EP0788879A1 - Machine d'impression rotative - Google Patents

Machine d'impression rotative Download PDF

Info

Publication number
EP0788879A1
EP0788879A1 EP97101657A EP97101657A EP0788879A1 EP 0788879 A1 EP0788879 A1 EP 0788879A1 EP 97101657 A EP97101657 A EP 97101657A EP 97101657 A EP97101657 A EP 97101657A EP 0788879 A1 EP0788879 A1 EP 0788879A1
Authority
EP
European Patent Office
Prior art keywords
axis
cylinder
motor
station
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97101657A
Other languages
German (de)
English (en)
Other versions
EP0788879B1 (fr
Inventor
José Branas
Daniel Rota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bobst Mex SA
Original Assignee
Bobst SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bobst SA filed Critical Bobst SA
Publication of EP0788879A1 publication Critical patent/EP0788879A1/fr
Application granted granted Critical
Publication of EP0788879B1 publication Critical patent/EP0788879B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F13/00Common details of rotary presses or machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F13/00Common details of rotary presses or machines
    • B41F13/008Mechanical features of drives, e.g. gears, clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F13/00Common details of rotary presses or machines
    • B41F13/08Cylinders
    • B41F13/10Forme cylinders
    • B41F13/12Registering devices
    • B41F13/14Registering devices with means for displacing the cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41PINDEXING SCHEME RELATING TO PRINTING, LINING MACHINES, TYPEWRITERS, AND TO STAMPS
    • B41P2213/00Arrangements for actuating or driving printing presses; Auxiliary devices or processes
    • B41P2213/70Driving devices associated with particular installations or situations
    • B41P2213/73Driving devices for multicolour presses
    • B41P2213/734Driving devices for multicolour presses each printing unit being driven by its own electric motor, i.e. electric shaft

