EP0785825B1 - Deep-sea acoustic transmitter - Google Patents

Deep-sea acoustic transmitter Download PDF

Info

Publication number
EP0785825B1
EP0785825B1 EP95935491A EP95935491A EP0785825B1 EP 0785825 B1 EP0785825 B1 EP 0785825B1 EP 95935491 A EP95935491 A EP 95935491A EP 95935491 A EP95935491 A EP 95935491A EP 0785825 B1 EP0785825 B1 EP 0785825B1
Authority
EP
European Patent Office
Prior art keywords
annuli
transmitter
rings
decoupling
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95935491A
Other languages
German (de)
French (fr)
Other versions
EP0785825A1 (en
Inventor
Eric Sernit
Bernard Fromont
Pascal Bocquillon
Josette Adda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0785825A1 publication Critical patent/EP0785825A1/en
Application granted granted Critical
Publication of EP0785825B1 publication Critical patent/EP0785825B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
    • B06B1/0662Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface
    • B06B1/0674Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface and a low impedance backing, e.g. air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
    • B06B1/0633Cylindrical array

Definitions

  • the present invention relates to acoustic transmitters submarines used under significant immersions, up to example 1000 m. These acoustic transmitters can be used to perform underwater tracking using the sonar technique.
  • the ceramic rings of diameter R and thickness e are subjected to hydrostatic pressure, the radial component of which generates in the ceramic a stress itself amplified by a factor R / e .
  • this amplification factor is of the order of 10 for a depth of 1000 m and we therefore obtain a stress of radial origin of the order of 10 8 Pascals.
  • the invention proposes a transmitter underwater acoustics according to the appended claims.
  • the two piezoelectric ceramic rings 101 and 102 shown in Figure 1 are formed in this embodiment by segments 103 alternately polarized in one direction and in the other according to the circumference of the rings. These polarizations are represented by arrows 104. These segments comprise between them radial electrodes which are supplied by connections 105 so as to make them contract and expand according to the signals applied by these connections. Under these conditions, the ring widens and shrinks so radial to the rhythm of these signals. This radial movement is represented by arrows 106.
  • the invention proposes to separate these two rings by a ring intermediary 107, which rather presents in the case of the figure the form of a washer because its thickness in this embodiment is clearly narrower than its width.
  • Such a decoupling ring must have characteristics relatively contradictory mechanics. Indeed, it must resist the residual axial pressure so as not to crush excessively, this which normally corresponds to a relatively high hardness (the residual nature of this axial pressure will be explained later in the text). On the other hand, it must have a low shear impedance vis-à-vis the shear impedance of ceramic rings, so as to obtain an effective decoupling, which normally corresponds to relatively high elasticity, therefore at a rather low hardness.
  • the invention proposes to make the intermediate decoupling rings according to a three-layer structure shown in Figure 2.
  • This three-layer structure is formed by an internal layer 201 hard and rigid surrounded by two external layers 202 and 203 flexible and elastic. In this way, the inner layer opposes the crushing while the outer layers allow relatively free play of ceramic rings with respect to each other.
  • This characteristic is obtained, which corresponds to an impedance in low shear, by playing on the characteristics (modulus of shear, Poisson's ratio, losses) of the materials that constitute this ring and on the dimensions (thickness, height, diameter) of the three layers.
  • the characteristics module of shear, Poisson's ratio, losses
  • the materials that constitute this ring and on the dimensions (thickness, height, diameter) of the three layers.
  • we can dynamically optimize the characteristics of this intermediate ring by modeling it, in a manner known in the art, on a mass-spring principle in which the two external layers 202 and 203 act as springs providing the necessary compliance and inner layer plays the role of the mass providing the desired inert.
  • This transmitter therefore consists of a stack of rings in piezoelectric ceramic 101 separated by decoupling rings 301.
  • these rings have been shown in one piece for needs for simplification, while their structure is of course that of Figure 2.
  • the internal diameter of these decoupling rings is here more smaller than the internal diameter of the ceramic rings, which allows come to embed them in an external circular groove made in rubber centering rings 302.
  • the external diameter of these centering rings is equal to the internal diameter of the rings ceramic.
  • This assembly is then threaded onto an internal tube 303, the external diameter is equal to the internal diameter of the centering rings 302.
  • these rings 302 also make it possible to decouple the vibration of the ceramic rings from the tube 303.
  • This tube ends at its base with an external shoulder 304 on which installs the last decoupling ring and the last centering ring.
  • the tube also ends at the top with an internal shoulder 305.
  • top tape 307 which constitutes the top of the transmitter and which comes to rest on the shoulder internal 305 and on the first upper decoupling ring and the first upper centering ring.
  • the internal tube 303 supports most of the stresses due to the pressure exerted on the lower stages 306 and superior 307.
  • the force applied by these tapes on the rings of lower and upper end decoupling and therefore on the set of ceramic rings and other rings of decoupling is then considerably reduced and is essentially limited to the prestressing value obtained during assembly using the tube 303 as a prestressing rod for prestressing to a low value and control the stacking of ceramics, so as to obtain characteristics acoustic reproducible in air and water.
  • this tube internal 303 in a composite material formed of fibers wound with a very small angle of inclination relative to the vertical axis of this tube, as shown schematically in Figure 4.
  • These fibers will immobilized inside a holding matrix.
  • a carbon / resin type material which we know performances are currently among the best available.
  • the ceramic rings and the decoupling rings are identical.
  • the invention proposes to use decoupling rings whose height and possibly the constitution are variable from one to the other in order to modify the decoupling between the ceramic rings according to their position in the transmitter.
  • This decoupling modification allows modify the radial velocities of movement of ceramics, i.e. the relative amplitudes of emission of the acoustic waves from the rings relative to each other.
  • the shape of the radiation pattern of the transmitter depends a lot of this speed profile, especially when it comes to attenuation of the side lobes.
  • the profile thus obtained can therefore be adapted to the operational conditions in which one wishes to use the transmitter.

