, 4H, 2 CH 2 ).
  • 3. 7-Phenyl-inden (10)3. 7-phenyl-indene (10)

    Eine Lösung von 86 g (0,41 mol) 9 in 300 cm3 THF/Methanol 2:1 wurde bei 0°C portionsweise mit 23 g (0,62 mol) NaBH4 versetzt und 18 h bei Raumtemperatur gerührt. Die Reaktionsmischung wurde auf 300 g Eis gegossen, mit konz. wässr. HCI bis pH 1 versetzt und mehrmals mit Et2O extrahiert. Die vereinigten organischen Phasen wurden mit gesättigter wässr. NaHCO3-, gesättigter wässr. NaCl-Lösung gewaschen, getrocknet (MgSO4) und im Vakuum vom Lösemittel befreit.A solution of 86 g (0.41 mol) 9 in 300 cm 3 THF / methanol 2: 1 was mixed with 23 g (0.62 mol) NaBH 4 in portions at 0 ° C. and stirred at room temperature for 18 h. The reaction mixture was poured onto 300 g of ice, with conc. aq. HCl added to pH 1 and extracted several times with Et 2 O. The combined organic phases were washed with saturated aq. NaHCO 3 -, saturated aq. Washed NaCl solution, dried (MgSO 4 ) and freed from solvent in vacuo.

    Das Rohprodukt wurde in 1000 cm3 Toluol aufgenommen, mit 4,5 g p-Toluolsulfonsäure versetzt und 2 h am Wasserabscheider zum Rückfluß erhitzt. Die Reaktionsmischung wurde 3mal mit 250 cm3 gesättigter wässr. NaHCO3-Lösung gewaschen und das Lösemittel im Vakuum entfernt. Nach Destillation bei 0,1 mbar wurde bei 96-108°C 33 g (41 %) 10 als farbloses Öl erhalten.

  • 1H-NMR (100 MHz, CDCl3): 7,1 - 7,7 (m, 8H, arom. H), 6,9 und 6,5 (2m, 2H, CH), 3,5 (m, 2H, CH2).
  • The crude product was taken up in 1000 cm 3 of toluene, 4.5 g of p-toluenesulfonic acid were added and the mixture was heated to reflux on a water separator for 2 h. The reaction mixture was 3 times with 250 cm 3 saturated aq. Washed NaHCO 3 solution and the solvent removed in vacuo. After distillation at 0.1 mbar, 33 g (41%) 10 was obtained as a colorless oil at 96-108 ° C.
  • 1 H-NMR (100 MHz, CDCl 3 ): 7.1-7.7 (m, 8H, aromatic H), 6.9 and 6.5 (2m, 2H, CH), 3.5 (m, 2H, CH 2 ).
  • 4. Dimethylbis(4-phenylindenyl)silan (11)4. Dimethylbis (4-phenylindenyl) silane (11)

    Eine Lösung von 10 g (50 mmol) 10 in 100 cm3 H2O- und O2-freiem Toluol und 5 ml H2O- und O2-freiem THF wurden bei Raumtemperatur mit 18,7 cm3 (50 mmol) einer 20%igen Lösung von Butyllithium in Toluol versetzt und 2 h auf 80°C erhitzt. Anschließend wurde die gelbe Suspension auf 0°C gekühlt und mit 3,2 g (25 mmol) Dimethyldichlorsilan versetzt. Die Reaktionsmischung wurde noch 1 h auf 80°C erhitzt und anschließend mit 50 cm3 H2O gewaschen. Das Lösemittel wurde im Vakuum entfernt und der Rückstand aus Heptan bei - 20°C umkristallisiert. Es wurden 6,7 g (62%) 11 als farblose Kristalle (Schmp. 109-110°C) erhalten.

  • 1H-NMR (100 MHz, CDCl3): 7,0 - 7,7 (m, 18H, arom. H und H-C(3)), 6,8 (dd, 2H, H-C(2)), 3,8 (m, 2H, H-C(1)), -0,2, (s, 6H, CH3Si).
  • A solution of 10 g (50 mmol) 10 in 100 cm 3 H 2 O- and O 2 -free toluene and 5 ml H 2 O- and O 2 -free THF were mixed at room temperature with 18.7 cm 3 (50 mmol) a 20% solution of butyllithium in toluene and heated at 80 ° C for 2 h. The yellow suspension was then cooled to 0 ° C. and 3.2 g (25 mmol) of dimethyldichlorosilane were added. The reaction mixture was heated at 80 ° C. for a further hour and then washed with 50 cm 3 H 2 O. The solvent was removed in vacuo and the residue was recrystallized from heptane at -20 ° C. 6.7 g (62%) 11 were obtained as colorless crystals (mp. 109-110 ° C.).
  • 1 H-NMR (100 MHz, CDCl 3 ): 7.0 - 7.7 (m, 18H, aromatic H and HC (3)), 6.8 (dd, 2H, HC (2)), 3, 8 (m, 2H, HC (1)), -0.2, (s, 6H, CH 3 Si).
  • 5. rac-Dimethylsilandiylbis(4-phenylindenyl)zirkoniumdichlorid (12)5. rac-dimethylsilanediylbis (4-phenylindenyl) zirconium dichloride (12)

    Eine Lösung von 6,6 g (16 mmol) 11 in 70 cm3 H2O- und O2-freiem Et2O wurden unter Argon bei Raumtemperatur mit 12 cm3 (32 mmol) einer 20%igen Lösung von Butyllithium in Toluol versetzt und anschließend 3 h zum Rückfluß erhitzt. Das Lösemittel wurde im Vakuum entfernt und der Rückstand mit 50 ml H2O- und O2-freiem Hexan über eine G3-Schlenkfritte filtriert, mit 50 ml H2O- und O2-freiem Hexan nachgewaschen und getrocknet (0,1 mbar, RT).A solution of 6.6 g (16 mmol) 11 in 70 cm 3 H 2 O- and O 2 -free Et 2 O was made under argon at room temperature with 12 cm 3 (32 mmol) of a 20% solution of butyllithium in toluene added and then heated to reflux for 3 h. The solvent was removed in vacuo and the residue was filtered with 50 ml of H 2 O and O 2 free hexane through a G3 Schlenk frit, washed with 50 ml of H 2 O and O 2 free hexane and dried (0.1 mbar , RT).

    Das Dilithiosalz wurde bei -78°C zu einer Suspension von 3,6 g (16 mmol) Zirkoniumtetrachlorid in 80 cm3 Methylenchlorid gegeben und im Verlauf von 18 h unter magn. Rühren auf Raumtemperatur erwärmt. Der Ansatz wurde über eine G3-Fritte filtriert und der Rückstand portionsweise mit insgesamt 200 cm3 Methylenchlorid nachextrahiert. Die vereinigten Filtrate wurden im Vakuum vom Lösemitel befreit und aus Methylenchlorid/Hexan (1:1) umkristallisiert. Es wurden 5,6 g der racemischen und der meso-Form im Verhältnis 1:1 erhalten. Durch erneutes Umkristallisieren aus Methylenchlorid wurde der racemische Komplex in Form gelber Kristalle erhalten.

  • 1H-NMR (100 MHz, CDCl3); 7,0 - 7,8 (m, 22 H, arom. H und H-C(3)), 6,1 (d, 2H, H-C(2)), 1,1 (s, 6H, CH3Si). Massenspektrum: 598 M+, korrektes Zerfallsmuster.
  • The dilithio salt was added at -78 ° C to a suspension of 3.6 g (16 mmol) of zirconium tetrachloride in 80 cm 3 of methylene chloride and over the course of 18 h under magn. Stirring warmed to room temperature. The mixture was filtered through a G3 frit and the residue was extracted in portions with a total of 200 cm 3 of methylene chloride. The combined filtrates were freed from the solvent in vacuo and recrystallized from methylene chloride / hexane (1: 1). 5.6 g of the racemic and meso forms were obtained in a 1: 1 ratio. The racemic complex was obtained in the form of yellow crystals by recrystallization from methylene chloride.
  • 1 H NMR (100 MHz, CDCl 3 ); 7.0 - 7.8 (m, 22 H, aromatic H and HC (3)), 6.1 (d, 2H, HC (2)), 1.1 (s, 6H, CH 3 Si). Mass spectrum: 598 M + , correct decay pattern.
  • Beispiel DExample D rac-Dimethylsilandiylbis(2-ethyl-4-phenylindenyl)zirkoniumdichlorid (17)rac-dimethylsilanediylbis (2-ethyl-4-phenylindenyl) zirconium dichloride (17) 1. (±)-2-(2-Phenylbenzyl)-buttersäure (13)1. (±) -2- (2-phenylbenzyl) butyric acid (13)

    Zu 23 g (1 mol) Natrium in 400 cm3 H2O-freiem EtOH wurden bei Raumtemperatur 188 g (1 mol) Ethyl-malonsäurediethylester gelöst in 100 cm3 H2O-freiem EtOH zugetropft. Anschließend wurden 247 g (1 mol) 2-Phenylbenzylbromid in 300 cm3 H2O-freiem EtOH zugetropft und 3 h zum Rückfluß erhitzt. Bei Raumtemperatur wurden 170 g (3 mol) KOH gelöst in 300 cm3 H2O zugesetzt und weitere 4 h zum Rückfluß erhitzt. Das Lösemittel wurden im Vakuum entfernt, der Rückstand bis zur vollständigen Lösung mit H2O versetzt und anschließend mit konzentrierter wässr. HCI bis pH 1 angesäuert. Der ausgefallene Niederschlag wurde abgesaugt, getrocknet und 1 h auf 130°C erhitzt. Man erhielt 236 g (93%) 13 als zähflüssiges Öl.

  • 1H-NMR (100 MHz, CDCl3): 10,3 (s, 1H, COOH), 7,0 - 7,3 (m, 9 H, arom. H), 2,5 - 3,0 (m, 3H, CH und CH2), 1,5 - 1,9 (m, 2H, CH2), 0,9 (t, 3H, CH3).
  • 188 g (1 mol) of ethyl malonate dissolved in 100 cm 3 of H 2 O-free EtOH were added dropwise to 23 g (1 mol) of sodium in 400 cm 3 H 2 O-free EtOH at room temperature. Then 247 g (1 mol) of 2-phenylbenzyl bromide in 300 cm 3 of H 2 O-free EtOH were added dropwise and the mixture was heated under reflux for 3 h. 170 g (3 mol) of KOH dissolved in 300 cm 3 of H 2 O were added at room temperature and the mixture was heated under reflux for a further 4 h. The solvent was removed in vacuo, the residue was mixed with H 2 O until completely dissolved and then with concentrated aq. HCl acidified to pH 1. The precipitate was filtered off, dried and heated at 130 ° C for 1 h. 236 g (93%) 13 were obtained as a viscous oil.
  • 1 H-NMR (100 MHz, CDCl 3 ): 10.3 (s, 1H, COOH), 7.0 - 7.3 (m, 9 H, aromatic H), 2.5 - 3.0 (m , 3H, CH and CH 2 ), 1.5 - 1.9 (m, 2H, CH 2 ), 0.9 (t, 3H, CH 3 ).
  • 2. (±)-2-Ethyl-4-phenyl-1-indanon (14)2. (±) -2-ethyl-4-phenyl-1-indanone (14)

    Eine Lösung von 236 g (0,93 mol) 13 in 81 cm3 (1,2 mol) Thionylchlorid wurde 18 h bei Raumtemperatur gerührt. Überschüssiges Thionylchlorid wurde bei 10 mbar entfernt und der ölige Rückstand durch mehrmaliges Lösen in je 200 cm3 Toluol und Abziehen im Vakuum von anhaftenden Resten Thionylchlorid befreit.A solution of 236 g (0.93 mol) 13 in 81 cm 3 (1.2 mol) thionyl chloride was stirred at room temperature for 18 h. Excess thionyl chloride was removed at 10 mbar and the oily residue was freed from adhering residues of thionyl chloride by repeated dissolving in 200 cm 3 of toluene and removal in vacuo.

    Das Säurechlorid wurde in 400 cm3 Toluol aufgenommen und bei 10°C zu einer Suspension von 133 g (1,0 mol) AlCl3 in 2000 cm3 Toluol getropft und 1 h auf 80°C erhitzt. Die Reaktionsmischung wurde auf 2000 g Eis gegossen und mit konz. wässr. HCI bis pH 1 angesäuert. Die organische Phase wurde abgetrennt und die wässr. Phase 3mal mit je 200 cm3 Et2O nachextrahiert. Die vereinigten organischen Phasen wurden mit gesättigter wässr. NaHCO3-, gesättigter wässr. NaCl-Lösung gewaschen und anschließend getrocknet (MgSO4). The acid chloride was taken up in 400 cm 3 of toluene and added dropwise at 10 ° C. to a suspension of 133 g (1.0 mol) of AlCl 3 in 2000 cm 3 of toluene and heated to 80 ° C. for 1 h. The reaction mixture was poured onto 2000 g of ice and concentrated with. aq. HCl acidified to pH 1. The organic phase was separated and the aq. Phase extracted 3 times with 200 cm 3 Et 2 O each. The combined organic phases were washed with saturated aq. NaHCO 3 -, saturated aq. Washed NaCl solution and then dried (MgSO 4 ).

    Es wurden 187 g (85%) 14 erhalten, das ohne weitere Reinigung weiter umgesetzt wurde.

  • 1H-NMR (100 MHz, CDCl3): 7,0 - 7,8 (m, 8 H, arom. H), 3,1 - 3,4 (m, 1H, H-C(3)), 2,5 - 2,9 (m, 2H, H-C(2) und H-C(3)), 1,3 - 2,0 (m, 2H, CH2), 0,9 (t, 3H, CH3).
  • 187 g (85%) 14 were obtained, which was reacted further without further purification.
  • 1 H-NMR (100 MHz, CDCl 3 ): 7.0 - 7.8 (m, 8 H, aromatic H), 3.1 - 3.4 (m, 1H, HC (3)), 2, 5-2.9 (m, 2H, HC (2) and HC (3)), 1.3-2.0 (m, 2H, CH 2 ), 0.9 (t, 3H, CH 3 ).
  • 3. 2-Ethyl-7-phenylinden (15)3. 2-ethyl-7-phenylindene (15)

    Zu einer Lösung von 50 g (0,21 mol) 14 in 600 cm3 THF/Methanol 2:1 wurde bei 0°C portionsweise mit 8 g (0,21 mol) NaBH4 versetzt und 18 h bei Raumtemperatur gerührt. Die Reaktionsmischung wurde auf 600 g Eis gegossen, mit konz. wässr. HCI bis pH 1 versetzt und mehrmals mit Et2O extrahiert. Die vereinigten organischen Phasen wurden mit gesättigter wässr. NaHCO3-, gesättigter wässr. NaCl-Lösung gewaschen und anschließend getrocknet (MgSO4).8 g (0.21 mol) of NaBH 4 were added in portions to a solution of 50 g (0.21 mol) 14 in 600 cm 3 of THF / methanol 2: 1 at 0 ° C. and the mixture was stirred at room temperature for 18 h. The reaction mixture was poured onto 600 g of ice, with conc. aq. HCl added to pH 1 and extracted several times with Et 2 O. The combined organic phases were washed with saturated aq. NaHCO 3 -, saturated aq. Washed NaCl solution and then dried (MgSO 4 ).

    Das Rohprodukt wurde in 1000 cm3 Toluol aufgenommen, mit 4,5 g p-Toluolsulfonsäure versetzt und 2 h am Wasserabscheider zum Rückfluß erhitzt. Die Reaktionsmischung wurde 3mal mit 250 cm3 gesättigter wässr. NaHCO3-Lösung gewaschen und das Lösemittel im Vakuum entfernt. Nach Destillation bei 0,1 mbar wurden bei 135°C 33 g (72 %) 15 als farbloses Öl erhalten.

  • 1H-NMR (100 MHz, CDCl3): 7,0 - 7,5 (m, 8H, arom. H), 6,5 (m, 1H, CH), 3,2 (m, 2H, CH2), 2,5 (dq, 2H, CH2), 1,1 (t, 3H, CH3).
  • The crude product was taken up in 1000 cm 3 of toluene, 4.5 g of p-toluenesulfonic acid were added and the mixture was heated to reflux on a water separator for 2 h. The reaction mixture was 3 times with 250 cm 3 saturated aq. Washed NaHCO 3 solution and the solvent removed in vacuo. After distillation at 0.1 mbar, 33 g (72%) 15 were obtained as a colorless oil at 135 ° C.
  • 1 H-NMR (100 MHz, CDCl 3 ): 7.0 - 7.5 (m, 8H, aromatic H), 6.5 (m, 1H, CH), 3.2 (m, 2H, CH 2 ), 2.5 (dq, 2H, CH 2 ), 1.1 (t, 3H, CH 3 ).
  • 4. Dimethylbis(2-ethyl-4-phenylindenyl)silan (16)4. Dimethylbis (2-ethyl-4-phenylindenyl) silane (16)

    Eine Lösung von 17 g (77 mmol) 15 in 160 cm3 H2O- und O2-freiem Toluol und 8 ml H2O- und O2-freiem THF wurden bei Raumtemperatur mit 29 cm3 (77 mmol) einer 20%igen Lösung von Butyllithium in Toluol versetzt und 2 h auf 80°C erhitzt. Anschließend wurde die gelbe Suspension auf 0°C gekühlt und mit 5 g (38 mmol) Dimethyldichlorsilan versetzt. Die Reaktionsmischung wurde noch 1 h auf 80°C erhitzt und anschließend mit 100 cm3 H2O gewaschen. Das Lösemittel wurde im Vakuum entfernt und der Rückstand durch Chromatographie an 200 g Kieselgel (Hexan/ Methylenchlorid 9:1) gereinigt. Es wurden 9 g (47%) 16 als zähflüssiges Öl erhalten.

  • 1H-NMR (100 MHz, CDCl3): 6,9 - 7,4 (m, 16H, arom. H), 6,5 (m, 2H, H-C(3)), 3,7 (m, 2H, H-C(1)), 2,4 (m, 4H, CH2), 1,1 (t, 6H, CH3), -0,1, (s, 6H, CH3Si).
  • A solution of 17 g (77 mmol) 15 in 160 cm 3 H 2 O- and O 2 -free toluene and 8 ml H 2 O- and O 2 -free THF were mixed with 29 cm 3 (77 mmol) a 20 % solution of butyllithium in toluene and heated to 80 ° C for 2 h. The yellow suspension was then cooled to 0 ° C. and 5 g (38 mmol) of dimethyldichlorosilane were added. The reaction mixture was heated at 80 ° C. for a further 1 h and then washed with 100 cm 3 H 2 O. The solvent was removed in vacuo and the residue was purified by chromatography on 200 g of silica gel (hexane / methylene chloride 9: 1). 9 g (47%) 16 were obtained as a viscous oil.
  • 1 H NMR (100 MHz, CDCl 3 ): 6.9-7.4 (m, 16H, aromatic H), 6.5 (m, 2H, HC (3)), 3.7 (m, 2H) , HC (1)), 2.4 (m, 4H, CH 2 ), 1.1 (t, 6H, CH 3 ), -0.1, (s, 6H, CH 3 Si).
  • 5. rac-Dimethylsilandiylbis(2-ethyl-4-phenylindenyl)zirkoniumdichlorid (17)5. rac-dimethylsilanediylbis (2-ethyl-4-phenylindenyl) zirconium dichloride (17)

    Eine Lösung von 5,6 g (11 mmol) 16 in 50 cm3 H2O- und O2-freiem Et2O wurden unter Argon bei Raumtemperatur mit 8,4 cm3 einer 20%igen Lösung von Butyllithium in Toluol versetzt und anschließend 3 h zum Rückfluß erhitzt. Das Lösemittel wurde im Vakuum entfernt und der Rückstand mit 50 ml H2O- und O2-freiem Hexan über eine G3-Schlenkfritte filtriert, mit 50 ml H2O- und O2-freiem Hexan nachgewaschen und getrocknet (0,1 mbar, RT).A solution of 5.6 g (11 mmol) 16 in 50 cm 3 H 2 O- and O 2 -free Et 2 O was mixed with 8.4 cm 3 of a 20% solution of butyllithium in toluene under argon at room temperature and then heated to reflux for 3 h. The solvent was removed in vacuo and the residue was filtered with 50 ml of H 2 O and O 2 free hexane through a G3 Schlenk frit, washed with 50 ml of H 2 O and O 2 free hexane and dried (0.1 mbar , RT).

    Das Dilithiosalz wurde bei -78°C zu einer Suspension von 2,5 g (11 mmol) Zirkoniumtetrachlorid in 50 cm3 Methylenchlorid gegeben und im Verlauf von 18 h unter magn. Rühren auf Raumtemperatur erwärmt. Der Ansatz wurde über eine G3-Fritte filtriert und der Rückstand portionsweise mit insgesamt 100 cm3 Methylenchlorid nachextrahiert. Die vereinigten Filtrate wurden im Vakuum vom Lösemitel befreit und aus Toluol/Hexan (1:1) umkristallisiert. Es wurden 2 g (27%) der racemischen und der meso-Form im Verhältnis 1:1 erhalten. Durch erneutes Umkristallisieren aus Toluol wurde der racemische Komplex 17 in Form gelber Kristalle erhalten.

  • 1H-NMR (100 MHz, CDCl3): 6,8 - 7,7 (m, 16 H, arom. H), 6,6 (m, 2H, H-C(3)), 2,3-3,9 (m, 4H, CH2), 1,0 - 1,4 (m, 12H, CH3 und CH3Si). Massenspektrum: 654 M+, korrektes Zerfallsmuster.
  • The dilithio salt was added to a suspension of 2.5 g (11 mmol) of zirconium tetrachloride in 50 cm 3 of methylene chloride at -78 ° C. and under magn. Stirring warmed to room temperature. The mixture was filtered through a G3 frit and the residue was extracted in portions with a total of 100 cm 3 of methylene chloride. The combined filtrates were freed from the solvent in vacuo and recrystallized from toluene / hexane (1: 1). 2 g (27%) of the racemic and meso forms were obtained in a 1: 1 ratio. The recrystallization from toluene gave racemic complex 17 in the form of yellow crystals.
  • 1 H-NMR (100 MHz, CDCl 3 ): 6.8 - 7.7 (m, 16 H, aromatic H), 6.6 (m, 2H, HC (3)), 2.3-3, 9 (m, 4H, CH 2 ), 1.0-1.4 (m, 12H, CH 3 and CH 3 Si). Mass spectrum: 654 M + , correct decay pattern.
  • Beispiel EExample E rac-Dimethylsilandiylbis(2-methyl-4-(1-naphthyl)indenyl)zirkoniumdichlorid (24)rac-dimethylsilanediylbis (2-methyl-4- (1-naphthyl) indenyl) zirconium dichloride (24) 1. 2-(1-Naphthyl)-toluol (18)1. 2- (1-naphthyl) toluene (18)

    13,9 g (0,57 mol) Magnesium-Späne wurden mit 150 ml H2O-freiem Et2O überschichtet und die Grignard-Reaktion mit 5 g 2-Bromtoluol und einigen Körnchen Jod zum Anspringen gebracht. Anschließend wurden 93 g (0,57 mol) 1-Bromtoluol in 450 ml H2O-freiem Et2O so zugetropft, daß die Reaktionsmischung am Sieden gehalten wurde. Nach vollständiger Zugabe wurde noch solange zum Sieden erhitzt, bis das Magnesium vollständig umgesetzt war.13.9 g (0.57 mol) of magnesium shavings were overlaid with 150 ml of H 2 O-free Et 2 O and the Grignard reaction was started with 5 g of 2-bromotoluene and a few granules of iodine. 93 g (0.57 mol) of 1-bromotoluene in 450 ml of H 2 O-free Et 2 O were then added dropwise in such a way that the reaction mixture was kept at the boil. After the addition was complete, the mixture was heated to boiling until the magnesium had completely reacted.