Definitions

  • the present invention relates to a rotary printing machine for strip or plate elements, and more particularly to a polychrome printing machine comprising several printing stations of fundamental colors, these prints overlapping to give the image final.
  • Each station comprises, inter alia, an internal plate cylinder working jointly on the one hand with an ink cylinder and an underlying transfer cylinder and on the other hand with an upper support cylinder.
  • the document EP 352 483 describes a printing machine in which all the support cylinders are driven by bevel gears engaged with a first mechanical shaft driven by a first electric motor, and all the cylinders carries -clichés are animated from a second mechanical shaft driven by a second electric motor.
  • These two engines are controlled by a digital computing center adapting the angular speed of the plate cylinder cylinder shaft in case their diameter does not correspond to that of the support cylinders, which avoids having to change them.
  • this type of drive by means of one or two shafts supplemented with angle transmission mechanisms is rather expensive.
  • the precision of this training is also limited, especially since a jerk in one of the stations affects the others.
  • this drive can easily vibrate due to its low natural mechanical frequency.
  • Document FR 2,541,179 describes a machine for making folding boxes from cardboard sheets, in which a printing section with four printing units is interposed between an upstream introduction section and discharge sections, '' notching, cutting, folding and then receiving downstream.
  • a DC motor M1 drives the lower and upper conveyors of each printing unit, the plate cylinders of which are driven individually by four M2-M5 DC motors.
  • the setting of the longitudinal marking between the printing units is carried out by acting electrically on the angular position of each of the motors M2 to M5.
  • the printing cylinder of each printing unit is arranged so that it can also be moved laterally to align the prints of different groups between them. To do this, it is mounted on bearings allowing lateral movement of the cylinder under the action of motors M105 to M108.
  • This machine comprises a motor drive device M1 to M5 consisting of a control group, comprising a setpoint generator circuit and a synchronization circuit per motor; a calculation group consisting of a microcomputer with input / output circuits; a signal conditioning group comprising a direction discrimination and pulse multiplication member from pulse generators G1 to G5 of the motors M1 to M5 as well as a conditioning circuit for interphase and shaping of the signals going from the first and second groups; and a control logic group composed of a logic circuit for selecting the drives and a logic circuit for selecting the manual commands.
  • This device produces between the motors M2 to M5 a virtual electric shaft for synchronizing the printing units, and this by setting them on the master motor M1 for general drive of the sheets from which it receives electrical pulses from an encoder.
  • This device notably performs the verification of the agreement between the programmed values and the actual state in which the machine components are found; a prepositioning of the motors M1 to M5 during a change of work or after rupture of the electric shaft connecting them; the execution of the angular corrections of the motors M1 to M5, whether on order by push-button or by control units for locating the sheets, as well as the execution of the lateral corrections by acting on the motors M105 to M108; and monitoring the proper functioning of the various engines.
  • a first advantage of asynchronous motors is that they are cheaper to buy and maintain than the fact that their rotors only have large turns short-circuited on themselves.
  • asynchronous motors The major advantage of asynchronous motors is the remarkable precision of the output torque, and thereby of the speed and the angular position, obtained by a so-called "vector" control in which the stator is supplied by means of a voltage inverter by acting on the frequency and on the amplitude of the stator voltage.
  • the phase of the stator voltage with respect to the rotor flux is controlled, which makes it possible to obtain a faster response.
  • the position setpoints are transmitted from the central computer to the control circuits digitally along a loop of optical fiber, this transfer being particularly insensitive to electromagnetic disturbances present in the workshops.
  • angular encoders which are intended to be mounted at the end of the rotary axis and which generate a sinusoidal output signal, the interpolation of which makes it possible to determine the angular position of the axis to 1/2000000 of a millimeter.
  • the regulation carried out by a control circuit whose feedback loop receives the signal from such an encoder makes it possible to ensure a synchronization precision of less than 0.005 angular degrees, which, for a plate cylinder of usual diameter of the order of 800 millimeters, corresponds to a peripheral error of 0.07 millimeter, that is to say far below the positioning error of 0.10 millimeter usually tolerated in printing.
  • Document EP 401 656 describes, for example, a device for driving and adjusting a plate cylinder and its support cylinder, which device is located on one side of the machine.
  • the drive torque of the cylinders is transmitted by three toothed wheels in series with helical teeth.
  • the second toothed wheel is mounted to rotate freely on the axis of the plate cylinder via a bearing.
  • a double toothed wheel has, next to the first toothed wheel with helical teeth, a toothed crown with straight teeth which meshes on a toothed wheel with also straight teeth mounted rigidly on the axis of the plate cylinder.
  • the lateral identification is then carried out by advancing or retreating the axis of the plate cylinder, which has no consequence on the speed of rotation of the cylinders because of the straight teeth and the second floating wheel.
  • the peripheral identification is carried out by moving the double toothed wheel parallel to the axis, therefore the first helical wheel relative to the second, which advances or decreases the peripheral position of the plate cylinder relative to the support cylinder.
  • the object of the present invention is a printing machine based on asynchronous vector motors for direct drive of the plate cylinders, and if desired also of the support cylinders, this machine further comprising manual double correction means or automatic longitudinal and lateral plate registers excluding any reduction mechanism inserted between a motor and its plate cylinder.
  • correction means must be as precise as possible, that is to say react effectively from very fine errors, and this in a dynamic manner, that is to say in a very short response time.
  • these means must first include organs whose structures are both rigid so as not to induce bending errors, and simple to reduce the production costs accordingly.
  • These bodies must also be able to be assembled without play, or with simple compensation, in order to be able to transmit adequately correcting powers.
  • each plate cylinder of each printing station is directly driven by an asynchronous vector electric motor controlled by an electronic circuit for controlling and controlling the angular position at a setpoint evolving over time and received from an electronic central station synchronization station, each plate cylinder axis being fixed in the extension of, or being common to the axis of the rotor of its motor , due to the fact that the cylinder / axis / rotor assembly of at least one station is movable in axial translation relative to the chassis of the machine and to the stator of the engine, and this for correction of the lateral location of the cylinder (s).
  • the plate cylinders of all the stations are movable in translation with their associated rotor, and the machine comprises a device reading mark marks printed by each station, and establishing the possible lateral and longitudinal register error for each station. . Then, each lateral error is applied to the electronic control circuit of an electric motor of the corresponding station controlling, through a mechanism, the axial position of the rotor / axis / cylinder assembly, and each longitudinal register error is directly added to the cylinder position setpoint of the corresponding station.
  • an angular encoder is mounted at one end of each rotor / cylinder axis to generate a signal representative of the angular position of the axis which is applied in the feedback loop of the control circuit and enslavement of corresponding asynchronous motor, the angular encoder housing being connected to the machine chassis by an angularly rigid attachment but allowing it to follow the axial displacements of the axis.
  • the attachment of the angular encoder may comprise a plurality of lamellae in the form of coaxial parallel crowns connected to each other by diametric pairs of fasteners arranged in quadrature from one lamella to the other.
  • Control of the angular position of the cylinder is thus particularly improved when the control and servo circuit has feedback information on the instantaneous angular position of the axis given by an angular encoder mounted directly on the axis, but as long as this information is reliable.
  • the fastener according to the invention ensures an axial movement without effort of the encoder housing to follow this axis, but also a very high torsional rigidity, an important condition for a correct reading of angular position.
  • the attachment device of the angular encoder according to the invention avoids having to move the whole of the asynchronous motor with the cylinder, which would then have constituted a mass too large to allow the achievement of fine and dynamic lateral corrections.
  • the common axis of the rotor and of the cylinder is mounted on needle bearings, and it comprises a projecting flange taken by a fork displaced axially by a worm screw parallel to the axis and driven by the electric lateral correction motor.
  • the flange or the fork comprises a first ball or cylinder bearing for reducing friction force and taking up play.
  • the fork is also guided through a second bearing along a support axis.
  • the worm is, for example, connected to its motor by a reduction mechanism comprising a pinion and a toothed wheel, or a pinion connected to a pulley by a toothed belt.
  • This movement mechanism of the rotor / axis / cylinder assembly proves to be relatively simple to perform while ensuring precision of the movement by means of the reduction gear connecting the motor to the worm, and by the firm mounting by means of bearings. to take up play of the fork on the one hand along a rigid axis and on the other hand in its engagement with the collar of the axis.
  • the end of the axis on the side opposite the motor is held by a removable bearing.
  • the plate cylinder is fixed on the axis by clamping its two end hubs between a first fixed cone on the motor side, and a second removable removable cone capable of being pushed towards the first by mechanical means, for example, by a nut engaged on a thread formed at the end corresponding to the axis.
  • the axis remaining permanently, only the cylindrical casing completed with two hubs is changed. end.
  • This operation is much easier than the previous change of the cylinder with its axis and its gears, because this new assembly is much lighter, and can be threaded on a permanent axis which guides this installation. Clamping in position of the cylinder is simple and quick.
  • the encoder is then preferably placed at the end of the axis on the motor side to leave free space for this change of cylinder, and incidentally so as not to be distorted by possible residual parasitic twists of the axis.
  • Figure 1 is schematically illustrated a strip element 4, such as a strip of paper or cardboard, passing successively through three printing stations 1, 2 and 3 each comprising a plate cylinder 16 facing each other. screw of a support cylinder 14 working like a rolling mill. In the example illustrated, these stations successively deposit a square, circular and then cross impression intended to overlap exactly.
  • a strip element 4 such as a strip of paper or cardboard
  • all the axes 24 of the support cylinders 14 are mechanically connected to the same drive shaft 54 moving the machine upstream downstream along its printing stations.
  • the coupling of these axes 24 of support cylinders is carried out by means of bevel gears 34 with bevel gears.
  • This shaft 54 is driven by an electric motor 110 controlled by a first electronic circuit for controlling and controlling the angular position 100.
  • the angular position a0 of the shaft 54, reflecting the advance of the strip 4, is read by an encoder 64 whose electrical signal representative of this angular position is applied in the feedback loop of the circuit 100.
  • the plate cylinder 16 of each of stations 1, 2 and 3 is directly mounted on an output axis 65 of an electric motor, that is to say that the rotor 26 of this motor is built on the very end of this axis, while the stator 36 is integral with the chassis of the machine.
  • the diameter of this axis 65 is relatively wide, of the order of 50 to 80mm, to transmit significant torques without elastic tension, but it is also hollow in the middle to reduce its moment of inertia.
  • These motors are preferably asynchronous alternating current controlled by an electronic control circuit and control of the angular position respectively 101, 102 and 103 for each of the stations.
  • control and servo circuits 100-103 are connected by a loop network to a central computing unit 10.
  • This unit includes a keyboard for data and instruction input, a microprocessor, a plurality of memories containing programs and management data according to the characteristics of the machine, as well as a screen for viewing the parameters entered and / or the data applied to the output on the loop.
  • this transmission loop consists of a coaxial optical fiber cable, a first strand connecting the output of the central unit 10 to the control circuit 100 of the drive motor of all of the support cylinders, a second strand connecting the circuit 100 to the motor control circuit 101 of the first station, a third strand connecting the circuit 101 to the motor control circuit 102 of the second station, a fourth strand connecting the circuit 102 to the control circuit 103 of the engine of the third station and, finally, a fifth strand ensuring the loop back to the central computing unit 10.
  • Information on the position setpoints of each of the engines passes through this transmission loop for a given instant t: respectively p0 (t) representative of the desired angular position of the engine 110, therefore of the shaft 54 and hence of all the cylinders support 14 defining values pL1 (t), pL2 (t) and pL3 (t) representative of the desired angular position of the station motors 1, 2 and 3 respectively, and therefore of the corresponding plate cylinders.
  • Each set value is established by the calculation unit 10 so as to take into account the length of the machine, in particular the intervals between the stations, the format of each photograph possibly arranged on cylinders of different diameters, and this so as to ensure a rigorous synchronization of the stations between them so that the prints are superimposed correctly to give a final quality image.
  • These quality guidelines are "fleeting", that is to say that they change over time depending on the desired production speed of the machine.
  • an angular encoder 56 delivers a signal a 1, a 2 and a 3 representative of the instantaneous angular position of the corresponding rotor 26, therefore of the plate cylinder as soon as it is accepted that the axis 65 is sufficiently rigid in its dimensions.
  • the signal generated by this encoder 56 is applied in the feedback loop of the corresponding electronic control and servo circuit 101, 102 and 103.
  • This circuit firstly comprises a first torque servo subset G including a circuit Ki generating electrical energy stator Is1, Us1 and f1, as well as a feedback feedback loop either of the intensity by phases or of the flux for establishment of a possible correction error.
  • Such torque control circuits Ki for asynchronous motors are known.
  • document US Pat. No. 3,824,437 describes a circuit in which the magnetic field in its air gap and the stator current are measured, the measured stator current is transformed into two stator current components in quadratures oriented with respect to the measured magnetic field, and regulates one of the quadrature stator current components proportional to the set flow amplitude total rotor headcount at a constant level fixed by a reference quantity at the constant input corresponding to the setpoint amplitude of the total effective rotor flow and the other stator current component is varied in quadrature with a second quantity of reference or control applied to the input and proportional to the setpoint torque of the asynchronous motor.
  • Another method of controlling an asynchronous motor described in the document SU-193 604 consists in regulating phase by phase the instantaneous stator phase currents of an asynchronous motor by comparing the setpoints and the measurements of instantaneous phase current of the stator , to vary the stator current with the quadrature sum of two stator current components, one of which is constant and corresponds to the constant magnetic flux to be reached, the other being variable as a function of a control quantity corresponding to the torque of the asynchronous motor. Simultaneously, the frequency of the stator current is varied with the sum of two frequencies, one of which is that of rotation of the rotor, the other being subject to the variation of the setpoint torque.
  • the control and servo circuit 101 further comprises a speed servo loop based on the signal PL1 (a) from the angular encoder 56, this signal being derived over time in the feedback loop to obtain a effective speed information which is compared to the set value for establishment of the possible error, then speed control in the circuit kV put in series with the torque control circuit Ki.
  • the information pL1 (a) from the encoder 56 is also compared with the reference signal pL1 (t) received from the fiber optic transmission loop for establishment of a possible position error, then servo-control in position in the cicuit Kp connected in series with the speed control circuit Kv.
  • the angular position of the axis 65 of the motor output almost reflects the set value applied at the input.
  • the axis 65 is mounted to rotate freely in roller bearings or needles 40, 40 'and 40' 'also allowing axial displacement when desired, this displacement axial taking on the one hand the rotor 26 and on the other hand the plate cylinder 16. More precisely, these bearings are in contact with the axis 65 through friction rings 42.
  • the first bearing 40 is installed in a base 32 located at the rear of the stator 36 of the motor and fixed to the chassis 37 of the machine by the casing 33 of the electric motor.
  • the second bearing 40 ' located between the electric motor and the plate cylinder 16, more precisely installed in a ring 38 secured to the chassis 37.
  • the third bearing 40' ' is, in turn, installed at the other end of the axis 65 and of the cylinder 16 within a block 80 of the chassis capable of being moved backwards for release.
  • the axial position of the rotor / axis / cylinder 26/65/16 assembly is imposed by a fork 55 engaged with a flange 45 projecting from the axis, this fork being able to be moved in parallel to the axis by a mechanism 35 driven by a synchronous stepping motor 25, itself controlled by an electronic control circuit 15.
  • the flange 45 is composed of two bearings crimped on the axis 65 and pushed against a shoulder 44 of this axis by a nut 43 engaged with an external thread of the axis, this thrust taking place through a spacer 41 leaving free access to the fork 55.
  • the fork 55 is itself mounted through a ball bearing 53 along a support axis 58 mounted in the chassis 37 parallel to the axis 65.
  • This fork is brought in axial translation by a carriage 52 in two parts and engaged with a double worm screw 30.
  • the adjustment of the tightening of these two parts of carriage 52 makes it possible to eliminate any residual play.
  • the end of the worm 30 carries a pulley 29 driven by a toothed belt 28 in engagement with the output pinion 27 of a stepping motor 25 mounted rigidly on an upper flange 39 of the chassis 37.
  • this assembly can be carried out very rigidly.
  • the precision of the displacement of the fork 55, therefore of the axis 65, is obtained on the one hand by the pitch of the micrometric screw 30 and on the other hand by the diameter ratio of the pulley 29 and the pinion 27.
  • the angular encoder 56 is mounted at the rear of the motor at the end of the axis 65. More particularly, the attachment 46 of the encoder housing with fixed base 32 is such that it allows axial movement of this housing to always remain in exact correspondence with its internal rotary mechanism 57 which, for its part, is integral with the axis 65, but is such that it rigidly maintains this housing in a fixed and precise angular position relative to this base 32 .
  • this fastener 46 is composed of a plurality of lamellae in the form of concentric crowns 47 attached to each other by diametrical pairs of fasteners 48, a pair between two lamellae being offset at right angles to the next pair. These slats being thin, they are flexible in the axial direction. On the other hand, the crown shape of these strips prevents any rotation relative to the central axis.
  • This encoder 56 is protected by a cover 31 fixed to the base 32.
  • the printing machine further comprises a device for locating marks printed at the edge of the strip by each of the stations, this locating making it possible to establish possible longitudinal and lateral register errors of one or the other impressions.
  • the marks 5 pass under an optical read head 21 focusing a beam of light sent by a first part of a bundle of optical fibers 23.
  • the reflected light is read by the read head 21 and conducted by the second part of the optical fiber 23 to photosensitive elements 20 whose generated electrical signals are applied to a register control unit 22.
  • This control unit 22 includes a processing circuit 220 for conditioning and selecting the signals which it directs either towards a circuit for calculating the longitudinal error 222, that is to a circuit for calculating the lateral error 224.
  • the circuit 222 comprises three output lines making it possible to apply a signal representative of the longitudinal error dL1 to the control circuit and d servo 101 of the first station and, similarly, to apply the signals representative of a register error dL2 and dL3 to the control and servo circuits 102 and 103 of the corresponding stations.
  • the lateral error calculation circuit 224 comprises inter alia three outputs making it possible to apply a signal representative of the lateral register error dl1 to the preamplification and control circuit 15 of the motor 25 of the first station and, at the same time , signals dl2 and dl3 representative of lateral errors to the control circuits of the lateral correction motors 25 of stations 2 and 3 respectively.
  • the corresponding correction signal dl (i) triggers the rotation, in one direction or the other, of the motor 25 concerned which advances or moves back the fork 55 therefore the axis 65 with its plate cylinder, and thereby corrects the lateral position of the faulty plate.
  • the lateral error correction range is usually +/- 5mm.
  • a rather elongated asynchronous motor for example of active parts of length of the order of 500 mm
  • the offset of the rotor relative to the stator due to a lateral correction remains less than 1% of their total length, which only causes very slight disturbances in the flows which are moreover quickly caught up by the electronic control and servo-control circuit 10 (i).
  • this displacement due to a correction of lateral register had no influence on the accuracy of the reading of the angular encoder 56 thanks to its special attachment 46, thus allowing the continuation of a correct operation of the control circuit and d servo of the vector asynchronous motor.
  • the longitudinal error signal dL1 is directly added in the addition of the setpoint signal pL1 (t) and the feedback signal pL1 (a) at the input of the control and servo circuit. 101.
  • This error in locating dL1 is then simply and spontaneously treated as if it were only an error detected by the feedback.
  • the asynchronous motor accelerates (or slows down) slightly during one revolution to readjust with respect to the advance of the strip 4 as imposed by the rotation of the counter-cylinders 14. A new marking mark is then read by the head of reading 21. If circuit 22 finds a residual error, it reapplies a lower adjustment correction dL1 'for the next round.
  • the power of the asynchronous motor it is preferable to oversize the power of the asynchronous motor to a value between 4 and 5 kW.
  • the installation of the engine in direct drive and very close to its plate cylinder makes it possible to reduce as much bending of intermediate parasitic torsions silencing that practically all of the correction is transmitted instantly.
  • the plate cylinder 16 comprises a rigid and light cylindrical casing, for example made of aluminum, at the ends of which are fixed, by welding or other means, two hubs 74 having a central cavity outwardly oriented conical concave.
  • the axis 65 is then completed by a first cone 70 having a fixed position.
  • this first cone 70 is supported on the ring 42 emerging from the second roller bearing 40 '.
  • the end of the axis opposite to the motor then comprises a first part of restricted diameter taken in the bearing 40 '', the following part then having an external thread on which can be engaged a nut 43 making it possible to push forward a second cone mobile 72.
  • a change of plate cylinder then takes place simply by releasing the bearing 40 '' from the axis by removing the movable block 80 and tilting. We can then unscrew the nut 43, which releases the second movable cone 72 and therefore the cylinder 16 which can be removed. It will then be noted that the presence of the pin 65 which has remained permanently makes it possible to guide the new cylinder on which it is threaded.
  • the movable cone 72 is reinstalled and then pushed forward by rotation of the nut 44.
  • the hubs 74 are thus clamped between the two cones 70 and 72, which achieves a rigid and playless attachment.
  • the bearing 40 '' is finally reinstalled in advance of block 80.
  • these cylinders being lighter than before, they are faster and more precise to handle. We can even consider automating such a change by means of a robot.
  • a sleeve of expanded material having a certain internal radial elasticity and on the hard peripheral envelope from which the plates are effectively fixed by gluing is usually threaded a sleeve of expanded material having a certain internal radial elasticity and on the hard peripheral envelope from which the plates are effectively fixed by gluing.
  • a flexible tube 67 protected by the cover 31, connects an external connection socket 68 of compressed air with the internal channel 66 of the axis. At the end of the axis, this channel 66 opens onto one or more radial openings 76 diffusing the compressed air inside the plate cylinder 18.
  • the end hub can then comprise one or more internal channels 75 making it possible to diffuse the compressed air under the sleeve 19. Under the effect of this air cushion, this sleeve expands radially, thereby increasing its internal diameter, which eliminates any friction force. It is thus possible to use a range of sleeves having thicknesses between 2.5mm and 66.2mm used alone or in superposition.
  • the reference 17 designates a plate cylinder of particularly large diameter and on which plates are directly stuck, this configuration being useful in countries where the supply of flexible sleeves is deficient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Inking, Control Or Cleaning Of Printing Machines (AREA)
  • Rotary Presses (AREA)

