EP0786141B2 - Supraleitende magnetspule mit variablem profil - Google Patents

Supraleitende magnetspule mit variablem profil Download PDF

Info

Publication number
EP0786141B2
EP0786141B2 EP95939529.4A EP95939529A EP0786141B2 EP 0786141 B2 EP0786141 B2 EP 0786141B2 EP 95939529 A EP95939529 A EP 95939529A EP 0786141 B2 EP0786141 B2 EP 0786141B2
Authority
EP
European Patent Office
Prior art keywords
pancake
longitudinal axis
superconducting magnetic
magnetic coil
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95939529.4A
Other languages
English (en)
French (fr)
Other versions
EP0786141B1 (de
EP0786141A4 (de
EP0786141A1 (de
Inventor
Anthony J. Rodenbush
Alexis P. Malozemoff
Bruce B. Gamble
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
American Superconductor Corp
Original Assignee
American Superconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27406232&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0786141(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US08/323,494 external-priority patent/US5604473A/en
Priority claimed from US08/541,639 external-priority patent/US5581220A/en
Application filed by American Superconductor Corp filed Critical American Superconductor Corp
Priority to DE69531693.1T priority Critical patent/DE69531693T3/de
Publication of EP0786141A1 publication Critical patent/EP0786141A1/de
Publication of EP0786141A4 publication Critical patent/EP0786141A4/de
Publication of EP0786141B1 publication Critical patent/EP0786141B1/de
Application granted granted Critical
Publication of EP0786141B2 publication Critical patent/EP0786141B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor

