EP0787591A1 - Dispositif d'impression d'étiquettes en forme de bande - Google Patents

Dispositif d'impression d'étiquettes en forme de bande Download PDF

Info

Publication number
EP0787591A1
EP0787591A1 EP97101461A EP97101461A EP0787591A1 EP 0787591 A1 EP0787591 A1 EP 0787591A1 EP 97101461 A EP97101461 A EP 97101461A EP 97101461 A EP97101461 A EP 97101461A EP 0787591 A1 EP0787591 A1 EP 0787591A1
Authority
EP
European Patent Office
Prior art keywords
tape
printing
ribbon
cassette
print
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP97101461A
Other languages
German (de)
English (en)
Inventor
Koshiro C/O Brother Kogyo K.K. Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Publication of EP0787591A1 publication Critical patent/EP0787591A1/fr
Ceased legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J35/00Other apparatus or arrangements associated with, or incorporated in, ink-ribbon mechanisms
    • B41J35/16Multicolour arrangements
    • B41J35/18Colour change effected automatically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J15/00Devices or arrangements of selective printing mechanisms, e.g. ink-jet printers or thermal printers, specially adapted for supporting or handling copy material in continuous form, e.g. webs
    • B41J15/04Supporting, feeding, or guiding devices; Mountings for web rolls or spindles
    • B41J15/044Cassettes or cartridges containing continuous copy material, tape, for setting into printing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J3/00Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed
    • B41J3/407Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed for marking on special material
    • B41J3/4075Tape printers; Label printers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J32/00Ink-ribbon cartridges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J33/00Apparatus or arrangements for feeding ink ribbons or like character-size impression-transfer material
    • B41J33/14Ribbon-feed devices or mechanisms
    • B41J33/40Ribbon-feed devices or mechanisms with arrangements for reversing the feed direction
    • B41J33/44Ribbon-feed devices or mechanisms with arrangements for reversing the feed direction automatically