Abstract

La machine d'impression rotative comprend plusieurs stations d'impression dont le cylindre porte-clichés (16) de chaque station d'impression (1,2,3) est directement entraîné par un moteur électrique asynchrone vectoriel (26/36) piloté par un circuit électronique de contrôle et d'asservissement (101) de la position angulaire (a1) à une valeur de consigne (pL1,2,3(t)) évoluant dans le temps et reçue d'une centrale de calcul électronique (10) de synchronisation des stations entre elles. Plus particuliérement, l'ensemble cylindre/axe/rotor (16/65/26) de chaque station est mobile en translation axiale pour correction du repérage latéral du ou des clichés du cylindre. La machine comprend en outre un dispositif (20-23) lisant des marques de repère (5) imprimées par chaque station, et établissant l'éventuelle erreur de registre latéral (dl1,2,3) et longitudinal (dL1,2,3) pour chaque station (1,2,3). Chaque erreur latérale (dl1,2,3) est alors appliquée au circuit électronique de pilotage (15) d'un moteur électrique (25) de la station correspondante contrôlant, au travers d'un mécanisme (35), la position axiale de l'ensemble rotor/axe/cylindre (16/65/26). Chaque erreur de registre longitudinal (dL1,2,3) est directement additionnée à la consigne de position du cylindre (pL1,2,3(t)) de la station correspondante. <IMAGE>