    Die Grignard-Lösung wurde anschließend zu einer Lösung von 118 g (0,57 mol) 1-Bromnaphthalin und 3,5 g Bis(triphenylphosphin)nickeldichlorid in 800 cm3 Toluol getropft, so daß die Innentemp 50°C nicht überstieg. Anschließend wurde noch 3 h zum Rückfluß erhitzt, mit 500 ml 10%iger wässr. HCI versetzt, die Phasen getrennt und die organische Phase im Vakuum vom Lösemittel befreit. Nach Filtration über Kieselgel (Hexan) wurden 115 g (92%) 18 als farbloses Öl erhalten.

  • 1H-NMR (100 MHz, CDCl3): 7,2 - 8,0 (m, 11H, arom. H), 2,0 (s, 3H, CH3).
  • The Grignard solution was then added dropwise to a solution of 118 g (0.57 mol) of 1-bromonaphthalene and 3.5 g of bis (triphenylphosphine) nickel dichloride in 800 cm 3 of toluene, so that the internal temperature did not exceed 50.degree. The mixture was then heated under reflux for 3 h, with 500 ml of 10% aq. HCI added, the phases separated and the organic phase freed from solvent in vacuo. After filtration over silica gel (hexane), 115 g (92%) 18 were obtained as a colorless oil.
  • 1 H NMR (100 MHz, CDCl 3 ): 7.2-8.0 (m, 11H, aromatic H), 2.0 (s, 3H, CH 3 ).
  • 2. 2-(1-Naphthyl)-benzylbromid (19)2. 2- (1-naphthyl) benzyl bromide (19)

    114 g (0,52 mol) 18 und 103 g (0,58 mol) N-Bromsuccinimid wurden bei Raumtemperatur in 2000 cm3 Tetrachlorkohlenstoff gelöst, mit 3 g Azobisisobutyronitril versetzt und 4 h zum Rückfluß erhitzt. Das ausgefallene Succinimid wurde abfiltriert, das Lösemittel im Vakuum entfernt und der Rückstand durch Filtration über 1000 g Kieselgel (Hexan/Methylenchlorid 9:1) gereinigt. Es wurden 141 g (82%) 19 als farbloses, tränenreizendes Öl erhalten.

  • 1H-NMR (100 MHz, CDCl3): 7,1 - 8,0 (m, 11H, arom. H), 4,2 (q, 2H, CH2Br).
  • 114 g (0.52 mol) of 18 and 103 g (0.58 mol) of N-bromosuccinimide were dissolved in 2000 cm 3 of carbon tetrachloride at room temperature, 3 g of azobisisobutyronitrile were added and the mixture was heated under reflux for 4 h. The precipitated succinimide was filtered off, the solvent was removed in vacuo and the residue was purified by filtration over 1000 g of silica gel (hexane / methylene chloride 9: 1). 141 g (82%) 19 were obtained as a colorless, tear-irritating oil.
  • 1 H NMR (100 MHz, CDCl 3 ): 7.1-8.0 (m, 11H, aromatic H), 4.2 (q, 2H, CH 2 Br).
  • 3.(±)-2(2-(1-naphthyl)benzyl)-propionsäure (20)3. (±) -2 (2- (1-naphthyl) benzyl) propionic acid (20)

    Zu 10 g (0,43 mmol) Natrium in 100 cm3 H2O-freiem EtOH wurden bei Raumtemperatur 75 g (0,43 mmol) Methyl-malonsäurediethylester gelöst in 50 cm3 H2O-freiem EtOH zugetropft. Anschließend wurden 140 g (0,43 mmol) 2-Phenylbenzylbromid in 200 cm3 H2O-freiem EtOH zugetropft und 3 h zum Rückfluß erhitzt. Bei Raumtemperatur wurden 85 g (1,3 mol) KOH gelöst in 100 cm3 H2O zugesetzt und weitere 4 h zum Rückfluß erhitzt. Die Lösemittel wurden im Vakuum entfernt, der Rückstand bis zur vollständigen Lösung mit H2O versetzt und mit konzentrierter wässr. HCI bis pH 1 angesäuert. Der ausgefallene Niederschlag wurde abgesaugt, getrocknet und 1 h auf 130°C erhitzt. Man erhielt 96 g (77%) 20 als zähflüssiges Öl.

  • 1H-NMR (100 MHz, CDCl3): 10,1 (s, 1H, COOH), 6,9 - 8,0 (m, 11H, arom. H), 2,3 - 3,0 (m, 3H, CH2 und CH), 0,8 (d, 3H, CH3).
  • 75 g (0.43 mmol) of diethyl methylmalonate dissolved in 50 cm 3 of H 2 O-free EtOH were added dropwise to 10 g (0.43 mmol) of sodium in 100 cm 3 H 2 O-free EtOH at room temperature. Then 140 g (0.43 mmol) of 2-phenylbenzyl bromide in 200 cm 3 H 2 O-free EtOH were added dropwise and the mixture was heated under reflux for 3 h. 85 g (1.3 mol) of KOH dissolved in 100 cm 3 of H 2 O were added at room temperature and the mixture was heated under reflux for a further 4 h. The solvents were removed in vacuo, the residue was mixed with H 2 O until the solution was complete, and concentrated aqueous. HCl acidified to pH 1. The precipitate was filtered off, dried and heated at 130 ° C for 1 h. 96 g (77%) 20 were obtained as a viscous oil.
  • 1 H-NMR (100 MHz, CDCl 3 ): 10.1 (s, 1H, COOH), 6.9 - 8.0 (m, 11H, aromatic H), 2.3 - 3.0 (m, 3H, CH 2 and CH), 0.8 (d, 3H, CH 3 ).
  • 4. (±)-2-Methyl-4-(1-naphthyl)-1-indanon (21)4. (±) -2-methyl-4- (1-naphthyl) -1-indanone (21)

    Eine Lösung von 96 g (0,33 mol) 20 in 37 cm3 (0,5 mol) Thionylchlorid wurde 18 h bei Raumtemperatur gerührt. Überschüssiges Thionylchlorid wurde bei 10 mbar entfernt und der ölige Rückstand durch mehrmaliges Lösen in je 100 cm3 Toluol und Abziehen im Vakuum von anhaftenden Resten Thionylchlorid befreit.A solution of 96 g (0.33 mol) of 20 in 37 cm 3 (0.5 mol) of thionyl chloride was stirred at room temperature for 18 h. Excess thionyl chloride was removed at 10 mbar and the oily residue was freed from adhering residues of thionyl chloride by repeatedly dissolving in 100 cm 3 of toluene and stripping in vacuo.

    Das Säurechlorid wurde in 200 cm3 Toluol aufgenommen und bei 10°C zu einer Suspension von 44 g (0,33 mol) AlCl3 in 1000 cm3 Toluol getropft und 3 h auf 80°C erhitzt. Die Reaktionsmischung wurde auf 1000 g Eis gegossen und mit konz. wässr. HCI bis pH 1 angesäuert. Die organische Phase wurde abgetrennt und die wässr. Phase 3mal mit je 200 cm3 Methylenchlorid nachextrahiert. Die vereinigten organischen Phasen wurden mit gesättigter wässr. NaHCO3-, gesättigter wässr. NaCl-Lösung gewaschen und anschließend getrocknet (MgSO4). Nach Chromatographie an 1000 g Kieselgel (Hexan/Methylenchlorid) wurden 12 g (13%) 21 erhalten.

  • 1H-NMR (100 MHz, CDCl3): 7,3 - 8,0 (m, 10H, arom. H), 2,2 - 3,2 (m, 3H, CH2 und CH), 1,2 (d, 3H, CH3).
  • The acid chloride was taken up in 200 cm 3 of toluene and added dropwise at 10 ° C. to a suspension of 44 g (0.33 mol) of AlCl 3 in 1000 cm 3 of toluene and heated to 80 ° C. for 3 hours. The reaction mixture was poured onto 1000 g of ice and concentrated with. aq. HCl acidified to pH 1. The organic phase was separated and the aq. Phase extracted 3 times with 200 cm 3 of methylene chloride each. The combined organic phases were washed with saturated aq. NaHCO 3 -, saturated aq. Washed NaCl solution and then dried (MgSO 4 ). After chromatography on 1000 g of silica gel (hexane / methylene chloride), 12 g (13%) 21 were obtained.
  • 1 H-NMR (100 MHz, CDCl 3 ): 7.3 - 8.0 (m, 10H, aromatic H), 2.2 - 3.2 (m, 3H, CH 2 and CH), 1.2 (d, 3H, CH 3 ).
  • 5. 2-Methyl-7-(1-naphthyl)inden (22)5. 2-methyl-7- (1-naphthyl) indene (22)

    Zu einer Lösung von 12 g (44 mmol) 21 in 100 cm3 THF/Methanol 2:1 wurden bei 0°C 1,3 g (33 mmol) NaBH4 zugesetzt und 18 h bei Raumtemperatur gerührt. Die Reaktionsmischung wurde auf 100 g Eis gegossen, mit konz. wässr. HCI bis pH 1 versetzt und mehrmals mit Et2O extrahiert. Die vereinigten organischen Phasen wurden mit gesättigter wässr. NaHCO3-, gesättigter wässr. NaCl-Lösung gewaschen und anschließend getrocknet (MgSO4).1.3 g (33 mmol) of NaBH 4 were added to a solution of 12 g (44 mmol) of 21 in 100 cm 3 of THF / methanol 2: 1 at 0 ° C. and the mixture was stirred at room temperature for 18 h. The reaction mixture was poured onto 100 g of ice, with conc. aq. HCl added to pH 1 and extracted several times with Et 2 O. The combined organic phases were washed with saturated aq. NaHCO 3 -, saturated aq. Washed NaCl solution and then dried (MgSO 4 ).

    Das Rohprodukt wurde in 200 cm3 Toluol aufgenommen, mit 0,5 g p-Toluolsulfonsäure versetzt und 2 h am Wasserabscheider zum Rückfluß erhitzt. Die Reaktionsmischung wurde 3mal mit 50 cm3 gesättigter wässr. NaHCO3-Lösung gewaschen und das Lösemittel im Vakuum entfernt. Nach Filtration über 200 g Kieselgel (Hexan/ Methylenchlorid) wurden 10 g (86%) 22 als farbloses Öl erhalten.

  • 1H-NMR (100 MHz, CDCl3): 7,0 - 8,0 (m, 10H, arom. H), 6,6 (m, 1H, CH), 3,0 (m, 2H, CH2), 2,0 (m, 3H, CH3).
  • The crude product was taken up in 200 cm 3 of toluene, 0.5 g of p-toluenesulfonic acid was added and the mixture was heated to reflux on a water separator for 2 h. The reaction mixture was 3 times with 50 cm 3 saturated aq. Washed NaHCO 3 solution and the solvent removed in vacuo. After filtration through 200 g of silica gel (hexane / methylene chloride), 10 g (86%) 22 were obtained as a colorless oil.
  • 1 H NMR (100 MHz, CDCl 3 ): 7.0 - 8.0 (m, 10H, aromatic H), 6.6 (m, 1H, CH), 3.0 (m, 2H, CH 2 ), 2.0 (m, 3H, CH 3).
  • 6. Dimethylbis(2-methyl-4-(1-naphthyl)indenyl)silan (23)6. Dimethylbis (2-methyl-4- (1-naphthyl) indenyl) silane (23)

    Eine Lösung von 10 g (38 mmol) 22 in 100 cm3 H2O- und O2-freiem Toluol und 5 ml H2O- und O2-freiem THF wurden bei Raumtemperatur mit 14,4 cm3 (50 mmol) einer 20%igen Lösung von Butyllithium in Toluol versetzt und 2 h auf 80°C erhitzt. Anschließend wurde die gelbe Suspension auf 0°C gekühlt und mit 2,5 g (19 mmol) Dimethyldichlorsilan versetzt. Die Reaktionsmischung wurde noch 1 h auf 80°C erhitzt und anschließend mit 50 cm3 H2O gewaschen. Das Lösemittel wurde im Vakuum entfernt und der Rückstand aus Heptan bei -20°C umkristallisiert. Es wurden 8,2 g (75%) 23 als farblose Kristalle erhalten.

  • 1H-NMR (100 MHz, CDCl3): 7,2 - 8,1 (m, 20H, arom. H), 6,4 (m, 2H, H-C(3)), 4,0 (m, 2H, H-C(1)), -0,1, (s, 6H, CH3Si).
  • A solution of 10 g (38 mmol) 22 in 100 cm 3 H 2 O- and O 2 -free toluene and 5 ml H 2 O- and O 2 -free THF were mixed at room temperature with 14.4 cm 3 (50 mmol) a 20% solution of butyllithium in toluene and heated at 80 ° C for 2 h. The yellow suspension was then cooled to 0 ° C. and 2.5 g (19 mmol) of dimethyldichlorosilane were added. The reaction mixture was heated at 80 ° C. for a further hour and then washed with 50 cm 3 H 2 O. The solvent was removed in vacuo and the residue was recrystallized from heptane at -20 ° C. 8.2 g (75%) 23 were obtained as colorless crystals.
  • 1 H NMR (100 MHz, CDCl 3 ): 7.2 - 8.1 (m, 20H, aromatic H), 6.4 (m, 2H, HC (3)), 4.0 (m, 2H) , HC (1)), -0.1, (s, 6H, CH 3 Si).
  • 7. rac-Dimethylsilandiylbis(2-methyl-4-(1-naphthyl)indenyl)zirkoniumdichlorid (24)7. rac-dimethylsilanediylbis (2-methyl-4- (1-naphthyl) indenyl) zirconium dichloride (24)

    Eine Lösung von 8,0 g (14 mmol) 23 in 70 cm3 H2O- und O2-freiem Et2O wurden unter Argon bei Raumtemperatur mit 10,5 cm3 einer 20%igen Lösung von Butyllithium in Toluol versetzt und anschließend 3 h zum Rückfluß erhitzt. Das Lösemittel wurde im Vakuum entfernt und der Rückstand mit 50 ml H2O- und O2-freiem Hexan über eine G3-Schlenkfritte filtriert, mit 50 ml H2O- und O2-freiem Hexan nachgewaschen und getrocknet (0,1 mbar, RT).A solution of 8.0 g (14 mmol) 23 in 70 cm 3 H 2 O- and O 2 -free Et 2 O was added under argon at room temperature with 10.5 cm 3 of a 20% solution of butyllithium in toluene and then heated to reflux for 3 h. The solvent was removed in vacuo and the residue was filtered with 50 ml of H 2 O and O 2 free hexane through a G3 Schlenk frit, washed with 50 ml of H 2 O and O 2 free hexane and dried (0.1 mbar , RT).

    Das Dilithiosalz wurde bei -78°C zu einer Suspension von 3,2 g (14 mmol) Zirkoniumtetrachlorid in 80 cm3 Methylenchlorid gegeben und im Verlauf von 18 h unter magn. Rühren auf Raumtemperatur erwärmt. Der Ansatz wurde über eine G3-Fritte filtriert und der Rückstand portionsweise mit insgesamt 400 cm3 Methylenchlorid nachextrahiert. Die vereinigten Filtrate wurden im Vakuum vom Lösemittel befreit und aus Methylenchlorid umkristallisiert. Es wurden 1,5 g (15%) der racemischen und der meso-Form im Verhältnis 1:1 erhalten. Durch erneutes Umkristallisieren aus Methylenchlorid wurde der racemische Komplex in Form gelber Kristalle erhalten.

  • 1H-NMR (100 MHz, CDCl3): 7,0 - 8,0 (m, 22 H, arom. H), 6,5 (s, 2H, H-C(3)), 2,2 (s, 6H, CH3), 1,3 (s, 6H, CH3Si). Massenspektrum: 729 M+, korrektes Zerfallsmuster.
  • The dilithio salt was added to a suspension of 3.2 g (14 mmol) of zirconium tetrachloride in 80 cm 3 of methylene chloride at -78 ° C. and under magn. Stirring warmed to room temperature. The mixture was filtered through a G3 frit and the residue was extracted in portions with a total of 400 cm 3 of methylene chloride. The combined filtrates were freed from the solvent in vacuo and recrystallized from methylene chloride. 1.5 g (15%) of the racemic and meso forms were obtained in a 1: 1 ratio. The racemic complex was obtained in the form of yellow crystals by recrystallization from methylene chloride.
  • 1 H-NMR (100 MHz, CDCl 3 ): 7.0 - 8.0 (m, 22 H, aromatic H), 6.5 (s, 2H, HC (3)), 2.2 (s, 6H, CH 3 ), 1.3 (s, 6H, CH 3 Si). Mass spectrum: 729 M + , correct decay pattern.
  • Beispiel FExample F rac-Dimethylsilandiylbis(2-methyl-4-(2-naphthyl)indenyl)zirkoniumdichlorid (31)rac-dimethylsilanediylbis (2-methyl-4- (2-naphthyl) indenyl) zirconium dichloride (31) 1. 2-(2-Naphthyl)-toluol (25)1. 2- (2-naphthyl) toluene (25)

    14 g (0,57 mol) Magnesium-Späne wurden mit 150 ml H2O-freiem Et2O überschichtet und die Grignard-Reaktion mit 5 g 2-Bromtoluol und einigen Körnchen Jod zum Anspringen gebracht. Anschließend wurden 95 g (0,58 mol) Bromtoluol in 450 ml H2O-freiem Et2O so zugetropft, daß die Reaktionsmischung am Sieden gehalten wurde. Nach vollständiger Zugabe wurde noch solange zum Sieden erhitzt, bis das Magnesium vollständig umgesetzt war. 14 g (0.57 mol) of magnesium shavings were covered with 150 ml of H 2 O-free Et 2 O and the Grignard reaction started with 5 g of 2-bromotoluene and a few granules of iodine. 95 g (0.58 mol) of bromotoluene in 450 ml of H 2 O-free Et 2 O were then added dropwise in such a way that the reaction mixture was kept at the boil. After the addition was complete, the mixture was heated to boiling until the magnesium had completely reacted.

    Die Grignard-Lösung wurde anschließend zu einer Lösung von 120 g (0,57 mol) 2-Bromnaphthalin und 3,5 g Bis(triphenylphosphin)nickeldichlorid in 800 cm3 Toluol getropft, so daß die Innentemp 50°C nicht überstieg. Anschließend wurde noch 3 h zum Rückfluß erhitzt, mit 500 ml 10%iger wässr. HCI versetzt, die Phasen getrennt und die organische Phase im Vakuum vom Lösemittel befreit. Nach Filtration über Kieselgel (Hexan) wurden 107 g (87%) 25 als farbloses Öl erhalten.

  • 1H-NMR (100 MHz, CDCl3): 7,0 - 7,9 (m, 11H, arom. H), 1,9 (s, 3H, CH3).
  • The Grignard solution was then added dropwise to a solution of 120 g (0.57 mol) of 2-bromonaphthalene and 3.5 g of bis (triphenylphosphine) nickel dichloride in 800 cm 3 of toluene, so that the internal temperature did not exceed 50.degree. The mixture was then heated under reflux for 3 h, with 500 ml of 10% aq. HCI added, the phases separated and the organic phase freed from solvent in vacuo. After filtration over silica gel (hexane), 107 g (87%) 25 were obtained as a colorless oil.
  • 1 H NMR (100 MHz, CDCl 3 ): 7.0 - 7.9 (m, 11H, aromatic H), 1.9 (s, 3H, CH 3 ).
  • 2. 2-(2-Naphthyl)-benzylbromid (26)2. 2- (2-naphthyl) benzyl bromide (26)

    105 g (0,48 mol) 25 und 90 g (0,5 mol) N-Bromsuccinimid wurden bei Raumtemperatur in 2000 cm3 Tetrachlorkohlenstoff gelöst, mit 3 g Azobisisobutyronitril versetzt und 4 h zum Rückfluß erhitzt. Das ausgefallene Succinimid wurde abfiltriert, das Lösemittel im Vakuum entfernt und der Rückstand durch Filtration über 1000 g Kieselgel (Hexan/Methylenchlorid 9:1) gereinigt. Es wurden 112 g (79%) 26 als farbloses, tränenreizendes Öl erhalten.

  • 1H-NMR (100 MHz, CDCl3): 6,9 - 8,0 (m, 11H, arom. H), 4,1 (s, 2H, CH2Br).
  • 105 g (0.48 mol) of 25 and 90 g (0.5 mol) of N-bromosuccinimide were dissolved in 2000 cm 3 of carbon tetrachloride at room temperature, 3 g of azobisisobutyronitrile were added and the mixture was heated under reflux for 4 h. The precipitated succinimide was filtered off, the solvent was removed in vacuo and the residue was purified by filtration over 1000 g of silica gel (hexane / methylene chloride 9: 1). 112 g (79%) 26 were obtained as a colorless, tear-irritating oil.
  • 1 H NMR (100 MHz, CDCl 3 ): 6.9-8.0 (m, 11H, aromatic H), 4.1 (s, 2H, CH 2 Br).
  • 3. (±)-2-(2-(2-naphthyl)benzyl)-propionsäure (27)3. (±) -2- (2- (2-naphthyl) benzyl) propionic acid (27)

    Zu 8,5 g (0,37 mmol) Natrium in 100 cm3 H2O-freiem EtOH wurden bei Raumtemperatur 70 g (0,37 mmol) Methyl-malonsäurediethylester gelöst in 50 cm3 H2O-freiem EtOH zugetropft. Anschließend wurden 110 g (0,37 mmol) 26 in 200 cm3 H2O-freiem EtOH zugetropft und 3 h zum Rückfluß erhitzt. Bei Raumtemperatur wurden 62 g (1,1 mol) KOH gelöst in 100 cm3 H2O zugesetzt und weitere 4 h zum Rückfluß erhitzt. Die Lösemittel wurden im Vakuum entfernt, der Rückstand bis zur vollständigen Lösung mit H2O versetzt und mit konzentrierter wässr. HCI bis pH 1 angesäuert. Der ausgefallene Niederschlag wurde abgesaugt, getrocknet und 1 h auf 130°C erhitzt. Man erhielt 90 g (84%) 27 als zähflüssiges Öl.