Definitions

  • the present invention relates to a tape-shaped label producing device and in particular to preventing rewind of the ink ribbon in a ribbon cassette when rewinding a printed tape in order to repeatedly print on the same print region.
  • United States Patent No. 5, 232, 297 describes a tape-shaped label printing device, which prints characters and marks, such as alphabetic characters and symbols, on a tape printing medium and is thus suitable for making labels to adhere to file tabs.
  • This tape-shaped label printing device includes a keyboard, a display, and a printing mechanism of the thermal printing type, and is configured to print characters, marks, and the like in a variety of font styles and sizes on a printing tape medium of widths such as 6, 9, 12, 18, and 24 mm.
  • a tape-shaped label printing device capable of moving the print tape not only in the feed direction but also in a rewind direction.
  • the device can be used to produce a tape-shaped label printed with composite characters, design patterns, and the like by first printing characters, symbols, and the like on the print tape in a first printing, rewinding the print tape to the starting position of the first printing, and then again printing characters, symbols, and the like in the same region in a second printing.
  • the tape-shaped labels printed with character trains are not limited to use as labels for file tabs. These labels are also appropriate for sticking on cassettes and their cases, or video tapes and their cases, for example.
  • the character trains may be colorfully printed in multiple colors in accordance with recorded content and genre by repeatedly printing on the tape after rewinding it before each printing.
  • the tape-shaped label producing device executes a color range setting process to serially set an order in which the print colors are to be printed during multicolor printing and to set, to the inputted text, a print target range for each print color for printing in the plurality of set colors. Print processes are performed while serially changing the ribbon cassette to the one that matches the present print color.
  • the print tape is rewound to its print start position after each print operation.
  • the ribbon cassettes are provided with a ribbon spool wound with an ink ribbon and a ribbon take-up spool for taking up the ink ribbon.
  • Spent ink ribbon used during the printing process is taken up by driving the ribbon take-up spool to rewind the ink ribbon in association with feed operations of the print tape.
  • the print tape is rewound to its print start position with each printing operation and printing is performed using one ink ribbon cassette or by serially switching different colored ribbon cassettes.
  • the ribbon take-up spool is driven in association with feed operations of the print tape, the ink ribbon wound around the ribbon take-up spool would be fed out by a large amount and become tangled when the ribbon take-up spool in the ribbon cassette is driven in association with rewinding of the print tape to rewind in a direction opposite that for ribbon take up.
  • the tape-shaped label producing device must be provided with a connection releasing mechanism for preventing the ribbon take-up spool from being driven in association with rewinding of the print tape.
  • a tape-shaped label producing device includes input means for inputting characters, symbols, and a variety of commands; data memory means for storing inputted text data; a tape movement mechanism for moving a tape selectively in a feed direction and in a rewind direction; a ribbon cassette housing an ink ribbon and detachably mounted; cassette detection means for detecting presence and absence of the ribbon cassette; print means including a print head for printing on the tape; control means for controlling printing; and tape rewind control means for, when the cassette detection means detects absence of the ribbon cassette and upon input from the input means, using the tape movement mechanism to rewind the tape.
  • the control means controls printing operations of the print means so that the print head of the print means prints on the tape via the ink ribbon of the mounted ribbon cassette.
  • the tape rewinding control means detects, using the detection signal from the cassette detection means, that a ribbon cassette is removed, it will use the tape movement means to move the tape in the rewind direction.
  • the tape rewind control means rewinds the tape only upon receipt of key input from the input means.
  • a plurality of ribbon cassettes are provided.
  • Each of the ribbon cassettes houses one of a plurality of colored ink ribbons and is selectively and freely detachably mounted for sequentially printing in the plurality of colors.
  • the tape rewind control means uses the tape movement mechanism to rewind the tape upon key input from the input means.
  • the tape rewinding control means will automatically use the tape movement mechanism to execute tape rewind by either optional or specific key input from the input means.
  • a tape detection means for detecting presence and absence of tape can be provided near the end of a tape movement pathway of the tape movement mechanism.
  • the tape rewinding control means stops rewinding of the tape when the end of the tape is detected using the detection signal from the tape detection means.
  • the present embodiment is applied to a tape-shaped label printing device capable of printing characters, symbols, and the like in a plurality of colors on a printing tape, which is a printing medium, by exchanging a plurality of ribbon cassettes each with a different ribbon color.
  • a keyboard 4 is arranged on the front portion of the main cover 2 of a tape-shaped label printing device 1.
  • the keyboard 4 is provided with various function keys and includes keys such as character keys, symbol keys, and numeric keys.
  • a liquid crystal display 5 capable of displaying the input characters, symbols, and the like is provided.