Definitions

  • the invention relates to superconducting magnetic coils.
  • a superconductor can carry a electrical current density up to a critical current density (J c ) of the superconductor.
  • the critical current density is the current density at which the material loses its superconducting properties and reverts back to its normally conducting state.
  • Superconductors may be used to fabricate superconducting magnetic coils such as solenoids, racetrack magnets, multipole magnets, etc., in which the superconductor is wound into the shape of a coil.
  • the temperature of the coil is sufficiently low that the HTS conductor can exist in a superconducting state, the current carrying capacity as well as the magnitude of the magnetic field generated by the coil is significantly increased.
  • Typical superconducting materials include niobium-titanium, niobium-tin, and also copper oxide ceramics such as members of the rare-earth-copper-oxide family (i.e., YBCO), the thallium-barium-calcium-copper-oxide family (i.e., TBCCO), the mercury-barium-calcium-copper-oxide family (i.e., HgBCCO), and the bismuth-strontium-calcium-copper oxide family (i.e., BSCCO).
  • YBCO rare-earth-copper-oxide family
  • TBCCO thallium-barium-calcium-copper-oxide family
  • HgBCCO mercury-barium-calcium-copper-oxide family
  • BSCCO bismuth-strontium-calcium-copper oxide family
  • lead i.e., (Bi,Pb) 2 Sr 2 Ca 2 Cu 3 O x or Bi 2 Sr 2 Ca 2 Cu 3 O x (BSCCO 2223)
  • YBCO 123 Y 1 Ba 2 Cu 3 O 4
  • the superconductor in fabricating such superconducting magnetic coils, may be formed in the shape of a thin tape 5 which allows the conductor to be bent around the diameter of a core.
  • the thin tape is fabricated as a multi-filament composite superconductor including individual superconducting filaments 7 which extend substantially the length of the multi-filament composite conductor and are surrounded or supported by a matrix-forming material 8, which is typically silver or another noble metal. Although the matrix forming material conducts electricity, it is not superconducting. Together, the superconducting filaments and the matrix-forming material form the multi-filament composite conductor.
  • the superconducting filaments and the matrix-forming material are encased in an insulating layer (not shown).
  • the ratio of superconducting material to matrix-forming material is known as the "fill factor" and is generally less than 50%.
  • the tape may also be in other well-known forms including "powder-in-tube” (PIT) forms or coated tapes in which the superconductor is deposited on the surface of a tape-shaped substrate.
  • a magnetic coil can be wound with superconducting tape using generally one of two approaches.
  • the first approach known as layer winding
  • the superconductor is wound about a core with turns being wound one next to another until a first layer is formed. Subsequent layers are then wound on top of previous layers until the desired number of layers are wound on the core.
  • the superconductor tape is wound one turn on top of a preceding turn thereby forming a plane of turns perpendicular to the axis of the coil.
  • the pancake coils can be wound as double pancakes.
  • a superconducting magnetic coil assembly using pancake coils may include several coils, coaxially disposed along the length of the coil assembly.
  • the individual coils are interconnected using short lengths of superconducting wire or ribbon made from the superconducting materials of the type described above, for example, copper oxide ceramic.
  • US-A-4499443 discloses high-field double pancake superconducting coils made from low temperature superconductor material, such as NB 3 Sn, there being description as to how the magnets are cooled to 4.2K with supercritical helium.
  • JP-A-61-082404 discloses a superconducting magnet of double pancake coils having a uniform magnetic field at the centre of a magnetic coil.
  • the interfaces between the individual pancakes of the double pancakes preferably lie generally along the inner diameter of the coil assembly and are formed of the same continuous length of superconducting wire by virtue of special winding and construction techniques.
  • the electrical interconnections between double pancake coils, called “bridges" may be accomplished using relatively straight or “unbent” segments of a conducting tape-shaped material between the individual pancakes, of adjacent double pancake pairs, of substantially equal outer dimension.
  • the conducting material bridging the pancakes can be either a solid piece of totally superconducting material or, preferably, is a piece of composite superconducting wire contacting the pancakes through its metallic sheath or an etched piece of superconducting wire which contacts an etched outer layer of the pancake to form a fully superconducting joint.
  • the segments of superconducting wire may have a slight bend for following the outer contour of the pancake coil in the direction perpendicular to its longitudinal axis, the segments are essentially unbent (e.g., bent less than the thickness of one composite wire) along the longitudinal axis of the coil as they span the individual coils of adjacent double pancakes.
  • the superconducting magnetic coil assembly can have a non-uniform inner and/or outer dimension along its length for providing field shaping or field concentration while allowing the use of substantially unbent pieces of composite superconductor wire which provide a low loss electrical interconnection between the double pancake coils of the assembly.