Description

La présente invention se rapporte aux émetteurs acoustiques sous-marins utilisés sous des immersions importantes, pouvant atteindre par exemple 1000 m. Ces émetteurs acoustiques peuvent être utilisés pour effectuer des repérages sous-marins selon la technique des sonars.The present invention relates to acoustic transmitters submarines used under significant immersions, up to example 1000 m. These acoustic transmitters can be used to perform underwater tracking using the sonar technique.

Il est connu de réaliser des émetteurs acoustiques sous-marins permettant d'obtenir un diagramme d'émission omnidirectionnel dans un plan, généralement en gisement. On utilise pour cela un empilement de céramiques piézo-électriques annulaires qui vibrent radialement. Pour obtenir un bon rendement acoustique on fixe la fréquence d'émission sensiblement à la fréquence de résonance des anneaux. Des valeurs opérationnelles courantes sont un diamètre de 20 cm environ pour une fréquence d'émission de l'ordre de 5 KHz.It is known to produce underwater acoustic transmitters to obtain an omnidirectional emission diagram in a plan, generally in deposit. We use a stack of annular piezoelectric ceramics that vibrate radially. For obtain a good acoustic performance we set the transmission frequency substantially at the resonant frequency of the rings. Values current operational diameters are approximately 20 cm for a transmission frequency of the order of 5 KHz.

Pour des immersions relativement faibles, correspondant par exemple à celles d'un sonar de coque, la pression hydrostatique de l'eau influence de manière négligeable le fonctionnement d'un tel émetteur.For relatively small immersions, corresponding by example to those of a hull sonar, the hydrostatic pressure of water has a negligible influence on the operation of such a transmitter.

Ainsi on connaít du brevet US 3, 444, 508 un récepteur acoustique sous-marin suspendu par un câble à une bouée. Il comporte un tube support terminé par deux tapes. En outre, il est uniquement récepteur.Thus we know from US Patent 3, 444, 508 a receiver underwater acoustics suspended by a cable from a buoy. It has a support tube terminated by two stages. In addition, it is only a receiver.