  • a thermal printing mechanism 10 containing a thermal head 12 is provided within the main cover 2.
  • the thermal head 12 is provided at a position corresponding to a cassette cover 3, which is opened and closed to allow exchanging of ribbon cassettes 30.
  • a slide knob 6 is slidably provided for opening the cassette cover 3.
  • a cutting knob 85 is also provided, and is pressed down for manually cutting a printing tape 22 which has been printed on.
  • thermal printing mechanism 10 including the thermal head 12 will be described with reference to Figs. 2 through 8.
  • a tape cassette 20 detachably mounted on the thermal printing mechanism 10 will be described with reference to Figs. 2 through 5 and Fig. 7.
  • a tape spool 23 is rotatably provided on the inside of a tape case 21 of the tape cassette 20.
  • a printing tape 22 formed of a thin film.
  • the printing tape 22 supplied from the tape spool 23 is moved in the tape feeding direction by a tape feeding roller 24 while being guided in a curved passage by a plurality of guides, passing directly in front of the thermal head 12, and discharged out of the tape cassette 20.
  • a pair of guide shafts 21a and 21b are provided at positions spaced away from each other for supporting the ribbon cassette 30.
  • Each lower end portion of the guide shaft 21a, 21b is provided integrally with an outer peripheral wall of the tape cassette 20.
  • the ribbon cassette 30 is slidably movable in a vertical direction along the guide shafts and is supported thereby for exchanging the ribbon cassette with a new ribbon cassette.
  • a pair of lower end walls 21c and 21d are formed on the tape case 21 for supporting the lower surface of the ribbon cassette 30.
  • the ribbon cassette 30 includes a ribbon case 31 integrally provided with an upper wall 31a extending horizontally and adapted to contact with the top wall of the tape case 21.
  • a pair of engaging feet 31b and 31c each having a through-hole running through its entire length, extend integrally from the lower surface of the upper wall 31a and at edge portions thereof to fit around the pair of guide shafts 21a and 21b of the tape case 21.
  • a vertical wall 31d is integrally suspended from the upper wall 31a. The vertical wall 31d is in contact with a notch 21e on the tape case 21.
  • a head accommodating portion 37 is formed on the ribbon cassette 30 to accommodate the thermal head 12, which is inserted from below and passed through the tape cassette 20.
  • the inner portion of the ribbon case 31 is rotatably provided with a ribbon spool 33 around which the ink ribbon 32 is wound, and a take-up spool 34 for taking up the ink ribbon 32.
  • a ribbon spool 33 around which the ink ribbon 32 is wound
  • a take-up spool 34 for taking up the ink ribbon 32.
  • the separation member 35 of the ribbon case 31 is positioned on the downstream side of the thermal head 12 in the tape feeding direction.
  • a lid 31e is provided on the ribbon case 31 to support from above parts such as the ribbon spool 33, the take-up spool 34, and the separation member 35, etc.
  • a ribbon cassette accommodating portion 21f for accommodating the ribbon cassette 30 is formed in the tape case 21 as shown in Fig. 7.
  • Tabs 31f and 31g are provided on the upper surface of the lid 31e and upper wall 31a of the ribbon case 31, respectively.
  • the tape case 21 is first mounted in a recessed portion (not shown), formed in the main cover 2, and then, the ribbon cassette 30 having the desired color of ink ribbon 32 can be mounted in the ribbon cassette accommodating portion 21f of the tape case 21.
  • the engaging legs 31b and 31c are fitted around their corresponding guide shafts 21a and 21b via the holes running through the engaging legs 31b and 31c, and the ribbon cassette 30 is moved downward so that it is received in the ribbon cassette accommodating portion 21f.
  • the upper wall 31a of the ribbon case 31 is resting on the top surface of the tape cassette 20, while the lower end of the ribbon cassette 30 is brought into abutment with the pair of lower end walls 21c and 21d of the tape case 21 from above, and the ribbon cassette 30 is held in a desirable position relative to the tape case 21.
  • a plurality of varieties of ink ribbons 32 in colors such as red, green, yellow, and black and ribbon widths such as 12, 18, 24, and 32 mm, are prepared for the ribbon cassette 30.
  • a group of detection holes 36 made up of a maximum of six detection holes 36a (the ribbon cassette of Fig. 6 only shows one detection hole 36a) is formed on a lower horizontal end portion of the vertical wall 31d on the ribbon case 31. These are allowing detection of any one of the plurality of varieties of ribbon cassettes 30.
  • the tape/ribbon transfer mechanism 40 can move the printing tape 22 and the ink ribbon 32 in the feeding direction, i.e., the printing direction, and in the rewinding direction, i.e., the direction opposite to the printing direction.
  • the main frame 11 is provided with the thermal head 12, and also with a group of ribbon detection switches 103, including detection switches No. 1 through No. 6, for detecting the existence of the six detection holes 36a in the previously mentioned group of detection holes 36.
  • the ribbon detection signal RS is output according to the combination of switch signals from these six detection switches.
  • the cassette detection means is thus constructed by the group of ribbon detection switches 103 and the group of detection holes 36.
  • a tape drive motor 44 such as a stepper motor is installed on the right front end portion of the main frame 11.
  • Gears 46 through 53, each rotatably supported on the main frame 11 are interlocked sequentially with a drive gear 45 of the tape drive motor 44.
  • a gear 55 and a tape drive gear 54 coupled to the tape drive cam 43 are meshedly engaged with the gear 53.
  • gears 48 and 49 are provided integrally and are fixed to the lower end portion of the ribbon take-up cam 42.
  • Gears 50 and 51 are provided integrally.
  • tape take-up gear 52 is fixed to the lower end portion of the tape take-up cam 41.