  • Providing the electrical interconnection with a relatively unbent piece of superconducting wire increases both the electrical and mechanical reliability of the interconnections. This is, for the most part, due to the mechanical properties of the materials chosen to provide the desired superconducting characteristics. Such materials, like those of the copper oxide ceramic type, are generally intolerant of the application of large tensional forces (such as those created during a bending process) and may easily crack or break when excessively bent. Such materials are often characterized by their bend strain and critical strain values. The bend strain is equal to half the thickness of the conductor divided by the radius of the bend; while the critical strain of a conductor is defined as the amount of strain the material can support before experiencing a dramatic decrease in electrical performance.
  • the critical strain value is highly dependent on the formation process used to fabricate the conductor, and is typically between 0.05%-1.0%, depending on the process used. With an increase in bend strain comes a concomitant increase in resistance and increase in voltage across the joint. If the bend strain of a conductor exceeds the critical strain of a conductor, the resistance increases to the extent that the current-carrying capability of the conductor, and hence the maximum magnetic field generated by a coil, decreases significantly.
  • Particular embodiments of the invention may include one or more of the following features.
  • the outer dimension of the coil assembly varies along the longitudinal axis of the superconducting magnetic coil from a central region to end regions of the superconducting magnetic coil.
  • the outer dimension of adjacent double pancake coils may be monotonically non-increasing (i.e., is constant or decreases) along the longitudinal axis of the superconducting magnetic coil from a central region to end regions of the superconducting magnetic coil.
  • the outer dimension of adjacent double pancake coils may be monotonically non-decreasing (i.e., is constant or increases) along the longitudinal axis of the superconducting magnetic coil from a central region to end regions of the superconducting magnetic coil.
  • the inner dimension of the coil assembly may be varied along the longitudinal axis of the superconducting magnetic coil from a central region to end regions of the superconducting magnetic coil.
  • the inner dimension of adjacent double pancake coils may be monotonically non-increasing (i.e., is constant or decreases) along the longitudinal axis of the superconducting magnetic coil from a central region to end regions of the superconducting magnetic coil.
  • the inner dimension of adjacent double pancake coils may be monotonically non-decreasing (i.e., is constant or increases) along the longitudinal axis of the superconducting magnetic coil from a central region to end regions of the superconducting magnetic coil.
  • a first one of the pair of individual pancake coils of at least one of the double pancakes has a differing inner dimension than the other individual pancake of the pair.
  • a portion of the superconductor wire connecting the pair of individual pancake coils may be rigidly affixed to the pancake coil of smaller inner dimension on a side surface adjacent the other of the pair of individual pancake coils to provide mechanical support to that portion bridging the individual pancake coils.
  • one or more of the double pancakes may have a pair of individual pancake coils with inner dimensions which are substantially the same, but different than the inner dimensions of pancakes of another double pancake coil of the coil assembly.
  • a coil assembly may include double pancakes formed of individual pancakes, each double pancake wound to have the same inner diameter. The double pancakes, however, all have different inner diameters, and are coaxially positioned along a longitudinal axis to provide a coil assembly with a variable inner diameter.
  • a superconducting magnetic coil assembly having a variable inner dimension may also have its outer dimension vary along the longitudinal axis of the superconducting magnetic coil from a central region to end regions of the superconducting magnetic coil.
  • the outer dimension of adjacent double pancake coils may monotonically decrease or increase along the longitudinal axis of the superconducting magnetic coil from a central region to end regions of the superconducting magnetic coil.
  • the double pancake coils may be circularly shaped with the electrical connections between individual pancake coils of adjacent double pancake coils of substantially equivalent outer diameters.
  • the double pancake coils may be racetrack or saddle-shaped (i.e., outermost radial regions which droop).
  • the superconductor is an anisotropic high temperature superconductor, such as a member of the bismuth (e.g., Bi 2 Sr 2 Ca 2 Cu 3 O x or, Bi 2 Sr 2 Ca 1 Cu 2 O x (BSCCO 2223 or BSCCO 2212)) or yttrium families of oxide superconductors.
  • the superconductor may be formed as a superconductor tape, using monofilament or multi-filament composite superconductor.
  • a multi-filament composite superconductor generally includes individual superconducting filaments which extend the length of the multi-filament composite conductor and are surrounded by a matrix-forming material.
  • the multi-filament composite superconductor may, in certain applications, be twisted.
  • Electrically conductive bridging segments formed, for example, as a superconductor tape comprising a composite superconductor material, may be used to provide the electrical connections between individual pancake coils of adjacent double pancake coils.
  • a method for providing a superconducting magnetic coil assembly is set out in claim 18.
  • a portion of the superconductor wire connecting the pair of pancake coils is rigidly affixed to the pancake coil of smaller inner dimension on a side surface adjacent the other of the pair of individual pancake coils.
  • the double pancake coil may also be connected with a bridging length of superconducting material.