  • 1H-NMR (100 MHz, CDCl3): 10,9 (s, 1H, COOH), 7,0 - 8,1 (m, 11 H, arom. H), 2,3 - 3,0 (m, 3H, CH2 und CH), 1,0 (d, 3H, CH3).
  • 70 g (0.37 mmol) of diethyl methylmalonate dissolved in 50 cm 3 of H 2 O-free EtOH were added dropwise to 8.5 g (0.37 mmol) of sodium in 100 cm 3 H 2 O-free EtOH. 110 g (0.37 mmol) of 26 in 200 cm 3 of H 2 O-free EtOH were then added dropwise and the mixture was heated under reflux for 3 h. 62 g (1.1 mol) of KOH dissolved in 100 cm 3 of H 2 O were added at room temperature and the mixture was heated under reflux for a further 4 h. The solvents were removed in vacuo, the residue was mixed with H 2 O until the solution was complete, and concentrated aqueous. HCl acidified to pH 1. The precipitate was filtered off, dried and heated at 130 ° C for 1 h. 90 g (84%) 27 were obtained as a viscous oil.
  • 1 H-NMR (100 MHz, CDCl 3 ): 10.9 (s, 1H, COOH), 7.0 - 8.1 (m, 11 H, aromatic H), 2.3 - 3.0 (m , 3H, CH 2 and CH), 1.0 (d, 3H, CH 3 ).
  • 4. (±)-2-Methyl-4-(2-naphthyl)-1-indanon (28)4. (±) -2-methyl-4- (2-naphthyl) -1-indanone (28)

    Eine Lösung von 89 g (0,31 mol) 27 in 37 cm3 (0,5 mol) Thionylchlorid wurde 18 h bei Raumtemperatur gerührt. Überschüssiges Thionylchlorid wurde bei 10 mbar entfernt und der ölige Rückstand durch mehrmaliges Lösen in je 100 cm3 Toluol und Abziehen im Vakuum von anhaftenden Resten Thionylchlorid befreit.A solution of 89 g (0.31 mol) 27 in 37 cm 3 (0.5 mol) thionyl chloride was stirred at room temperature for 18 h. Excess thionyl chloride was removed at 10 mbar and the oily residue was freed from adhering residues of thionyl chloride by repeatedly dissolving in 100 cm 3 of toluene and stripping in vacuo.

    Das Säurechlorid wurde in 200 cm3 Toluol aufgenommen und bei 10°C zu einer Suspension von 44 g (0,33 mol) AlCl3 in 1000 cm3 Toluol getropft und 3 h auf 80°C erhitzt. Die Reaktionsmischung wurde auf 1000 g Eis gegossen und mit konz. wässr. HCI bis pH 1 angesäuert. Die organische Phase wurde abgetrennt und die wässr. Phase 3mal mit je 200 cm3 Methylenchlorid nachextrahiert. Die vereinigten organischen Phasen wurden mit gesättigter wässr. NaHCO3-, gesättigter wässr. NaCl-Lösung gewaschen und anschließend getrocknet (MgSO4). Nach Chromatographie an 1000 g Kieselgel (Hexan/AeOEt) wurden 27 g (33%) 28 erhalten.

  • 1H-NMR (100 MHz, CDCl3): 7,1 - 8,0 (m, 10H, arom. H), 2,2 - 3,3 (m, 3H, CH2 und CH), 1,1 (d, 3H, CH3).
  • The acid chloride was taken up in 200 cm 3 of toluene and added dropwise at 10 ° C. to a suspension of 44 g (0.33 mol) of AlCl 3 in 1000 cm 3 of toluene and heated to 80 ° C. for 3 hours. The reaction mixture was poured onto 1000 g of ice and concentrated with. aq. HCl acidified to pH 1. The organic phase was separated and the aq. Phase extracted 3 times with 200 cm 3 of methylene chloride each. The combined organic phases were washed with saturated aq. NaHCO 3 -, saturated aq. Washed NaCl solution and then dried (MgSO 4 ). After chromatography on 1000 g of silica gel (hexane / AeOEt), 27 g (33%) 28 were obtained.
  • 1 H NMR (100 MHz, CDCl 3 ): 7.1-8.0 (m, 10H, aromatic H), 2.2-3.3 (m, 3H, CH 2 and CH), 1.1 (d, 3H, CH 3 ).
  • 5. 2-Methyl-7-(2-naphthyl)inden (29)5. 2-methyl-7- (2-naphthyl) indene (29)

    Zu einer Lösung von 27 g (100 mmol) 28 in 200 cm3 THF/Methanol 2:1 wurden bei 0°C 3,8 g (100 mmol) NaBH4 zugesetzt und 18 h bei Raumtemperatur gerührt. Die Reaktionsmischung wurde auf 100 g Eis gegossen, mit konz. wässr. HCI bis pH 1 versetzt und mehrmals mit Et2O extrahiert. Die vereinigten organischen Phasen wurden mit gesättigter wässr. NaHCO3-, gesättigter wässr. NaCl-Lösung gewaschen und anschließend getrocknet (MgSO4).3.8 g (100 mmol) of NaBH 4 were added to a solution of 27 g (100 mmol) of 28 in 200 cm 3 of THF / methanol 2: 1 at 0 ° C. and the mixture was stirred at room temperature for 18 h. The reaction mixture was poured onto 100 g of ice, with conc. aq. HCl added to pH 1 and extracted several times with Et 2 O. The combined organic phases were washed with saturated aq. NaHCO 3 -, saturated aq. Washed NaCl solution and then dried (MgSO 4 ).

    Das Rohprodukt wurde in 500 cm3 Toluol aufgenommen, mit 1,5 g p-Toluolsulfonsäure versetzt und 2 h am Wasserabscheider zum Rückfluß erhitzt. Die Reaktionsmischung wurde 3mal mit 50 cm3 gesättigter wässr. NaHCO3-Lösung gewaschen und das Lösemittel im Vakuum entfernt. Nach Filtration über 200 g Kieselgel (Hexan/ Methylenchlorid) wurden 18,4 g (72%) 29 als farbloses Öl erhalten.

  • 1H-NMR (100 MHz, CDCl3): 7,0 - 8,0 (m, 10H, arom. H), 6,6 (m, 1H, CH), 3,0 (m, 2H, CH2), 2,0 (m, 3H, CH3).
  • The crude product was taken up in 500 cm 3 of toluene, 1.5 g of p-toluenesulfonic acid were added and the mixture was heated to reflux on a water separator for 2 h. The reaction mixture was 3 times with 50 cm 3 saturated aq. Washed NaHCO 3 solution and the solvent removed in vacuo. After filtration over 200 g of silica gel (hexane / methylene chloride), 18.4 g (72%) 29 were obtained as a colorless oil.
  • 1 H NMR (100 MHz, CDCl 3 ): 7.0 - 8.0 (m, 10H, aromatic H), 6.6 (m, 1H, CH), 3.0 (m, 2H, CH 2 ), 2.0 (m, 3H, CH 3).
  • 6. Dimethylbis(2-methyl-4-(2-naphthyl)indenyl)silan (30)6. Dimethylbis (2-methyl-4- (2-naphthyl) indenyl) silane (30)

    Eine Lösung von 18 g (70 mmol) 29 in 70 cm3 H2O- und O2-freiem Toluol und 4 ml H2O- und O2-freiem THF wurden bei Raumtemperatur mit 26 cm3 (70 mmol) einer 20%igen Lösung von Butyllithium in Toluol versetzt und 2 h auf 80°C erhitzt. Anschließend wurde die gelbe Suspension auf 0°C gekühlt und mit 4,5 g (35 mmol) Dimethyldichlorsilan versetzt. Die Reaktionsmischung wurde noch 1 h auf 80°C erhitzt und anschließend mit 50 cm3 H2O gewaschen. Das Lösemittel wurde im Vakuum entfernt und der Rückstand aus Heptan bei -20°C umkristallisiert. Es wurden 10,8 g (54%) 30 als farblose Kristalle erhalten.

  • 1H-NMR (100 MHz, CDCl3): 7,0 - 8,1 (m, 20H, arom. H), 6,4 (m, 2H, H-C(3)), 4,0 (m, 2H, H-C(1)), -0,1, (s, 6H, CH3Si).
  • A solution of 18 g (70 mmol) 29 in 70 cm 3 H 2 O- and O 2 -free toluene and 4 ml H 2 O- and O 2 -free THF were mixed with 26 cm 3 (70 mmol) of a 20 % solution of butyllithium in toluene and heated to 80 ° C for 2 h. The yellow suspension was then cooled to 0 ° C. and 4.5 g (35 mmol) of dimethyldichlorosilane were added. The reaction mixture was heated at 80 ° C. for a further hour and then washed with 50 cm 3 H 2 O. The solvent was removed in vacuo and the residue was recrystallized from heptane at -20 ° C. 10.8 g (54%) 30 were obtained as colorless crystals.
  • 1 H NMR (100 MHz, CDCl 3 ): 7.0-8.1 (m, 20H, aromatic H), 6.4 (m, 2H, HC (3)), 4.0 (m, 2H) , HC (1)), -0.1, (s, 6H, CH 3 Si).
  • 7. rac-Dimethylsilandiylbis(2-methyl-4-(2-naphthyl)indenyl)zirkoniumdichlorid (31)7. rac-dimethylsilanediylbis (2-methyl-4- (2-naphthyl) indenyl) zirconium dichloride (31)

    Eine Lösung von 10,5 g (18 mmol) 30 in 70 cm3 H2O- und O2-freiem Et2O wurden unter Argon bei Raumtemperatur mit 13,6 cm3 einer 20%igen Lösung von Butyllithium in Toluol versetzt und anschließend 3 h zum Rückfluß erhitzt. Das Lösemittel wurde im Vakuum entfernt und der Rückstand mit 50 ml H2O- und O2-freiem Hexan über eine G3-Schlenkfritte filtriert, mit 50 ml H2O- und O2-freiem Hexan nachgewaschen und getrocknet (0,1 mbar, RT).A solution of 10.5 g (18 mmol) 30 in 70 cm 3 H 2 O- and O 2 -free Et 2 O was added under argon at room temperature with 13.6 cm 3 of a 20% solution of butyllithium in toluene and then heated to reflux for 3 h. The solvent was removed in vacuo and the residue was filtered with 50 ml of H 2 O and O 2 free hexane through a G3 Schlenk frit, washed with 50 ml of H 2 O and O 2 free hexane and dried (0.1 mbar , RT).

    Das Dilithiosalz wurde bei -78°C zu einer Suspension von 4,2 g (18 mmol) Zirkoniumtetrachlorid in 80 cm3 Methylenchlorid gegeben und im Verlauf von 18 h unter magn. Rühren auf Raumtemperatur erwärmt. Der Ansatz wurde über eine G3-Fritte filtriert und der Rückstand portionsweise mit insgesamt 400 cm3 Methylenchlorid nachextrahiert. Die vereinigten Filtrate wurden im Vakuum vom Lösemittel befreit und aus Methylenchlorid umkristallisiert. Es wurden 3,1 g (23%) der racemischen und der meso-Form im Verhältnis 1:1 erhalten. Durch erneutes Umkristallisieren aus Methylenchlorid wurde der racemische Komplex in Form gelber Kristalle erhalten.

  • 1H-NMR (100 MHz, CDCl3): 7,0 - 8,0 (m, 22 H, arom. H), 6,9 (s, 2H, H-C(3)), 2,2 (s, 6H, CH3), 1,3 (s, 6H, CH3Si). Massenspektrum: 729 M+, korrektes Zerfallsmuster.
  • The dilithio salt was added at -78 ° C to a suspension of 4.2 g (18 mmol) of zirconium tetrachloride in 80 cm 3 of methylene chloride and over the course of 18 h under magn. Stirring warmed to room temperature. The mixture was filtered through a G3 frit and the residue was extracted in portions with a total of 400 cm 3 of methylene chloride. The combined filtrates were freed from the solvent in vacuo and recrystallized from methylene chloride. 3.1 g (23%) of the racemic and meso forms were obtained in a 1: 1 ratio. The racemic complex was obtained in the form of yellow crystals by recrystallization from methylene chloride.
  • 1 H-NMR (100 MHz, CDCl 3 ): 7.0 - 8.0 (m, 22 H, aromatic H), 6.9 (s, 2H, HC (3)), 2.2 (s, 6H, CH 3 ), 1.3 (s, 6H, CH 3 Si). Mass spectrum: 729 M + , correct decay pattern.
  • Beispiel GExample G rac-Ethandiylbis(2-methyl-4-phenylindenyl)zirkoniumdichlorid (33)rac-ethanediylbis (2-methyl-4-phenylindenyl) zirconium dichloride (33) 1. 1,2-Bis(2-methyl-4-phenylindenyl)ethan (32)1. 1,2-bis (2-methyl-4-phenylindenyl) ethane (32)

    Eine Lösung von 50 g (0,24 mol) 3 in 500 ml THF wurde unter Argon bei Raumtemperatur mit 90 cm3 (0,24 mol) einer 20%igen Lösung von Butyllithium in Toluol versetzt und 2 h bei 60°C nachgerührt. Es wurde auf -78°C abgekühlt, 22,5 g (0,12 mol) 1,2-Dibromethan zugesetzt und im Verlauf von 18 h auf Raumtemperatur erwärmt. Die Reaktionsmischung wurde mit 50 cm3 H2O gewaschen, das Lösemittel im Vakuum entfernt und der Rückstand an 500 g Kieselgel (Hexan/Methylenchlorid 9:1) chromatographiert. Es wurden 2,5 g (5%) 32 als gelbes Öl erhalten, das bei -20°C langsam erstarrte.

  • 1H-NMR (100 MHz, CDCl3): 7,0 - 8,1 (m, 20H, arom. H), 6,4 (m, 2H, H-C(3)), 4,0 (m, 2H, H-C(1)), -0,1, (s, 6H, CH3Si).
  • A solution of 50 g (0.24 mol) 3 in 500 ml THF was mixed with 90 cm 3 (0.24 mol) of a 20% solution of butyllithium in toluene under argon at room temperature and stirred at 60 ° C. for 2 h. It was cooled to -78 ° C., 22.5 g (0.12 mol) of 1,2-dibromoethane were added and the mixture was warmed to room temperature in the course of 18 h. The reaction mixture was washed with 50 cm 3 H 2 O, the solvent was removed in vacuo and the residue was chromatographed on 500 g silica gel (hexane / methylene chloride 9: 1). 2.5 g (5%) 32 were obtained as a yellow oil which slowly solidified at -20 ° C.
  • 1 H NMR (100 MHz, CDCl 3 ): 7.0-8.1 (m, 20H, aromatic H), 6.4 (m, 2H, HC (3)), 4.0 (m, 2H) , HC (1)), -0.1, (s, 6H, CH 3 Si).
  • 2. rac-Ethandiylbis(2-methyl-4-phenylindenyl)zirkoniumdichlorid (33)2. rac-ethanediylbis (2-methyl-4-phenylindenyl) zirconium dichloride (33)

    Eine Lösung von 2,3 g (5 mmol) 32 in 20 ml H2O- und O2-freiem Et2O wurde unter Argon bei Raumtemperatur mit 4 cm3 (10 mmol) einer 20%igen Lösung von Butyllithium in Toluol versetzt und 3 h zum Rückfluß erhitzt. Das Lösemittel wurde im Vakuum entfernt und der Rückstand mit 30 ml H2O- und O2-freiem Hexan über eine G3-Schlenkfritte filtriert, mit 30 ml H2O- und O2-freiem Hexan nachgewaschen und getrocknet (0,1 mbar, RT).A solution of 2.3 g (5 mmol) 32 in 20 ml H 2 O- and O 2 -free Et 2 O was added under argon at room temperature with 4 cm 3 (10 mmol) of a 20% solution of butyllithium in toluene and heated to reflux for 3 hours. The solvent was removed in vacuo and the residue was filtered with 30 ml of H 2 O and O 2 free hexane through a G3 Schlenk frit, washed with 30 ml of H 2 O and O 2 free hexane and dried (0.1 mbar , RT).

    Das Dilithiosalz wurde bei -78°C zu einer Suspension von 1,2 g (5 mmol) Zirkoniumtetrachlorid in 30 cm3 Methylenchlorid gegeben und im Verlauf von 18 h unter magn. Rühren auf Raumtemperatur erwärmt. Der Ansatz wurde über eine G3-Fritte filtriert und der Rückstand portionsweise mit insgesamt 100 cm3 Methylenchlorid nachextrahiert. Die vereinigten Filtrate wurden im Vakuum vom Lösemittel befreit und aus Methylenchlorid/Hexan umkristallisiert. Es wurden 0,5 g (18%) der racemischen und der meso-Form im Verhältnis 1:1 erhalten. Durch erneutes Umkristallisieren aus Toluol wurde der racemische Komplex in Form gelber Kristalle erhalten.

  • 1H-NMR (100 MHz, CDCl3): 7,0 - 7,7 (m, 16H, arom. H), 6,6 (m, 2H, H-C(3)), 3,4-4,1 (m, 4H, H2C-CH2), 2,1 (s, 6H, CH3). Massenspektrum: 598 M+, korrektes Zerfallsmuster.
  • The dilithio salt was added at -78 ° C to a suspension of 1.2 g (5 mmol) of zirconium tetrachloride in 30 cm 3 of methylene chloride and over the course of 18 h under magn. Stirring warmed to room temperature. The mixture was filtered through a G3 frit and the residue was extracted in portions with a total of 100 cm 3 of methylene chloride. The combined filtrates were freed from the solvent in vacuo and recrystallized from methylene chloride / hexane. 0.5 g (18%) of the racemic and meso forms were obtained in a 1: 1 ratio. The racemic complex was obtained in the form of yellow crystals by recrystallization from toluene.
  • 1 H NMR (100 MHz, CDCl 3 ): 7.0-7.7 (m, 16H, aromatic H), 6.6 (m, 2H, HC (3)), 3.4-4.1 (m, 4H, H 2 C-CH 2 ), 2.1 (s, 6H, CH 3 ). Mass spectrum: 598 M + , correct decay pattern.
  • Beispiel HExample H Me2Si(2-Me-4-Ph-Indenyl)2ZrMe[BPh4] (35)Me 2 Si (2-Me-4-Ph-Indenyl) 2 ZrMe [BPh 4 ] (35) 1. rac-Dimethylsilandiylbis(2-Methyl-4-phenyl-indenyl)zirkoniumdimethyl (34)1. rac-dimethylsilanediylbis (2-methyl-4-phenyl-indenyl) zirconium dimethyl (34)

    0,5 g (0,8 mmol) rac-5 wurden in 10 cm3 H2O- und O2-freiem Et2O bei -30°C mit 1 cm3 einer 1,6 M (1,6 mmol) Lösung von Methyllithium in Et2O versetzt und 1 h bei 0°C gerührt. Anschließend wurde das Lösemittel im Vakuum entfernt, der Rückstand in 20 cm3 H2O- und O2-freiem Hexan aufgenommen und über eine G3-Fritte abfiltriert. Es wurden 0,34 g (72%) 34 erhalten. Massenspektrum: 588 M+, korrektes Zerfallsmuster. 0.5 g (0.8 mmol) rac-5 was dissolved in 10 cm 3 H 2 O and O 2 -free Et 2 O at -30 ° C with 1 cm 3 of a 1.6 M (1.6 mmol) Solution of methyl lithium in Et 2 O was added and the mixture was stirred at 0 ° C. for 1 h. The solvent was then removed in vacuo, the residue was taken up in 20 cm 3 H 2 O and O 2 -free hexane and filtered through a G3 frit. 0.34 g (72%) 34 was obtained. Mass spectrum: 588 M + , correct decay pattern.

    2. Me2Si(2-Me-4-Ph-Indenyl)2ZrMe[BPh4] (35)2. Me 2 Si (2-Me-4-Ph-Indenyl) 2 ZrMe [BPh 4 ] (35)

    0,2 g (0,3 mmol) 34 wurden bei 0°C zu 0,25 g (mmol) Tributylammoniumtetraphenylborat in 30 cm3 Toluol gegeben. Unter Rühren wurde auf 50°C erwärmt und die Mischung 15 Minuten bei dieser Temperatur gerührt. Für die Polymerisation wurde ein aliquoter Teil der Lösung verwendet.0.2 g (0.3 mmol) 34 were added at 0 ° C to 0.25 g (mmol) tributylammonium tetraphenylborate in 30 cm 3 toluene. The mixture was heated to 50 ° C. with stirring and the mixture was stirred at this temperature for 15 minutes. An aliquot of the solution was used for the polymerization.

    Beispiel 1example 1

    Ein trockener 16-dm3-Reaktor wurde zunächst mit Stickstoff und anschließend mit Propylen gespült und mit 10 dm3 flüssigem Propylen befüllt. Dann wurden 30 cm3 toluolische Methylaluminoxanlösung zugegeben und der Ansatz bei 30°C 15 Minuten gerührt.A dry 16 dm 3 reactor was first flushed with nitrogen and then with propylene and filled with 10 dm 3 of liquid propylene. Then 30 cm 3 of toluene methylaluminoxane solution were added and the mixture was stirred at 30 ° C. for 15 minutes.

    Parallel dazu wurden 1,1 mg rac-5 in 20 cm3 toluolischer Methylaluminoxanlösung (27 mmol Al) gelöst und durch 15 minütiges Stehenlassen zur Reaktion gebracht. Die Lösung wurde dann in den Reaktor gegeben, durch Wärmezufuhr auf die Polymerisationstemperatur von 50°C aufgeheizt (4°C/min) und das Polymerisationssystem 1 h durch Kühlung bei 50°C gehalten. Gestoppt wurde die Polymerisation durch Zusatz von 20 cm3 Isopropanol. Das überschüssige Monomer wurde abgegast, das Polymer im Vakuum getrocknet. Man erhielt 0,9 kg Polypropylen. Der Reaktor zeigte dünne Beläge an Innenwand und Rührer. Die Katalysatoraktivität betrug 818 kg PP/g Metallocen x h. VZ = 905 cm3/g; Schmp. = 159,4°C; II = 98,8%; mmmm = 95,4%; Mw = 1100000 g/mol; Mw/Mn = 2,5.In parallel, 1.1 mg of rac-5 were dissolved in 20 cm 3 of toluene solution of methylaluminoxane (27 mmol of Al) and reacted by standing for 15 minutes. The solution was then added to the reactor, heated to the polymerization temperature of 50 ° C. by supplying heat (4 ° C./min) and the polymerization system was kept at 50 ° C. for 1 hour by cooling. The polymerization was stopped by adding 20 cm 3 of isopropanol. The excess monomer was vented and the polymer was dried in vacuo. 0.9 kg of polypropylene were obtained. The reactor showed thin deposits on the inner wall and stirrer. The catalyst activity was 818 kg PP / g metallocene x h. VZ = 905 cm 3 / g; Mp = 159.4 ° C; II = 98.8%; mmmm = 95.4%; M w = 1100000 g / mol; M w / M n = 2.5.