On connait aussi du brevet US 5, 099, 460 l'usage de joints pour protéger des anneaux de céramique acoustique contre les chocs.We also know from US Pat. No. 5,099,460 the use of seals for protect acoustic ceramic rings from impact.

Lorsqu'on veut procéder à des explorations à de plus grandes profondeurs, en plaçant par exemple l'émetteur dans un poisson remorqué sous une immersion importante, l'influence de la pression hydrostatique sur cet émetteur devient de plus en plus importante et finit par perturber son fonctionnement d'une manière excessive. On peut même dans certains cas assister à un endommagement, voire à une destruction, de l'émetteur en raison de la superposition des contraintes hydrostatiques et des contraintes dynamiques provenant de la vibration nécessaire à l'émission de l'onde acoustique. Pour obtenir en effet une puissance d'émission acoustique suffisante, on est amené à solliciter la céramique piézo-électriques par un champ électrique important qui entraíne des contraintes internes qui peuvent être très fortes, au point de provoquer des fractures de la céramique, ce qui nécessite alors de limiter la puissance rayonnée. When we want to explore larger depths, for example by placing the transmitter in a towed fish under significant immersion, the influence of hydrostatic pressure on this transmitter becomes more and more important and ends up disturbing its operating excessively. We can even in some cases witness damage to or even destruction of the transmitter by because of the superimposition of hydrostatic constraints and constraints dynamics originating from the vibration necessary for the emission of the wave acoustic. To obtain an acoustic emission power sufficient, we are led to stress the piezoelectric ceramic by a large electric field which causes internal stresses which can be very strong, to the point of causing ceramic fractures, which then requires limiting the radiated power.

A grande profondeur, les anneaux de céramique de diamètre R et d'épaisseur e sont soumis à une pression hydrostatique dont la composante radiale génère dans la céramique une contrainte elle-même amplifiée d'un facteur R / e. A titre d'exemple ce facteur d'amplification est de l'ordre de 10 pour une profondeur de 1000 m et on obtient donc une contrainte d'origine radiale de l'ordre de 108 Pascals.At great depth, the ceramic rings of diameter R and thickness e are subjected to hydrostatic pressure, the radial component of which generates in the ceramic a stress itself amplified by a factor R / e . By way of example, this amplification factor is of the order of 10 for a depth of 1000 m and we therefore obtain a stress of radial origin of the order of 10 8 Pascals.

En outre, la force axiale due à la pression hydrostatique sur les extrémités de l'émetteur atteint pour une profondeur de 1000 m et un émetteur de 20 cm de diamètre une valeur de 300 000 Newtons (30 tonnes). Cette force appliquée sur la tranche des anneaux de céramique engendre une autre contrainte supplémentaire de l'ordre de 600 000 hectopascals (600 bars). Outre les risques de fracture la résultante de ces deux contraintes supplémentaires entraíne des conséquences graves en modifiant les coefficients piézo-électriques des céramiques, d'où une dérive des performances sur le niveau sonore et sur les impédances de l'antenne. Ces dérives présentent au moins partiellement un caractère irréversible qui peut s'aggraver au fur et à mesure des immersions successives. La compensation de tous ces effets est sinon impossible tout au moins difficile et coûteuse à mettre en oeuvre.In addition, the axial force due to the hydrostatic pressure on the ends of the transmitter reached for a depth of 1000 m and a 20 cm diameter transmitter worth 300,000 Newtons (30 tonnes). This force applied to the edge of the ceramic rings generates another additional constraint of the order of 600,000 hectopascals (600 bars). Besides the risk of fracture the result of these two additional constraints has serious consequences by modifying the piezoelectric coefficients of ceramics, hence a drift of performance on sound level and antenna impedances. These drifts are at least partially of an irreversible nature which can worsen with successive immersions. The compensation for all these effects is otherwise impossible at least difficult and expensive to implement.