Description

  • La présente invention est relative à une machine d'impression rotative d'éléments en bande ou en plaque, et plus particulièrement à une machine d'impression polychrome comprenant plusieurs stations d'impression de couleurs fondamentales, ces impressions se superposant pour donner l'image finale. Chaque station comprend, entre autres, un cylindre porte-clichés intérieur travaillant conjointement d'une part avec un cylindre encreur et un cylindre de transfert sous-jacent et d'autre part avec un cylindre d'appui supérieur.
  • A ce titre, le document EP 352 483 décrit une machine d'impression dans laquelle tous les cylindres d'appui sont animés par des renvois d'angle en prise avec un premier arbre mécanique entraîné par un premier moteur électrique, et tous les cylindres porte-clichés sont animés à partir d'un second arbre mécanique entraîné par un second moteur électrique. Ces deux moteurs sont pilotés par une centrale de calcul numérique adaptant la vitesse angulaire de l'arbre des cylindres porte-clichés au cas où leur diamètre ne correspond pas à celui des cylindres d'appui, ce qui évite de devoir les changer.
  • Toutefois, ce type d'entraînement au moyen d'un ou deux arbres complétés de mécanismes de renvoi d'angle est plutôt onéreux. La précision de cet entraînement est également limitée, d'autant plus qu'un à-coup dans l'une des stations se répercute sur les autres. De plus, cet entraînement peut facilement se mettre en vibration de par sa faible fréquence mécanique propre.
  • Le document FR 2 541 179 décrit une machine de confection de boîtes pliantes, à partir de feuilles de carton, dans laquelle une section d'impression à quatre groupes imprimeurs est intercalée entre une section d'introduction en amont et des sections de refoulement, d'encochage, de découpe, de pliage puis de réception en aval. Un moteur à courant continu M1 entraîne les transporteurs inférieurs et supérieurs de chaque groupe imprimeur dont les cylindres porte-clichés sont entraînés individuellement par quatre moteurs à courant continu M2-M5. Le calage du repérage longitudinal entre les groupes imprimeurs est réalisé en agissant électriquement sur la position angulaire de chacun des moteurs M2 à M5. Le cylindre porte-clichés de chaque groupe imprimeur est agencé de façon à pouvoir être aussi déplacé latéralement pour aligner entre elles les impressions de différents groupes. Pour ce faire, il est monté sur des paliers permettant un déplacement latéral du cylindre sous l'action des moteurs M105 à M108.
  • Cette machine comprend un dispositif d'entraînement des moteurs M1 à M5 se composant d'un groupe de commande, comprenant un circuit générateur de consigne et un circuit de synchronisation par moteur; un groupe de calcul constitué par un micro-ordinateur avec des circuits d'entrées/sorties ; un groupe de conditionnement de signaux comprenant un organe de discrimination de sens et de multiplication des impulsions provenant de générateurs d'impulsions G1 à G5 des moteurs M1 à M5 ainsi qu'un circuit de conditionnement pour interphasage et mise en forme des signaux allant des premiers et second groupes ; et un groupe de logique de commande composé d'un circuit logique de sélection des entraînement et d'un circuit logique de sélection des commandes manuelles.
  • Ce dispositif réalise entre les moteurs M2 à M5 un arbre électrique virtuel de synchronisation des groupes imprimeurs, et ce en les calant sur le moteur maître M1 d'entraînement général des feuilles dont il reçoit des impulsions électriques d'un codeur. Ce dispositif réalise notamment la vérification de la concordance entre les valeurs programmées et l'état effectif auquel se trouvent les organes de la machine ; un prépositionnement des moteurs M1 à M5 lors d'un changement de travail ou après rupture de l'arbre électrique les reliant; l'exécution des corrections angulaires des moteurs M1 à M5, que ce soit sur ordre par bouton-poussoir ou par des unités de contrôle de repérage des feuilles, ainsi que l'exécution des corrections latérales en agissant sur les moteurs M105 à M108 ; et une surveillance de la bonne marche des différents moteurs.
  • Déjà plus précise, cette machine est toutefois handicapée par les inconvénients inhérents aux moteurs à courant continu, à savoir : leur encombrement dû à des diamètres nécessairement assez larges ; les entretiens réguliers des balais permettant le bouclage des circuits du rotor dans des machines conventionnelles, ou leur prix dans le cas des moteurs dit "brushless" du tait qu'il est nécessaire fritter de larges aimants sur le rotor pour constituer les pôles.
  • Un développement récent, décrit par exemple sous la dénomination SYNAX dans le catalogue du constructeur de moteur électrique MANNESMANN REXROTH de septembre 1994, consiste à employer des moteurs électriques asynchrones à pilotage dit "vectoriel" dont les circuits électroniques de contrôle et d'asservissement de position angulaire du moteur sont reliés par une boucle de transmission à une centrale de calcul électronique de synchronisation des stations entre elles, cette centrale adressant à chaque circuit de contrôle une valeur de consigne de position "fuyante", c'est-à-dire évoluant avec la vitesse désirée de la machine.
  • Un premier intérêt des moteurs asynchrones est qu'ils sont moins chers à l'achat et à l'entretien du tait que leur rotors ne comportent que de grosses spires court-circuitées sur elles mêmes.
  • L'intérêt majeur des moteurs asynchrones est la remarquable précision du couple de sortie, et par là de la vitesse et de la position angulaire, obtenue par un pilotage dit "vectoriel" dans lequel l'alimentation du stator s'effectue au moyen d'un onduleur de tension en agissant sur la fréquence et sur l'amplitude de la tension statorique. En alternative, au lieu d'un contrôle de la fréquence statorique, on effectue un contrôle de la phase de la tension statorique par rapport au flux rotorique, ce qui permet d'obtenir une réponse plus rapide.
  • Utilement, les consignes de position sont transmises de la centrale de calcul aux circuits de pilotage de manière numérique le long d'une boucle de fibre optique, ce transfert étant particuliérement insensible aux perturbations électromagnétiques présentes dans les ateliers.
  • Par ailleurs, on connaît des codeurs angulaires prévus pour être montés à l'extrémité de l'axe rotatif et générant un signal de sortie sinusoïdal dont l'interpolation permet de déterminer la position angulaire de l'axe à 1/2000000 de millimètre près. Alors, la régulation effectuée par un circuit de pilotage dont la boucle de contre-réaction reçoit le signal d'un tel codeur permet d'assurer une précision de synchronisation inférieure à 0,005 de degré angulaires, ce qui, pour un cylindre porte-clichés de diamètre usuel de l'ordre de 800 millimétres, correspond à une erreur périphérique de 0,07 de millimétre, c'est-à-dire bien en dessous de l'erreur de positionnement de 0,10 de millimétre usuellement tolérée en imprimerie.
  • On peut alors proposer de relier directement l'axe de sortie du moteur asynchrone vectoriel à l'axe du cylindre porte-clichés, ce qui permet de supprimer tout accouplement réducteur usuel comportant toujours un jeu élastique perturbant la transmission du couple et de la position. Mieux, il est proposé de réaliser un axe commun au rotor du moteur et au cylindre porte-clichés, cet axe étant de diamètre plus large et creux pour optimiser le rapport entre la rigidité de transmission de couple et l'inertie de rotation.
  • Par ailleurs, et comme mentionné dans la description de la machine à moteurs à courant continu, il est important de pouvoir corriger en cours de production la position d'un cylindre porte-clichés en fonction de celle des autres lorsque l'impression correspondante s'avère ne plus être en registre. Lorsque l'erreur est dans le sens du défilement de l'élément, on parle d'une erreur "longitudinale", et il convient de modifier la positon périphérique du cliché, donc la position angulaire du cylindre correspondant. Lorsque l'erreur est transversale, on parle d'une erreur "latérale", et il convient de déplacer le cylindre porte-clichés le long de son axe.
  • Le document EP 401 656 décrit, par exemple, un dispositif pour l'entraînement et le réglage d'un cylindre porte-clichés et de son cylindre d'appui, lequel dispositif est situé d'un seul côté de la machine. Dans ce dispositif, le couple d'entraînement des cylindres est transmis par trois roues dentées en série à dentures hélicoïdales. La seconde roue dentée est montée libre en rotation sur l'axe du cylindre porte-clichés par l'intermédiaire d'un palier. Une double roue dentée présente, à côté de la premiére roue dentée à denture hélicoïdale, une couronne dentée à denture droite qui s'engrène sur une roue dentée à denture également droite montée rigidement sur l'axe du cylindre porte-clichés. Le repérage latéral s'effectue alors en avançant ou reculant l'axe du cylindre porte-clichés, ce qui n'a aucune conséquence sur la vitesse de rotation des cylindres du fait des dentures droites et de la seconde roue flottante. Le repérage périphérique s'effectue en déplaçant la double roue dentée parallèlement à l'axe, donc la première roue hélicoïdale par rapport à la seconde, ce qui avance ou recule la position périphérique du cylindre porte-clichés par rapport au cylindre d'appui.
  • Les documents US 4 782 752, EP 262 298, EP 154 836 DE 27 20 313, et FR 2 380 137, décrivent d'autres dispositifs équivalents dont les mécanismes de corrections de repérage longitudinal et latéral incluent un engrenage à denture hélicoïdale et un autre à denture droite, les corrections pouvant être effectuées séparément, à la main ou à distance au moyen de moteurs électriques. Incidemment, l'utilisation d'engrenages permet d'insérer un réducteur diminuant la puissance nécessaire du moteur, et divisant également la résolution nécessaire des calculs de corrections ultérieurs par la valeur du facteur de réduction.
  • Toutefois, ces dispositifs de double corrections connus impliquent la présence de dispositifs réducteurs à engrenages intercalés entre le moteur d'entraïnement et l'axe du cylindre porte-clichés, réducteurs dont le fonctionnement est modifié en fonction de la correction désirée par un jeu de bielles, cames ou leviers agissant soit sur l'une ou l'autre des roues dentées ou sur tel ou tel autre palier de support de l'axe de cylindre. Ces dispositifs complexes sont d'abord coûteux à réaliser. Ces dispositifs impliquent ensuited'importantes inerties à surmonter soit manuellement, soit à l'aide de moteurs puissants qui ralentissent la mise en oeuvre de la correction. De plus, l'usure inévitable des pièces dans le temps induit des jeux mécaniques au sein des dispositifs altérant la précision des corrections.
  • Ces effets réduisent alors sensiblement l'intérêt de l'emploi de moteurs électriques sophistiqués, notamment des moteurs asynchrones à pilotage vectoriel de haute précision. Pour des machines utilisant ce type de moteurs, on en reste alors à un contrôle du repérage longitudinal complexe au moyen de cylindres baladeurs de modification de tension de bande entre deux stations, et il n'est prévu aucune correction latérale.
  • Le but de la présente invention est une machine d'impression basée sur des moteurs asynchrones vectoriels d'entraînement direct des cylindres porte-clichés, et Si désiré également des cylindres d'appui, cette machine comprenant de plus des moyens de double correction manuels ou automatiques des registres longitudinaux et latéraux des clichés excluant tout mécanisme réducteur intercalé entre un moteur et son cylindre porte-clichés.
  • Ces moyens de corrections doivent autant que possible être précis, c'est-à-dire réagir effectivement à partir d'erreurs trés fines, et ce de maniére dynamique, c'est-à-dire en un temps de réponse trés court. Pour ce, ces moyens doivent d'abord comprendre des organes dont les structures soient à la fois rigides pour ne pas induire d'erreurs par flexion, et simples pour en réduire d'autant les coûts de réalisation. Ces organes doivent aussi pouvoir être assemblés sans jeux, ou avec compensation simple, afin de pouvoir transmettre de manière exacte des puissances de corrections adéquates.
  • Ces buts sont atteints grâce à une machine d'impression rotative dont le cylindre porte-clichés de chaque station d'impression est directement entraîné par un moteur électrique asynchrone vectoriel piloté par un circuit électronique de contrôle et d'asservissement de la position angulaire à une valeur de consigne évoluant dans le temps et reçue d'une centrale de calcul électronique de synchronisation des stations entre elles, chaque axe de cylindre porte-clichés étant fixé dans le prolongement de, ou étant commun, à l'axe du rotor de son moteur, du fait que l'ensemble cylindre/axe/rotor d'au moins une station est mobile en translation axiale par rapport au châssis de la machine et au stator du moteur, et ce pour correction du repérage latérale du ou des clichés du cylindre.