    Beispiel 2Example 2

    Die Polymerisation aus Beispiel 1 wurde wiederholt mit dem Unterschied, daß als Katalysator 0,9 mg rac-5 verwendet wurde und die Polymerisationstemperatur 70 °C betrug. Man erhielt 1,4 kg Polypropylen. Der Reaktor zeigte starke Beläge an Innenwand und Rührer. Die Katalysatoraktivität betrug 1555 kg PP/g Metallocen x h. VZ = 719 cm3/g; Schmp. = 157,7°C.The polymerization from Example 1 was repeated, with the difference that 0.9 mg of rac-5 was used as the catalyst and the polymerization temperature was 70.degree. 1.4 kg of polypropylene were obtained. The reactor showed heavy deposits on the inner wall and stirrer. The catalyst activity was 1555 kg PP / g metallocene x h. VZ = 719 cm 3 / g; Mp = 157.7 ° C.

    Beispiel 3Example 3

    22 cm3 der Suspension des "MAO auf SiO2" (49 mmol Al) wurde unter Argon in eine G3-Schlenkfritte eingefüllt und mit einer Lösung von 4,5 mg rac-5 in 10 cm3 Toluol (7,2 µmol Zr) versetzt.
    Das Reaktionsgemisch wurde 30 Minuten bei Raumtemperatur gerührt, wobei eine spontane Farbänderung nach rot allmählich verblaßte. Anschließend wurde das Gemisch filtriert und der Feststoff 3 mal mit 10 cm3 Hexan gewaschen. Der verbleibende, hexanfeuchte Filterrückstand wurde für die Polymerisation erneut in 20 cm3 Hexan resuspendiert.
    22 cm 3 of the suspension of the "MAO on SiO 2 " (49 mmol Al) was introduced into a G3 Schlenk frit under argon and mixed with a solution of 4.5 mg rac-5 in 10 cm 3 toluene (7.2 μmol Zr ) offset.
    The reaction mixture was stirred at room temperature for 30 minutes, during which time a spontaneous color change to red gradually faded. The mixture was then filtered and the solid was washed 3 times with 10 cm 3 of hexane. The remaining, hexane-moist filter residue was resuspended in 20 cm 3 of hexane for the polymerization.

    Parallel dazu wurde ein trockener 16-dm3-Reaktor zunächst mit Stickstoff und anschließend mit Propylen gespült und mit 10 dm3 flüssigem Propylen befüllt.
    Dann wurden 3 cm3 Triisobutylaluminium (pur, 12 mmol) mit 30 cm3 Hexan verdünnt, in den Reaktor gegeben und der Ansatz bei 30°C 15 Minuten gerührt.
    Anschließend wurde die Katalysator-Suspension in den Reaktor gegeben, auf die Polymerisationstemperatur von 50°C aufgeheizt (4°C/min) und das Polymerisationssystem 1 h durch Kühlung bei 50°C gehalten. Gestoppt wurde die Polymerisation durch Zusatz von 20 cm3 Isopropanol. Das überschüssige Monomer wurde abgegast, das Polymer im Vakuum getrocknet.
    Es resultierten 300 g Polypropylen- Pulver. Der Reaktor zeigte keine Beläge an Innenwand oder Rührer. Die Katalysatoraktivität betrug 67 kg PP/g Metallocen x h. VZ = 1380 cm3/g; Schmp. = 156°C.
    In parallel, a dry 16 dm 3 reactor was flushed first with nitrogen and then with propylene and filled with 10 dm 3 of liquid propylene.
    Then 3 cm 3 of triisobutylaluminum (pure, 12 mmol) were diluted with 30 cm 3 of hexane, added to the reactor and the mixture was stirred at 30 ° C. for 15 minutes.
    The catalyst suspension was then added to the reactor, heated to the polymerization temperature of 50 ° C. (4 ° C./min) and the polymerization system was kept at 50 ° C. for 1 hour by cooling. The polymerization was stopped by adding 20 cm 3 of isopropanol. The excess monomer was vented and the polymer was dried in vacuo.
    The result was 300 g of polypropylene powder. The reactor showed no deposits on the inner wall or stirrer. The catalyst activity was 67 kg PP / g metallocene x h. VZ = 1380 cm 3 / g; Mp = 156 ° C.

    Beispiel 4Example 4

    Die Synthese des geträgerten Katalysatorsystems aus Beispiel 3 wurde wiederholt mit dem Unterschied, daß 13 cm3 (29 mmol Al) der Suspension "MAO auf SiO2" und 1,8 mg rac-5 (2,9 µmol Zr) verwendet wurden.The synthesis of the supported catalyst system from Example 3 was repeated with the difference that 13 cm 3 (29 mmol Al) of the suspension "MAO on SiO 2 " and 1.8 mg rac-5 (2.9 μmol Zr) were used.

    Die Polymerisation erfolgte analog zu Beispiel 3 bei 70°C. Es resultierten 420 g Polypropylen-Pulver. Der Reaktor zeigte keine Beläge an Innenwand oder Rührer. Die Katalysatoraktivität betrug 233 kg PP/g Metallocen x h. VZ = 787 cm3/g; Schmp. = 149,5°C.The polymerization was carried out analogously to Example 3 at 70 ° C. 420 g of polypropylene powder resulted. The reactor showed no deposits on the inner wall or stirrer. The catalyst activity was 233 kg PP / g metallocene x h. VZ = 787 cm 3 / g; Mp = 149.5 ° C.

    Beispiel 5Example 5

    Die Synthese des geträgerten Katalysatorsystems aus Beispiel 3 wurde wiederholt mit dem Unterschied, daß 150 cm3 (335 mmol Al) der Suspension "MAO auf SiO2" und 44,2 mg rac-5 (70,3 µmol Zr) verwendet und das Reaktionsgemisch 60 Minuten bei Raumtemperatur gerührt wurde. Anschließend wurde der Feststoff abfiltriert und 3 mal mit 50 cm3 Hexan gewaschen. Der verbleibende, hexanfeuchte Filterrückstand wurde am Vakuum zu einem frei fließenden, blaßrosa Pulver getrocknet. Man erhielt 33,3 g geträgerten, trockenen Katalysator.The synthesis of the supported catalyst system from Example 3 was repeated with the difference that 150 cm 3 (335 mmol Al) of the suspension "MAO on SiO 2 " and 44.2 mg rac-5 (70.3 μmol Zr) were used and that Reaction mixture was stirred at room temperature for 60 minutes. The solid was then filtered off and washed 3 times with 50 cm 3 of hexane. The remaining, hexane-moist filter residue was dried in vacuo to a free-flowing, pale pink powder. 33.3 g of supported, dry catalyst were obtained.

    Für die Polymerisation wurden von diesem trockenen Katalysator 2,98 g (4 mg = 6,3 µmol Zr) erneut in 20 cm3 Hexan resuspendiert.For the polymerization, 2.98 g (4 mg = 6.3 μmol Zr) of this dry catalyst were resuspended in 20 cm 3 of hexane.

    Die Polymerisation erfolgte analog zu Beispiel 3 bei 70°C.
    Es resultierten 1,05 kg Polypropylen-Pulver. Der Reaktor zeigte keine Beläge an Innenwand oder Rührer. Die Katalysatoraktivität betrug 263 kg PP/g Metallocen x h. VZ = 944 cm3/g; Schmp. = 156°C.
    The polymerization was carried out analogously to Example 3 at 70 ° C.
    The result was 1.05 kg of polypropylene powder. The reactor showed no deposits on the inner wall or stirrer. The catalyst activity was 263 kg PP / g metallocene x h. VZ = 944 cm 3 / g; Mp = 156 ° C.

    Beispiel 6Example 6

    Ein trockener 1,5 dm3 - Reaktor wurde mit N2 gespült und bei 20°C mit 750 cm3 eines entaromatisierten Benzinschnittes mit dem Siedebereich 100 -120°C ("®Exxsol 100/120") gefüllt. Dann wurde der Gasraum des Reaktors durch 5 - maliges Aufdrücken von 8 bar Propylen und Entspannen stickstofffrei gespült. Danach wurden 3,75 cm3 toluolische Methylaluminoxanlösung (10 Gew% MAO) zugegeben. Unter Rühren wurde der Reaktorinhalt innerhalb von 15 min auf 30°C aufgeheizt und durch Zugabe von Propylen bei einer Rührgeschwindigkeit von 500 UPM der Gesamtdruck auf 8 bar eingestellt.A dry 1.5 dm 3 reactor was flushed with N 2 and filled at 20 ° C. with 750 cm 3 of a dearomatized gasoline cut with the boiling range 100-120 ° C. ("®Exxsol 100/120"). Then the gas space of the reactor was flushed nitrogen-free by pressing 8 bar propylene 5 times and relaxing. Then 3.75 cm 3 of toluene solution of methylaluminoxane (10% by weight of MAO) were added. The contents of the reactor were heated to 30 ° C. in the course of 15 minutes with stirring and the total pressure was adjusted to 8 bar by adding propylene at a stirring speed of 500 rpm.

    Parallel dazu wurden 0,1 mg rac-5 in 1,25 cm3 toluolischer Methylaluminoxanlösung gelöst und durch 15 minütiges Stehenlassen zur vollständigen Reaktion gebracht. Dann wurde die Lösung in den Reaktor gegeben, das Polymerisationssystem auf eine Temperatur von 50°C gebracht und durch entsprechende Kühlung 1 h bei dieser Temperatur gehalten. Durch entsprechende Zufuhr von Propylen wurde der Druck während dieser Zeit bei 8 bar gehalten, danach die Reaktion durch Zugabe von 2 cm3 Isopropanol gestoppt, das Polymere abfiltriert und im Vakuum getrocknet.In parallel, 0.1 mg rac-5 was dissolved in 1.25 cm 3 toluene methylaluminoxane solution and brought to a complete reaction by standing for 15 minutes. The solution was then added to the reactor, the polymerization system brought to a temperature of 50 ° C. and kept at this temperature for 1 h by appropriate cooling. The pressure was kept at 8 bar during this time by appropriate addition of propylene, then the reaction was stopped by adding 2 cm 3 of isopropanol, the polymer was filtered off and dried in vacuo.

    Man erhielt 16 g Polypropylen. Der Reaktor zeigte Beläge an Innenwand und Rührer. Die Katalysatoraktivität (KZAred) betrug 20 kg PP/g Metallocen x h x bar. VZ = 833 cm3/g; Schmp. = 159°C.16 g of polypropylene were obtained. The reactor showed deposits on the inner wall and stirrer. The catalyst activity (KZA red ) was 20 kg PP / g metallocene xhx bar. VZ = 833 cm 3 / g; Mp = 159 ° C.

    Beispiel 7Example 7

    Die Polymerisation aus Beispiel 6 wurde wiederholt mit dem Unterschied, daß die Polymerisationstemperatur 60°C betrug.The polymerization from Example 6 was repeated with the difference that the Polymerization temperature was 60 ° C.

    Man erhielt 35 g Polypropylen. Der Reaktor zeigte Beläge an Innenwand und Rührer. Die Katalysatoraktivität (KZAred) betrug 44 kg PP/g Metallocen x h x bar. VZ = 484 cm3/g; Schmp. = 159°C.35 g of polypropylene were obtained. The reactor showed deposits on the inner wall and stirrer. The catalyst activity (KZA red ) was 44 kg PP / g metallocene xhx bar. VZ = 484 cm 3 / g; Mp = 159 ° C.

    Beispiel 8Example 8

    Die Polymerisation aus Beispiel 6 wurde wiederholt mit dem Unterschied, daß die Polymerisationstemperatur 70°C betrug.The polymerization from Example 6 was repeated with the difference that the Polymerization temperature was 70 ° C.

    Man erhielt 88 g Polypropylen. Der Reaktor zeigte Beläge an Innenwand und Rührer. Die Katalysatoraktivität (KZAred) betrug 110 kg PP/g Metallocen x h x bar. VZ = 414 cm3/g; Schmp. = 159°C.88 g of polypropylene were obtained. The reactor showed deposits on the inner wall and stirrer. The catalyst activity (KZA red ) was 110 kg PP / g metallocene xhx bar. VZ = 414 cm 3 / g; Mp = 159 ° C.

    Beispiele 9-12Examples 9-12

    Es wurde verfahren wie in Beispiel 2. Vor der Befüllung mit flüssigem Propylen wurde jedoch Wasserstoff zudosiert: Beispiel Ndm2H2 Metallocenaktivität VZ [kgPP/gMet*h] [cm3/g] 9 1,5 1640 495 10 3 1590 212 11 4,5 1720 142 12 200 1580 17 The procedure was as in Example 2. However, hydrogen was metered in before filling with liquid propylene: example Ndm 2 H 2 Metallocene activity VZ [kgPP / gMet * h] [cm 3 / g] 9 1.5 1640 495 10 3rd 1590 212 11 4.5 1720 142 12th 200 1580 17th

    Die Beispiele 9-12 zeigen die gute Wasserstoffansprechbarkeit des erfingungsgemäßen Metallocens. Es ist eine Molmassenregelung bis in den Wachsbereich (s. Beispiel 12) möglich. Examples 9-12 show the good hydrogen responsiveness of the invention Metallocens. It is a molecular weight control down to the wax area (see example 12) possible.

    Beispiel 13Example 13

    Es wurde verfahren wie in Beispiel 3. Vor der Zugabe des Katalysators wurde jedoch 0,2 bar Wasserstoff auf den Reaktor gedrückt, die Polymerisationstemperatur betrug 60°C. Während der Polymerisation wurde jedoch gleichmäßig Ethylen zudosiert. Insgesamt wurden 12 g Ethylen in den Reaktor gegeben. Es wurden 0,4 kg Ethylen-Propylen-Copolymer erhalten. Die Metallocenaktivität war 88 kg Copolymer/g Metallocen x h. Der Ethylengehalt im Polymeren betrug 2,4 Gew.-%, das Ethylen wurde überwiegend isoliert eingebaut. VZ = 200 cm3/g; Schmelzpunkt 143°C.The procedure was as in Example 3. However, before the catalyst was added, 0.2 bar of hydrogen was pressed onto the reactor, and the polymerization temperature was 60 ° C. However, ethylene was metered in uniformly during the polymerization. A total of 12 g of ethylene was added to the reactor. 0.4 kg of ethylene-propylene copolymer were obtained. The metallocene activity was 88 kg copolymer / g metallocene x h. The ethylene content in the polymer was 2.4% by weight, the ethylene was predominantly incorporated in isolation. VZ = 200 cm 3 / g; Melting point 143 ° C.

    Beispiel 14Example 14

    Es wurde verfahren wie in Beispiel 13. Während der Polymerisation wurden jedoch insgesamt 34 g Ethylen zudosiert. Es wurden 0,38 kg Ethylen-Propylen-Copolymer mit 7 Gew.-% Ethylen erhalten. VZ = 120 cm3/g; Schmelzpunkt 121°C.The procedure was as in Example 13. However, a total of 34 g of ethylene were metered in during the polymerization. 0.38 kg of ethylene-propylene copolymer with 7% by weight of ethylene were obtained. VZ = 120 cm 3 / g; Melting point 121 ° C.

    Beispiel 15Example 15

    Es wurde verfahren wie in Beispiel 4. Während der Polymerisation wurden jedoch 4 g Ethylen zudosiert und vor der Polymerisation 0,1 bar Wasserstoff aufgedrückt. Es wurden 0,52 kg Ethylen-Propylen-Copolymer erhalten. Die Metallocenaktivität war 286 kg Copolymer/g Metallocen x h. Der Ethylengehalt im Polymeren betrug 6,1 Gew.-%, das Ethylen wurde zu einem größeren Teil isoliert eingebaut. VZ = 150 cm3/g; Schmelzpunkt 116°C.The procedure was as in Example 4. However, 4 g of ethylene were metered in during the polymerization and 0.1 bar of hydrogen was injected before the polymerization. 0.52 kg of ethylene-propylene copolymer was obtained. The metallocene activity was 286 kg copolymer / g metallocene x h. The ethylene content in the polymer was 6.1% by weight, the majority of the ethylene was incorporated in isolation. VZ = 150 cm 3 / g; Melting point 116 ° C.

    Beispiel 16Example 16

    Ein trockener 150 dm3 Reaktor wurde mit Stickstoff gespült und bei 20°C mit 80 dm3 eines entaromatisierten Benzinschnittes mit dem Siedebereich 100-120°C gefüllt. A dry 150 dm 3 reactor was flushed with nitrogen and filled at 20 ° C. with 80 dm 3 of a dearomatized gasoline cut with a boiling range of 100-120 ° C.

    Dann wurde der Gasraum durch 5maliges Aufdrücken von 2 bar Propylen und Entspannen Stickstoff-frei gespült. Nach Zugabe von 50 l flüssigem Propylen wurden. 64 cm3 toluolische Methylaluminoxanlösung (entsprechend 100 mmol Al, Molmasse nach kryoskopischer Bestimmung 1080 g/mol) zugegeben und der Reaktorinhalt auf 50°C aufgeheizt. Durch Zudosierung von Wasserstoff wurde ein Wasserstoffgehalt im Gasraum des Reaktors von 2,0% eingestellt und später dann während der 1. Polymerisationsstufe durch Nachdosierung konstant gehalten.Then the gas space was flushed nitrogen-free by pressing 2 bar propylene 5 times and relaxing. After adding 50 l of liquid propylene. 64 cm 3 of toluene methylaluminoxane solution (corresponding to 100 mmol Al, molar mass according to cryoscopic determination 1080 g / mol) are added and the reactor contents are heated to 50.degree. A hydrogen content in the gas space of the reactor of 2.0% was set by metering in hydrogen and later kept constant during the first polymerization stage by subsequent metering.

    9,8 mg rac-7 wurden in 32 ml der toluolischen Methylaluminoxanlösung (entsprechend 50 mmol Al) gelöst und nach 15 Minuten in den Reaktor gegeben. Die Polymerisation erfolgte nun in einer 1. Polymerisationsstufe bei 50°C 5 h lang. Danach wurde auf 3 bar Reaktordruck abgegast und 2000 g Ethylengas zugeführt. Der Reaktordruck stieg dabei auf 8 bar an und bei 40°C wurden weitere 14 h polymerisiert, bevor die Reaktion mit CO2-Gas gestoppt wurde.
    Es wurden 18,6 kg Blockcopolymer erhalten, entsprechend einer Metallocenaktivität von 99,9 kg Copolymer/g Metallocen x h. VZ=230cm3/g; MFI (230/5) = 11dg/min, MFI (230/2.16) = 3,7 dg/min; Schmelzpunkt des Polymers der 1. Polym.-Stufe: 159°C, Glastemperatur des Polymers der 2. Polym.-Stufe: -38°C. Das Blockcopolymer enthielt 5% Ethylen. Die Fraktionierung des Produktes ergab folgende Zusammensetzung: 69 Gew.-% Homopolymer, 31 Gew.-% Copolymer, wobei das Copolymer einen Ethylengehalt von 15 Gew.-% aufwies, die mittlere Blocklänge C2 war 2,2.
    9.8 mg of rac-7 were dissolved in 32 ml of the toluene solution of methylaluminoxane (corresponding to 50 mmol of Al) and added to the reactor after 15 minutes. The polymerization was then carried out in a first polymerization stage at 50 ° C. for 5 hours. The mixture was then vented to a reactor pressure of 3 bar and 2000 g of ethylene gas were fed in. The reactor pressure rose to 8 bar and polymerization was continued at 40 ° C. for a further 14 h before the reaction was stopped with CO 2 gas.
    18.6 kg block copolymer were obtained, corresponding to a metallocene activity of 99.9 kg copolymer / g metallocene x h. VZ = 230cm 3 / g; MFI (230/5) = 11dg / min, MFI (230 / 2.16) = 3.7 dg / min; Melting point of the polymer of the 1st polymer stage: 159 ° C, glass transition temperature of the polymer of the 2nd polymer stage: -38 ° C. The block copolymer contained 5% ethylene. Fractionation of the product gave the following composition: 69% by weight homopolymer, 31% by weight copolymer, the copolymer having an ethylene content of 15% by weight, the average block length C 2 being 2.2.

    Beispiel 16 aExample 16 a

    Es wurde verfahren wie in Beispiel 16.The procedure was as in Example 16.

    3 mg rac-24 wurden in 32 ml der toluolischen Methylaluminoxanlösung (entsprechend 50 mmol Al) gelöst und nach 15 Minuten in den Reaktor gegeben. Die Polymerisation erfolgte nun in einer 1. Polymerisationsstufe bei 50°C 2,5 h lang. Danach wurde auf 3 bar Reaktordruck abgegast und 3000 g Ethylengas zugeführt. Der Reaktordruck stieg dabei auf 8 bar an und bei 40°C wurden weitere 8 h polymerisiert, bevor die Reaktion mit CO2-Gas gestoppt wurde.3 mg rac-24 were dissolved in 32 ml of the toluene methylaluminoxane solution (corresponding to 50 mmol Al) and added to the reactor after 15 minutes. The polymerization was then carried out in a first polymerization stage at 50 ° C. for 2.5 hours. The mixture was then vented to 3 bar reactor pressure and 3000 g of ethylene gas were fed. The reactor pressure rose to 8 bar and polymerization was carried out at 40 ° C. for a further 8 h before the reaction was stopped with CO 2 gas.

    Es wurden 16,5 kg Blockcopolymer erhalten, entsprechend einer Metallocenaktivität von 524 kg Copolymer/g Metallocen x h. VZ = 480 cm3/g; MFI (230/5) = 2 dg/min, Schmelzpunkt des Polymers der 1. Polym.-Stufe: 162°C, Glastemperatur des Polymers der 2. Polym.-Stufe: -54°C. Das Blockpolymer enthielt 15% Ethylen.16.5 kg block copolymer were obtained, corresponding to a metallocene activity of 524 kg copolymer / g metallocene x h. VZ = 480 cm 3 / g; MFI (230/5) = 2 dg / min, melting point of the polymer of the 1st polymer stage: 162 ° C, glass transition temperature of the polymer of the 2nd polymer stage: -54 ° C. The block polymer contained 15% ethylene.

    Beispiel 17Example 17

    Es wurde verfahren wie in Beispiel 1. Verwendet wurden jedoch 12,5 mg Metallocen rac-7. Man erhielt 1,5 kg Polypropylen, die Metallocenaktivität war 120 kg PP/g Metallocen x h. VZ = 1050 cm3/g; Schmelzpunkt 159°C.The procedure was as in Example 1. However, 12.5 mg of metallocene rac-7 were used. 1.5 kg of polypropylene were obtained, the metallocene activity was 120 kg PP / g of metallocene × h. VZ = 1050 cm 3 / g; Melting point 159 ° C.