  • a swing lever 56 is provided.
  • the swing lever 56 has a base portion supported in a space between the integral gears 50 and 51. An appropriate amount of frictional resistance is provided between the swing lever 56 and the two gears.
  • the swing lever 56 is rotatably provided with a planet gear 57 continuously engaged with the gear 51.
  • the gear 53 has a rotation shaft 58 to which a base end portion of a cut-restricting lever 84 is urgedly supported.
  • the cut-restricting lever 84 supports thereon a torsion spring 59, and one end of the torsion spring and the base end of the lever 84 interpose therebetween the shaft 58, so that the base end of the cut restricting lever 84 is urgedly pressed against the shaft 58 by the biasing force of the torsion spring 59.
  • a roller holder 67 for rotatably supporting a rubber platen roller 65 and a rubber tape feeding subroller 66 is pivotably supported on the main frame 11 by a pivot shaft 68.
  • a release lever 71 is provided movable leftward and rightward and is interlocked with the opening and closing motion of the cassette cover 3. The release lever 71 changes its position between a printing position shown in Fig. 9 and a release position shown in Fig. 11.
  • the roller holder 67 is normally biased toward its release position by a spring (not shown in the drawings).
  • a wheel roller 72 rotatably attached to the release lever 71 is in contact with an upstanding wall 11a of the main frame 11.
  • a free end of the release lever 71 is in contact with the roller holder 67 from the rear side. Therefore, when the release lever 71 is moved leftward from the release position shown in Fig. 11 to the operating position shown in Fig. 9, the left end of the release lever 71 is wedged between the roller holder 67 and the upstanding wall 11a, so that the roller holder 67 is changed from its release position to its printing position.
  • the platen roller 65 presses against the thermal head 12 through the printing tape 22 and the ink ribbon 32, and the tape feeding subroller 66 presses against the tape feeding roller 24 through the printing tape 22.
  • a platen gear (not shown in the drawings) fixed to the lower end portion of the platen roller 65 is brought into meshing engagement with the gear 55, and a subroller gear (also not shown) fixed to the lower end portion of the tape feeding subroller 66 is brought into meshing engagement with the tape drive gear 54.
  • the head release mechanism 70 is adapted for moving the roller holder 67 to its release position with respect to the thermal head 12 by moving the release lever 71 rightwardly in accordance with the opening movement of the cassette cover 3.
  • the rear portion of the cassette cover 3 is supported in a plurality of places by the pivotal pin 7 attached on the main cover 2 so that the cassette cover 3 can open and close.
  • a curved, grooved cam 3b is formed on the right side wall 3a of the cassette cover 3.
  • An operation plate 74 is positioned on the right, underside of the main frame 11, and an engaging pin 75 engageable with the grooved cam 3b is fixed to the rear end portion of the operation plate 74.
  • the right end portion of the release lever 71 is pivotally supported on, one arm of a forked lever 76.
  • the forked lever 76 has the other arm connected to the operation plate 74 via a pin 77 fixed to the front end portion of the operation plate 74.
  • the tape cassette 20 is first mounted on the thermal printing mechanism 10. Then, the ribbon cassette 30 is mounted on the tape cassette 20. When the cassette cover 3 is closed, the roller holder 67 is shifted to the printing position.
  • the ink ribbon 32 is supplied from the ribbon spool 33 by the rotating motion of the platen roller 65.
  • the ink ribbon 32 is then taken up by the ribbon take-up spool 34 engaged with the ribbon take-up cam 42, which is rotated by the ribbon take-up gear 48.
  • the cassette cover 3 is released.
  • the roller holder 67 is changed to the release position by the head release mechanism 70.
  • the tape drive motor 44 is driven to rotate in the counterclockwise direction, (the tape rewinding direction)
  • each of the gears 45 through 55 is driven to rotate in its prescribed direction, as shown in Figs. 3 and 11.
  • the swinging lever 56 is also pivoted in the counterclockwise direction to bring the planet gear 57 into meshing engagement with the tape take-up gear 52. Accordingly, the tape take-up cam 41 is rotated in the counterclockwise direction.
  • the printing tape 22 that has been printed on once is taken up by the tape spool 23.
  • the ribbon take-up gear 48 is driven in the clockwise direction.
  • the ribbon cassette 30 has been removed, and, thus, the ink ribbon 32 taken up by the ribbon take-up spool 34 is not supplied.
  • the main frame 11 has a left end wall 11b provided by partially bending downwardly the left end portion of the frame 11, and a lower end of a fixed blade 81 fixed to the left end wall 11b.
  • a cutting lever 82 which, from the side view, looks like an abbreviated L shape, has a base end portion pivotally supported by a screw 83 to the left end wall 11b.
  • a movable blade 82a is formed on the cutting lever 82.
  • gear 53 rotates in the counterclockwise direction, moving the end portion of the cut restricting lever 84 to the under side of the cutting lever 82 and, thus, restricting the cutting operation.
  • a tape detection mechanism 90 which is provided on the outer side of the tape cutting mechanism 80 to detect the existence of the printing tape 22, will be described with reference to Fig. 2.
  • Guiding members 94 and 95 are provided integral with the main cover 2 at a position outside the tape cutting mechanism 90.
  • the guiding members 94 and 95 are designed to form a tightly sealed pair of sensor accommodating chambers 96 and 97.
  • a light emitting element 92 is installed in the sensor accommodating chamber 96.
  • a light receiving element 93 is installed in the sensor accommodating chamber 97.