  • A priori pour un électrotechnicien, le déplacement d'un rotor par rapport à son stator induit des modifications substantielles des flux électromagnétiques internes modifiant alors de manière guère prévisible le couple mécanique en sortie. Toutefois, en l'occurrence, on connaît des moteurs asynchrones vectoriels plutôt longilignes, par exemple de l'ordre de 500 millimétres, alors que la plage de déplacement nécessaire pour effectuer des corrections latérales n'est que de 10 millimètres. Des essais en atelier ont montré que les faibles variations de flux pouvaient alors être entièrement rattrapées par le circuit de contrôle et d'asservissement du moteur asynchrone.
  • Avantageusement, les cylindres porte-clichés de toutes les stations sont mobiles en translation avec leur rotor associé, et la machine comprend un dispositif lisant des marques de repère imprimées par chaque station, et établissant l'éventuelle erreur de registre latéral et longitudinal pour chaque station. Alors, chaque erreur latérale est appliquée au circuit électronique de pilotage d'un moteur électrique de la station correspondante contrôlant, au travers d'un mécanisme, la position axiale de l'ensemble rotor/axe/cylindre, et chaque erreur de registre longitudinal est directement additionnée à la consigne de position du cylindre de la station correspondante.
  • Dès lors qu'il est possible de s'affranchir de mécanismes à engrenages intercalés pour déplacer axialement le cylindre porte-clichés de telle sorte à préserver une liaison directe rigide entre ce cylindre et son rotor, alors seulement se justifie une correction longitudinale fine et dynamique par action directe du moteur asynchrone en association avec une correction latérale. Ceci s'avère particuliérement avantageux pour les machines d'impressions d'éléments en bandes, dans lesquelles, outre les mécanismes de correction pesants, on peut également faire disparaître les cylindres baladeurs de contrôle du registre par modification de la tension de cette bande.
  • Selon un mode de réalisation préféré, un codeur angulaire est monté à l'une des extrémités de chaque axe de rotor/cylindre pour générer un signal représentatif de la position angulaire de l'axe qui est appliqué dans la boucle de rétroaction du circuit de contrôle et d'asservissement du moteur asynchrone correspondant, le boîtier du codeur angulaire étant relié au châssis de la machine par une attache angulairement rigide mais lui permettant de suivre les déplacements axial de l'axe.
  • Notamment, l'attache du codeur angulaire peut comprendre une pluralité de lamelles en forme de couronnes parallèles coaxiales reliées entre elles par des paires diamètrales de fixations disposées en quadrature d'une lamelle à l'autre.
  • Le contrôle de la position angulaire du cylindre est ainsi particulièrement améliorée lorsque le circuit de contrôle et d'asservissement dispose d'une information de rétroaction de la position angulaire instantanée de l'axe donnée par un codeur angulaire monté directement sur l'axe, mais pour autant que cette information soit fiable. Pour ce faire, il s'est d'abord avéré préférable de maintenir le codeur en relation avec l'axe, et non pas fixe au chàssis. Notamment, l'attache selon l'invention assure un déplacement axial sans effort du boîtier du codeur pour suivre cet axe, mais également une très grande rigidité en torsion, condition importante pour une lecture correcte de position angulaire. Surtout, le dispositif d'attache du codeur angulaire selon l'invention évite de devoir déplacer l'ensemble du moteur asynchrone avec le cylindre, ce qui aurait alors constitué une masse trop imposante pour permettre la réalisation de corrections latérales fines et dynamiques.
  • Avantageusement, l'axe commun du rotor et du cylindre est monté sur des paliers à aiguilles, et il comprend une collerette saillante prise par une fourche déplacée axialement par une vis sans fin parallèle à l'axe et animée par le moteur électrique de correction latérale. De préférence alors, la collerette ou la fourche comprend un premier roulement à billes ou à cylindres de réduction de force de friction et de rattrapage de Jeu. De plus, la fourche est également guidée au travers d'un second roulement le long d'un axe de support. La vis sans fin est, par exemple, reliée à son moteur par un mécanisme réducteur comprenant un pignon et une roue dentée, ou un pignon relié à une poulie par une courroie crantée.
  • Ce mécanisme de déplacement de l'ensemble rotor/axe/cylindre s'avère relativement simple à réaliser tout en assurant une précision du déplacement de par le réducteur reliant le moteur à la vis sans fin, et de par le montage ferme au moyen de roulements à rattrapage de jeu de la fourche d'une part le long d'un axe rigide et d'autre part en sa prise avec la collerette de l'axe.
  • Utilement, l'extrémité de l'axe du côté opposé au moteur est maintenue par un palier amovible. Alors, le cylindre porte-clichés est fixé sur l'axe par serrage de ses deux moyeux d'extrémité entre un premier cône fixe côté moteur, et un second cône opposé amovible susceptible d'être poussé en direction du premier par un moyen mécanique, par exemple, par un écrou engagé sur un filetage ménagé en extrémité en correspondance de l'axe.
  • Lorsque le cylindre porte-clichés doit être changé pour un autre de diamètre différent pour mieux s'adapter au format d'une série suivante, l'axe restant à demeure, on ne change alors que l'enveloppe cylindrique complétée de deux moyeux d'extrémité. Cette opération est nettement plus facile que le changement antérieur du cylindre avec son axe et ses engrenages, car ce nouvel ensemble est beaucoup plus léger, et peut être enfilé sur un axe à demeure qui guide cette installation. Le serrage en position du cylindre est simple et rapide. De plus, le codeur est alors placé de préférence à l'extrémité de l'axe côté moteur pour laisser la place libre pour ce changement de cylindre, et incidemment pour ne pas être faussé par d'éventuelles torsions parasites résiduelles de l'axe.
  • L'invention sera mieux comprise à l'étude d'un mode de réalisation pris à titre nullement limitatif et illustré dans les figures annexées dans lesquelles:
    • la figure 1 est un schéma de principe de la machine selon l'invention,
    • la figure 2 est un schéma de principe du dispositif de correction de l'erreur latérale et longitudinale d'une station d'impression de la machine,
    • la figure 3 est une vue en coupe longitudinale d'un moteur électrique relié à son cylindre porte-clichés au sein d'une station d'impression de la machine, et
    • la figure 4 est une vue en perspective de l'attache d'un codeur angulaire au châssis de la machine.
  • Sur la figure 1 est illustré schématiquement un élément en bande 4, telle qu'une bande de papier ou de carton, passant successivement dans trois stations d'impression 1, 2 et 3 comprenant chacune un cylindre porte-clichés 16 en vis-à-vis d'un cylindre d'appui 14 travaillant à la manière d'un laminoir. Dans l'exemple illustré, ces stations déposent successivement une impression carrée, circulaire puis en croix prévues pour se superposer exactement.
  • Dans la machine illustrée, tous les axes 24 des cylindres d'appui 14 sont reliés mécaniquement à un même arbre d'entraînement 54 remontant la machine d'amont en aval le long de ses stations d'impression. L'accouplement de ces axes 24 de cylindres d'appui est réalisé au moyen de renvois d'angles 34 à roues dentées coniques. Cet arbre 54 est entraîné par un moteur électrique 110 piloté par un premier circuit électronique de contrôle et d'asservissement de la position angulaire 100. La position angulaire a0 de l'arbre 54, reflétant l'avance de la bande 4, est lue par un codeur 64 dont le signal électrique représentatif de cette position angulaire est appliqué dans la boucle de contre-réaction du circuit 100.
  • Par ailleurs, le cylindre porte-clichés 16 de chacune des stations 1, 2 et 3 est directement monté sur un axe 65 de sortie d'un moteur électrique, c'est-à-dire que le rotor 26 de ce moteur est construit sur l'extrémité même de cet axe, alors que le stator 36 est solidaire du châssis de la machine. En l'occurrence, le diamètre de cet axe 65 est relativement large, de l'ordre de 50 à 80mm, pour transmettre des couples importants sans tension élastique, mais il est également creux en son milieu pour diminuer son moment d'inertie. Ces moteurs sont de préférence à courant alternatif asynchrone pilotés par un circuit électronique de contrôle et d'asservissement de la position angulaire respectivement 101, 102 et 103 pour chacune des stations.
  • Dans cette machine, tous les circuits de contrôle et d'asservissement 100-103 sont reliés par un réseau en boucle à une unité centrale de calcul 10. Cette unité comprend un clavier pour entrée de données et d'instructions, un microprocesseur, une pluralité de mémoires contenant des programmes et données de gestion en fonction des caractéristiques de la machine, ainsi qu'un écran de visualisation des paramètres entrés et/ou des données appliquées en sortie sur la boucle. De préférence, cette boucle de transmission est constituée d'un câble de fibres optiques coaxial, un premier brin reliant la sortie de l'unité centrale 10 au circuit de contrôle 100 du moteur d'entraînement de l'ensemble des cylindres d'appui, un second brin reliant le circuit 100 au circuit 101 de contrôle du moteur de la premiére station, un troisiéme brin reliant le circuit 101 au circuit 102 de contrôle du moteur de la seconde station, un quatrième brin reliant le circuit 102 au circuit de contrôle 103 du moteur de la troisième station et, finalement, un cinquième brin assurant le bouclage de retour vers l'unité centrale de calcul 10.
  • Sur cette boucle de transmission transitent des informations de consignes de position de chacun des moteurs pour un instant donné t : respectivement p0(t) représentatif de la position angulaire voulue du moteur 110, donc de l'arbre 54 et par là de tous les cylindres d'appui 14 définissant valeurs pL1(t), pL2(t) et pL3(t) représentatives de la position angulaire voulue respectivement des moteurs de stations 1, 2 et 3, et donc des cylindres porte-clichés correspondants. Chaque valeur de consigne est établie par l'unité de calcul 10 de telle sorte à tenir compte de la longueur de la machine, notamment des intervalles entre les stations, du format de chaque cliché éventuellement disposé sur des cylindres de diamètres différents, et ce de telle sorte à assurer une synchronisation rigoureuse des stations entre elles faisant que les impressions se superposent correctement pour donner une image finale de qualité. Ces consignes de qualité. Ces consignes de position sont "fuyantes", c'est-à-dire qu'elles évoluent dans le temps en fonction de la vitesse de production voulue de la machine.
  • On réalise ainsi, en lieu et place d'un arbre mécanique traditionnel parallèle à l'arbre 54, un arbre électrique virtuel de synchronisation dans lequel tous les moteurs de la machine sont individuellement esclaves de la centrale de calcul 10.
  • De plus, dans chaque station, un codeur angulaire 56 délivre un signal a 1, a 2 et a 3 représentatif de la position angulaire instantanée du rotor 26 correspondant, donc du cylindre porte-clichés dès lors qu'il est admis que l'axe 65 est suffisamment rigide de par ses dimensions. Dans chaque station, le signal généré par ce codeur 56 est appliqué dans la boucle de contre-réaction du circuit électronique de contrôle et d'asservissement correspondant 101, 102 et 103.
  • Ces circuits de contrôle et d'asservissement identiques 101-103 alimentent directement les stators de leurs moteurs correspondants en énergie électrique alternative triphasée caractérisée respectivement par les valeurs de l'intensité statorique Is1-Is3, d'amplitude de tension crête-à-crête Us1-Us3, et de fréquence f1-f3.
  • Dans la partie inférieure de la figure 2 est illustré le schéma de principe du circuit de contrôle et d'asservissement 101. Ce circuit comprend d'abord un premier sous-ensemble d'asservissement du couple G comprenant un circuit Ki générant l'énergie électrique statorique Is1, Us1 et f1, ainsi qu'une boucle de contre réaction de lecture soit de l'intensité par phases soit du flux pour établissement d'une éventuelle erreur de correction.
  • De tels circuits de contrôle du couple Ki pour moteurs asynchrones sont connus. Par exemple, le document US-3 824 437 décrit un circuit dans lequel on mesure le champ magnétique dans son entrefer et le courant statorique on transforme le courant statorique mesuré en deux composantes de courant statorique en quadratures orientées par rapport au champ magnétique mesuré on régule l'une des composantes de courant statorique en quadrature proportionnelle à l'amplitude de consigne du flux effectif total du rotor à un niveau constant fixé par une grandeur de référence à l'entrée constante correspondant à l'amplitude de consigne du flux effectif total de rotor et on fait varier l'autre composante de courant statorique en quadrature avec une deuxième grandeur de référence ou de commande appliquée à l'entrée et proportionnelle au couple de consigne du moteur asynchrone. Un autre procédé de commande d'un moteur asynchrone décrit dans le document SU-193 604 consiste à réguler phase par phase les courants instantanés de phase du stator d'un moteur asynchrone en comparant les consignes et les mesures de courants instantanés de phase du stator, à faire varier le courant statorique avec la somme en quadrature de deux composantes de courant statorique, dont l'une est constante et correspond au flux magnétique constant à atteindre, l'autre étant variable en fonction d'une grandeur de commande correspondant au couple de consigne du moteur asynchrone. Simultanément, on fait varier la fréquence du courant statorique avec la somme de deux fréquences, dont l'une est celle de rotation du rotor, l'autre étant soumise à la variation du couple de consigne.