    Beispiel 18Example 18

    Es wurde verfahren wie in Beispiel 2. Verwendet wurden jedoch 4,1 mg Metallocen rac-7. Man erhielt 1,3 kg Polypropylen, die Metallocenaktivität war 317 kg PP/g Metallocen x h. VZ = 555 cm3/g; Schmelzpunkt 157°C.The procedure was as in Example 2. However, 4.1 mg of metallocene rac-7 were used. 1.3 kg of polypropylene were obtained and the metallocene activity was 317 kg of PP / g of metallocene × h. VZ = 555 cm 3 / g; Melting point 157 ° C.

    Vergleichsbeispiel AComparative Example A

    Es wurde verfahren wie in Beispiel 1. Verwendet wurden jedoch 12,5 mg rac-Phenyl(methyl)silandiylbis(2-methyl-1-indenyl)zirkoniumdichlorid. Man erhielt 1,35 kg Polypropylen, die Metallocenaktivität war 108 kg PP/g Metallocen x h. VZ = 1050 cm3/g; Schmelzpunkt 149°C.The procedure was as in Example 1. However, 12.5 mg of rac-phenyl (methyl) silanediylbis (2-methyl-1-indenyl) zirconium dichloride were used. 1.35 kg of polypropylene were obtained, the metallocene activity was 108 kg PP / g of metallocene x h. VZ = 1050 cm 3 / g; Melting point 149 ° C.

    Vergleichsbeispiel BComparative Example B

    Es wurde verfahren wie in Beispiel 1. Verwendet wurden jedoch 12,5 mg rac-Phenyl (methyl)silandiylbis(1-indenyl)zirkoniumdichlorid. Man erhielt 0,28 kg Polypropylen, die Metallocenaktivität war 22,4 kg PP/g Metallocen x h. VZ = 74 cm3/g; Schmelzpunkt 141°C.The procedure was as in Example 1. However, 12.5 mg of rac-phenyl (methyl) silanediylbis (1-indenyl) zirconium dichloride were used. 0.28 kg of polypropylene were obtained and the metallocene activity was 22.4 kg of PP / g of metallocene × h. VZ = 74 cm 3 / g; Melting point 141 ° C.

    Beispiel 19Example 19

    Es wurde verfahren wie in Beispiel 1. Verwendet wurden jedoch 3,3 mg 24. Man erhielt 0,78 kg Polypropylen, die Metallocenaktivität war 237 kg PP/g Metallocen x h. VZ = 1700 cm3/g; Schmelzpunkt 163°C, Mw = 2,1*106 g/mol, MFI 230/21.6 = 1 dg/min; Mw/Mn = 2,1.The procedure was as in Example 1. However, 3.3 mg 24 were used. 0.78 kg of polypropylene were obtained, the metallocene activity was 237 kg PP / g metallocene × h. VZ = 1700 cm 3 / g; Melting point 163 ° C, M w = 2.1 * 10 6 g / mol, MFI 230 / 21.6 = 1 dg / min; M w / M n = 2.1.

    Beispiel 19 aExample 19 a

    Es wurde verfahren wie in Beispiel 2. Verwendet wurden jedoch 1.0 mg rac-24. Man erhielt 1.2 kg Polypropylen. Die Metallocenaktivität war 1200 kg PP/g Metallocen x h. VZ = 1100 cm3/g. Schmelzpunkt = 161°C.The procedure was as in Example 2. However, 1.0 mg of rac-24 were used. 1.2 kg of polypropylene were obtained. The metallocene activity was 1200 kg PP / g metallocene x h. VZ = 1100 cm 3 / g. Melting point = 161 ° C.

    Beispiel 20Example 20

    Es wurde verfahren wie in Beispiel 1; die Polymerisationstemperatur war jedoch 40°C. Verwendet wurden 6,0 mg 17. Man erhielt 1,95 kg Polypropylen, die Metallocenaktivität war 325 kg PP/g Metallocen x h. VZ = 1320 cm3/g; Schmelzpunkt 162°C, Mw = 1,79*106 g/mol, Mw/Mn = 2,3.The procedure was as in Example 1; however, the polymerization temperature was 40 ° C. 6.0 mg 17 were used. 1.95 kg of polypropylene were obtained, the metallocene activity was 325 kg PP / g of metallocene x h. VZ = 1320 cm 3 / g; Melting point 162 ° C, M w = 1.79 * 10 6 g / mol, M w / M n = 2.3.

    Vergleichbeispiel CComparative example C

    Es wurde verfahren wie in Beispiel 20. Verwendet wurde jedoch das nicht erfindungsgemäße Metallocen rac-Dimethylsilandiylbis(2-ethyl-1-indenyl)zirkoniumdichlorid. Man erhielt 0,374 kg Polypropylen, die Metallocenaktivität war 62,3 kg PP/g Metallocen x h. VZ = 398 cm3/g; Schmelzpunkt 147°C, Mw = 450.000 g/mol, Mw/Mn = 2,5.The procedure was as in Example 20. However, the metallocene rac-dimethylsilanediylbis (2-ethyl-1-indenyl) zirconium dichloride which was not according to the invention was used. 0.374 kg of polypropylene were obtained, the metallocene activity was 62.3 kg PP / g of metallocene x h. VZ = 398 cm 3 / g; Melting point 147 ° C, M w = 450,000 g / mol, M w / M n = 2.5.

    Beispiel 21Example 21

    Es wurde verfahren wie in Beispiel 1. Verwendet wurden jedoch 5,2 mg 31. Man erhielt 1,67 kg Polypropylen, die Metallocenaktivität war 321 kg PP/g Metallocen x h. VZ = 980 cm3/g; Schmelzpunkt 158°C.The procedure was as in Example 1. However, 5.2 mg 31 were used. 1.67 kg polypropylene were obtained, the metallocene activity was 321 kg PP / g metallocene x h. VZ = 980 cm 3 / g; Melting point 158 ° C.

    Beispiel 22Example 22

    Es wurde verfahren wie in Beispiel 1, Die Polymerisation wurde jedoch bei 30°C durchgeführt. Verwendet wurden jedoch 3,7 mg 33. Man erhielt 0,35 kg Polypropylen, die Metallocenaktivität war 94 kg PP/g Metallocen x h. VZ = 440 cm3/g; Schmelzpunkt 153°C.The procedure was as in Example 1, but the polymerization was carried out at 30 ° C. However, 3.7 mg of 33 were used. 0.35 kg of polypropylene were obtained and the metallocene activity was 94 kg of PP / g of metallocene × h. VZ = 440 cm 3 / g; Melting point 153 ° C.

    Beispiel 23Example 23

    Ein trockener 16 dm3 Reaktor wurde mit Propylen gespült und mit 10 dm3 flüssigem Propylen befüllt. Dann wurden 1,1 cm3 des Reaktionsprodukts aus H.2 (entsprechend 7,5 mg 34) in 20 cm3 Toluol gelöst und bei 30°C in den Reaktor gegeben. Der Reaktor wurde auf 50°C aufgeheizt (10°C/min) und das Polymerisationssystem 1h durch Kühlung bei dieser Temperatur gehalten. Gestoppt wurde die Polymerisation durch Zugabe von CO2-Gas. Das überschüssige Monomere wurde abgegast und das Polymer im Vakuum bei 80°C getrocknet. Man erhielt 2,45 kg Polypropylen. VZ = 875 cm3/g; Schmelzpunkt 160°C.A dry 16 dm 3 reactor was rinsed with propylene and filled with 10 dm 3 liquid propylene. Then 1.1 cm 3 of the reaction product from H.2 (corresponding to 7.5 mg 34) was dissolved in 20 cm 3 of toluene and added to the reactor at 30 ° C. The reactor was heated to 50 ° C. (10 ° C./min) and the polymerization system was kept at this temperature for 1 hour by cooling. The polymerization was stopped by adding CO 2 gas. The excess monomer was vented and the polymer was dried in vacuo at 80 ° C. 2.45 kg of polypropylene were obtained. VZ = 875 cm 3 / g; Melting point 160 ° C.

    Beispiel 24Example 24

    Ein trockener 16 dm3-Reaktor wurde mit Stickstoff gespült und bei 20°C mit 10 dm3 eines entaromatisierten Benzinschnittes mit dem Siedebereich 100-120°C gefüllt. Dann wurde der Gasraum des Reaktors durch 5maliges Aufdrücken von 2 bar Ethylen und Entspannen stickstofffrei gespült. Dann wurden 30 cm3 toluolische Methylaluminoxanlösung (entsprechend 45 mmol Al, Molmasse nach kryoskopischer Bestimmung 700 g/mol) zugegeben. Unter Rühren wurde der Reaktorinhalt innerhalb von 15 Minuten auf 30°C aufgeheizt und durch Zugabe von Ethylen wurde bei 250 Upm Rührgeschwindigkeit der Gesamtdruck auf 5 bar eingestellt.A dry 16 dm 3 reactor was flushed with nitrogen and filled at 20 ° C. with 10 dm 3 of a dearomatized gasoline cut with a boiling range of 100-120 ° C. Then the gas space of the reactor was flushed nitrogen-free by pressing 2 bar of ethylene 5 times and relaxing. Then 30 cm 3 of toluene methylaluminoxane solution (corresponding to 45 mmol Al, molecular weight after cryoscopic determination 700 g / mol) were added. The contents of the reactor were heated to 30 ° C. in the course of 15 minutes with stirring, and the total pressure was adjusted to 5 bar by adding ethylene at a stirring speed of 250 rpm.

    Parallel dazu wurden 3,2 g 12 in 20 cm3 toluolischer Methylaluminoxanlösung gelöst und durch 15 minütiges Stehenlassen voraktiviert. Dann wurde die Lösung in den Reaktor gegeben, das Polymerisationssystem wurde auf eine Temperatur von 50°C gebracht und durch entsprechende Kühlung 4 h bei dieser Temperatur gehalten. Der Gesamtdruck wurde während dieser Zeit durch entsprechende Zufuhr von Ethylen bei 5 bar gehalten.In parallel, 3.2 g 12 were dissolved in 20 cm 3 toluene methylaluminoxane solution and preactivated by standing for 15 minutes. The solution was then added to the reactor, the polymerization system was brought to a temperature of 50 ° C. and kept at this temperature for 4 hours by appropriate cooling. The total pressure was kept at 5 bar during this time by appropriate supply of ethylene.

    Die Polymerisation wurde durch Zugabe von 20 ml Isopropanol gestoppt, das Polymere abfiltriert und im Vakuum getrocknet. Man erhielt 0,7 kg Polyethylen. VZ = 690 cm3/g.The polymerization was stopped by adding 20 ml of isopropanol, the polymer was filtered off and dried in vacuo. 0.7 kg of polyethylene was obtained. VZ = 690 cm 3 / g.

    Beispiel 25Example 25

    Es wurde die Vorschrift von Beispiel 24 befolgt. In Abweichung von Beispiel 23 wurde 1,8 mg rac-7 eingesetzt, das Polymerisationssystem auf 70°C gebracht und 1 h bei dieser Temperatur gehalten. Man erhielt 0,9 kg Polyethylen. VZ = 730 cm3/g.The procedure of Example 24 was followed. In deviation from Example 23, 1.8 mg rac-7 was used, the polymerization system was brought to 70 ° C. and kept at this temperature for 1 h. 0.9 kg of polyethylene was obtained. VZ = 730 cm 3 / g.

    Beispiel 26Example 26

    15g "F-MAO auf SiO2" (111 mmol Al) wurden in einem rührbaren Gefäß in 100 cm3 Toluol suspendiert und auf -20°C abgekühlt. Gleichzeitig wurden 155mg (0,246 mmol) rac-5 in 75 cm3 Toluol gelöst und innerhalb von 30 Minuten zur Suspension zugetropft. Es wurde langsam unter Rühren auf Raumtemperatur erwärmt, wobei die Suspension eine rote Farbe annahm. Anschließend wurde eine Stunde bei 80°C gerührt und nach dem Abkühlen auf Raumtemperatur wurde das Gemisch filtriert und der Feststoff 3mal mit je 100cm3 Toluol und 1 mal mit 100cm3 Hexan gewaschen. Das Filtrat war rot. Der verbleibende, hexanfeuchte Filterrückstand wurde im Vakuum getrocknet. Man erhielt 13,2 g frei fließenden, hellroten, geträgerten Katalysator. Die Analyse ergab einem Gehalt von 3,2 mg Zirkonocen pro Gramm Katalysator.15 g "F-MAO on SiO2" (111 mmol Al) were suspended in 100 cm 3 toluene in a stirrable vessel and cooled to -20 ° C. At the same time, 155 mg (0.246 mmol) of rac-5 were dissolved in 75 cm 3 of toluene and added dropwise to the suspension within 30 minutes. The mixture was slowly warmed to room temperature with stirring, the suspension taking on a red color. The mixture was then stirred at 80 ° C. for one hour and, after cooling to room temperature, the mixture was filtered and the solid was washed 3 times with 100 cm 3 of toluene and 1 time with 100 cm 3 of hexane. The filtrate was red. The remaining, hexane-moist filter residue was dried in vacuo. 13.2 g of free-flowing, light red, supported catalyst were obtained. The analysis showed a content of 3.2 mg zirconocene per gram of catalyst.

    Polymerisation: Für die Polymerisation wurden 2,08 g des Katalysators in 50 cm3 eines entaromatisierten Benzinschnittes mit dem Siedebereich 100 -120°C suspendiert. Die Polymerisation erfolgte analog zu Beispiel 3 bei 60°C. Es wurden 1100g Polypropylen-Pulver erhalten. Der Reaktor zeigte keine Beläge an Innenwand oder Rührer. Aktivität = 165 kg PP/(g Metallocen x h). VZ = 1100 cm3/g. Schmelzpunkt = 153°C; Mw = 1.485.000; Mw/Mn = 3,2; MFI 230/5 = 0,1 dg/min; SD = 440 g/dm3.Polymerization: For the polymerization, 2.08 g of the catalyst were suspended in 50 cm 3 of a dearomatized gasoline cut with a boiling range of 100-120 ° C. The polymerization was carried out analogously to Example 3 at 60 ° C. 1100 g of polypropylene powder were obtained. The reactor showed no deposits on the inner wall or stirrer. Activity = 165 kg PP / (g metallocene xh). VZ = 1100 cm 3 / g. Melting point = 153 ° C; M w = 1,485,000; M w / M n = 3.2; MFI 230/5 = 0.1 dg / min; SD = 440 g / dm 3 .

    Beispiel 27Example 27

    1,31g des Katalysators aus Beispiel 26 wurden in 50 cm3 eines entaromatisierten Benzinschnittes mit dem Siedebereich 100 -120°C suspendiert. Die Polymerisation erfolgte analog zu Beispiel 3 bei 70°C. Man erhielt 1300g Polypropylen-Pulver. Der Reaktor zeigte keine Beläge an Innenwand oder Rührer. Aktivität = 310 kg PP/(g Metallocen x h). VZ = 892 cm3/g; Schmelzpunkt = 150°C, Mw = 1.290.000; Mw/Mn = 3,0; SD = 410 g/dm3.1.31 g of the catalyst from Example 26 were suspended in 50 cm 3 of a dearomatized gasoline cut with the boiling range 100-120 ° C. The polymerization was carried out analogously to Example 3 at 70 ° C. 1300 g of polypropylene powder were obtained. The reactor showed no deposits on the inner wall or stirrer. Activity = 310 kg PP / (g metallocene xh). VZ = 892 cm 3 / g; Melting point = 150 ° C, M w = 1,290,000; M w / M n = 3.0; SD = 410 g / dm 3 .

    Beispiel 28Example 28

    Die Trägerung aus Beispiel 26 wurde wiederholt mit dem Unterschied, daß 0,845 g rac-5 gelöst in 500 cm3 Toluol mit 90g "F-MAO auf SiO2" suspendiert in 500 cm3 Toluol zur Reaktion gebracht wurde. Man erhielt 84 g roten, pulvrigen Katalysator. Die Analyse ergab einen Gehalt von 9 mg Metallocen pro Gramm Feststoff, das rote Filtrat enthielt 13 mg Zirkonium.The support from Example 26 was repeated with the difference that 0.845 g of rac-5 dissolved in 500 cm 3 of toluene was reacted with 90 g of "F-MAO on SiO 2 " suspended in 500 cm 3 of toluene. 84 g of red, powdery catalyst were obtained. The analysis showed a content of 9 mg metallocene per gram of solid, the red filtrate contained 13 mg zirconium.

    Polymerisation: 1,1g des geträgerten Katalysators wurden in 50ml eines entaromatisierten Benzinschnittes mit dem Siedebereich 100 -120°C suspendiert. Die Polymerisation erfolgte analog zu Beispiel 3 bei 70°C. Man erhielt 2850 g Polypropylen-Pulver. Der Reaktor zeigte keine Beläge an Innenwand oder Rührer. Aktivität = 288 kg PP/(g Metallocen x h); VZ = 638 cm3/g; Schmelzpunkt = 150°C; MFI 230/5 = 0,5 dg/ min; SD = 410 g/dm3.Polymerization: 1.1 g of the supported catalyst were suspended in 50 ml of a dearomatized gasoline cut with the boiling range 100-120 ° C. The polymerization was carried out analogously to Example 3 at 70 ° C. 2850 g of polypropylene powder were obtained. The reactor showed no deposits on the inner wall or stirrer. Activity = 288 kg PP / (g metallocene xh); VZ = 638 cm 3 / g; Melting point = 150 ° C; MFI 230/5 = 0.5 dg / min; SD = 410 g / dm 3 .

    Beispiel 29Example 29

    Ein mikroporöses Polypropylenpulver (AKZO) mit einer Teilchengröße kleiner 100 µm wurde durch Extraktion mit Toluol in einem Soxhlet-Extraktor unter Inertbedingungen von Verunreinigungen befreit und anschließend mit 20 Gew.%iger Trimethylaluminiumlösung in Toluol gewaschen und im Vakuum getrocknet. Parallel dazu wurden 51,1mg rac-5 in 40 cm3 toluolischer Methylaluminoxanlösung gelöst und durch 15 minütiges Stehenlassen zur vollständigen Reaktion gebracht. 16,5 g des PP-Pulvers wurden zudosiert und durch kurzzeitiges Anlegen eines Vakuums wurde das in den Poren des Trägers befindliche Gas und ein Teil des Lösungsmittels entfernt und die Katalysatorlösung vollständig aufgesogen. Durch intensives Schütteln des Reaktionsgefäßes erhielt man 46 g homogenes, feinteiliges und gut fließendes rotes Pulver. 10 g des geträgerten Katalysatorpulvers wurden unter Inertbedingungen in einem Rotationsverdampfer mit Ethylen 30 Minuten vorpolymerisiert. Der Ethylenüberdruck wurde durch ein Druckregelventil konstant bei 0,1 bar gehalten, die Durchmischung des Katalysatorpulvers erfolgte durch kontinuierliche Rotation des Reaktionsgefäßes unter Kühlung auf 0°C. Es resultierten 12 g vorpolymerisierter Katalysator.A microporous polypropylene powder (AKZO) having a particle size less than 100 μ m was freed by extraction with toluene in a Soxhlet extractor under inert conditions of impurities and then with 20 wt.% Strength trimethylaluminum solution in toluene is washed and dried in vacuo. In parallel, 51.1 mg of rac-5 were dissolved in 40 cm 3 of toluene methylaluminoxane solution and brought to a complete reaction by standing for 15 minutes. 16.5 g of the PP powder were metered in and by briefly applying a vacuum, the gas in the pores of the support and part of the solvent were removed and the catalyst solution was completely absorbed. Intensive shaking of the reaction vessel gave 46 g of homogeneous, finely divided and well-flowing red powder. 10 g of the supported catalyst powder were prepolymerized under inert conditions in a rotary evaporator with ethylene for 30 minutes. The ethylene overpressure was kept constant at 0.1 bar by means of a pressure control valve, and the catalyst powder was mixed by continuously rotating the reaction vessel with cooling to 0 ° C. The result was 12 g of prepolymerized catalyst.

    Polymerisation: 4,6g des geträgerten, vorpolymerisierten Katalysators wurden in 50 cm3 eines entaromatisierten Benzinschnittes mit dem Siedebereich 100 -120°C suspendiert. Die Polymerisation erfolgte analog zu Beispiel 3 bei 70°C. Es resultierten 250 g Polypropylen-Pulver. Der Reaktor zeigte keine Beläge an Innenwand oder Rührer, der mittlere Teilchendurchmesser war 1000 µm. Aktivität = 59 kg PP/(g Metallocen x h); VZ = 734 cm3/g. Schmelzpunkt = 152°C; SD = 390 g/dm3.Polymerization: 4.6 g of the supported, prepolymerized catalyst were suspended in 50 cm 3 of a dearomatized gasoline cut with the boiling range 100-120 ° C. The polymerization was carried out analogously to Example 3 at 70 ° C. The result was 250 g of polypropylene powder. The reactor showed no deposits on the inner wall or stirrer, the average particle diameter was 1000 μm . Activity = 59 kg PP / (g metallocene xh); VZ = 734 cm 3 / g. Melting point = 152 ° C; SD = 390 g / dm 3 .

    Beispiel 30Example 30

    1 g des geträgerten, nicht vorpolymerisierten Katalysators aus Beispiel 29 wurden in 50 cm3 n-Decan für die Polymerisation suspendiert. Die Polymerisation erfolgte analog zu Beispiel 3 bei 70°C. Es resultierten 600 g Polypropylen. Der Reaktor zeigte dünne Beläge an Innenwand und Rührer, der mittlere Teilchendurchmesser war > 2000 µm. Aktivität = 540 kg PP/(g Metallocen x h); VZ = 1400 cm3/g;Schmelzpunkt = 157,7°-C; SD = 280 g/dm3.1 g of the supported, unpolymerized catalyst from Example 29 was suspended in 50 cm 3 of n-decane for the polymerization. The polymerization was carried out analogously to Example 3 at 70 ° C. 600 g of polypropylene resulted. The reactor showed thin deposits on the inner wall and stirrer, the average particle diameter was> 2000 μm . Activity = 540 kg PP / (g metallocene xh); VZ = 1400 cm 3 / g; melting point = 157.7 ° C; SD = 280 g / dm 3 .