  • a slit 98 is formed between the pair of guiding members 94 and 95 to allow the printing tape 22 to pass therethrough.
  • Light transmitting holes 94a and 95b having a small diameter are formed in the guide members 94, 95 in a confronting relation to each other.
  • the slanted guides 99 are also formed at these confronting portions. The leading end of the printing tape 22 passing through the tape cutting mechanism 80 will reliably pass through this slit, because of the formation of the guides 99, so that the printing tape 22 can be accurately detected.
  • the sensor light emitted from the light emitting element 92 passes through the light transmitting holes 94a and 94b formed in the sensor accommodating chambers 96 and 97, and is received on the light receiving element 93. Therefore, when the printing tape 22 proceeds into the tape detection sensor 91, and the printing tape 22 is positioned between the light emitting element 92 and the light receiving element 93, the sensor's light is interrupted by the printing tape. Thus, the tape detection sensor 91 outputs an "L" level tape detection signal TS.
  • the control system of the tape-shaped label printing device 1 is configured as shown in the block diagram of Fig. 16.
  • a control device CD Connected to an input/output interface 113 of a control device CD are the keyboard 4, the tape detection sensor 91, the cutting detection switch 101, the cover open and close detection switch 102, the group of ribbon detection switches 103, a display controller (LCDC) containing a video RAM for outputting display data to the liquid crystal display (LCD) 5, a driver circuit 106 for a warning buzzer 105, a driver circuit 107 for driving the thermal head 12, and a driver circuit 108 for the tape drive motor 44.
  • LCDC display controller
  • the control device CD includes a CPU 110, the input/output interface 113 connected to the CPU 110 via buses 114 including a data bus, a font ROM 111, a ROM 112, and a RAM 120.
  • the font ROM 111 stores dot pattern data for display, concerning all of the numerous characters, such as the alphabetic characters and symbols, and dot pattern data for printing in a plurality of printing character sizes.
  • the ROM 112 stores a display drive control program for controlling the display controller 104 to respond to the code data of alphabetic characters, symbols, numbers, and other characters input from the keyboard 4, a printing control program to create dot pattern data, for printing, the characters, symbols, and the like stored in a text memory 121; a printing drive control program for outputting the created dot pattern data for each row of dots in sequence to the thermal head 12, the tape drive motor 44, and the like for printing; and a control program (to be described later) for controlling printing of multiple colors.
  • the ROM 112 stores a ribbon cassette detection table for detecting the color and width of the ink ribbon 32, based on the ribbon detection signal RS output from the group of ribbon detection switches 103, including detection switches Nos. 1 through 6.
  • the text memory 121 of the RAM 120 stores text data, such as alphabetic characters and symbols, input from the keyboard 4, in correspondence with the data for the printing color selected.
  • a color number memory 122 stores data of the number of printing colors inputted.
  • a printing color sequence memory 123 stores data of the printing color sequence selected.
  • a margin memory 124 stores data of the size of the margin selected, where the front or top margin and rear or bottom margin are identical to each other.
  • a printing data buffer 125 stores the developed dot pattern data corresponding to the character codes stored in the text memory 121.
  • the RAM 120 is provided with a memory for temporarily storing such data as the results of computations by the CPU 110.
  • Fig. 26 shows the position of tape detection by the tape detection sensor 91, the position of tape cutting by the tape cutting mechanism 80, and the position of printing by the thermal head 12.
  • the positioning order is then the printing position (P position), the tape cutting position (C position), and the tape detection position (S position).
  • the distance (print-cut distance) between the printing position and the tape cutting position, or Dcp is about 25 mm.
  • the distance (cut-detection distance) between the tape cutting position and the tape detection position, or Dsc is about 15 mm.
  • the separation position (B position), according to the separation portion 35a of the separation member 35 is about 6 mm downstream from the printing position in the feeding direction T.
  • the tape-shaped label printing device 1 When electrical power is supplied into the tape-shaped label printing device 1, first an initialization process is performed to initialize such devices as the thermal printing mechanism 10 and the control device CD (S10). Then, the text input screen is displayed on the display 5. After setting printing styles, processes such as the input process for inputting text data and the display process for displaying the input text are carried out.
  • the input text data is stored in the text memory 121 (S11). For example, as shown in Fig. 27 input text data of "AB” "CDE” and "FG" are stored in the text memory 121.
  • step S13 the process control for setting the printing range of each color is executed in step S13 as shown in Fig. 19.
  • the color number N is set in a color number counter as a count value I (S33). Then, subtraction of "1" from the color number count value I is executed and if the answer is not zero, that is, if the character array is not the final target character array in connection with the final color (S34:NO), then the process for setting the printing target character array is executed in S35 for the leading printing color in the printing color sequence among colors which have not been set. This setting is performed based on the color order data by indicating, with a cursor, the characters, symbols and the like constituting the target character array in connection with the subsequent color.