  • Le circuit de contrôle et d'asservissement 101 comprend de plus une boucle d'asservissement de la vitesse basée sur le signal PL1( a ) issu du codeur angulaire 56, ce signal étant dérivé dans le temps dans la boucle de contre réaction pour obtenir une information de vitesse effective qui est comparée à la valeur de consigne pour établissement de l'erreur éventuelle, puis asservissement en vitesse dans le circuit kV mis en série avec le circuit contrôle du couple Ki.
  • En fait, dans la machine selon l'invention, on souhaite surtout assurer une consigne de position. Pour ce, l'information pL1( a ) issue du codeur 56 est également comparée au signal de consigne pL1( t ) reçu de la boucle de transmission à fibres optiques pour établissement d'une éventuelle erreur de position, puis asservissement en position dans le cicuit Kp mis en série avec le circuit d'asservissement en vitesse Kv. Ainsi, la position angulaire de l'axe 65 de sortie du moteur reflète quasiment la valeur de consigne appliquée en entrée.
  • Plus particulièrement selon l'invention, et comme mieux visible sur la figure 3, l'axe 65 est monté libre en rotation dans des paliers à rouleaux ou aiguilles 40, 40' et 40'' autorisant également un déplacement axial lorsque désiré, ce déplacement axial emmenant d'une part le rotor 26 et d'autre part le cylindre porte-clichés 16. Plus précisément, ces paliers sont en contact avec l'axe 65 au travers de bagues de friction 42. Le premier palier 40 est installé dans une embase 32 située à l'arrière du stator 36 du moteur et fixée au châssis 37 de la machine par le carter 33 du moteur électrique. Le second palier 40' est situé entre le moteur électrique et le cylindre porte-clichés 16, plus précisément installé dans une couronne 38 solidaire du châssis 37. Le troisième palier 40'' est, quant à lui, installé à l'autre extrémité de l'axe 65 et du cylindre 16 au sein d'un bloc 80 du châssis susceptible d'être déplacé en arrière pour dégagement.
  • Comme illustré sur les figures 1 et 3, la position axiale de l'ensemble rotor/axe/cylindre 26/65/16 est imposée par une fourche 55 en prise avec une collerette 45 saillante de l'axe, cette fourche pouvant être déplacée parallèlement à l'axe par un mécanisme 35 animé par un moteur 25 synchrone pas-à-pas, lui-même piloté par un circuit électronique de contrôle 15.
  • Plus précisément, la collerette 45 est composée de deux paliers sertis sur l'axe 65 et poussée contre un épaulement 44 de cet axe par un écrou 43 en prise avec un filetage externe de l'axe, cette poussée se faisant au travers d'une bague d'écartement 41 laissant un accès libre à la fourche 55.
  • Pour des considérations de rigidité, la fourche 55 est elle-même montée au travers d'un roulement-à-billes 53 le long d'un axe de support 58 monté dans le châssis 37 parallèlement à l'axe 65. Cette fourche est amenée en translation axiale par un chariot 52 en deux parties et en prise avec une double vis sans fin 30. L'ajustement du serrage de ces deux parties de chariot 52 permet d'annihiler tout jeu résiduel. L'extrémité de la vis sans fin 30 porte une poulie 29 entraînée par une courroie crantée 28 en prise avec le pignon de sortie 27 d'un moteur pas-à-pas 25 monté rigidement sur une flasque supérieure 39 du châssis 37.
  • Comme on peut le constater, cet assemblage peut être réalisé de manière très rigide. La précision du déplacement de la fourche 55, donc de l'axe 65, est obtenue d'une part par le pas de la vis micrométrique 30 et d'autre part par le rapport de diamètre de la poulie 29 et du pignon 27.
  • Par ailleurs, le codeur angulaire 56 est monté à l'arrière du moteur à l'extrémité de l'axe 65. Plus particulièrement, l'attache 46 du boîtier du codeur à 'embase fixe 32 est telle qu'elle autorise un déplacement axial de ce boîtier pour toujours rester en correspondance exacte avec son mécanisme interne rotatif 57 qui, lui, est solidaire de l'axe 65, mais est telle qu'elle maintienne rigidement ce boîtier dans une position angulaire fixe et précise par rapport à cette embase 32.
  • Pour ce faire, et comme mieux visible sur les figures 3 et 4, cette attache 46 est composée d'une pluralité de lamelles en forme de couronnes concentriques 47 attachées entre elles par des paires diamétrales de fixations 48, une paire entre deux lamelles étant décalée à angle droit par rapport à la paire suivante. Ces lamelles étant minces, elles sont souples dans le sens axial. Par contre, la forme en couronne de ces lamelles interdit toute rotation par rapport à l'axe central. Ce codeur 56 est protégé par un couvercle 31 fixé à l'embase 32.
  • La machine d'impression selon l'invention comprend de plus un dispositif de repérage de marques imprimées en bordure de bande par chacune des stations, ce repérage permettant d'établir d'éventuelles erreurs de registre longitudinales et latérales de l'une ou l'autre des impressions. Comme illustré sur les figures 1 et 2, les marques 5 passent sous une tête de lecture optique 21 focalisant un faisceau de lumière envoyée par une première partie d'un faisceau de fibres optiques 23. La lumière réfléchie est lue par la tête de lecture 21 et conduite par la seconde partie de la fibre optique 23 vers des éléments photosensibles 20 dont les signaux électriques générés sont appliqués à une unité de contrôle de registre 22.
  • Cette unité de contrôle 22 comprend un circuit de traitement 220 de conditionnement et sélection des signaux qu'elle oriente soit vers un circuit de calcul de l'erreur longitudinale 222, soit vers un circuit de calcul de l'erreur latérale 224. Le circuit 222 comprend trois lignes de sortie permettant d'appliquer un signal représentatif de l'erreur longitudinale dL1 au circuit de contrôle et d'asservissement 101 de la première station et, de manière analogue, d'appliquer les signaux représentatifs d'une erreur de registre dL2 et dL3 aux circuits de contrôle et d'asservissement 102 et 103 des stations correspondantes. Parallèlement, le circuit de calcul de l'erreur latérale 224 comprend entre autres trois sorties permettant d'appliquer un signal représentatif de l'erreur de registre latérale dl1 au circuit de préamplification et de contrôle 15 du moteur 25 de la première station et, parallèlement, des signaux dl2 et dl3 représentatifs d'erreurs latérales aux circuits de pilotage des moteurs de correction latérale 25 des stations 2 et 3 respectivement.
  • Ainsi, si une erreur de registre latéral de l'une des stations est détectée par l'unité de contrôle 22, le signal de correction dl(i) correspondant déclenche la rotation, dans un sens ou dans l'autre, du moteur 25 concerné ce qui avance ou recule la fourche 55 donc l'axe 65 avec son cylindre porte-clichés, et par là corrige la position latérale du cliché fautif.
  • La plage de correction d'erreur latérale est usuellement de +/-5mm. En retenant un moteur asynchrone plutôt longiligne, par exemple de parties actives de longueur de l'ordre de 500mm, on constate que le décalage du rotor par rapport au stator dû à une correction latérale reste inférieur é 1% de leur longueur totale, ce qui n'entraîne que des perturbations trés faibles des flux d'ailleurs rapidement rattrapées par le circuit électronique de contrôle et d'asservissement 10(i). De plus, ce déplacement dû à une correction de registre latérale n'a eu aucune influence sur l'exactitude de la lecture du codeur angulaire 56 grâce son attache 46 spéciale, permettant ainsi la poursuite d'un fonctionnement correct du circuit de contrôle et d'asservissement du moteur asynchrone vectoriel.
  • Par contre, ce respect rigoureux du bon fonctionnement du pilotage de ce moteur asynchrone permet seulement alors de l'utiliser également pour effectuer les corrections d'erreurs longitudinales. En référence é la figure 2, le signal d'erreur longitudinale dL1 est directement ajouté dans l'addition du signal de consigne pL1(t) et du signal de rétroaction pL1 ( a ) à l'entrée du circuit de contrôle et d'asservissement 101. Cette erreur de repérage dL1 est alors simplement et spontanément traitée comme si elle n'était en tait qu'une erreur décelée par la contre-réaction. Le moteur asynchrone accélère (ou ralentit) légèrement pendant un tour pour se recaler par rapport a l'avance de la bande 4 tel qu'imposée par la rotation des contre-cylindres 14. Une nouvelle marque de repérage est alors lue par la tête de lecture 21. Si le circuit 22 constate une erreur résiduelle, elle réapplique une correction d'ajustement plus faible dL1' pour le tour suivant.
  • Pour faciliter et accélérer ce contrôle du registre, il est préférable de surdimensionner la puissance du moteur asynchrone jusqu'à une valeur comprise entre 4 et 5 kW. De plus, l'installation du moteur en prise directe et très proche de son cylindre porte-clichés permet de réduire d'autant des flexions de torsions parasites intermédiaires taisant que pratiquement la totalité de la correction se transmet instantanément.
  • Pour certains formats d'impression, il s'avère utile de changer le cylindre porte-clichés pour un autre de diamètre différent. Plutôt que recourir à un axe 65 en plusieurs tronçons et raccordés par des flasques boulonnées tel qu'utilisé actuellement, il s'est avéré préférable de maintenir l'intégrité de cet axe au travers de toute la largeur de la machine pour y installer seulement une enveloppe cylindrique fixée de manière amovible. A ce titre et en référence à la figure 3, le cylindre 16 comprend en tait une enveloppe cylindrique rigide et légère, par exemple réalisée en aluminium, aux extrémités de laquelle sont fixée, par soudure ou autres moyens, deux moyeux 74 présentant une cavité centrale concave conique orientée vers l'extérieur.
  • L'axe 65 est alors complété par un premier cône 70 ayant une position fixe. Par exemple, ce premier cône 70 est en appui sur la bague 42 émergeant hors du second palier à rouleaux 40'. L'extrémité de l'axe opposé au moteur comprend alors une premiére partie de diamètre restreint pris dans le palier 40'', la partie suivante présentant alors un filetage externe sur lequel peut être engagé un écrou 43 permettant de pousser en avant un second cône mobile 72.
  • Un changement de cylindre porte-clichés s'effectue alors simplement en dégageant le palier 40'' de l'axe par retrait du bloc mobile 80 et basculement. On peut alors dévisser l'écrou 43, ce qui libère le second cône mobile 72 donc le cylindre 16 qui peut être sorti. On remarque alors que la présence de l'axe 65 resté à demeure permet de guider le nouveau cylindre sur lequel il est enfilé. Le cône mobile 72 est réinstallé puis poussé en avant par rotation de l'écrou 44. Les moyeux 74 se trouvent ainsi serrés entre les deux cônes 70 et 72, ce qui réalise une fixation rigide et sans jeu. Le palier 40'' est enfin remis en place par avance du bloc 80. Notamment, ces cylindres étant plus légers qu'auparavant, ils sont d'une manipulation plus rapide et plus précise. On peut même envisager d'automatiser un tel changement au moyen d'un robot.
  • De plus, ces cylindres porte-clichés simplifiés étant moins onéreux à réaliser, on peut désirer vouloir détenir une gamme de cylindres de base, par exemple venant en quatre diamètres standards : 117,9mm 149,7mm, 181,5mm et 213,4mm. Ceci est d'ailleurs facilité par l'arbre électrique virtuel géré par l'unité centrale 10 de la machine. En effet, il suffit alors d'effectuer un nouveau calcul des consignes des positions fuyantes du moteur concerné, à l'inverse du changement d'engrenages autrefois nécessaire pour assurer la concordance entre le cylindre porte-clichés et le cylindre d'appui.
  • Sur le cylindre porte-clichés est usuellement enfilé un manchon en matériau expansé présentant une certaine élasticité radiale interne et sur l'enveloppe périphérique dure de laquelle sont effectivement fixés les clichés par collage. Pour faciliter cette installation de manchon, on peut mettre à profit la partie creuse centrale de l'axe 65 pour réaliser une circulation d'air comprimé entre l'extérieur du cylindre et l'intérieur du manchon. Plus précisément, un tube flexible 67, protégé par le capot 31, relie une prise de raccord externe 68 d'air comprimé avec le canal interne 66 de l'axe. En extrémité d'axe, ce canal 66 débouche sur une ou plusieurs ouvertures radiales 76 diffusant l'air comprimé à l'intérieur du cylindre porte-clichés 18. Le moyeu d'extrémité peut alors comprendre un ou plusieurs canaux internes 75 permettant de diffuser l'air comprimé sous le manchon 19. Sous l'effet de ce coussin d'air, ce manchon se dilate radialement, augmentant ainsi son diamètre interne, ce qui annihile toute force de friction. On peut ainsi utiliser une gamme de manchons ayant des épaisseurs comprises entre 2,5mm et 66,2mm utilisés seuls ou en superposition.
  • La référence 17 désigne un cylindre porte-clichés de diamètre particulièrement important et sur lequel sont directement collés des clichés, cette configuration étant utile dans des pays où la fourniture de manchons flexibles est déficiente.
  • De nombreuses améliorations peuvent être apportées à la machine d'impression dans le cadre des revendications.