  • Double pancake coils with varying inner and outer diameters can be combined to provide a desired field distribution within a fixed volume, for example to accommodate a constrained shape or a particular superconductor volume requirement.
  • a magnetic field may be maximized while reducing the amount of superconductor at its end regions.
  • inner and/or outer dimensions may be selected to provide a substantially uniform or specially shaped magnetic field along its axial length.
  • a mechanically robust, high-performance superconducting coil assembly 10 combines multiple double “pancake” coils 12-17, here, six separate double pancake sections, each having co-wound composite conductors.
  • Each double "pancake” coil has co-wound conductors wound in parallel which are then stacked coaxially on top of each other.
  • the illustrated conductor is a high temperature copper oxide ceramic superconducting material, such as Bi 2 Sr 2 Ca 2 Cu 3 O x , commonly designated BSCCO 2223.
  • Each double pancake coil 12-17 includes a pancake coil 12a-17a having a diameter smaller than its associated pancake coil 12b-17b of the double pancake, the two coils of a pair being wound from the same continuous length of superconducting tape using the approach described below in conjunction with Fig. 4 .
  • Double pancake coils 12-17 are shown in Figs. 2 and 3 as being circularly shaped; however, in other applications each double pancake may have other shapes commonly used for making magnetic coils, including racetrack and saddle-shaped coils.
  • An inner support tube 18 supports coils 12-17 with a first end member 19 attached to the top of inner support tube 18 and a second end member 20 threaded onto the opposite end of the inner support tube in order to compress the double "pancake" coils.
  • Inner support tube 18 and end members 19, 20 are fabricated from a nonmagnetic material, such as aluminum or plastic (for example, G-10). In some applications, inner support tube 18 and end members 19, 20 can be removed to form a freestanding coil assembly. The current is assumed to flow in a counter-clockwise direction as shown in Fig. 3 , with the magnetic field vector 26 along the axis ( Fig. 2 ) being generally normal to end member 19 (in the direction of longitudinal axis 29) which forms the top of coil assembly 10.
  • Short bridging segments 22 of superconducting material are used to electrically connect the individual double pancake coils 12-17 together in a series circuit and are formed of the same Bi 2 Sr 2 Ca 2 Cu 3 O x material used for winding the coils themselves. Alternatively, a heavier bridging material may be used. Furthermore, segments 22 interconnect adjacent double pancakes along interfaces where the outer diameters of the individual pancakes are substantially the same. For example, a segment 22 is shown bridging pancakes 12b and 13a of double pancakes 12 and 13, respectively.
  • Short bridging segments 22 are only required along the outer diameter of the coil assembly because the interfaces between pancakes of different diameters lie along the inner diameter of the coil assembly 10 where no "joint" exists by virtue of the double pancake winding technique described immediately below in conjunction with Fig. 4 .
  • the superconductor bridging segments need not be bent or otherwise tensioned, thereby avoiding the undesirable effects noted above.
  • a length of superconducting material (not shown) also connects one end of coil assembly 10 to one of the termination posts 24 located on end member 18 in order to supply current to coil assembly 10.
  • the bridging segments may be fabricated from metal, composite superconductor, or a pure superconductor.
  • the distribution of superconductor along the axial length of coil assembly 10 is not uniform but includes a greater amount of superconductor at central regions of the assembly than at end regions.
  • This configuration of double pancakes 12-17 is well suited for applications in which an increase in the magnetic field at a center region 23 of coil assembly 10 is desired and the level of magnetic field at outer end regions 25 of the coil is of less importance.
  • the level of magnetic field could be accomplished using a superconducting magnetic coil having a uniform outer diameter equal to that of the largest diameter pancake of coil assembly 10, for example, pancakes 14b and 15a, this magnetic field would have been achieved using a greater amount of superconductor, which is then required to be cooled, and therefore is less energy efficient.
  • a mandrel 30 is first mounted on a winding shaft 32 which is mounted in lathe chuck 31.
  • a storage spool 36 is mounted on the winding shaft 32, and a first portion of the total length of tape 33, initially wrapped around spool 34 and needed for winding one of the pancakes (generally the larger diameter pancake), is wound onto the storage spool 36, resulting in the length of tape 33 being shared between the two spools.
  • the spool 34 mounted to the arm 35 contains the first portion of the length of tape 33, and the storage spool 36 containing the second portion of the tape 33 is secured so that it does not rotate relative to mandrel 30.
  • the cloth 37 wound on the insulation spool 38 is then mounted on the arm 35.
  • the mandrel is then rotated, and the cloth 37 is co-wound onto the mandrel 30 with the first portion of the tape 33 to form a single "pancake” coil.
  • Thermocouple wire is wrapped around the first "pancake” coil in order to secure it to the mandrel.
  • the winding shaft 32 is then removed from the lathe chuck 31, and the storage spool 36 containing the second portion of the length of tape 33 is mounted on arm 35.
  • a layer of insulating material is then placed against the first "pancake” coil, and the second half of the tape 33 and the cloth 37 are then co-wound on the mandrel 30 using the process described above.
  • Multiple layers of superconductor may be alternatingly wound with layers of insulating material to form the coils.