    Claims (12)

    1. A catalyst formed from a metallocene of the formula I and a co-catalyst
      Figure 00660001
      in which, in the formula I,
      M1 is a metal from group IVb, Vb or VIb of the Periodic Table of the Elements,
      R1 and R2 are identical or different and are a hydrogen atom, a C1-C10-alkyl group, a C1-C10-alkoxy group, a C6-C10-aryl group, a C6-C10-aryloxy group, a C2-C10-alkenyl group, a C7-C40-arylalkyl group, a C7-C40-alkylaryl group, a C8-C40-arylalkenyl group, a OH group or a halogen atom,
      the radicals R3 are identical or different and are a hydrogen atom, a halogen atom, a C1-C10-alkyl group, which may be halogenated, a C6-C10-aryl group, an NR16 2, -SR16, -OSiR16 3, -SiR16 3 or -PR16 2 radical, in which R16 is a halogen atom, a C1-C10-alkyl group or a C6-C10-aryl group,
      R4 to R12 are identical or different and have the meanings mentioned for R3, or adjacent radicals R4 to R12, together with the atoms connecting them, form one or more aromatic or aliphatic rings, or the radicals R5 and R8 or R12, together with the atoms connecting them, form an aromatic or aliphatic ring,
      R13 is
      Figure 00670001
      Figure 00670002
      =BR14, =AIR14, -Ge-, -O-, -S-, =SO, =SO2, =NR14, =CO, =PR14 or =P(O)R14, where R14 and R15 are identical or different and are a hydrogen atom, a halogen atom, a C1-C10-alkyl group, a C1-C10-fluoroalkyl group, a C1-C10-alkoxy group, a C6-C10-aryl group, a C6-C10-fluoroaryl group, a C6-C10-aryloxy group, a C2-C10-alkenyl group, a C7-C40-arylalkyl group, a C7-C40-alkylaryl group, a C8-C40-arylalkenyl group, or R14 and R15, in each case together with the atoms connecting them, form one or more rings, and
      M2 is silicon, germanium or tin.
    2. A catalyst as claimed in claim 1, in which the cocatalyst is an aluminoxane.
    3. A catalyst as claimed in claim 1 or 2, in which the metallocene has been applied to a support.
    4. A catalyst as claimed in one or more of claims 1 to 3, in which the metallocene has been prepolymerized.
    5. A polyolefin obtainable by polymerization or copolymerization of an olefin of the formula Ra-CH=CH-Rb, in which Ra and Rb are identical or different and are a hydrogen atom or a hydrocarbon radical having 1 to 14 carbon atoms, or Ra and Rb, together with the atoms connecting them, may form one or more rings, at a temperature of from -60 to 200°C, at a pressure of from 0.5 to 100 bar, in solution, in suspension or in the gas phase, in the presence of a catalyst as claimed in one or more of claims 1 to 4.
    6. A process for the preparation of a metallocene of the formula I
      Figure 00690001
      in which, in the formula I,
      M1 is a metal from group IVb, Vb or VIb of the Periodic Table of the Elements,
      R1 and R2 are identical or different and are a hydrogen atom, a C1-C10-alkyl group, a C1-C10-alkoxy group, a C6-C10-aryl group, a C6-C10-aryloxy group, a C2-C10-alkenyl group, a C7-C40-arylalkyl group, a C7-C40-alkylaryl group, a C8-C40-arylalkenyl group, a OH group or a halogen atom,
      the radicals R3 are identical or different and are a hydrogen atom, a halogen atom, a C1-C10-alkyl group, which may be halogenated, a C6-C10-aryl group, an NR16 2, -SR16, -OSiR16 3, -SiR16 3 or -PR16 2 radical, in which R16 is a halogen atom, a C1-C10-alkyl group or a C6-C10-aryl group,
      R4 to R12 are identical or different and have the meanings mentioned for R3, or adjacent radicals R4 to R12, together with the atoms connecting them, form one or more aromatic or aliphatic rings, or the radicals R5 and R8 or R12, together with the atoms connecting them, form an aromatic or aliphatic ring,
      R13 is
      Figure 00700001
      Figure 00700002
      =BR14, =AIR14, -Ge-, -O-, -S-, =SO, =SO2, =NR14, =CO, =PR14 or =P(O)R14, where R14 and R15 are identical or different and are a hydrogen atom, a halogen atom, a C1-C10-alkyl group, a C1-C10-fluoroalkyl group, a C1-C10-alkoxy group, a C6-C10-aryl group, a C6-C10-fluoroaryl group, a C6-C10-aryloxy group, a C2-C10-alkenyl group, a C7-C40-arylalkyl group, a C7-C40-alkylaryl group, a C8-C40-arylalkenyl group, or R14 and R15, in each case together with the atoms connecting them, form one or more rings, and
      M2 is silicon, germanium or tin,
      comprising the following steps:
      a) reaction of a phenylbenzyl halide derivative of the formula A with substituted malonic acid esters under basic conditions to give a compound of the formula B
      Figure 00710001
      b) saponification of the compound of the formula B using alkali metal hydroxide and decarboxylation by heat treatment to give a compound of the formula C
      Figure 00710002
      c) reaction of the compound of the formula C with chlorinating reagents and subsequent cyclization by means of a Friedel-Crafts catalyst in an inert solvent to give a phenyl-1-indanone of the formula D
      Figure 00720001
      d) reaction of the phenyl-1-indanone of the formula D with a hydride-transferring reagent and a corresponding catalyst in an inert solvent to give the corresponding alcohol, and conversion of this alcohol under acidic conditions into the 7-phenylindene derivatives of the formula E
      Figure 00720002
      e) deprotonation of the compound of the formula E using a strong base in an inert solvent and reaction with a reagent of the formula X-R13-X, in which R13 is as defined in the formula I, and X is a nucleophilic leaving group, to give a bridged ligand system of the formula G
      Figure 00730001
      f) deprotonation of the bridged ligand system of the formula G using two equivalents of a strong base in an inert solvent and reaction with a metal halide in a suitable solvent to give a metallocene of the formula H
      Figure 00740001
      g) optionally subsequent derivatization using compounds R1Li/R2Li can take place,
      where the radicals in the compounds of the formulae A, B, C, D, E, G, H, R1Li and R2Li are as defined in the formula I.
    7. An indanone of the formula D as defined in claim 6.
    8. An indene of the formula E as defined in claim 6.
    9. A bridged ligand system of the formula G as defined in claim 6.
    10. The use of an indanone of the formula D as claimed in claim 7 for the preparation of a compound of the formula I as defined in claim 1.
    11. The use of an indene of the formula E as claimed in claim 8 for the preparation of a compound of the formula I as defined in claim 1.
    12. The use of a bridged ligand system of the formula G as claimed in claim 9 for the preparation of a compound of the formula I as defined in claim 1.
    EP97107297A 1992-06-27 1993-06-22 Catalysts containing metallocenes with arylsubstituted indenyl derivatives as ligands, process and intermediates for the preparation of these metallocenes and their use Expired - Lifetime EP0790076B1 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE4221244 1992-06-27
    DE4221244 1992-06-27
    EP93109966A EP0576970B1 (en) 1992-06-27 1993-06-22 Metallocenes with arylsubstituted indenyl-derivatives as ligands, process for their preparation and their use as catalysts

    Related Parent Applications (2)

    Application Number Title Priority Date Filing Date
    EP93109966A Division EP0576970B1 (en) 1992-06-27 1993-06-22 Metallocenes with arylsubstituted indenyl-derivatives as ligands, process for their preparation and their use as catalysts
    EP93109966.7 Division 1993-06-22

    Publications (3)

    Publication Number Publication Date
    EP0790076A2 EP0790076A2 (en) 1997-08-20
    EP0790076A3 EP0790076A3 (en) 1998-03-18
    EP0790076B1 true EP0790076B1 (en) 2001-12-05

    Family

    ID=6462039

    Family Applications (2)

    Application Number Title Priority Date Filing Date
    EP97107297A Expired - Lifetime EP0790076B1 (en) 1992-06-27 1993-06-22 Catalysts containing metallocenes with arylsubstituted indenyl derivatives as ligands, process and intermediates for the preparation of these metallocenes and their use
    EP93109966A Expired - Lifetime EP0576970B1 (en) 1992-06-27 1993-06-22 Metallocenes with arylsubstituted indenyl-derivatives as ligands, process for their preparation and their use as catalysts

    Family Applications After (1)

    Application Number Title Priority Date Filing Date
    EP93109966A Expired - Lifetime EP0576970B1 (en) 1992-06-27 1993-06-22 Metallocenes with arylsubstituted indenyl-derivatives as ligands, process for their preparation and their use as catalysts

    Country Status (13)

    Country Link
    US (7) US5786432A (en)
    EP (2) EP0790076B1 (en)
    JP (2) JP3737134B2 (en)
    KR (1) KR100283824B1 (en)
    AT (2) ATE162194T1 (en)
    AU (1) AU661587B2 (en)
    CA (1) CA2099214C (en)
    DE (2) DE59310245D1 (en)
    ES (2) ES2112355T3 (en)
    FI (1) FI107449B (en)
    RU (1) RU2118961C1 (en)
    TW (1) TW294669B (en)
    ZA (1) ZA934577B (en)

    Cited By (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6429250B1 (en) 1998-12-11 2002-08-06 Targor Gmbh Talc-reinforced polypropylene molding composition with high impact strength
    WO2003106470A1 (en) * 2002-06-12 2003-12-24 Basell Polyolefine Gmbh Transition metal compounds their preparation and their use in catalyst systems for the polymerization and copolymerization of olefins
    US7341971B2 (en) 2001-12-19 2008-03-11 Borealis Technology Oy Production of olefin polymerization catalysts