Claims (7)

  1. Machine d'impression rotative dont le cylindre porte-clichés (16) de chaque station d'impression (1,2,3) est directement entraîné par un moteur électrique asynchrone vectoriel (26/36) piloté par un circuit électronique de contrôle et d'asservissement (101) de la position angulaire (a1) à une valeur de consigne (pL1,2,3(t)) évoluant dans le temps et reçue d'une unité centrale de calcul électronique (10) de synchronisation des stations entre elles, chaque axe (65) de cylindre porte-clichés étant fixé dans le prolongement de, ou étant commun à, l'axe du rotor de son moteur, caractérisée en ce que l'ensemble cylindre/axe/rotor (16/65/26) d'au moins une station est mobile en translation axiale pour correction du repérage latéral du ou des clichés du cylindre.
  2. Machine d'impression selon la revendication 1 dont tous les cylindres porte-clichés (16) sont mobiles en translation avec leur rotor associé (26), caractérisée en ce qu'elle comprend un dispositif (20-23) lisant des marques de repère (5) imprimées par chaque station, et établissant l'éventuelle erreur de registre latéral (dl1,2,3) et longitudinal (dL1,2,3) pour chaque station (1,2,3), en ce que chaque erreur latérale (dl1,2,3) est appliquée au circuit électronique de pilotage (15) d'un moteur électrique (25) de la station correspondante contrôlant, au travers d'un mécanisme (35), la position axiale de l'ensemble rotor/axe/cylindre (16/65/26), et en ce que chaque erreur de registre longitudinal (dL1,2,3) est directement additionnée à la consigne de position du cylindre (pL1,2,3(t)) de la station correspondante.
  3. Machine d'impression selon la revendication 1 ou 2, caractérisée en ce qu'un codeur angulaire (56) est monté à l'une des extrémités de chaque axe (65) de rotor/cylindre pour générer un signal représentatif de la position angulaire (a1,2,3) de l'axe qui est appliqué dans la boucle de rétroaction du circuit de contrôle et d'asservissement (101) du moteur asynchrone correspondant, le boîtier du codeur angulaire étant relié au châssis de la machine par une attache (46) angulairement rigide mais lui permettant de suivre les déplacements axial de l'axe.
  4. Machine d'impression selon la revendication 3, caractérisée en ce que l'attache (46) du codeur angulaire (56) comprend une pluralité de lamelles (47) en forme de couronnes parallèles coaxiales reliées entre elles par des paires diamètrales de fixations (48) disposées en quadrature d'une lamelles à l'autre.
  5. Machine d'impression selon la revendication 1, caractérisée en ce que l'axe commun (65) du rotor (26) et du cylindre (16) est monté sur des paliers à aiguilles (40, 40', 40''), et en ce qu'il comprend une collerette (45) saillante prise par une fourche (55) déplacée axialement par une vis sans fin (30), parallèle à l'axe, entraînée par le moteur électrique (25) de correction latérale.
  6. Machine d'impression selon la revendication 5, caractérisée en ce que la collerette (45) ou la fourche (55) comprend un premier roulement à billes ou cylindres, en ce que la fourche (55) est guidée au travers d'un second roulement (53) le long d'un axe de support (58), et en ce que la vis sans fin (30) est reliée au moteur (25) par un mécanisme réducteur comprenant un pignon et une roue dentée, ou un pignon (27) relié à une poulie (29) par une courroie crantée (28).
  7. Machine d'impression selon la revendication 1, caractérisée en ce que l'extrémité de l'axe (65) du côté opposé au moteur est maintenue par un palier amovible (40''), et en ce que le cylindre porte-clichés (16,17,18) est fixé sur l'axe par serrage de ses deux moyeux d'extrémité (74) entre un premier cône fixe (70) côté moteur, et un second cône opposé amovible (72) susceptible d'être poussé en direction du premier par un moyen mécanique(43).
EP97101657A 1996-02-09 1997-02-04 Machine d'impression rotative Expired - Lifetime EP0788879B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH334/96 1996-02-09
CH33496 1996-02-09
CH00334/96A CH691225A8 (fr) 1996-02-09 1996-02-09 Machine d'impression rotative.

Publications (2)

Publication Number Publication Date
EP0788879A1 true EP0788879A1 (fr) 1997-08-13
EP0788879B1 EP0788879B1 (fr) 2000-03-22

Family

ID=4184654

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97101657A Expired - Lifetime EP0788879B1 (fr) 1996-02-09 1997-02-04 Machine d'impression rotative

Country Status (11)

Country Link
US (1) US5771805A (fr)
EP (1) EP0788879B1 (fr)
JP (1) JP2866071B2 (fr)
KR (1) KR100220262B1 (fr)
CN (1) CN1079049C (fr)
AU (1) AU712423B2 (fr)
BR (1) BR9700918A (fr)
CA (1) CA2197036C (fr)
CH (1) CH691225A8 (fr)
DE (1) DE69701481T2 (fr)
TW (1) TW425351B (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0949070A2 (fr) * 1998-04-11 1999-10-13 INA Wälzlager Schaeffler oHG Palier pour un cylindre dans une machine d'impression
WO1999055533A2 (fr) * 1998-04-24 1999-11-04 Koenig & Bauer Aktiengesellschaft Rouleau pour presse rotative
WO2009059692A2 (fr) * 2007-11-09 2009-05-14 Manroland Ag Système d'entraînement dedtiné au positionnement de machine d'impression
EP2090432A1 (fr) * 2008-02-12 2009-08-19 Müller Martini Holding AG Cylindre pour une unité d'impression et procédé d'échange d'un manchon d'impression d'un tel cylindre
EP1175300B2 (fr) 2000-02-18 2010-03-31 Uteco Holding S.P.A. Machine d'impression flexographique rotative a plusieurs couleurs
ES2395183A1 (es) * 2011-08-12 2013-02-08 Comexi Group Industries, Sau Método para ajuste de presiones en una máquina impresora flexográfica y máquina impresora flexográfica para su implementación.
DE102014224117A1 (de) * 2014-11-26 2016-06-16 Koenig & Bauer Ag Registermarke

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5943955A (en) * 1997-08-29 1999-08-31 Goss Graphic Systems, Inc. Printing press having cantilevered self-driven cylinders
FR2778599B1 (fr) * 1998-05-13 2000-08-04 Heidelberger Druckmasch Ag Dispositif de deplacement des cylindres de groupes d'impression de machines rotatives a imprimer
JP3025885B1 (ja) * 1998-12-24 2000-03-27 井上金属工業株式会社 塗工装置
CZ287952B6 (cs) * 1999-04-06 2001-03-14 Adamovské Strojírny A.S. Zařízení pro pohon formového válce tiskového stroje
US6199481B1 (en) * 1999-11-04 2001-03-13 Shinohara Machinery Co., Ltd. Power feeder apparatus for rotary shaft in printing press
JP3363872B2 (ja) 2000-06-23 2003-01-08 株式会社東京機械製作所 切断見当及び印刷見当自動調整機能を有する同期制御装置
US6499639B2 (en) * 2001-02-12 2002-12-31 Heidelberger Druckmaschinen Ag Method and apparatus for dynamically controlling a web printing press
DE10234402B4 (de) * 2001-09-21 2015-10-08 Heidelberger Druckmaschinen Ag Unabhängiger Direktantrieb für Papier verarbeitende Druckmaschinen
DE10204514B4 (de) * 2002-02-05 2006-03-23 Windmöller & Hölscher Kg Vorrichtung und Verfahren zur Korrektur des Längsregisterfehlers, welcher durch die Beistellung auftritt
DE10320759B4 (de) * 2002-06-10 2013-03-14 Heidelberger Druckmaschinen Ag Transportsystem mit Gebern zur Lageerfassung in einer bedruckstoffverarbeitenden Maschine
ES1054281Y (es) * 2003-03-17 2003-10-16 Comexi Sa Rodillo de maquinaria para la impresion flexografica con dispositivo de control de posicion angular.
DE10318209A1 (de) * 2003-04-22 2004-11-25 Siemens Ag Druckmaschine bzw. Verfahren zum Betrieb einer Druckmaschine
DE10327218B4 (de) * 2003-06-17 2015-08-06 Schaeffler Technologies AG & Co. KG Direktantrieb für einen Zylinder einer Druckmaschine
US8633247B2 (en) 2003-08-11 2014-01-21 Hill's Pet Nutrition, Inc. Method for decreasing cartilage damage in dogs
US20050257704A1 (en) * 2004-05-21 2005-11-24 Pas Jon V Method for lateral adjustment of a directly driven load without shifting the entire drive assembly
DE102004057844A1 (de) * 2004-12-01 2006-06-08 Koenig & Bauer Ag Verfahren zum Verarbeiten von Lentikularfolie
WO2006117291A2 (fr) * 2005-05-04 2006-11-09 Koenig & Bauer Aktiengesellschaft Procede pour piloter et/ou reguler un reperage dans une machine a imprimer, ainsi que dispositif pour piloter et/ou reguler un reperage circonferentiel
DE102005050651A1 (de) * 2005-10-20 2007-04-26 Schaeffler Kg Direktantrieb einer Druckmaschine
US7809464B2 (en) * 2006-03-24 2010-10-05 Mikowen Industries, Llc Registration system for sheet fed processing machines
JP5068113B2 (ja) * 2007-07-11 2012-11-07 株式会社タイトー 版形成機構の版位置補正回路
DE102007045876A1 (de) * 2007-09-25 2009-04-09 Gallus Druckmaschinen Gmbh Druckwerk und Druckmaschine
DE102008042939B4 (de) * 2008-10-17 2021-01-21 Koenig & Bauer Ag Direktantrieb mit axialer Lageverstellung
IT1394325B1 (it) * 2009-06-15 2012-06-06 Omso Officina Macchine Per Stampa Su Oggetti Societa Per Azioni Giostra rotante per macchina da stampa di tipo rotativo
DE102009028208B4 (de) * 2009-08-04 2017-04-13 Koenig & Bauer Ag Koppelvorrichtung eines Zylinders einer Druckmaschine und ein Verfahren zum Ankoppeln eines Zylinders einer Druckmaschine
CN101774293B (zh) * 2009-12-30 2011-07-20 运城制版印刷机械制造有限公司 多色机组式凹版印刷机
JP5643610B2 (ja) * 2010-03-09 2014-12-17 株式会社セイコーアイ・インフォテック 記録装置
US8783177B2 (en) * 2011-10-19 2014-07-22 Brian Giardino System for oscillating a roller
US8989628B2 (en) * 2012-02-29 2015-03-24 Hewlett-Packard Development Company, L.P. Encoder mount
CN102975478B (zh) * 2012-12-30 2014-12-10 株洲三新包装技术有限公司 瓦楞纸板印刷机组印刷版辊轴向调节控制系统
CN106889701A (zh) * 2017-01-16 2017-06-27 中山火炬职业技术学院 一种二工位卧式数控刻楦机
CN113965108B (zh) * 2021-11-19 2023-07-25 江苏科技大学 一种水下机器人多电机协同推进系统及控制方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3742850A (en) * 1972-04-17 1973-07-03 Faustel Inc Registration adjustment mechanism
DE2720313A1 (de) 1976-07-02 1978-01-05 Polygraph Leipzig Registereinstellvorrichtung fuer formzylinder von rotationsdruckmaschinen
FR2380137A1 (fr) 1977-02-10 1978-09-08 Heidelberger Druckmasch Ag Dispositif de reglage du reperage lateral et circonferentiel sur les machines a imprimer rotatives
US4414898A (en) * 1981-07-06 1983-11-15 Windmoller & Holscher Mounting for printing cylinders or the like with adjustable side register
FR2541179A1 (fr) 1983-02-21 1984-08-24 Bobst Sa Machine pour confectionner des boites pliantes
US4484522A (en) * 1981-09-16 1984-11-27 M.A.N. Roland Druckmaschinen Ag System for reducing setting-up time in printing machines having register adjustment devices
EP0154836A2 (fr) 1984-03-14 1985-09-18 Heidelberger Druckmaschinen Aktiengesellschaft Dispositif de répérage pour rotatives d'impression
EP0262298A2 (fr) 1986-10-02 1988-04-06 Rockwell International Corporation Dispositif de contrôle du repérage du cylindre porte-plaque
US4782752A (en) 1987-06-22 1988-11-08 Pathfinder Graphic Associates Inc. Control device for circumferential and lateral adjustment of printing cylinder
EP0352483A2 (fr) 1988-07-28 1990-01-31 BHS Druck- und Veredelungstechnik GmbH Machine d'impression flexographique
EP0621133A1 (fr) * 1991-11-22 1994-10-26 Baumüller Nürnberg Gmbh Procédé et arrangement pour un moteur électrique pour entraîner un corps de rotation, en particulier un cylindre d'imprimerie
EP0644048A2 (fr) * 1993-12-29 1995-03-22 Maschinenfabrik Wifag Machine d'impression rotative, avec des cylindres porte-blanchet et porte-clichés réunisen groupes de cylindres par paires
EP0689277A2 (fr) * 1994-06-24 1995-12-27 M.A.N.-ROLAND Druckmaschinen Aktiengesellschaft Moteur électrique pour entraîner un corps rotatif
EP0693374A1 (fr) * 1993-07-08 1996-01-24 Baumüller Nürnberg Gmbh Dispositif d'entraînement électrique en particulier pour machines à imprimer
EP0699524A2 (fr) * 1994-08-30 1996-03-06 M.A.N.-ROLAND Druckmaschinen Aktiengesellschaft Machine d'impression offset