En outre, pour des raisons proprement acoustiques bien connues, il est utile de découpler mécaniquement les uns des autres les anneaux de céramique empilés les uns sur les autres pour former l'antenne de manière à pouvoir obtenir les performances souhaitées sur le diagramme d'émission de l'émetteur acoustique. Des forces aussi importantes que celles citées plus haut dues à des immersions profondes rendent impossible, par des moyens utilisés habituellement, un tel découplage mécanique entre les anneaux de céramique.Furthermore, for properly known acoustic reasons, it is useful to mechanically decouple the rings from each other ceramic stacked on top of each other to form the antenna so that ability to achieve the desired performance on the emission diagram for the acoustic transmitter. Forces as important as those mentioned more high due to deep immersions make it impossible, by means usually used, such a mechanical decoupling between the rings of ceramic.

Pour pallier ces inconvénients, l'invention propose un émetteur acoustique sous-marin selon les revendications annexées. To overcome these drawbacks, the invention proposes a transmitter underwater acoustics according to the appended claims.

D'autres particularités et avantages de l'invention apparaítront clairement dans la description suivante, faite à titre d'exemple non limitatif en regard des figures annexées qui représentent :

  • la figure 1, une vue de dessus et de côté en coupe de deux anneaux piézo-électriques séparés par un anneau de découplage ;
  • la figure 2, une vue en coupe de l'anneau de découplage de la figure 1 ;
  • la figure 3, une vue en coupe verticale d'un émetteur selon l'invention ; et
  • la figure 4, une vue en coupe d'une partie du tube interne de l'émetteur de la figure 3.
Other features and advantages of the invention will appear clearly in the following description, given by way of nonlimiting example with reference to the appended figures which represent:
  • Figure 1, a top and side view in section of two piezoelectric rings separated by a decoupling ring;
  • Figure 2, a sectional view of the decoupling ring of Figure 1;
  • Figure 3, a vertical sectional view of a transmitter according to the invention; and
  • FIG. 4, a sectional view of part of the internal tube of the transmitter of FIG. 3.

Les deux anneaux de céramique piézo-électrique 101 et 102 représentés sur la figure 1 sont formés dans cet exemple de réalisation par des segments 103 polarisés alternativement dans un sens et dans l'autre selon la circonférence des anneaux. Ces polarisations sont représentées par les flèches 104. Ces segments comportent entre eux des électrodes radiales qui sont alimentées par des connexions 105 de manière à les faire se contracter et se dilater en fonction des signaux appliqués par ces connexions. Dans ces conditions, l'anneau s'élargit et se rétrécit de manière radiale au rythme de ces signaux. Ce mouvement radial est représenté par les flèches 106.The two piezoelectric ceramic rings 101 and 102 shown in Figure 1 are formed in this embodiment by segments 103 alternately polarized in one direction and in the other according to the circumference of the rings. These polarizations are represented by arrows 104. These segments comprise between them radial electrodes which are supplied by connections 105 so as to make them contract and expand according to the signals applied by these connections. Under these conditions, the ring widens and shrinks so radial to the rhythm of these signals. This radial movement is represented by arrows 106.

Pour découpler l'anneau 101 par rapport à l'anneau 102, l'invention propose de séparer ces deux anneaux par un anneau intermédiaire 107, qui présente plutôt dans le cas de la figure la forme d'une rondelle car son épaisseur dans cet exemple de réalisation est nettement plus faible que sa largeur. To decouple the ring 101 from the ring 102, the invention proposes to separate these two rings by a ring intermediary 107, which rather presents in the case of the figure the form of a washer because its thickness in this embodiment is clearly narrower than its width.