  • Layers of strengthening material may also be wound between the layers of superconductor.
  • Other approaches for forming the double pancake coils, such as the well-known react-and-wind method may also be used.
  • the arrangement of double pancake coils described above and shown in Figs 2 and 3 provides a relatively energy efficient superconducting coil assembly where the magnetic field is high at the center of the coil.
  • the concept of the invention can also be used to provide a superconducting magnetic coil, wound with an anisotropic superconductor material, where the objective is to achieve uniformity of the current carrying capacity of the coil across its axial length.
  • the outer diameters of double pancakes 60-65 become increasingly larger from a center region 67 of the coil to the end regions 69 in order to compensate for the decrease in current carrying capacity which is related to the magnitude of the perpendicular component of the magnetic field.
  • the perpendicular component of the magnetic field is at a minimum in the central region of the coil where the lines are generally parallel with the longitudinal axis of the coil and becomes increasingly perpendicular at end regions where the flux lines bend around to close the loop.
  • any arrangement of pairs of pancake coils where the outer diameter of adjacent pancakes are substantially the same can be used to provide the desired magnetic field characteristic of the coil assembly.
  • coil assemblies having double pancakes wound to have pancakes of different diameters can be used equally as well with individual pancakes or with double pancake coils of uniform outer diameter.
  • the coil assemblies may have a longitudinal, outer diameter profile which, from a central region of the coil, increases or decreases along the longitudinal axis toward the end regions of the coil.
  • the outer diameter profile may be stepped up and down along the axis of the coil to provide any desired field shaping profile or to accommodate a constrained geometry, such as the rotor coil of a motor.
  • the concept of the invention is also applicable to superconducting magnetic coils of various shapes including racetrack magnets, solenoids and multipole magnets.
  • a coil assembly with this arrangement may be provided using, for example, double pancakes having the same outer diameter, but each having a different inner diameter (the individual pancakes of each double pancake having the same inner diameter).
  • the double pancakes are then positioned along a longitudinal axis of the coil assembly so that, for example, the inner diameter of the assembly monotonically increases or decreases along the axis.
  • double pancake coils positioned along a longitudinal axis 100 of their respective coil assemblies 80, 90, have individual pancakes of different inner diameter.
  • Short lengths of bridging segments 81 are used to electrically interconnect the adjacent double pancakes of different inner diameter at interfaces along the outer diameter of the coil.
  • an inner support tube may or may not be used to support the individual double pancakes.
  • superconducting magnetic coil assembly 80 includes pancake coils 82-87 arranged so that their inner diameters decrease from a center region 88 of the coil to end regions 89.
  • Such an arrangement might be desirable for superconductive motor or superconducting accelerometer applications.
  • one or more stators may be manufactured using superconducting double pancakes having a varying inner diameter like that shown in Fig. 6 . In this way, the stators can closely follow the outer shape of the rotor positioned within the inner bore.
  • a superconducting magnetic coil assembly 90 includes pancake coils 92-97 with their inner diameters increasing from a center region 98 to end regions 99.
  • a coil having this arrangement might be attractive in magnetic resonance imaging and chemical spectroscopy applications.
  • the individual pancake coils 92a-92b, 97a-97b which make up outer pancake coils 92 and 97, respectively are of the configuration, described above in conjunction with Figs. 2 and 3 . That is, the inner diameters of these double pancake coils are substantially constant, with different outer diameters.
  • Pancake coils 82-87 and 93-96 of Figs. 6 and 7 are wound in the same general manner as described in conjunction with Fig. 4 .
  • the mandrel would be configured to have portions with different outer diameters, each for accommodating winding of the individual pancakes of the double pancake. For example, a first portion of the superconducting tape is wound over a first outer diameter portion of the mandrel to form the first of the "single" pancake coils. The remaining tape on the storage spool is then moved to the arm and the second of the two individual pancakes is wound over the second different outer diameter portion of the mandrel.
  • a guide or track element may be provided to lend support to the tape at the transition between individual pancakes.
  • Such a guide element may be necessary to reduce possible fracturing of the tape or bending strains which can adversely effect the current carrying capability of the tape.
  • a side view of a representative one of the double pancake coils of coil assembly 90 shows the interface between the individuals pancakes 94a and 94b of double pancake 94.
  • a spiral portion 102 of the superconducting tape unwinds from the inner diameter of pancake 94a to the inner diameter of 94b.
  • the spiral portion 102 of the tape is rigidly fixed to inner side surface 104 of pancake 94b to provide mechanical support to the spiral portion.
  • Such coils can be arranged to provide a field with a high level of homogeneity or one with a high magnitude level at a specific area.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Particle Accelerators (AREA)