  • the text data is displayed in the display 5. Therefore, by operating the four cursor movement keys provided on the right side of the keyboard 4, each character, symbol and the like in the printing target array is indicated with the cursor with respect to the printing colors, except for the last printing color.
  • a color set key is pressed.
  • a set key is pressed. By pressing this set key, the set color data is appended to the character data of the characters indicated by operating the cursor movement keys and pressing the color set key, and this data is stored in the text memory 121.
  • the character data stored in the text memory 121 is read from the top of the memory (S371). The data is checked to see if color data is appended or not (S372). If color data is appended to the read character data (S372:YES) and that character data is not the last of the character data (S373:NO), then the next data is read (S374), and the process is repeated from S372. However, if color data is not appended to the read character data (S372:NO), color data corresponding to the final printing color is appended to that character data and stored in memory (S375), and the process at S373 is executed.
  • the character array "AB CDE "FG” when the character data "AB CDE “FG” is stored in the text memory 121, when the color number is set to “3,” and when the color sequence is set to “red,” “green,” and “black,” then during the process for setting the printing target character array in S35, first the character array “AB” is set for the printing color red by operating the cursor keys and the color set key. As shown in Fig. 27, the color data “red” is appended to the character data "A” and “B” of the text memory 121, and each combination of character data and color data is stored in the memory. Next, the character array “CDE” is set for the printing color “green,” and the color data "green” is appended to the character data "C” “D” "E” of the text memory 121, and stored.
  • the color number count value I is such that (I - 1) is zero. Therefore, in the process for setting the character array in S37, the character data of the text memory 121 is read in order, beginning from the top of the memory.
  • the character array "FG" of the text data which has not been set to a printing color, is automatically set to the final printing color, "black” and the printing data "black” is then saved in the text memory 121, appended to the character data "F” and "G".
  • the message "Margin for the printing tape?" is displayed in the display 5.
  • the margins are set to the desirable size by operating the number keys, and the margin set is stored in the margin memory 124 (S38). Control is then returned to S14 for continuing the multi-color printing control.
  • the ribbon color R of the mounted ribbon cassette 30 is read (S40), based on ribbon detection signals RS from the group of ribbon detection switches 103. Then, the leading printing color C in the printing color sequence is read (S41). If the ribbon color R does not match the leading printing color C (S42:NO), then an error message is displayed in the display 5 (S43) indicating that the ribbon color does not match the printing color.
  • the ribbon cassette 30 is replaced, and the cassette cover 3 is closed again, then according to the cover open and close signals VS transmitted from the cover open and close detection switch 102, steps S40 and S41 are repeated. Then, if the ribbon color R matches the leading printing color C (S42:YES), the stored character array appended data of the leading printing color C is read from the text memory 121. Further, the dot pattern data of that character array is developed in the printing data buffer 125 (S45). Then, the tape detection signal TS is read from the tape detection sensor 91. If the tape detection signal TS is "L" level, meaning the printing tape 22 is positioned corresponding to the tape detection sensor 91 (S46:YES), then a message prompting that the printing tape be cut is displayed in the display 5 (S47).
  • the cutting button 85 is pressed for cutting the printing tape 22, and the cut detection signal CS from the cut detection switch 101 becomes "H" level (S48:YES). Then, the tape detection signal TS becomes "H" level, meaning the tape cutting was detected (S46:NO), the tape drive motor 44 is driven one step only in the clockwise direction, and the printing tape 22 is moved a very small distance in the feeding direction T, in order for the leading edge of the tape to pass the tape detection sensor 91 (S49). As far as the tape detection signal TS maintains "H" level (S50:NO), steps S49 and S50 are repeated.
  • the tape drive motor 44 is driven in the clockwise direction to move the printing tape the initial margin L corresponding to the set front margin L (S60). Then, if the printing start position of characters to be printed in the current printing color is positioned upstream in the feeding direction T of the print start point of origin in the label printing (S61:YES), for example, as shown in Fig. 28 (c), if idle feeding (or feeding without printing) is required such that the characters "CDE" with the printing color "green” is to be printed, the tape drive motor 44 is driven in the clockwise direction, moving the printing tape 22 in the feeding direction T only the amount of the idle feeding (S62).
  • the printing tape rewinding process control (S19) is executed as shown in Fig. 23.
  • the tape driving motor 44 is driven in the clockwise direction, moving both the printing tape 22 and the ink ribbon 32 in the feeding direction T for only the separation feeding distance Dbp corresponding to the distance Dbp between the printing position (P position) and the separation position (B position) (S70).
  • This feeding is required because the ink of the ink ribbon 32 is fused or melted to the printing tape 22 by the thermal head 12 at the final printing position.
  • the ink ribbon 32 is forcibly pulled away from the printing tape by the separation portion 35a.