Un tel anneau de découplage doit présenter des caractéristiques mécaniques relativement contradictoires. En effet, il doit résister à la pression axiale résiduelle pour ne pas s'écraser d'une manière excessive, ce qui correspond normalement à une dureté relativement importante (le caractère résiduel de cette pression axiale sera explicité plus loin dans le texte). D'autre part, il doit présenter une impédance en cisaillement faible vis-à-vis de l'impédance de cisaillement des anneaux de céramique, de manière à obtenir un découplage efficace, ce qui correspond normalement à une élasticité relativement grande, donc à une dureté plutôt faible.Such a decoupling ring must have characteristics relatively contradictory mechanics. Indeed, it must resist the residual axial pressure so as not to crush excessively, this which normally corresponds to a relatively high hardness (the residual nature of this axial pressure will be explained later in the text). On the other hand, it must have a low shear impedance vis-à-vis the shear impedance of ceramic rings, so as to obtain an effective decoupling, which normally corresponds to relatively high elasticity, therefore at a rather low hardness.

Pour obtenir simultanément ces deux résultats, l'invention propose de réaliser les anneaux intermédiaires de découplage selon une structure tricouche représentée sur la figure 2.To obtain these two results simultaneously, the invention proposes to make the intermediate decoupling rings according to a three-layer structure shown in Figure 2.

Cette structure tricouche est formée d'une couche interne 201 dure et rigide entourée de deux couches externes 202 et 203 souples et élastiques. De cette manière, la couche interne s'oppose à l'écrasement alors que les couches externes permettent un jeu relativement libre des anneaux de céramiques les uns par rapport aux autres.This three-layer structure is formed by an internal layer 201 hard and rigid surrounded by two external layers 202 and 203 flexible and elastic. In this way, the inner layer opposes the crushing while the outer layers allow relatively free play of ceramic rings with respect to each other.

On obtient cette caractéristique, qui correspond à une impédance en cisaillement faible, en jouant sur les caractéristiques (module de cisaillement, coefficient de Poisson, pertes) des matériaux qui constituent cet anneau et sur les dimensions (épaisseur, hauteur, diamètre) des trois couches. Compte tenu de la bande de fréquence dans laquelle doit fonctionner l'émetteur, on peut optimiser dynamiquement les caractéristiques de cet anneau intermédiaire en le modélisant, de manière connue dans l'art, sur un principe masse-ressort dans lequel les deux couches externes 202 et 203 jouent le rôle de ressorts apportant la compliance nécessaire et la couche interne joue le rôle de la masse apportant l'inerte souhaitée.This characteristic is obtained, which corresponds to an impedance in low shear, by playing on the characteristics (modulus of shear, Poisson's ratio, losses) of the materials that constitute this ring and on the dimensions (thickness, height, diameter) of the three layers. Taking into account the frequency band in which must operate the transmitter, we can dynamically optimize the characteristics of this intermediate ring by modeling it, in a manner known in the art, on a mass-spring principle in which the two external layers 202 and 203 act as springs providing the necessary compliance and inner layer plays the role of the mass providing the desired inert.

Dans la pratique, et pour les dimensions et fréquences pré-citées, en utilisant une couche centrale en polyéthylène d'une épaisseur de l'ordre du millimètre entourée par deux couches externes en néoprène ayant sensiblement la même épaisseur, on obtient déjà un résultat très proche du résultat souhaité et l'on peut affiner ce résultat en modifiant expérimentalement les épaisseurs. L'optimisation est obtenue très rapidement après quelques essais. In practice, and for the dimensions and frequencies mentioned above, using a central polyethylene layer with a thickness of the order of the millimeter surrounded by two outer layers of neoprene having substantially the same thickness, we already obtain a result very close to the desired result and we can refine this result by modifying experimentally the thicknesses. Optimization is obtained very quickly after a few tries.

On assemble alors les anneaux de céramique avec les autres éléments formant la structure de l'émetteur pour obtenir un émetteur complet tel que représenté sur la figure 3.We then assemble the ceramic rings with the others elements forming the transmitter structure to obtain a complete transmitter as shown in Figure 3.