Claims (20)

  1. Supraleitende Magnetspulenanordnung mit:
    mindestens mehreren Doppel-Flachspulen, die entlang einer Längsachse der Spulenanordnung koaxial angeordnet sind, wobei jede Doppel-Flachspule der mehreren Doppel-Flachspulen ein Paar Einzel-Flachspulen umfasst, wobei jede Einzel-Flachspule einen anisotropen Hochtemperatursupraleiter beinhaltet, der um eine Längsachse der Spulenanordnung gewickelt ist und eine Öffnung der supraleitenden Magnetspulenanordnung definiert, wobei jede der mehreren Doppel-Flachspulen mit einer benachbarten der mehreren Doppel-Flachspulen elektrisch verbunden ist, wobei der radiale Querschnitt der Spulenanordnung aus elektrisch miteinander verbundenen Flachspulen in Bezug zur Längsachse variiert, wobei die Längsachse das Zentrum der Öffnung bildet, wobei die Einzel-Flachspulen von jeder der mehreren Doppel-Flachspulen eine unterschiedliche Außenabmessung voneinander aufweist, und wobei die Außenabmessungen von benachbarten Flachspulen der benachbarten Doppel-Flachspulen im wesentlichen gleich sind.
  2. Supraleitende Magnetspulenanordnung nach Anspruch 1, wobei jede Einzel-Flachspule einen parallel zur Längsachse verlaufenden Außenrand hat, und wobei ein Abstand von einem Außenrand der Einzel-Flachspulen zur Längsachse entlang der Längsachse der supraleitenden Magnetspule von einem zentralen Bereich zu Randbereichen der supraleitenden Magnetspule variiert.
  3. Supraleitende Magnetspulenanordnung nach Anspruch 2, wobei der Abstand vom Außenrand der Einzel-Flachspulen zur Längsachse entlang der Längsachse der supraleitenden Magnetspule von einem zentralen Bereich zu Randbereichen der supraleitenden Magnetspule monoton nicht größer wird.
  4. Supraleitende Magnetspulenanordnung nach Anspruch 2, wobei der Abstand vom Außenrand der Einzel-Flachspulen zur Längsachse entlang der Längsachse der supraleitenden Magnetspule von einem zentralen Bereich zu Randbereichen der supraleitenden Magnetspule monoton nicht kleiner wird.
  5. Supraleitende Magnetspulenanordnung nach Anspruch 2, wobei der Abstand vom Außenrand der Einzel-Flachspulen zur Längsachse entlang der Längsachse der supraleitenden Magnetspule von einem zentralen Bereich zu Randbereichen der supraleitenden Magnetspule größer wird.
  6. Supraleitende Magnetspulenanordnung nach Anspruch 1, wobei die Einzel-Flachspulen jeder Doppel-Flachspule mit einer Einzel-Flachspule einer benachbarten Doppel-Flachspule entlang eines Außenrandes der benachbarten Doppel-Flachspule elektrisch verbunden sind.
  7. Supraleitende Magnetspulenanordnung nach Anspruch 6, wobei jede Einzel-Flachspule einen parallel zur Längsachse verlaufenden Außenrand hat, und wobei ein Abstand zwischen dem Außenrand benachbarter Doppel-Flachspulen und der Längsachse entlang der Längsachse der supraleitenden Magnetspule von einem zentralen Bereich zu Randbereichen der supraleitenden Magnetspule monoton nicht größer wird.
  8. Supraleitende Magnetspulenanordnung nach Anspruch 6, wobei jede Einzel-Flachspule einen parallel zur Längsachse verlaufenden Außenrand hat, und wobei ein Abstand zwischen dem Außenrand der Einzel-Flachspulen und der Längsachse benachbarter Doppel-Flachspulen entlang der Längsachse der supraleitenden Magnetspule von einem zentralen Bereich zu Randbereichen der supraleitenden Magnetspule monoton nicht kleiner wird.
  9. Supraleitende Magnetspulenanordnung nach Anspruch 1, wobei die Doppel-Flachspulen kreisförmig sind.
  10. Supraleitende Magnetspulenanordnung nach Anspruch 1, wobei die Doppel-Flachspulen laufbahnförmig sind.
  11. Supraleitende Magnetspulenanordnung nach Anspruch 1, wobei die Doppel-Flachspulen sattelförmig sind.
  12. Supraleitende Magnetspulenanordnung nach Anspruch 1, wobei der anisotrope Hochtemperatursupraleiter der Wismut-Familie von Oxid-Supraleitern angehört.
  13. Supraleitende Magnetspulenanordnung nach Anspruch 1, wobei der anisotrope Hochtemperatursupraleiter der Yttrium-Familie von Oxid-Supraleitern angehört.
  14. Supraleitende Magnetspulenanordnung nach Anspruch 1, wobei der Supraleiter als Supraleiter-Band ausgeführt ist, das einen aus mehreren Fäden bestehenden zusammengesetzten Supraleiter umfasst, wobei einzelne supraleitende Fäden die Länge des aus mehreren Fäden bestehenden zusammengesetzten Leiters übersteigen und von einem matrixbildenden Material umgeben sind oder von diesem getragen werden.
  15. Supraleitende Magnetspulenanordnung nach Anspruch 1, wobei elektrisch leitfähige Brückensegmente die elektrischen Verbindungen zwischen Einzel-Flachspulen benachbarter Doppel-Flachspulen bilden.
  16. Supraleitende Magnetspulenanordnung nach Anspruch 15, wobei die elektrisch leitfähigen Brückensegmente als Supraleiter-Band, das ein zusammengesetztes supraleitendes Material enthält, ausgeführt sind.
  17. Supraleitende Magnetspulenanordnung nach Anspruch 1, wobei mindestens eine der Doppel-Flachspulen ein Paar Flachspulen umfasst, die aus einer Endloslänge supraleitenden Materials um die Längsachse gewickelt sind.
  18. Verfahren zum Bilden einer supraleitenden Magnetspulenanordnung mit einem radialen Querschnitt, der entlang einer Längsachse der Spulenanordnung variiert, mit den Schritten:
    a) Bilden von Doppel-Flachspulen, von denen jede ein Paar Flachspulen umfasst, die aus einer Endloslänge eines anisotropen Hochtemperatursupraleiters um die Längsachse der Spulenanordnung gewickelt sind, wobei jede Einzel-Flachspule einen Außenrand und einen Innenrand hat, die beide parallel zur Längsachse verlaufen, und wobei mindestens eine der aus einem Flachspulenpaar bestehenden Doppel-Flachspulen einen unterschiedlichen Abstand zwischen einem Innenrand der Einzel-Flachspulen und der Längsachse hat;
    b) koaxiales Anordnen der Doppel-Flachspulen entlang der Längsachse, so dass mindestens eine Flachspule jeder Doppel-Flachspule einen Abstand zwischen einem Außenrand der Einzel-Flachspule und der Längsachse hat, der einem Abstand zwischen einem Außenrand der Einzel-Flachspule und der Längsachse einer benachbarten Flachspule einer benachbarten Doppel-Flachspule im Wesentlichen gleich ist; und
    c) elektrisches Verbinden der mindestens einen Flachspule jeder Doppel-Flachspule mit der Flachspule der benachbarten Doppel-Flachspule, deren Abstand zwischen einem Außenrand der Einzel-Flachspule und der Längsachse im Wesentlichen gleich ist.
  19. Verfahren nach Anspruch 18, zusätzlich mit dem Schritt des festen Anbringens eines Abschnitts des Supraleiters, der das Flachspulenpaar mit der Flachspule mit dem kleineren Abstand zwischen einem Innenrand der Einzel-Flachspule und der Längsachse verbindet, und zwar an einer der anderen aus dem Paar von Einzel-Flachspulen benachbarten Seitenfläche.
  20. Verfahren nach Anspruch 18, zusätzlich mit dem Schritt des Verbindens der Doppel-Flachspulen mit einer im Wesentlichen nicht gekrümmten Länge supraleitenden Materials.
EP95939529.4A 1994-10-13 1995-10-13 Supraleitende magnetspule mit variablem profil Expired - Lifetime EP0786141B2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE69531693.1T DE69531693T3 (de) 1994-10-13 1995-10-13 Supraleitende magnetspule mit variablem profil