  • the printing tape 22 and the ink ribbon 32 are separated with certainty.
  • Steps S170 through 173 of the print tape rewind routine shown in Fig. 30 are the same as steps S70 through S73 of the print tape rewind routine shown in Fig. 23, so their explanation will be omitted. Also, steps S176 through S179 indicated in Fig. 30 correspond to steps S75 through S78 shown in Fig. 23, so their explanation will be omitted.
  • steps S170 through 173 of the print tape rewind routine shown in Fig. 30 are the same as steps S70 through S73 of the print tape rewind routine shown in Fig. 23, so their explanation will be omitted.
  • steps S176 through S179 indicated in Fig. 30 correspond to steps S75 through S78 shown in Fig. 23, so their explanation will be omitted.
  • the routine shown in Fig. 30 when a ribbon cassette 30 is removed (S173:YES), then key input from the keyboard 4 is awaited in S174.
  • the color number N is decremented by one (S21). If the color number is not "1,” or not the final printing (S17:NO), steps S18 through S21 are repeated. If the color number N becomes "1,” or the final printing (S17:YES), the final color printing process and cutting process control (S22) will be executed, as shown in Fig. 25.
  • This control is separated into four cases.
  • Case 1 the front margin L is greater than the distance Dcp between cutting and printing positions.
  • Case 2 the front margin L is smaller than the distance Dcp, and no idle feeding is provided.
  • Case 3 the front margin L is smaller than the distance Dcp, and idle feeding is provided, and further, the total length of the front margin L and the idle feeding is equal to or greater than the distance Dcp between the printing position and the cutting position.
  • the front margin L is smaller than the distance Dcp, idle feeding is provided, and further, the total length of the front margin L and the idle feeding is smaller than the distance Dcp between the printing position and the cutting position.
  • the tape drive motor 44 is driven in the clockwise direction, moving the printing tape 22 in the feeding direction T by the length of the idle feeding (S97). Then, the characters, symbols, and the like, based on the dot image data read similar to S63 described earlier, are printed in the final printing color (S98).
  • the tape drive motor 44 is driven in the clockwise direction, moving the printing tape 22 in the feeding direction T only by the distance Dcp plus the rear margin L (S99). Then, the tape drive motor 44 is rotated slightly in the rewinding direction.
  • a message prompting the user to cut the printing tape 22 is displayed in the display 5 (S100). Then, when the printing tape 22 is cut and the cutting detection signal CS becomes the "H" level, signifying that the tape cutting has been detected (S101:YES), control is returned to S10 of the multi-color printing control.
  • one row of the dot pattern data is read from the printing data buffer 125 and printing is performed with the one row of the dot pattern (S104).
  • the tape drive motor 44 is driven in the clockwise direction, moving the printing tape 22 only by the short distance corresponding to the one row of dots (S105). If the amount of tape movement after the final printing has begun is less than the distance of the front margin L subtracted from the distance Dcp, that is, if the top position of the front margin has not yet reached the cutting position (C position) (S106:NO), then steps S104 through S106 are repeated.
  • a print color number setting process for setting the number N of print colors and the color sequence is executed. Also, a process for setting the target range to be printed for each print color is executed in order to print in multiple colors.
  • a printing process is performed by controlling drive of the thermal head 12 and the tape drive motor 44. Each time a ribbon cassette 30 is exchanged and then a printing process for that color ink ribbon is completed, a printing tape rewinding process is executed.
  • the head release mechanism 70 is operated to its release position based on the cover open/close signal VS from the cover open/close detection switch 102. Also, when all six detection switch signals of the ribbon detection signal RS from the ribbon detection switch group 103 are H-level signals, which indicates that the ribbon cassette 30 has been removed from the tape cassette 20, then a message telling the user not to mount a ribbon cassette 30 is displayed on the display 5 and input from an optional key (or a specific key, depending on the design of the print tape rewind routine) of the keyboard 4 is awaited.
  • the tape drive motor 44 When there is input from an optional key (or from the specific key) of the keyboard 4, then the tape drive motor 44 is driven to rotate in the reverse rotational direction so that the print tape 22 is automatically rewound. Then, the print tape 22 is stopped at its print start reference point position based on the tape detection signal TS from the tape detection sensor 91.
  • print tape 22 in the middle of being printed will not be wasted by print processes being terminated by the user accidentally touching the delete key while removing the ribbon cassette 30. The user can avoid any frustration this might cause.
  • the tape-shaped label printing device of the present invention can be configured so that when rewinding the printing tape 22, the edge of the printing tape 22 can be detected by the tape status switching from indicating a tape present to no tape present based on the tape detection signal TS outputted from the tape detection sensor 91.
  • the group of ribbon detection switches 103 can be configured from a variety of sensors, such as a proximity switch or a photointerrupter. Further, it is obvious that the present invention can be applied to various tape-shaped label printers 1 for printing in multiple colors by exchanging in sequence a plurality of ribbon cassettes 30 with differing ribbon colors.
  • the tape-shaped label producing device automatically rewinds the print tape after completion of each printing operation.