Cet émetteur est donc constitué d'un empilement d'anneaux en céramique piézo-électriques 101 séparés par des anneaux de découplage 301. Sur la figure, ces anneaux ont été représentés monoblocs pour des besoins de simplification, alors que leur structure est bien entendu celle de la figure 2.This transmitter therefore consists of a stack of rings in piezoelectric ceramic 101 separated by decoupling rings 301. In the figure, these rings have been shown in one piece for needs for simplification, while their structure is of course that of Figure 2.

Le diamètre interne de ces anneaux de découplage est ici plus petit que le diamètre interne des anneaux de céramique, ce qui permet de venir les encastrer dans une rainure circulaire externe ménagée dans des anneaux de caoutchouc de centrage 302. Le diamètre externe de ces anneaux de centrage est égal au diamètre interne des anneaux de céramique.The internal diameter of these decoupling rings is here more smaller than the internal diameter of the ceramic rings, which allows come to embed them in an external circular groove made in rubber centering rings 302. The external diameter of these centering rings is equal to the internal diameter of the rings ceramic.

On enfile alors cet ensemble sur un tube interne 303 dont le diamètre externe est égal au diamètre interne des anneaux de centrage 302. Outre cette fonction de centrage, ces anneaux 302 permettent également de découpler la vibration des anneaux de céramique par rapport au tube 303. Ce tube se termine à sa base par un épaulement extérieur 304 sur lequel repose le dernier anneau de découplage et le dernier anneau de centrage. Le tube se termine également en haut par un épaulement intérieur 305.This assembly is then threaded onto an internal tube 303, the external diameter is equal to the internal diameter of the centering rings 302. In addition to this centering function, these rings 302 also make it possible to decouple the vibration of the ceramic rings from the tube 303. This tube ends at its base with an external shoulder 304 on which installs the last decoupling ring and the last centering ring. The tube also ends at the top with an internal shoulder 305.

On vient alors faire reposer l'épaulement externe 304 sur une tape inférieure 306 qui constitue la base de l'émetteur.We then come to rest the external shoulder 304 on a bottom tape 306 which forms the basis of the transmitter.

On ferme ensuite cet ensemble par une tape supérieure 307 qui constitue le sommet de l'émetteur et qui vient reposer sur l'épaulement interne 305 et sur le premier anneau de découplage supérieur et le premier anneau de centrage supérieur.We then close this assembly with a top tape 307 which constitutes the top of the transmitter and which comes to rest on the shoulder internal 305 and on the first upper decoupling ring and the first upper centering ring.

Au fur et à mesure de l'assemblage des différents anneaux sur le tube interne 303, on a fait passer les connexions 308 des anneaux de céramiques par des trous ménagés dans les anneaux de centrage. L'ensemble de ces connexions repasse à l'intérieur du tube interne par un trou ménagé dans celui-ci. Il ressort ensuite de l'émetteur par un passage étanche non représenté et ménagé par exemple dans la tape supérieure 307. As the various rings are assembled on the internal tube 303, the connections 308 of the rings of the ceramics through holes in the centering rings. All of these connections pass back inside the internal tube by a hole in it. It then leaves the transmitter through a passage waterproof not shown and provided for example in the upper tape 307.

On termine l'assemblage en recouvrant la face extérieure des anneaux de céramiques et des anneaux de découplage par une chemise 309 en matériau acoustiquement transparent, du polyuréthanne par exemple.We finish the assembly by covering the outside of the ceramic rings and decoupling rings by a shirt 309 in acoustically transparent material, polyurethane by example.

Selon l'invention, le tube interne 303 supporte l'essentiel des efforts dus à la pression qui s'exerce sur les tapes inférieure 306 et supérieure 307. L'effort appliqué par ces tapes sur les anneaux de découplage d'extrémité inférieur et supérieur et par conséquent sur l'ensemble des anneaux de céramique et des autres anneaux de découplage est alors considérablement réduit et se limite essentiellement à la valeur de précontrainte obtenue à l'assemblage en utilisant le tube 303 comme tige de précontrainte pour précontraindre à une valeur faible et maítrisée l'empilage de céramiques, de façon à obtenir des caractéristiques acoustiques reproductibles dans l'air et dans l'eau.According to the invention, the internal tube 303 supports most of the stresses due to the pressure exerted on the lower stages 306 and superior 307. The force applied by these tapes on the rings of lower and upper end decoupling and therefore on the set of ceramic rings and other rings of decoupling is then considerably reduced and is essentially limited to the prestressing value obtained during assembly using the tube 303 as a prestressing rod for prestressing to a low value and control the stacking of ceramics, so as to obtain characteristics acoustic reproducible in air and water.