    Families Citing this family (322)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US5466766A (en) * 1991-05-09 1995-11-14 Phillips Petroleum Company Metallocenes and processes therefor and therewith
    TW294669B (en) * 1992-06-27 1997-01-01 Hoechst Ag
    EP0582195B1 (en) * 1992-08-03 2000-12-20 TARGOR GmbH Process for the preparation of polymers using specific metallocenes
    EP0882731A3 (en) * 1992-08-15 2000-05-31 TARGOR GmbH Bridged metallocene compounds and their use as olefin polymerization catalysts
    WO1994016009A1 (en) * 1993-01-11 1994-07-21 Mitsui Petrochemical Industries, Ltd. Propylene polymer composition
    JPH06271594A (en) * 1993-03-22 1994-09-27 Mitsui Petrochem Ind Ltd Production of silicon compound containing cyclopentadienyl group or germanium compound containing cyclopentadienyl group
    ES2117279T3 (en) * 1993-05-25 1998-08-01 Exxon Chemical Patents Inc CATALYTICAL METALOCHENE SYSTEMS SUPPORTED FOR THE POLYMERIZATION OF OLEPHINS, THEIR PREPARATION AND USE.
    EP1070729B1 (en) * 1993-06-07 2011-09-28 Mitsui Chemicals, Inc. Transition metal compound, olefin polymerization catalyst component comprising said compound, olefin polymerization catalyst containing said component, process for olefin polymerization using said catalyst, propylene homopolymer, propylene copolymer and propylene elastomer
    DE4333128A1 (en) * 1993-09-29 1995-03-30 Hoechst Ag Process for the preparation of polyolefins
    DE4333569A1 (en) * 1993-10-01 1995-04-06 Hoechst Ag Process for olefin polymerization
    EP0654476B1 (en) * 1993-11-24 2001-01-24 TARGOR GmbH Metallocenes, their preparation and use as catalysts
    EP0668157B1 (en) 1994-02-21 2003-05-21 Basell Polyolefine GmbH Heat-sealable polyolefin multilayer films, method of their manufacture and use
    AT401520B (en) * 1994-03-22 1996-09-25 Danubia Petrochem Polymere METALLOCENES AND THEIR USE FOR OLEFIN POLYMERISATION
    CA2157399C (en) * 1994-04-11 2003-04-08 Takashi Ueda Process for preparing propylene polymer composition and propylene polymer composition
    DE4416894A1 (en) * 1994-05-13 1995-11-16 Witco Gmbh Process for the synthesis of mono- and dimethylmetallocenes and their solutions especially for use in the polymerization of olefins
    AU685649B2 (en) * 1994-06-24 1998-01-22 Exxon Chemical Patents Inc. Polymerization catalyst systems, their production and use
    JPH0848835A (en) * 1994-08-08 1996-02-20 Mitsui Toatsu Chem Inc Deterioration-resistant thermoplastic resin composition
    DE69500763T2 (en) * 1994-10-13 1998-03-26 Japan Polyolefins Co Ltd Catalyst component for olefin polymerization, the catalyst containing the same and process for olefin polymerization in the presence of this catalyst
    WO1996011961A1 (en) * 1994-10-13 1996-04-25 Exxon Chemical Patents Inc. Polymerization catalyst systems, their production and use
    TW383314B (en) * 1994-12-20 2000-03-01 Mitsui Petrochemical Ind Ethylene-alpha-olefin-nonconjugated polyene random copolymer, rubber composition, and process for preparing the random copolymer
    IT1275856B1 (en) * 1995-03-03 1997-10-24 Spherilene Srl BIS-FLUORENYL METALLOCENE COMPOUNDS, PROCEDURE FOR THEIR PREPARATION AND THEIR USE IN CATALYSTS FOR POLYMERIZATION
    EP0739897A1 (en) 1995-04-27 1996-10-30 Hoechst Aktiengesellschaft Polynuclear metallocene compound, process for preparing it and its use as catalyst
    DE19516801A1 (en) * 1995-05-08 1996-11-14 Hoechst Ag Organometallic compound
    DE19517851A1 (en) * 1995-05-16 1996-11-21 Hoechst Ag Organometallic compound
    EP0745638A1 (en) * 1995-05-31 1996-12-04 Hoechst Aktiengesellschaft Biaxially oriented film of polypropylene with improved tear-through resistance
    DE59605705D1 (en) * 1995-05-31 2000-09-14 Hoechst Ag Biaxially oriented polypropylene film with increased dimensional stability
    EP0745477A1 (en) * 1995-05-31 1996-12-04 Hoechst Aktiengesellschaft Biaxially oriented polypropylene film with improved migration resistence
    JPH08325327A (en) * 1995-06-02 1996-12-10 Chisso Corp Highly stereoregular polypropylene
    DE19525178A1 (en) * 1995-07-11 1997-01-16 Basf Ag Process for converting the achiral meso form of an ansa metal complex into the chiral rac. Form
    SG64939A1 (en) * 1995-07-17 2002-02-19 Mitsui Chemicals Inc Olefin polymerization catalyst, process for preparing olefin polymer, and olefin polymer
    DE19544828A1 (en) * 1995-12-01 1997-06-05 Hoechst Ag High molecular copolymers
    US6787618B1 (en) 1995-12-01 2004-09-07 Basell Polypropylen Gmbh Metallocene compound and high molecular weight copolymers of propylene and olefins having two or four to thirty-two carbon atoms
    ATE225359T1 (en) * 1995-12-18 2002-10-15 Basell Polyolefine Gmbh METHOD FOR DEGRADING BY-PRODUCTS IN PRODUCT MIXTURES
    US5908903A (en) * 1995-12-27 1999-06-01 Basf Aktiengesellschaft Metallocene catalyst systems containing lewis bases
    DE19548788A1 (en) 1995-12-27 1997-07-03 Hoechst Ag Foils and layers
    IT1282666B1 (en) 1996-02-22 1998-03-31 Enichem Spa METALLOCENIC CATALYST REPLACED FOR THE (CO) POLYMERIZATION OF OLEFINS
    US5786291A (en) * 1996-02-23 1998-07-28 Exxon Chemical Patents, Inc. Engineered catalyst systems and methods for their production and use
    JP3181920B2 (en) * 1996-04-22 2001-07-03 日本ポリオレフィン株式会社 Catalyst for producing polyolefin and method for producing polyolefin
    DE19617230A1 (en) 1996-04-30 1997-11-06 Basf Ag Oxidized metallocene polyolefin waxes
    SG67392A1 (en) * 1996-05-27 1999-09-21 Sumitomo Chemical Co Propylene/ethylene-alpha-olefin block copolymer and process for producing the same
    DE19622481A1 (en) 1996-06-05 1997-12-11 Hoechst Ag Supported catalyst system, process for its preparation and its use for the polymerization of olefins
    AR009520A1 (en) * 1996-09-04 2000-04-26 Dow Chemical Co INTERPOLYMERS OF AROMATIC AND VINYLIDENO ALPHA-OLEPHIN / VINYLIDENE MONOMERS AND PROCESS TO OBTAIN THEM.
    US6015868A (en) * 1996-10-03 2000-01-18 The Dow Chemical Company Substituted indenyl containing metal complexes and olefin polymerization process
    DK0835886T3 (en) * 1996-10-09 2004-05-17 Atofina Res Process for Preparing and Using Meso / Racemic (Bis (indenyl) Ethane) Zirconium Dichloride Compounds
    DE69703728T2 (en) * 1996-10-31 2001-06-28 Repsol Quimica S.A., Madrid Catalyst systems for the polymerization and copolymerization of alpha olefins
    DE69710491T2 (en) * 1996-12-19 2002-10-02 The Dow Chemical Co., Midland METAL COMPLEXES CONTAINING IN POSITION 3 ARYL-SUBSTITUTED INDENYL DERIVATIVES AND POLYMERIZATION PROCESS
    US5968864A (en) * 1996-12-20 1999-10-19 Fina Technology, Inc. Catalyst efficiency for supported metallocene catalyst
    US5886202A (en) * 1997-01-08 1999-03-23 Jung; Michael Bridged fluorenyl/indenyl metallocenes and the use thereof
    EP0856524A1 (en) * 1997-02-01 1998-08-05 Repsol Quimica S.A. Heterogeneous catalyst components for olefins polymerization, preparation process and use thereof
    US5789634A (en) * 1997-02-05 1998-08-04 Boulder Scientific Company Coupling reactions of 2-substituted, 7-haloindenes with aryl substituents to produce metallocene catalyst intermediates
    US6465700B1 (en) * 1997-02-05 2002-10-15 Boulder Scientific Company Coupling reactions of 2-substituted, 7-haloindenes with aryl substituents to produce metallocene catalyst ligands
    DE19707236A1 (en) 1997-02-24 1998-08-27 Targor Gmbh Catalyst composition
    DE19757563A1 (en) 1997-03-07 1999-07-08 Targor Gmbh Free-flowing catalyst system for olefin polymerisation
    DE69831139T2 (en) * 1997-03-07 2006-06-01 Basell Polyolefine Gmbh METHOD FOR PRODUCING SUBSTITUTED INDANOES, THE SUBSTITUTED INDANOES AND METALLOCENE PRODUCED THEREOF
    US5789502A (en) * 1997-04-22 1998-08-04 Fina Technology, Inc. Process for co-polymerization of propylene and ethylene
    US6160072A (en) * 1997-05-02 2000-12-12 Ewen; John A. Process for polymerizing tactioselective polyolefins in condensed phase using titanocenes
    US6252019B1 (en) * 1997-05-13 2001-06-26 Montell Technology Company Bv Process for polymerizing tactioselective polyolefins in condensed phase using hafnocenes
    JP4119607B2 (en) * 1997-08-15 2008-07-16 チッソ株式会社 Polydispersed propylene polymer and process for producing the same
    JP2008121030A (en) * 1997-08-15 2008-05-29 Chisso Corp Polydisperse propylene polymer and its production method
    DE19738051A1 (en) 1997-09-01 1999-03-04 Targor Gmbh Injection molded article made of metallocene polypropylene
    DE19757540A1 (en) 1997-12-23 1999-06-24 Hoechst Ag Supported olefin polymerization catalyst system, particularly for propylene or ethylene
    KR100458047B1 (en) * 1997-12-29 2005-04-13 고려화학 주식회사 Manufacturing method of vinyl flooring with ocher added with deodorizing effect
    DE19806918A1 (en) 1998-02-19 1999-08-26 Aventis Res & Tech Gmbh & Co Catalyst system for the production of olefin polymers, especially polypropylene
    DE19813656A1 (en) 1998-03-27 1999-09-30 Aventis Res & Tech Gmbh & Co Transition metal compound
    DE19813657A1 (en) * 1998-03-27 1999-09-30 Aventis Res & Tech Gmbh & Co Catalyst system, process for its preparation and its use for the polymerization of olefins
    US6784269B2 (en) 1998-05-13 2004-08-31 Exxonmobil Chemical Patents Inc. Polypropylene compositions methods of making the same
    WO1999058587A1 (en) 1998-05-13 1999-11-18 Exxon Chemical Patents Inc. Propylene homopolymers and methods of making the same
    JP2002516358A (en) * 1998-05-23 2002-06-04 バーゼル、ポリプロピレン、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング Catalyst composition and its use for propylene polymerization
    KR100457722B1 (en) * 1998-06-10 2005-02-23 고려화학 주식회사 Flooring material with germanium-containing minerals
    US6037417A (en) 1998-08-18 2000-03-14 Montell Technology Company Bv Polypropylene composition useful for making solid state oriented film
    JP2000191862A (en) * 1998-10-20 2000-07-11 Mitsui Chemicals Inc Soft polypropylene polymer composition and molded article thereof
    EP1133503A1 (en) 1998-11-25 2001-09-19 Basell Polyolefine GmbH Method for the purification of metallocenes
    DE59914158D1 (en) 1998-11-25 2007-03-08 Basell Polyolefine Gmbh Metallocenmonohalogenide
    ES2192408T3 (en) 1998-11-25 2003-10-01 Basell Polyolefine Gmbh PROCEDURE FOR THE MANUFACTURE OF MONOARILOXI-ANSA-METALOCENOS.
    JP4446132B2 (en) * 1999-02-09 2010-04-07 チッソ株式会社 Method for producing extruded laminate film
    JP2000248015A (en) * 1999-02-26 2000-09-12 Idemitsu Petrochem Co Ltd Catalyst for copolymerizing olefin compound with styrene compound and production of olefin-styrene based copolymer
    US6500563B1 (en) 1999-05-13 2002-12-31 Exxonmobil Chemical Patents Inc. Elastic films including crystalline polymer and crystallizable polymers of propylene
    MXPA01011548A (en) 1999-05-13 2002-07-02 Exxon Chemical Patents Inc Elastic fibers and articles made therefrom, including crystalline and crystallizable polymers of propylene.
    US6750284B1 (en) 1999-05-13 2004-06-15 Exxonmobil Chemical Patents Inc. Thermoplastic filled membranes of propylene copolymers
    US6291699B1 (en) * 1999-08-24 2001-09-18 Boulder Scientific Company 2-alkyl-4-(2,6-dialkylphenyl) indenes
    KR100448099B1 (en) * 1999-10-12 2004-09-13 고려화학 주식회사 A floor with jade
    WO2001032758A1 (en) 1999-11-04 2001-05-10 Exxon Chemical Patents Inc. Propylene copolymer foams and their use
    US6420580B1 (en) * 1999-11-05 2002-07-16 Univation Technologies, Llc Catalyst compositions and method of polymerization therewith
    US6977287B2 (en) 1999-12-10 2005-12-20 Exxonmobil Chemical Patents Inc. Propylene diene copolymers
    MXPA02005716A (en) 1999-12-10 2002-09-18 Exxon Chemical Patents Inc Propylene diene copolymerized polymers.
    US6809168B2 (en) 1999-12-10 2004-10-26 Exxonmobil Chemical Patents Inc. Articles formed from propylene diene copolymers
    KR100718424B1 (en) 1999-12-22 2007-05-14 엑손모빌 케미칼 패턴츠 인코포레이티드 Polypropylene-based adhesive compositions
    DE19962910A1 (en) 1999-12-23 2001-07-05 Targor Gmbh Chemical compound, process for its preparation and its use in catalyst systems for the production of polyolefins
    DE19962814A1 (en) 1999-12-23 2001-06-28 Targor Gmbh Catalyst system, useful for the production of polyolefins, comprises a metallocene, a Lewis base, a support and a compound containing at least one Group 3 element
    CA2395552C (en) 1999-12-23 2010-02-16 Basell Polyolefine Gmbh Transition metal compound, ligand system, catalyst system and the use of the latter for the polymerisation and copolymerisation of olefins
    JP2003522194A (en) 2000-02-08 2003-07-22 エクソンモービル・ケミカル・パテンツ・インク Method for preparing group 14 bridged biscyclopentadienyl ligands
    US6384142B1 (en) 2000-02-08 2002-05-07 Exxonmobil Chemical Patents Inc. Propylene impact copolymers
    US6248833B1 (en) 2000-02-29 2001-06-19 Exxon Mobil Chemical Patents Inc. Fibers and fabrics prepared with propylene impact copolymers
    US20040072975A1 (en) * 2000-03-17 2004-04-15 Jorg Schottek Salt-like chemical compound, its preparation and its use in catalyst systems for preparing polyolefins
    DE10025412A1 (en) 2000-05-24 2001-11-29 Basell Polypropylen Gmbh Chemical products suitable as cocatalysts, processes for their preparation and their use in catalyst systems for the production of polyolefins
    GB0015395D0 (en) * 2000-06-26 2000-08-16 Ciba Spec Chem Water Treat Ltd Stabilisation of light sensitive substances
    US6380331B1 (en) * 2000-06-30 2002-04-30 Exxonmobil Chemical Patents Inc. Metallocene compositions
    US6399723B1 (en) * 2000-06-30 2002-06-04 Exxonmobil Chemical Patents Inc. Metallocene compositions
    US6380121B1 (en) * 2000-06-30 2002-04-30 Exxonmobil Chemical Patents Inc. Metallocene compositions
    US6376410B1 (en) 2000-06-30 2002-04-23 Exxonmobil Chemical Patents Inc. Metallocene compositions
    US6376408B1 (en) * 2000-06-30 2002-04-23 Exxonmobil Chemical Patents Inc. Metallocene compositions
    US6376407B1 (en) * 2000-06-30 2002-04-23 Exxonmobil Chemical Patents Inc. Metallocene compositions
    DE60102156T8 (en) * 2000-06-30 2005-06-23 Exxonmobil Chemical Patents Inc., Baytown Bridged Bisindenyl Substituted Metallocene Compounds
    US6870016B1 (en) * 2000-06-30 2005-03-22 Exxonmobil Chemical Patents Inc. Polymerization process and polymer composition
    US6380123B1 (en) * 2000-06-30 2002-04-30 Exxonmobil Chemical Patents Inc. Metallocene compositions
    US6376412B1 (en) 2000-06-30 2002-04-23 Exxonmobil Chemical Patents Inc. Metallocene compositions
    US6376627B1 (en) * 2000-06-30 2002-04-23 Exxonmobil Chemical Patents Inc. Metallocene compositions
    US6380120B1 (en) * 2000-06-30 2002-04-30 Exxonmobil Chemical Patents Inc. Metallocene compositions
    US6380124B1 (en) * 2000-06-30 2002-04-30 Exxonmobil Chemical Patents Inc. Metallocene compositions
    US6376413B1 (en) 2000-06-30 2002-04-23 Exxonmobil Chemical Patents Inc. Metallocene compositions
    US6376411B1 (en) * 2000-06-30 2002-04-23 Exxonmobil Chemical Patents Inc. Metallocene compositions
    US6380334B1 (en) * 2000-06-30 2002-04-30 Exxonmobil Chemical Patents Inc. Metallocene compositions
    US6380122B1 (en) 2000-06-30 2002-04-30 Exxonmobil Chemical Patents Inc. Metallocene compositions
    US6414095B1 (en) * 2000-06-30 2002-07-02 Exxon Mobil Chemical Patents Inc. Metallocene compositions
    US6376409B1 (en) * 2000-06-30 2002-04-23 Exxonmobil Chemical Patents Inc. Metallocene compositions
    US6380330B1 (en) * 2000-06-30 2002-04-30 Exxonmobil Chemical Patents Inc. Metallocene compositions
    US7122498B2 (en) 2000-06-30 2006-10-17 Exxonmobil Chemical Patents Inc. Metallocenes and catalyst compositions derived therefrom
    US6673869B2 (en) 2000-07-27 2004-01-06 Basell Poliolefine Italia S.P.A. Transparent elastomeric thermoplastic polyolefin compositions
    DE10047461A1 (en) 2000-09-21 2002-04-11 Basf Ag Amino acid complexes and their use for the production of olefin polymers
    MXPA03004837A (en) * 2000-11-30 2004-01-26 Exxonmobil Chem Patents Inc Polypropylene for precision injection molding applications.
    DE60234067D1 (en) 2001-04-05 2009-12-03 Japan Polypropylene Corp Catalyst for olefin polymerization and process for olefin polymerization
    ATE394407T1 (en) 2001-04-10 2008-05-15 Basell Polyolefine Gmbh METHOD FOR PRODUCING MONO OR BIS HALOGEN SUBSTITUTED METALLOZENE COMPOUNDS
    DE10126265A1 (en) 2001-05-29 2002-12-05 Basell Polyolefine Gmbh Process for the depletion of inorganic by-products and organometallic by-products in the production of metallocenes and the economic recovery of the starting materials used
    JP4332029B2 (en) * 2001-06-12 2009-09-16 バーゼル・ポリオレフィン・ゲーエムベーハー 1-butene polymerization method
    US7459511B2 (en) 2001-06-12 2008-12-02 Basell Polyolefine Gmbh Process for the polymerization of 1-butene
    EP1421090B1 (en) * 2001-06-29 2014-03-26 ExxonMobil Chemical Patents Inc. Metallocenes and catalyst compositions derived therefrom
    US7019157B2 (en) 2001-08-06 2006-03-28 Chisso Corporation Metallocene compounds, production process for olefin polymers using catalysts containing them and olefin polymers produced by the production process
    JP2003128720A (en) 2001-10-19 2003-05-08 Sunallomer Ltd Solid cocatalyst component for olefin polymerization, catalyst for olefin polymerization and ionic compound
    EP1446430B1 (en) * 2001-11-12 2007-02-07 Basell Polyolefine GmbH Process for polymerizing 1-butene and 1-butene polymers
    US7157591B2 (en) * 2001-12-10 2007-01-02 Exxonmobie Chemical Patents Inc. Metallocenes and catalyst compositions derived therefrom
    EP1470140B1 (en) * 2002-01-08 2008-03-12 Basell Polyolefine GmbH Preparation of silicon-bridged metallocene compounds
    DE10200422A1 (en) * 2002-01-08 2003-07-17 Basell Polyolefine Gmbh Process for the preparation of dialkyl-ansa metallocenes
    KR100450478B1 (en) * 2002-03-11 2004-10-01 권혁성 Papered Floor Comprising Scoria Particulate
    CA2480006A1 (en) * 2002-04-12 2003-10-23 Hong Yang Azaborolyl group 4 metal complexes, catalysts and olefin polymerization process
    US20050182266A1 (en) * 2002-06-12 2005-08-18 Schulte Jorg L. Transition metal componds their preparation and their use in catalyst systems for the polymerization and copolymerization of olefins
    US7572859B2 (en) 2002-06-26 2009-08-11 Basell Polyolefine Italia S.R.L. Impact-resistant polyolefin compositions
    MXPA04012699A (en) 2002-06-26 2005-03-23 Basell Poliolefine Spa Impact-resistant polyolefin compositions.
    US6995279B2 (en) 2002-08-02 2006-02-07 Chisso Corporation Metallocene compounds, processes for the production of olefin polymers using catalysts containing the compounds, and olefin polymers produced by the processes
    US20040075039A1 (en) 2002-08-16 2004-04-22 Dubey Dharmesh K. Molds for producing contact lenses
    ATE445651T1 (en) * 2002-09-06 2009-10-15 Basell Polyolefine Gmbh METHOD FOR COPOLYMERIZING ETHYLENE
    EP1539841B1 (en) * 2002-09-20 2012-08-01 ExxonMobil Chemical Patents Inc. Polymer production at supercritical conditions
    US8058371B2 (en) 2002-09-20 2011-11-15 Exxonmobil Chemical Patents Inc. Super-solution homogeneous propylene polymerization
    US8008412B2 (en) 2002-09-20 2011-08-30 Exxonmobil Chemical Patents Inc. Polymer production at supersolution conditions
    EP1549688A2 (en) * 2002-10-10 2005-07-06 Basell Polyolefine GmbH Process for the copolymerization of ethylene
    RU2323921C2 (en) * 2002-10-22 2008-05-10 Базелль Полиолефине Гмбх Preparation of substituted indenes
    FR2846807A1 (en) * 2002-10-31 2004-05-07 St Microelectronics Sa CONTROL CIRCUIT FOR TWO CURRENT UNIDIRECTIONAL SWITCHES
    US7589160B2 (en) * 2002-12-04 2009-09-15 Basell Polyolefine Gmbh Process for preparing 1-butene polymers
    US7534848B2 (en) * 2002-12-04 2009-05-19 Basell Polyolefine Gmbh 1-butene copolymers and process for preparing them
    JP2006512410A (en) 2002-12-06 2006-04-13 バーゼル、ポリオレフィン、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング Organometallic transition metal compound, compound having biscyclopentadienyl ligand, catalyst composition, and method for producing polyolefin using the same
    KR200306360Y1 (en) * 2002-12-14 2003-03-07 주식회사 신영데코 A decorative sheet which radiates anions
    US7195806B2 (en) 2003-01-17 2007-03-27 Fina Technology, Inc. High gloss polyethylene articles
    ATE469927T1 (en) 2003-03-21 2010-06-15 Dow Global Technologies Inc METHOD FOR PRODUCING POLYOLEFINS WITH CONTROLLED MORPHOLOGY
    US20070060727A1 (en) * 2003-09-11 2007-03-15 Basel Polyolefine Gmbh Multistep process for preparing heterophasic propylene copolymers
    US20060287436A1 (en) * 2003-09-11 2006-12-21 Anteo Pelliconi Multistep process for preparing heterophasic propylene copolymers
    JP4590037B2 (en) * 2003-09-30 2010-12-01 日本ポリプロ株式会社 Olefin polymerization catalyst component, α-olefin polymerization catalyst and method for producing α-olefin polymer
    US7189790B2 (en) 2003-09-30 2007-03-13 Japan Polypropylene Corporation Catalyst component for olefin polymerization, catalyst for α-olefin polymerization and process for the production of α-olefin polymer
    EP1680468B1 (en) 2003-11-06 2011-08-17 Basell Poliolefine Italia S.r.l. Polypropylene composition
    WO2005105864A1 (en) * 2004-04-16 2005-11-10 Exxonmobil Chemical Patents Inc. Heterocyclic substituted metallocene compounds for olefin polymerization
    US7285608B2 (en) 2004-04-21 2007-10-23 Novolen Technology Holdings C.V. Metallocene ligands, metallocene compounds and metallocene catalysts, their synthesis and their use for the polymerization of olefins
    DE102004020524A1 (en) 2004-04-26 2005-11-10 Basell Polyolefine Gmbh Polyethylene for film, e.g. stretch film, used in carrier bags, contains ethylene homopolymers and/or copolymers of ethylene with 1-alkenes
    JP4897670B2 (en) 2004-05-04 2012-03-14 バーゼル・ポリオレフィン・ゲーエムベーハー Process for producing atactic 1-butene polymers
    JP4920587B2 (en) 2004-06-08 2012-04-18 バーゼル・ポリオレフィン・イタリア・ソチエタ・ア・レスポンサビリタ・リミタータ Polyolefin composition having good balance of stiffness, impact strength and elongation at break and low heat shrinkage
    JP4381898B2 (en) * 2004-06-18 2009-12-09 三井化学株式会社 Propylene polymer, method for producing propylene polymer, and paintable material
    JP2008505198A (en) * 2004-07-05 2008-02-21 バーゼル、ポリオレフィン、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング Polymerization catalyst, main group coordination compound, method for producing polyolefin, and polyolefin
    WO2006010139A2 (en) * 2004-07-08 2006-01-26 Exxonmobil Chemical Patents Inc. Olefin polymerization catalyst system and process for use thereof
    US7169864B2 (en) * 2004-12-01 2007-01-30 Novolen Technology Holdings, C.V. Metallocene catalysts, their synthesis and their use for the polymerization of olefins
    WO2006065906A2 (en) * 2004-12-16 2006-06-22 Exxonmobil Chemical Patents Inc. Halogen substituted metallocene compounds for olefin polymerization
    ES2339956T3 (en) 2004-12-17 2010-05-27 Dow Global Technologies Inc. POLYETHYLENE COMPOSITIONS WITH MODIFIED REOLOGY.
    EP1858907B1 (en) * 2005-03-18 2008-10-15 Basell Polyolefine GmbH Metallocene compounds
    JP2008536813A (en) 2005-03-18 2008-09-11 バーゼル・ポリオレフィン・ゲーエムベーハー Metallocene compounds
    WO2006100258A1 (en) 2005-03-23 2006-09-28 Basell Polyolefine Gmbh Process for the polymerization of olefins
    RU2392283C2 (en) 2005-03-23 2010-06-20 Базелль Полиолефине Гмбх Method of olefin polymerisation
    US20060247394A1 (en) * 2005-04-29 2006-11-02 Fina Technology, Inc. Process for increasing ethylene incorporation into random copolymers
    EP1877453A1 (en) 2005-05-03 2008-01-16 Basell Polyolefine GmbH Process for the polymerization of alpha olefins
    EP1879959B1 (en) 2005-05-11 2011-07-06 Basell Poliolefine Italia S.r.l. Polymerization process for preparing polyolefin blends
    US7232869B2 (en) * 2005-05-17 2007-06-19 Novolen Technology Holdings, C.V. Catalyst composition for olefin polymerization
    EP1891123B1 (en) 2005-06-13 2018-08-29 Basell Polyolefine GmbH Process for the copolymerization of propylene
    US8034886B2 (en) 2005-11-04 2011-10-11 Ticona Gmbh Process for manufacturing high to ultra high molecular weight polymers using novel bridged metallocene catalysts
    DE102005052654A1 (en) * 2005-11-04 2007-05-16 Ticona Gmbh Process for the preparation of ultra-high molecular weight polymers using special bridged metallocene catalysts
    US7709577B2 (en) 2005-12-07 2010-05-04 Exxonmobil Chemical Patents Inc. Process of making polymer blends
    US7550544B2 (en) 2005-12-14 2009-06-23 Exxonmobil Chemical Patents Inc. Halogen substituted metallocene compounds for olefin polymerization
    JP2007161876A (en) * 2005-12-14 2007-06-28 Mitsui Chemicals Inc Olefinic polymer and method for producing the same
    US7763562B2 (en) * 2005-12-14 2010-07-27 Exxonmobil Chemical Patents Inc. Heteroatom bridged metallocene compounds for olefin polymerization
    US7868197B2 (en) 2005-12-14 2011-01-11 Exxonmobil Chemical Patents Inc. Halogen substituted heteroatom-containing metallocene compounds for olefin polymerization
    US7538168B2 (en) 2005-12-14 2009-05-26 Exxonmobil Chemical Patents Inc. Halogen substituted metallocene compounds for olefin polymerization
    EP1963347B1 (en) 2005-12-14 2011-10-19 ExxonMobil Chemical Patents Inc. Halogen substituted metallocene compounds for olefin polymerization
    US7667064B2 (en) * 2005-12-14 2010-02-23 Exxonmobil Chemical Patents Inc. Halogen substituted metallocene compounds for olefin polymerization
    DE102005061326A1 (en) * 2005-12-20 2007-06-21 Basell Polyolefine Gmbh Preparation of metallocene compound, useful e.g. in the preparation of isotactic polypropylene, comprises using a cyclopentadienyl derivative that is recycled from the filtrate obtained from the preparation of e.g. metallocene compound
    EP1803747A1 (en) 2005-12-30 2007-07-04 Borealis Technology Oy Surface-modified polymerization catalysts for the preparation of low-gel polyolefin films
    DE102006001959A1 (en) 2006-01-13 2007-07-19 Basell Polyolefine Gmbh Preparation of monoimine compound, useful in the polymerization of olefin, comprises reacting dicarbonyl compound with an aniline compound in presence of an aliphatic, non-aromatic solvent
    ATE526337T1 (en) * 2006-03-17 2011-10-15 Basell Polyolefine Gmbh METALLOCENE COMPOUNDS
    WO2007116034A1 (en) 2006-04-12 2007-10-18 Basell Polyolefine Gmbh Metallocene compounds
    EP1847555A1 (en) * 2006-04-18 2007-10-24 Borealis Technology Oy Multi-branched Polypropylene
    US8110518B2 (en) * 2006-04-28 2012-02-07 Fina Technology, Inc. Fluorinated transition metal catalysts and formation thereof
    US20070255028A1 (en) * 2006-04-28 2007-11-01 Fina Technology, Inc. Fluorinated transition metal catalysts and formation thereof
    CN101356226B (en) 2006-05-02 2012-09-05 陶氏环球技术有限责任公司 High-density polyethylene compositions, method of making the same, articles made therefrom, and method of making such articles
    US7456244B2 (en) * 2006-05-23 2008-11-25 Dow Global Technologies High-density polyethylene compositions and method of making the same
    US8143352B2 (en) 2006-12-20 2012-03-27 Exxonmobil Research And Engineering Company Process for fluid phase in-line blending of polymers
    US8242237B2 (en) * 2006-12-20 2012-08-14 Exxonmobil Chemical Patents Inc. Phase separator and monomer recycle for supercritical polymerization process
    US7256240B1 (en) 2006-12-22 2007-08-14 Exxonmobil Chemical Patents Inc. Process of making polymer blends
    EP2102282B1 (en) * 2006-12-22 2011-02-09 Basell Polyolefine GmbH Multimodal polyethylene composition, mixed catalyst and process for preparing the composition
    US7872086B2 (en) 2008-01-17 2011-01-18 Tonen Chemical Corporation Polymeric material and its manufacture and use
    WO2008107135A1 (en) 2007-03-06 2008-09-12 Basell Polyolefine Gmbh Iron complexes and their use in polymerization processes
    US8080610B2 (en) 2007-03-06 2011-12-20 Exxonmobil Research And Engineering Company Monomer recycle process for fluid phase in-line blending of polymers
    WO2008124040A1 (en) 2007-04-09 2008-10-16 Exxonmobil Chemical Patents Inc. Soft heterogeneous isotactic polyroplene compositions
    DE102007017903A1 (en) 2007-04-13 2008-10-16 Basell Polyolefine Gmbh Polyethylene and catalyst composition and process for its preparation
    BRPI0713185B1 (en) * 2007-05-02 2018-08-28 Dow Global Technologies Inc high density polyethylene composition, method for producing a high density polyethylene composition, bottle cap, method for producing a bottle cap and high density polyethylene composition
    JP2010534749A (en) * 2007-07-27 2010-11-11 バーゼル・ポリオレフィン・ゲーエムベーハー Catalyst system for polymerization of olefin monomers, process for producing polymers and polymers produced by the process
    US7981517B2 (en) * 2007-08-28 2011-07-19 Dow Global Technologies Inc. Bituminous compositions and methods of making and using same
    CN101855250B (en) * 2007-09-13 2013-01-02 埃克森美孚研究工程公司 In-line blending of plasticizers with a base polymer
    US7928162B2 (en) * 2007-09-13 2011-04-19 Exxonmobil Research And Engineering Company In-line process for producing plasticized polymers and plasticized polymer blends
    ATE547439T1 (en) * 2007-10-25 2012-03-15 Lummus Novolen Technology Gmbh RACEMOSELECTIVE SYNTHESIS OF ANSA METALLOCENE COMPOUNDS, ANSA METALLOCENE COMPOUNDS, CATALYSTS CONTAINING SAME, METHOD FOR PRODUCING AN OLEFIN POLYMER BY USING THE CATALYSTS AND OLEFIN HOMOPOLYMERS AND COPOLYMERS
    US8138285B2 (en) * 2007-10-26 2012-03-20 Fina Technology, Inc. Fluorinated impregnated catalyst systems and methods of forming the same
    US7906588B2 (en) 2007-10-26 2011-03-15 Exxonmobil Chemical Patents Inc. Soft heterogeneous isotactic polypropylene compositions
    EP2220101B1 (en) * 2007-12-18 2018-09-19 Basell Polyolefine GmbH Transition metal compounds
    WO2009082463A1 (en) * 2007-12-20 2009-07-02 Exxonmobil Research And Engineering Company In-line process to produce pellet-stable polyolefins
    US7910679B2 (en) * 2007-12-20 2011-03-22 Exxonmobil Research And Engineering Company Bulk homogeneous polymerization process for ethylene propylene copolymers
    CN101945940B (en) * 2007-12-20 2014-04-09 埃克森美孚研究工程公司 Polypropylene ethylene-propylene copolymer blends and in-line process to produce them
    US7812104B2 (en) * 2008-01-18 2010-10-12 Exxonmobil Chemical Patents Inc. Production of propylene-based polymers
    US8318875B2 (en) * 2008-01-18 2012-11-27 Exxonmobil Chemical Patents Inc. Super-solution homogeneous propylene polymerization and polypropylenes made therefrom
    US8865834B2 (en) * 2008-02-18 2014-10-21 Basell Polyolefine Gmbh Adhesive polymer composition
    RU2010139855A (en) 2008-02-29 2012-04-10 Базелль Полиолефин Италия С.Р.Л. (It) POLYOLEFIN COMPOSITIONS
    EP2103634A1 (en) 2008-03-20 2009-09-23 ExxonMobil Chemical Patents Inc. Production of propylene-based polymers
    JP5315773B2 (en) 2008-04-24 2013-10-16 住友化学株式会社 Propylene resin composition
    KR101610649B1 (en) 2008-07-23 2016-04-08 바젤 폴리올레핀 게엠베하 Method for transitioning between incompatible olefin polymerization catalyst systems
    WO2010022941A1 (en) 2008-08-29 2010-03-04 Basell Polyolefine Gmbh Polyethylene for injection moldings
    JP5346088B2 (en) 2008-09-25 2013-11-20 バーゼル・ポリオレフィン・ゲーエムベーハー Impact resistant LLDPE composition and film produced therefrom
    CN102165005B (en) 2008-09-25 2014-09-10 巴塞尔聚烯烃股份有限公司 Impact resistant LLDPE composition and films made thereof
    JP5181104B2 (en) * 2008-12-10 2013-04-10 株式会社プライムポリマー Propylene block copolymer
    BRPI0922454A2 (en) 2008-12-18 2018-05-22 Univation Tech Llc seedbed treatment method for a polymerization reaction
    CN102264773B (en) 2008-12-23 2013-12-04 巴塞尔聚烯烃股份有限公司 Method for transitioning between incompatible olefin polymerization catalyst systems
    MX2011008053A (en) 2009-01-30 2012-01-12 Dow Global Technologies Llc High-density polyethylene compositions, method of producing the same, closure devices made therefrom, and method of making such closure devices.
    SG174602A1 (en) 2009-03-30 2011-11-28 Mitsui Chemicals Inc Copolymer of olefin and conjugated diene, and process for producing same
    DE102009020090A1 (en) 2009-05-06 2010-11-11 Lanxess Deutschland Gmbh Reduction of the influence of water absorption on the electrical conductivity of electrically conductive polyamide molding compounds
    BR112012007272B1 (en) 2009-10-02 2021-08-10 Dow Global Technologies Llc FORMULATED COMPOSITION, MODIFIED COMPOSITION FOR IMPACT AND ARTICLE
    US8859451B2 (en) 2009-12-18 2014-10-14 Basell Polyolefine Gmbh Process for the preparation of supported catalysts
    US9605360B2 (en) 2010-04-30 2017-03-28 Basell Polyolefine Gmbh Polyethylene fiber or filament
    WO2011159400A1 (en) 2010-06-15 2011-12-22 Exxonmobil Chemical Patents Inc. Nonwoven fabrics made from polymer blends and methods for making same
    US9029478B2 (en) 2011-02-07 2015-05-12 Equistar Chemicals, Lp High clarity polyethylene films
    WO2012149391A1 (en) 2011-04-28 2012-11-01 Adherent Laboratories, Inc. Polyolefin based hot melt adhesive composition
    US8445620B2 (en) 2011-08-04 2013-05-21 Exxonmobil Research And Engineering Company Elastic propylene-alpha-olefin copolymer compositions and processes to produce them
    EP2573091A1 (en) 2011-09-23 2013-03-27 Lummus Novolen Technology Gmbh Process for recycling of free ligand from their corresponding metallocene complexes
    US9321945B2 (en) 2011-09-30 2016-04-26 Equistar Chemicals, Lp Systems, methods and compositions for production of tie-layer adhesives
    US10059081B2 (en) 2011-12-22 2018-08-28 Exxonmobil Chemical Patents Inc. Fibers and nonwoven materials prepared therefrom
    EP2818510B1 (en) 2012-02-24 2015-09-30 Japan Polypropylene Corporation Propylene-ethylene copolymer resin composition, and molded product, film and sheet thereof
    JP5883322B2 (en) * 2012-03-26 2016-03-15 住友理工株式会社 Resin fuel tube
    KR101549206B1 (en) 2012-05-08 2015-09-02 주식회사 엘지화학 Ansa-metallocene catalyst and preparation method of supported catalyst by using the same
    EP2746320A1 (en) 2012-12-20 2014-06-25 Basell Polyolefine GmbH Polyethylene composition having high mechanical properties
    ES2674576T3 (en) 2012-12-21 2018-07-02 Borealis Ag Catalyst
    WO2014105614A1 (en) 2012-12-28 2014-07-03 Univation Technologies, Llc Methods of integrating aluminoxane production into catalyst production
    JP6015443B2 (en) * 2012-12-30 2016-10-26 日本ポリプロ株式会社 Method for purifying crosslinked indenyl compounds
    CN103086834B (en) * 2013-01-08 2015-05-27 上海化工研究院 Preparation method of biaryl indene compounds
    RU2647855C2 (en) 2013-01-14 2018-03-21 ЮНИВЕЙШН ТЕКНОЛОДЖИЗ, ЭлЭлСи Methods of obtaining catalyst systems with increased productivity
    JP5695687B2 (en) * 2013-03-05 2015-04-08 日本ポリエチレン株式会社 Process for producing ethylene / α-olefin copolymer
    EP3011089B1 (en) 2013-06-18 2020-12-02 ExxonMobil Chemical Patents Inc. Fibers and nonwoven materials prepared therefrom
    CN105308226B (en) 2013-06-18 2018-01-26 埃克森美孚化学专利公司 Fiber and non-woven material prepared therefrom
    EP3848401A1 (en) 2013-07-17 2021-07-14 ExxonMobil Chemical Patents Inc. Isotactic propylene polymers
    US9938364B2 (en) 2013-07-17 2018-04-10 Exxonmobil Chemical Patents Inc. Substituted metallocene catalysts
    EP3022234B1 (en) 2013-07-17 2018-12-26 ExxonMobil Chemical Patents Inc. Substituted metallocene catalysts
    CN105358589B (en) 2013-07-17 2018-07-03 埃克森美孚化学专利公司 Metallocene and by its derivative carbon monoxide-olefin polymeric
    SG10201802959WA (en) 2013-07-17 2018-05-30 Exxonmobil Chemical Patents Inc Cyclopropyl substituted metallocene catalysts
    US9464145B2 (en) 2013-07-17 2016-10-11 Exxonmobil Chemical Patents Inc. Metallocenes and catalyst compositions derived therefrom
    WO2015055392A1 (en) 2013-10-14 2015-04-23 Basell Polyolefine Gmbh Polyethylene of raised temperature resistance
    CN106068291B (en) 2014-03-28 2019-03-12 三井化学株式会社 Olefin-based resin, its manufacturing method and propylene resin composition
    US20150299525A1 (en) 2014-04-18 2015-10-22 IFS Industries Inc. Low density and high performance packaging hot melt
    JP5899269B2 (en) * 2014-06-11 2016-04-06 ヤフー株式会社 Generating device, generating method, and generating program
    JP5901697B2 (en) * 2014-06-11 2016-04-13 ヤフー株式会社 Distribution apparatus, distribution method, and distribution program
    JP2016050189A (en) * 2014-08-31 2016-04-11 日本ポリエチレン株式会社 Metallocene compound, olefin polymerization catalyst prepared therefrom and method for producing olefin polymer using the same
    WO2016053468A1 (en) 2014-09-30 2016-04-07 Exxonmobil Chemical Patents Inc. Bimodal polypropylenes and method of making same
    EP3204452A4 (en) 2014-10-06 2017-08-23 ExxonMobil Chemical Patents Inc. Thermoplastic polyolefin containing amorphous ethylene elastomer
    CA2985112C (en) 2015-05-08 2020-06-30 Exxonmobil Chemical Patents Inc. Polymerization process comprising 2,2-dimethylpropane as condensing agent
    WO2016196334A1 (en) 2015-06-05 2016-12-08 Exxonmobil Chemical Patents Inc. Single reactor production of polymers in gas or slurry phase
    US10294316B2 (en) 2015-06-05 2019-05-21 Exxonmobil Chemical Patents Inc. Silica supports with high aluminoxane loading capability
    US10280235B2 (en) 2015-06-05 2019-05-07 Exxonmobil Chemical Patents Inc. Catalyst system containing high surface area supports and sequential polymerization to produce heterophasic polymers
    US10329360B2 (en) 2015-06-05 2019-06-25 Exxonmobil Chemical Patents Inc. Catalyst system comprising supported alumoxane and unsupported alumoxane particles
    EP3885373A1 (en) 2015-06-05 2021-09-29 ExxonMobil Chemical Patents Inc. Production of heterophasic polymers in gas or slurry phase
    US9809664B2 (en) 2015-06-05 2017-11-07 Exxonmobil Chemical Patents Inc. Bimodal propylene polymers and sequential polymerization
    US10280233B2 (en) 2015-06-05 2019-05-07 Exxonmobil Chemical Patents Inc. Catalyst systems and methods of making and using the same
    WO2016196331A1 (en) 2015-06-05 2016-12-08 Exxonmobil Chemical Patents Inc. Supported metallocene catalyst systems for polymerization
    EP3375849A4 (en) 2015-11-09 2019-06-26 Mitsui Chemicals, Inc. Viscosity modifier for lubricating oils, additive composition for lubricating oils, and lubricating oil compositions
    US10883197B2 (en) 2016-01-12 2021-01-05 Chevron Phillips Chemical Company Lp High melt flow polypropylene homopolymers for fiber applications
    WO2017204830A1 (en) 2016-05-27 2017-11-30 Exxonmobil Chemical Patents, Inc. Metallocene catalyst compositions and polymerization process therewith
    WO2018063764A1 (en) 2016-09-27 2018-04-05 Exxonmobil Chemical Patents Inc. Polymerization process
    WO2018063765A1 (en) 2016-09-27 2018-04-05 Exxonmobil Chemical Patents Inc. Polymerization process
    WO2018063767A1 (en) 2016-09-27 2018-04-05 Exxonmobil Chemical Patents Inc. Polymerization process
    WO2018118155A1 (en) 2016-12-20 2018-06-28 Exxonmobil Chemical Patents Inc. Polymerization process
    US10822481B2 (en) 2017-01-05 2020-11-03 Exxonmobil Chemical Patents Inc. Thermoplastic polyolefin compositions with ethylene-propylene copolymers
    JP2019172946A (en) * 2017-05-26 2019-10-10 三井化学株式会社 Method for producing propylene-based polymer
    JP7223540B2 (en) * 2017-09-27 2023-02-16 三井化学株式会社 Transition metal compound, catalyst for olefin polymerization, and method for producing olefin polymer
    KR102001965B1 (en) * 2017-10-12 2019-07-19 롯데케미칼 주식회사 Polyolefin catalyst and preparing method of polyolefin using same
    WO2019118073A1 (en) 2017-12-13 2019-06-20 Exxonmobil Chemical Patents Inc. Deactivation methods for active components from gas phase polyolefin polymerization process
    KR102412130B1 (en) 2017-12-26 2022-06-23 주식회사 엘지화학 Method for preparing supported metallocene catalyst and method for preparing polypropylene using the supported metallocene catalyst
    WO2019173030A1 (en) 2018-03-08 2019-09-12 Exxonmobil Chemical Patents Inc. Methods of preparing and monitoring a seed bed for polymerization reactor startup
    EP3768735B1 (en) * 2018-03-19 2021-12-29 Borealis AG Catalysts for olefin polymerization
    CN112055719B (en) 2018-05-02 2022-11-25 埃克森美孚化学专利公司 Method for scaling-up from pilot plant to larger production facilities
    CN112055720B (en) 2018-05-02 2022-11-22 埃克森美孚化学专利公司 Method for scaling up from pilot plant to larger production facility
    WO2020014138A1 (en) 2018-07-09 2020-01-16 Exxonmobil Chemical Patents Inc. Polyethylene cast films and methods for making the same
    WO2020023207A1 (en) 2018-07-26 2020-01-30 Exxonmobil Chemical Patents Inc. Multilayer foam films and methods for making the same
    WO2020056119A1 (en) 2018-09-14 2020-03-19 Fina Technology, Inc. Polyethylene and controlled rheology polypropylene polymer blends and methods of use
    WO2020102380A1 (en) 2018-11-13 2020-05-22 Exxonmobil Chemical Patents Inc. Polyethylene blends and films
    EP3880739A1 (en) 2018-11-13 2021-09-22 ExxonMobil Chemical Patents Inc. Polyethylene films
    WO2020163079A1 (en) 2019-02-06 2020-08-13 Exxonmobil Chemical Patents Inc. Films and backsheets for hygiene articles
    CA3121960A1 (en) 2019-02-20 2020-08-27 Fina Technology, Inc. Polymer compositions with low warpage
    JP7186856B2 (en) 2019-03-12 2022-12-09 三井化学株式会社 Olefin-based resin, its crosslinked product, and method for producing the same
    US11186665B2 (en) 2019-10-04 2021-11-30 Chevron Phillips Chemical Company Lp Catalyst composition and method for preparing polyethylene
    US11472828B2 (en) 2019-10-11 2022-10-18 Exxonmobil Chemical Patents Inc. Indacene based metallocene catalysts useful in the production of propylene polymers
    EP4048729A1 (en) 2019-10-22 2022-08-31 Celanese International Corporation Thermoplastic vulcanizate compositions and processes for the production thereof
    WO2021080803A1 (en) 2019-10-22 2021-04-29 Exxonmobil Chemical Patents Inc. Impact copolymer compositions
    JP2023501982A (en) 2019-10-30 2023-01-20 中国石油化工股▲ふん▼有限公司 Metallocene compound and its production method and application
    CN112745413B (en) * 2019-10-30 2023-06-13 中国石油化工股份有限公司 Preparation method and device of metallocene polypropylene
    CA3158666A1 (en) 2019-12-03 2021-06-10 Gianni Perdomi Polyethylene composition for filaments or fibers
    US11999839B2 (en) 2019-12-03 2024-06-04 Basell Polyolefine Gmbh Polyethylene composition for filaments or fibers
    US20230018505A1 (en) 2019-12-17 2023-01-19 Exxonmobil Chemical Patents Inc. Films Made of Polyethylene Blends for Improved Sealing Performance and Mechanical Properties
    WO2021183337A1 (en) 2020-03-12 2021-09-16 Exxonmobil Chemical Patents Inc. Films made of polyethylene blends for improved bending stiffness and high md tear resistance
    WO2021195070A1 (en) 2020-03-26 2021-09-30 Exxonmobil Chemical Patents Inc. Processes for making 3-d objects from blends of polypropylene and semi-amorphous polymers
    CN115667392A (en) 2020-06-15 2023-01-31 埃克森美孚化学专利公司 Combination comprising two propylene-based polymers and composition containing same
    KR20220017199A (en) * 2020-08-04 2022-02-11 주식회사 엘지화학 Transition metal compound, method for preparing the same, and catalyst composition comprising the same
    US20240052074A1 (en) * 2021-03-26 2024-02-15 Lg Chem, Ltd. Polypropylene Resin Composition and Non-Woven Fabric Prepared Using the Same
    US20240101732A1 (en) * 2021-03-26 2024-03-28 Lg Chem, Ltd. Polypropylene Resin Composition and Method for Preparing the Same
    CN117222697A (en) 2021-04-26 2023-12-12 弗纳技术股份有限公司 Single site catalyzed polymer sheet
    US20240209124A1 (en) 2021-04-30 2024-06-27 Exxonmobil Chemical Patents Inc. Processes for transitioning between different polymerization catalysts in a polymerization reactor
    CN113667042B (en) * 2021-08-28 2022-02-11 潍坊驼王实业有限公司 Preparation method of melt-blown non-woven fabric