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5123343A (en) * 1985-10-08 1992-06-23 James River Paper Company, Inc. Multicolor printing of paper webs
DE3918128A1 (de) * 1989-06-03 1990-12-06 Roland Man Druckmasch Vorrichtung zum einstellen des seiten- und umfangsregisters in einer rotationsdruckmaschine
DE3926087C1 (fr) * 1989-08-07 1990-10-04 Heidelberger Druckmaschinen Ag, 6900 Heidelberg, De
CN2178616Y (zh) * 1994-01-28 1994-10-05 北人集团公司 一种胶印机滚筒排列角结构

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3742850A (en) * 1972-04-17 1973-07-03 Faustel Inc Registration adjustment mechanism
DE2720313A1 (de) 1976-07-02 1978-01-05 Polygraph Leipzig Registereinstellvorrichtung fuer formzylinder von rotationsdruckmaschinen
FR2380137A1 (fr) 1977-02-10 1978-09-08 Heidelberger Druckmasch Ag Dispositif de reglage du reperage lateral et circonferentiel sur les machines a imprimer rotatives
US4414898A (en) * 1981-07-06 1983-11-15 Windmoller & Holscher Mounting for printing cylinders or the like with adjustable side register
US4484522A (en) * 1981-09-16 1984-11-27 M.A.N. Roland Druckmaschinen Ag System for reducing setting-up time in printing machines having register adjustment devices
FR2541179A1 (fr) 1983-02-21 1984-08-24 Bobst Sa Machine pour confectionner des boites pliantes
EP0154836A2 (fr) 1984-03-14 1985-09-18 Heidelberger Druckmaschinen Aktiengesellschaft Dispositif de répérage pour rotatives d'impression
EP0262298A2 (fr) 1986-10-02 1988-04-06 Rockwell International Corporation Dispositif de contrôle du repérage du cylindre porte-plaque
US4782752A (en) 1987-06-22 1988-11-08 Pathfinder Graphic Associates Inc. Control device for circumferential and lateral adjustment of printing cylinder
EP0352483A2 (fr) 1988-07-28 1990-01-31 BHS Druck- und Veredelungstechnik GmbH Machine d'impression flexographique
EP0621133A1 (fr) * 1991-11-22 1994-10-26 Baumüller Nürnberg Gmbh Procédé et arrangement pour un moteur électrique pour entraîner un corps de rotation, en particulier un cylindre d'imprimerie
EP0693374A1 (fr) * 1993-07-08 1996-01-24 Baumüller Nürnberg Gmbh Dispositif d'entraînement électrique en particulier pour machines à imprimer
EP0644048A2 (fr) * 1993-12-29 1995-03-22 Maschinenfabrik Wifag Machine d'impression rotative, avec des cylindres porte-blanchet et porte-clichés réunisen groupes de cylindres par paires
EP0689277A2 (fr) * 1994-06-24 1995-12-27 M.A.N.-ROLAND Druckmaschinen Aktiengesellschaft Moteur électrique pour entraîner un corps rotatif
EP0699524A2 (fr) * 1994-08-30 1996-03-06 M.A.N.-ROLAND Druckmaschinen Aktiengesellschaft Machine d'impression offset

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0949070A2 (fr) * 1998-04-11 1999-10-13 INA Wälzlager Schaeffler oHG Palier pour un cylindre dans une machine d'impression
EP0949070A3 (fr) * 1998-04-11 2000-01-26 INA Wälzlager Schaeffler oHG Palier pour un cylindre dans une machine d'impression
WO1999055533A2 (fr) * 1998-04-24 1999-11-04 Koenig & Bauer Aktiengesellschaft Rouleau pour presse rotative
WO1999055533A3 (fr) * 1998-04-24 2000-11-09 Koenig & Bauer Ag Rouleau pour presse rotative
US6543355B1 (en) 1998-04-24 2003-04-08 Koenig & Bauer Aktiengesellschaft Roller for a rotary press
EP1175300B2 (fr) 2000-02-18 2010-03-31 Uteco Holding S.P.A. Machine d'impression flexographique rotative a plusieurs couleurs
WO2009059692A3 (fr) * 2007-11-09 2009-07-16 Manroland Ag Système d'entraînement dedtiné au positionnement de machine d'impression
WO2009059692A2 (fr) * 2007-11-09 2009-05-14 Manroland Ag Système d'entraînement dedtiné au positionnement de machine d'impression
EP2090432A1 (fr) * 2008-02-12 2009-08-19 Müller Martini Holding AG Cylindre pour une unité d'impression et procédé d'échange d'un manchon d'impression d'un tel cylindre
CN101508195B (zh) * 2008-02-12 2012-11-28 米勒·马蒂尼控股公司 印刷机印刷机组的滚筒和更换这种滚筒的印刷套筒的方法
ES2395183A1 (es) * 2011-08-12 2013-02-08 Comexi Group Industries, Sau Método para ajuste de presiones en una máquina impresora flexográfica y máquina impresora flexográfica para su implementación.
WO2013024186A1 (fr) * 2011-08-12 2013-02-21 Comexi Group Industries, Sau Procédé de réglage des pressions d'une machine d'impression flexographique et machine d'impression flexographique de mise en œuvre dudit procédé
DE102014224117A1 (de) * 2014-11-26 2016-06-16 Koenig & Bauer Ag Registermarke
DE102014224117B4 (de) * 2014-11-26 2016-09-08 Koenig & Bauer Ag Registermarke

Also Published As

Publication number Publication date
BR9700918A (pt) 1998-09-01
TW425351B (en) 2001-03-11
CA2197036C (fr) 2001-02-27
AU1254897A (en) 1997-08-14
CA2197036A1 (fr) 1997-08-10
DE69701481D1 (de) 2000-04-27
US5771805A (en) 1998-06-30
JPH09216348A (ja) 1997-08-19
CN1079049C (zh) 2002-02-13
CN1159982A (zh) 1997-09-24
JP2866071B2 (ja) 1999-03-08
EP0788879B1 (fr) 2000-03-22
KR970061518A (ko) 1997-09-12
AU712423B2 (en) 1999-11-04
CH691225A5 (fr) 2001-05-31
KR100220262B1 (ko) 1999-09-15
CH691225A8 (fr) 2001-08-15
DE69701481T2 (de) 2000-08-10

Similar Documents

Publication Publication Date Title
EP0788879B1 (fr) Machine d&#39;impression rotative
FR2613552A1 (fr) Moteur electrique a commande directe
LU84183A1 (fr) Appareil a balayage automatique pour traitement photomecanique et procede de controle et de regulation dudit balayage
FR2550724A1 (fr) Dispositif automatique de mise au registre d&#39;un outil monte sur cylindre rotatif pour le traitement de produits en plaques
EP2356052A1 (fr) Dispositif d&#39;alimentation d&#39;une unité de transformation avec un support en bande continue pour une station d&#39;alimentation dans une machine de production d&#39;emballages
FR2518455A1 (fr) Imprimeuse flexographique
FR2813036A1 (fr) Machine rotative d&#39;impression offset, equipee d&#39;un systeme de determination des donnees de prereglage pour le registre de coupe et/ou le registre des couleurs
FR2491385A1 (fr) Massicot et procede de decoupe de flans de carton
FR2687336A1 (fr) Ligne de production automatisee de viroles roulees soudees.
FR2495400A1 (fr) Dispositif moteur pas a pas de tres grande sensibilite
FR2486434A1 (fr) Machine-outil a commande numerique pour usiner une piece tournante
EP0265471A1 (fr) Dispositif de tronconnage d&#39;un tube fabrique en continu.
FR2546378A1 (fr) Procede et machine pour la fabrication simultanee de deux debits ou trains de cigarettes
FR2690643A1 (fr) Dispositif d&#39;ajustage d&#39;une lame de coupe pour le sectionnement de bandes continues de matière.
FR2633541A1 (fr) Dispositif pour perforer des objets en forme de tige
FR2574256A1 (fr) Procede de production continue de deux courants de cigarettes controlees par des detecteurs de signes graphiques
FR2611164A1 (fr) Dispositif de commande a distance et de controle numerique des reglages de positionnement fin et precis d&#39;un encrage flexographique
CH691017A5 (fr) Procédé de commande d&#39;un moteur pas-à-pas et dispositif pour sa mise en oeuvre.
FR2460750A1 (fr) Dispositif de commande d&#39;un chariot deplacable radialement sur un plateau rotatif, notamment d&#39;un chariot porte-outil d&#39;une machine-outil
FR2625514A1 (fr) Modulateur pour commander des mecaniques d&#39;armure tournant a tres grande vitesse
FR2703621A1 (fr) Système de cylindre presseur automatique à vitesse variable pour un dispositif rotatif de découpage à l&#39;emporte-pièce.
FR1465710A (fr) Dispositif suiveur d&#39;un profil ou tracé plan
EP0690346B1 (fr) Dispositif de gravure d&#39;un film cinématographique par faisceau laser
WO2004069707A2 (fr) Procedes de preparation de derives de la dhea
JP2540169B2 (ja) ステツピングモ―タの駆動制御方法及びその駆動制御装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970204

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19980504

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 69701481

Country of ref document: DE

Date of ref document: 20000427

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000613

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070122

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080204

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160127

Year of fee payment: 20

Ref country code: IT

Payment date: 20160222

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160211

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69701481

Country of ref document: DE