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US32282594A 1994-10-13 1994-10-13
US323494 1994-10-13
US322825 1994-10-13
US08/323,494 US5604473A (en) 1994-10-13 1994-10-13 Shaped superconducting magnetic coil
US08/541,639 US5581220A (en) 1994-10-13 1995-10-10 Variable profile superconducting magnetic coil
US541639 1995-10-10
PCT/US1995/013359 WO1996012288A1 (en) 1994-10-13 1995-10-13 Variable profile superconducting magnetic coil

Publications (4)

Publication Number Publication Date
EP0786141A1 EP0786141A1 (de) 1997-07-30
EP0786141A4 EP0786141A4 (de) 1997-12-17
EP0786141B1 EP0786141B1 (de) 2003-09-03
EP0786141B2 true EP0786141B2 (de) 2013-10-23

Family

ID=27406232

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95939529.4A Expired - Lifetime EP0786141B2 (de) 1994-10-13 1995-10-13 Supraleitende magnetspule mit variablem profil

Country Status (8)

Country Link
EP (1) EP0786141B2 (de)
JP (1) JPH10507589A (de)
CN (1) CN1088246C (de)
AU (1) AU694296B2 (de)
CA (1) CA2201715A1 (de)
DE (1) DE69531693T3 (de)
NZ (1) NZ296653A (de)
WO (1) WO1996012288A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4657921B2 (ja) 2003-07-17 2011-03-23 和夫 船木 超電導線材及びそれを用いた超電導コイル
JP2007073623A (ja) * 2005-09-05 2007-03-22 Kobe Steel Ltd 超電導コイル製造用巻枠および超電導ソレノイド巻コイル
JP5201551B2 (ja) * 2008-08-06 2013-06-05 株式会社Ihi 超電導コイル及び磁場発生装置
JP5198193B2 (ja) * 2008-09-12 2013-05-15 株式会社神戸製鋼所 超電導マグネットおよびその製造方法
JP6199628B2 (ja) * 2013-06-28 2017-09-20 株式会社東芝 超電導コイル装置
WO2016084164A1 (ja) * 2014-11-26 2016-06-02 三菱電機株式会社 超電導マグネットおよび超電導マグネットの製造方法
GB201515978D0 (en) * 2015-09-09 2015-10-21 Tokamak Energy Ltd HTS magnet sections
CN105554650A (zh) * 2016-01-01 2016-05-04 苏州井利电子股份有限公司 一种用于非圆型扬声器的耐疲劳音圈线
DE102017122229A1 (de) * 2017-09-26 2019-03-28 Pstproducts Gmbh EMPT Spule mit austauschbarem Leiter

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2217718A1 (de) 1971-04-16 1972-11-02 Union Carbide Corp., New York, N.Y. (V.StA.) Supraleitende Spulen und ein Verfahren zu ihrer Herstellung
DE2557527A1 (de) 1975-12-19 1977-06-23 Siemens Ag Verfahren zur herstellung einer spulenwicklung mit mindestens zwei wicklungslagen
DE3613682A1 (de) 1986-04-23 1987-10-29 Bruker Analytische Messtechnik Verfahren und vorrichtung zum kuehlen eines resistiven magnetsystems fuer kernspintomographen
DE3705294A1 (de) 1987-02-19 1988-09-01 Kernforschungsz Karlsruhe Magnetisches ablenksystem fuer geladene teilchen
US4906960A (en) 1984-04-03 1990-03-06 Hydro-Quebec Distribution transformer with coiled magnetic circuit
EP0397943A1 (de) 1989-05-19 1990-11-22 Fujikura Ltd. Methode zur Herstellung eines supraleitenden Kabels und Drahtes
JPH03108704A (ja) 1989-09-22 1991-05-08 Furukawa Electric Co Ltd:The 酸化物超電導コイルの製造方法
JPH0428208A (ja) 1990-05-23 1992-01-30 Japan Atom Energy Res Inst 変流器用超電導コイル
EP0472197A1 (de) 1990-08-24 1992-02-26 Sumitomo Electric Industries, Limited Hochtemperatur-supraleitende Spule
JPH065414A (ja) 1992-06-22 1994-01-14 Toshiba Corp 超電導マグネット
US5318948A (en) 1989-03-03 1994-06-07 Hitachi, Ltd. Oxide superconductor, superconducting wire and coil using the same and method of production thereof
JPH06284691A (ja) 1993-03-26 1994-10-07 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai 超電導回転子

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4499443A (en) * 1984-01-31 1985-02-12 The United States Of America As Represented By The United States Department Of Energy High-field double-pancake superconducting coils and a method of winding
JPS60227403A (ja) * 1984-04-26 1985-11-12 Yokogawa Hokushin Electric Corp 磁場発生用コイル
JPS6182404A (ja) * 1984-09-29 1986-04-26 Toshiba Corp 超電導マグネツト
US4682134A (en) * 1985-06-03 1987-07-21 General Electric Company Conical, unimpregnated winding for MR magnets
US5132278A (en) * 1990-05-11 1992-07-21 Advanced Technology Materials, Inc. Superconducting composite article, and method of making the same
JPH0439909A (ja) * 1990-06-06 1992-02-10 Toshiba Corp 超電導マグネット