    Family Cites Families (20)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE3443087A1 (en) * 1984-11-27 1986-05-28 Hoechst Ag, 6230 Frankfurt METHOD FOR PRODUCING POLYOLEFINES
    DE3726067A1 (en) 1987-08-06 1989-02-16 Hoechst Ag METHOD FOR PRODUCING 1-OLEFIN POLYMERS
    US5017714A (en) * 1988-03-21 1991-05-21 Exxon Chemical Patents Inc. Silicon-bridged transition metal compounds
    IL89525A0 (en) * 1988-03-21 1989-09-10 Exxon Chemical Patents Inc Silicon-bridged transition metal compounds
    JP2826362B2 (en) * 1990-02-13 1998-11-18 三井化学株式会社 Method for producing solid catalyst for olefin polymerization, solid catalyst for olefin polymerization, and method for polymerizing olefin
    ES2071888T3 (en) * 1990-11-12 1995-07-01 Hoechst Ag BISINDENILMETALOCENOS SUBSTITUTED IN POSITION 2, PROCEDURE FOR ITS PREPARATION AND USE AS CATALYSTS IN THE POLYMERIZATION OF OLEFINS.
    DE59107926D1 (en) * 1990-11-12 1996-07-18 Hoechst Ag Metallocenes with ligands from 2-substituted indenyl derivatives, processes for their preparation and their use as catalysts
    EP0485822B1 (en) * 1990-11-12 1996-07-03 Hoechst Aktiengesellschaft Process for preparing high molecular weight polyolefines
    DE4120009A1 (en) * 1991-06-18 1992-12-24 Basf Ag SOLUBLE CATALYST SYSTEMS FOR THE PRODUCTION OF POLYALK-1-ENEN WITH HIGH MOLES
    JP3402473B2 (en) * 1991-08-20 2003-05-06 日本ポリケム株式会社 Olefin polymerization catalyst
    TW300901B (en) * 1991-08-26 1997-03-21 Hoechst Ag
    DE59210001D1 (en) * 1991-10-15 2005-02-17 Basell Polyolefine Gmbh Process for the preparation of an olefin polymer using metallocenes with specifically substituted indenyl ligands
    DE69207348T2 (en) * 1991-10-28 1996-06-27 Shell Int Research Catalyst composition
    TW309523B (en) * 1991-11-30 1997-07-01 Hoechst Ag
    TW318184B (en) * 1991-11-30 1997-10-21 Hoechst Ag
    TW294669B (en) * 1992-06-27 1997-01-01 Hoechst Ag
    EP0882731A3 (en) * 1992-08-15 2000-05-31 TARGOR GmbH Bridged metallocene compounds and their use as olefin polymerization catalysts
    EP1070729B1 (en) * 1993-06-07 2011-09-28 Mitsui Chemicals, Inc. Transition metal compound, olefin polymerization catalyst component comprising said compound, olefin polymerization catalyst containing said component, process for olefin polymerization using said catalyst, propylene homopolymer, propylene copolymer and propylene elastomer
    JP3423378B2 (en) * 1993-11-12 2003-07-07 三井化学株式会社 Novel transition metal compound, olefin polymerization catalyst component comprising the transition metal compound, olefin polymerization catalyst containing the olefin polymerization catalyst component, and olefin polymerization method
    US5847176A (en) * 1997-06-30 1998-12-08 Boulder Scientific Company Preparation of chiral titanocenes

    Cited By (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6429250B1 (en) 1998-12-11 2002-08-06 Targor Gmbh Talc-reinforced polypropylene molding composition with high impact strength
    US7341971B2 (en) 2001-12-19 2008-03-11 Borealis Technology Oy Production of olefin polymerization catalysts
    US7718563B2 (en) 2001-12-19 2010-05-18 Borealis Technology Oy Production of olefin polymerization catalysts
    WO2003106470A1 (en) * 2002-06-12 2003-12-24 Basell Polyolefine Gmbh Transition metal compounds their preparation and their use in catalyst systems for the polymerization and copolymerization of olefins

    Also Published As

    Publication number Publication date
    ATE209964T1 (en) 2001-12-15
    EP0790076A2 (en) 1997-08-20
    AU4149193A (en) 1994-01-06
    FI932961A (en) 1993-12-28
    KR940005641A (en) 1994-03-22
    DE59310245D1 (en) 2002-01-17
    DE59307969D1 (en) 1998-02-19
    US6242544B1 (en) 2001-06-05
    US5770753A (en) 1998-06-23
    EP0790076A3 (en) 1998-03-18
    US5786432A (en) 1998-07-28
    FI932961A0 (en) 1993-06-24
    EP0576970B1 (en) 1998-01-14
    AU661587B2 (en) 1995-07-27
    FI107449B (en) 2001-08-15
    JP4167254B2 (en) 2008-10-15
    US6255506B1 (en) 2001-07-03
    US6051727A (en) 2000-04-18
    ES2169288T3 (en) 2002-07-01
    JP2006028191A (en) 2006-02-02
    KR100283824B1 (en) 2001-04-02
    US5840644A (en) 1998-11-24
    EP0576970A1 (en) 1994-01-05
    ES2112355T3 (en) 1998-04-01
    TW294669B (en) 1997-01-01
    ZA934577B (en) 1994-02-01
    JP3737134B2 (en) 2006-01-18
    ATE162194T1 (en) 1998-01-15
    US20010021755A1 (en) 2001-09-13
    CA2099214A1 (en) 1993-12-28
    RU2118961C1 (en) 1998-09-20
    CA2099214C (en) 2005-08-30
    JPH06100579A (en) 1994-04-12

    Similar Documents

    Publication Publication Date Title
    EP0790076B1 (en) Catalysts containing metallocenes with arylsubstituted indenyl derivatives as ligands, process and intermediates for the preparation of these metallocenes and their use
    EP0776913B1 (en) High molecular weight copolymers
    EP0659757B1 (en) Metallocenes
    EP0549900B1 (en) Metallocenes containing benzocondensed indenyl derivatives as ligands, process for their preparation and their use as catalysts
    EP0659756B1 (en) Metallocenes
    EP0654476B1 (en) Metallocenes, their preparation and use as catalysts
    EP0545303B1 (en) Process for preparing high molecular weight polyolefins
    DE69315471T2 (en) Olefin polymerization catalyst, process for its preparation and its use
    EP0743317B1 (en) Metallocenes comprising a heterocycle and catalysts containing them
    EP0563917A1 (en) Catalyst for the polymerisation of olefins, process for its preparation and its use
    US5521265A (en) Metallocenes and their use for olefin polymerization
    EP1003757B1 (en) Method for producing metallocenes
    EP0839824A2 (en) Metallocenes with partially hydrogenated pi-ligands
    EP0557718B1 (en) Catalyst for olefin polymerisation, process for preparing the same and its sue
    EP0868441A2 (en) Transition metal compound
    DE4340018A1 (en) Multi:nuclear metallocene with more than one central atom
    DE19642432A1 (en) New stereo-rigid metallocene comprising transition metal complex with cyclo-pentadienyl-4,5-tetra:hydro-pentalene ligand system
    DE19719104A1 (en) Stereo-rigid metallocene for use in polymerisation catalysts
    EP0812853A2 (en) Transition metal containing compounds

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AC Divisional application: reference to earlier application

    Ref document number: 576970

    Country of ref document: EP

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: TARGOR GMBH

    17P Request for examination filed

    Effective date: 19980915

    17Q First examination report despatched

    Effective date: 20000623

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: BASELL POLYOLEFINE GMBH

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: BASELL POLYOLEFINE GMBH

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AC Divisional application: reference to earlier application

    Ref document number: 576970

    Country of ref document: EP

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

    REF Corresponds to:

    Ref document number: 209964

    Country of ref document: AT

    Date of ref document: 20011215

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    REF Corresponds to:

    Ref document number: 59310245

    Country of ref document: DE

    Date of ref document: 20020117

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20020129

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020305

    ET Fr: translation filed
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020622

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020622

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020630

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020630

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2169288

    Country of ref document: ES

    Kind code of ref document: T3

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20090625

    Year of fee payment: 17

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20090715

    Year of fee payment: 17

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20090629

    Year of fee payment: 17

    BERE Be: lapsed

    Owner name: *BASELL POLYOLEFINE G.M.B.H.

    Effective date: 20100630

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20100622

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100622

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100630

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100622

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20120620

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20120614

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20120618

    Year of fee payment: 20

    Ref country code: DE

    Payment date: 20120629

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 59310245

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 59310245

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: V4

    Effective date: 20130622

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20130625

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20140828

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20130623