Landscapes

  • Printers Characterized By Their Purpose (AREA)
  • Impression-Transfer Materials And Handling Thereof (AREA)
  • Handling Of Continuous Sheets Of Paper (AREA)
  • Record Information Processing For Printing (AREA)
EP97101461A 1996-01-31 1997-01-30 Dispositif d'impression d'étiquettes en forme de bande Ceased EP0787591A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP01508296A JP3644111B2 (ja) 1996-01-31 1996-01-31 テープ状ラベル作成装置
JP15082/96 1996-01-31

Publications (1)

Publication Number Publication Date
EP0787591A1 true EP0787591A1 (fr) 1997-08-06

Family

ID=11878930

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97101461A Ceased EP0787591A1 (fr) 1996-01-31 1997-01-30 Dispositif d'impression d'étiquettes en forme de bande

Country Status (2)

Country Link
EP (1) EP0787591A1 (fr)
JP (1) JP3644111B2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112148232A (zh) * 2019-06-28 2020-12-29 兄弟工业株式会社 编辑装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5232297A (en) 1991-09-26 1993-08-03 Brother Kogyo Kabushiki Kaisha Printing device with margin setting for cut tape
JPH05238027A (ja) * 1992-02-27 1993-09-17 Sharp Corp 印刷制御装置
EP0573187A1 (fr) * 1992-06-01 1993-12-08 Esselte Dymo N.V. Dispositif d'impression thermique
EP0607023A2 (fr) * 1993-01-13 1994-07-20 Esselte Dymo N.V. Appareil d'impression pour ruban
EP0625427A2 (fr) * 1993-05-19 1994-11-23 Brother Kogyo Kabushiki Kaisha Cassette à bande
EP0641663A2 (fr) * 1993-09-06 1995-03-08 Brother Kogyo Kabushiki Kaisha Imprimante pour ruban

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5232297A (en) 1991-09-26 1993-08-03 Brother Kogyo Kabushiki Kaisha Printing device with margin setting for cut tape
JPH05238027A (ja) * 1992-02-27 1993-09-17 Sharp Corp 印刷制御装置
EP0573187A1 (fr) * 1992-06-01 1993-12-08 Esselte Dymo N.V. Dispositif d'impression thermique
EP0607023A2 (fr) * 1993-01-13 1994-07-20 Esselte Dymo N.V. Appareil d'impression pour ruban
EP0625427A2 (fr) * 1993-05-19 1994-11-23 Brother Kogyo Kabushiki Kaisha Cassette à bande
EP0641663A2 (fr) * 1993-09-06 1995-03-08 Brother Kogyo Kabushiki Kaisha Imprimante pour ruban

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 17, no. 694 (M - 1531) 17 December 1993 (1993-12-17) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112148232A (zh) * 2019-06-28 2020-12-29 兄弟工业株式会社 编辑装置
CN112148232B (zh) * 2019-06-28 2024-05-28 兄弟工业株式会社 编辑装置

Also Published As

Publication number Publication date
JP3644111B2 (ja) 2005-04-27
JPH09207403A (ja) 1997-08-12

Similar Documents

Publication Publication Date Title
US6132120A (en) Tape-shaped label printing device
EP0734872B1 (fr) Dispositif d'impression d'étiquettes en forme de bande
USRE43022E1 (en) Tape-shaped label printing device
US6196740B1 (en) Tape-shaped label printing device
JP2976843B2 (ja) テープ状ラベル作成装置
US5725318A (en) Tape-shaped label printing device usable with ribbon cassettes having newly added colors
US5685656A (en) Tape-shaped label printing device having color range setting means
EP0734871B1 (fr) Dispositif d'impression d'étiquettes en forme de bande
JP3674132B2 (ja) テープ状ラベル作成装置
US6006014A (en) Tape-shaped label printing device having color range setting means
EP0787591A1 (fr) Dispositif d'impression d'étiquettes en forme de bande
JP3787881B2 (ja) テープ状ラベル作成装置
JP3651101B2 (ja) テープ状ラベル作成装置
JP3539007B2 (ja) テープ状ラベル作成装置
JP3028103B2 (ja) テープ状ラベル作成装置
JP3757447B2 (ja) テープ状ラベル作成装置
JP2979538B2 (ja) テープ状ラベル作成装置
JP3671500B2 (ja) テープ状ラベル作成装置
JPH09109472A (ja) テープ状ラベル作成装置
JPH08267838A (ja) テープ状ラベル作成装置
JPH08267885A (ja) テープ状ラベル作成装置
JPH08267870A (ja) テープ状ラベル作成装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB

17P Request for examination filed

Effective date: 19980123

17Q First examination report despatched

Effective date: 19980324

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19990924