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2217718A1 (de) 1971-04-16 1972-11-02 Union Carbide Corp., New York, N.Y. (V.StA.) Supraleitende Spulen und ein Verfahren zu ihrer Herstellung
DE2557527A1 (de) 1975-12-19 1977-06-23 Siemens Ag Verfahren zur herstellung einer spulenwicklung mit mindestens zwei wicklungslagen
US4906960A (en) 1984-04-03 1990-03-06 Hydro-Quebec Distribution transformer with coiled magnetic circuit
DE3613682A1 (de) 1986-04-23 1987-10-29 Bruker Analytische Messtechnik Verfahren und vorrichtung zum kuehlen eines resistiven magnetsystems fuer kernspintomographen
DE3705294A1 (de) 1987-02-19 1988-09-01 Kernforschungsz Karlsruhe Magnetisches ablenksystem fuer geladene teilchen
US5318948A (en) 1989-03-03 1994-06-07 Hitachi, Ltd. Oxide superconductor, superconducting wire and coil using the same and method of production thereof
EP0397943A1 (de) 1989-05-19 1990-11-22 Fujikura Ltd. Methode zur Herstellung eines supraleitenden Kabels und Drahtes
JPH03108704A (ja) 1989-09-22 1991-05-08 Furukawa Electric Co Ltd:The 酸化物超電導コイルの製造方法
JPH0428208A (ja) 1990-05-23 1992-01-30 Japan Atom Energy Res Inst 変流器用超電導コイル
EP0472197A1 (de) 1990-08-24 1992-02-26 Sumitomo Electric Industries, Limited Hochtemperatur-supraleitende Spule
JPH065414A (ja) 1992-06-22 1994-01-14 Toshiba Corp 超電導マグネット
JPH06284691A (ja) 1993-03-26 1994-10-07 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai 超電導回転子

Also Published As

Publication number Publication date
AU4131496A (en) 1996-05-06
DE69531693T2 (de) 2004-07-15
EP0786141B1 (de) 2003-09-03
EP0786141A4 (de) 1997-12-17
NZ296653A (en) 1999-01-28
JPH10507589A (ja) 1998-07-21
AU694296B2 (en) 1998-07-16
WO1996012288A1 (en) 1996-04-25
DE69531693T3 (de) 2014-04-10
EP0786141A1 (de) 1997-07-30
CA2201715A1 (en) 1996-04-25
CN1160454A (zh) 1997-09-24
DE69531693D1 (de) 2003-10-09
CN1088246C (zh) 2002-07-24

Similar Documents

Publication Publication Date Title
US5581220A (en) Variable profile superconducting magnetic coil
US5912607A (en) Fault current limiting superconducting coil
EP1212760B2 (de) Rotoranordnung mit supraleitender Magnetspule
US7106156B2 (en) Superconductor cables and magnetic devices
EP2050104B1 (de) Kompakte flexible hochstromleiter mit supraleitenden hochtemperaturbändern
US20080210454A1 (en) Composite Superconductor Cable Produced by Transposing Planar Subconductors
US5604473A (en) Shaped superconducting magnetic coil
CA2180728A1 (en) Superconducting wind-and-react coils and methods of manufacture
EP0781452B1 (de) Supraleitende magnetspule
JPH11506260A (ja) 撚られた電気導体を有する交流ケーブル
US6510604B1 (en) Superconducting cables experiencing reduced strain due to bending
EP0772208B1 (de) Spule aus supraleitendem Oxid und ein Verfahren zu deren Herstellung
WO1998047155A1 (en) Low resistance cabled conductors comprising superconducting ceramics
EP0786141B2 (de) Supraleitende magnetspule mit variablem profil
AU2002318900B2 (en) Fault Current Limiting Superconducting Coil
Takayasu HTS REBCO Rutherford-type cabling
WO1997029493A1 (en) Low-loss high q superconducting coil
MXPA00002588A (en) Fault current limiting superconducting coil
JPH04132108A (ja) Nb↓3Al系超電導導体
Furuto et al. Development of Multifilamentary Compound Superconductors
JPH08287746A (ja) 交流用超電導ケーブル
JPH02232903A (ja) 超電導コイル装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970428

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL SE

A4 Supplementary search report drawn up and despatched

Effective date: 19971027

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): CH DE FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19990719

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030903

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030903

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030903

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69531693

Country of ref document: DE

Date of ref document: 20031009

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031203

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: SIEMENS AG

Effective date: 20040526

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20121107

Year of fee payment: 18

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20121024

Year of fee payment: 18

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: AMERICAN SUPERCONDUCTOR CORPORATION

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20131023

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): CH DE FR GB IT LI NL SE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 69531693

Country of ref document: DE

Effective date: 20131023

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69531693

Country of ref document: DE

Representative=s name: V. FUENER EBBINGHAUS FINCK HANO, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69531693

Country of ref document: DE

Representative=s name: V. FUENER EBBINGHAUS FINCK HANO, DE

Effective date: 20140218

Ref country code: DE

Ref legal event code: R081

Ref document number: 69531693

Country of ref document: DE

Owner name: AMERICAN SUPERCONDUCTOR CORPORATION, DEVENS, US

Free format text: FORMER OWNER: AMERICAN SUPERCONDUCTOR CORP., WESTBOROUGH, MASS., US

Effective date: 20140218

Ref country code: DE

Ref legal event code: R081

Ref document number: 69531693

Country of ref document: DE

Owner name: AMERICAN SUPERCONDUCTOR CORPORATION, US

Free format text: FORMER OWNER: AMERICAN SUPERCONDUCTOR CORP., WESTBOROUGH, US

Effective date: 20140218

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131013

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20141029

Year of fee payment: 20

Ref country code: GB

Payment date: 20141027

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69531693

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20151012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20151012