Pour cela il est nécessaire d'utiliser un tube interne 303 dont le coefficient élastique soit le plus faible possible et qui ne présente pas de forme trop massive pour éviter d'alourdir à l'excès l'émetteur. Ceci permet en outre d'utiliser un tube creux dont le volume intérieur peut être utilisé pour loger au moins une partie de l'électronique de traitement des signaux appliqués aux céramiques.For this it is necessary to use an internal tube 303 whose elastic coefficient is as low as possible and which does not have shape too massive to avoid weighing down the transmitter excessively. This allows in in addition to using a hollow tube whose internal volume can be used to house at least some of the signal processing electronics applied to ceramics.

Pour obtenir ces résultats, l'invention propose de réaliser ce tube interne 303 dans un matériau composite formé de fibres bobinées avec un angle d'inclinaison très faible par rapport à l'axe vertical de ce tube, comme représenté de manière schématique sur la figure 4. Ces fibres seront immobilisées à l'intérieur d'une matrice de maintien. A titre d'exemple on utilisera un matériau de type carbone/résine, dont on sait que les performances sont à l'heure actuelle parmi les meilleures disponibles.To obtain these results, the invention proposes to produce this tube internal 303 in a composite material formed of fibers wound with a very small angle of inclination relative to the vertical axis of this tube, as shown schematically in Figure 4. These fibers will immobilized inside a holding matrix. For example we will use a carbon / resin type material, which we know performances are currently among the best available.

Dans l'exemple de réalisation représenté sur la figure 3, les anneaux de céramiques et les anneaux de découplage sont identiques. A titre de variante, l'invention propose d'utiliser des anneaux de découplage dont la hauteur et éventuellement la constitution sont variables de l'un à l'autre afin de modifier le découplage entre les anneaux de céramique selon leur position dans l'émetteur. Cette modification de découplage permet de modifier les vitesses radiales de déplacement des céramiques, c'est à dire les amplitudes relatives d'émission des ondes acoustiques des anneaux les uns par rapport aux autres. On obtient ainsi un profil de vitesse radiale sur toute la hauteur qu'on peut faire varier dans de grandes limites. Comme on le sait la forme du diagramme de rayonnement de l'émetteur dépend beaucoup de ce profil de vitesse, en particulier en ce qui concerne l'atténuation des lobes secondaires. Le profil ainsi obtenu peut donc être adapté aux conditions opérationnelles dans lesquelles on souhaite utiliser l'émetteur. On pourrait aussi faire varier la hauteur des anneaux de céramique piézo-électriques, ce qui donnerait un degré de liberté supplémentaire pour configurer l'émetteur.In the embodiment shown in Figure 3, the ceramic rings and the decoupling rings are identical. AT as a variant, the invention proposes to use decoupling rings whose height and possibly the constitution are variable from one to the other in order to modify the decoupling between the ceramic rings according to their position in the transmitter. This decoupling modification allows modify the radial velocities of movement of ceramics, i.e. the relative amplitudes of emission of the acoustic waves from the rings relative to each other. This gives a radial velocity profile over all the height that can be varied within large limits. As we know it the shape of the radiation pattern of the transmitter depends a lot of this speed profile, especially when it comes to attenuation of the side lobes. The profile thus obtained can therefore be adapted to the operational conditions in which one wishes to use the transmitter. We could also vary the height of the rings of piezoelectric ceramic, which would give a degree of freedom additional to configure the transmitter.

Claims (5)

  1. Underwater acoustic transmitter for large submersion, of the type comprising a set of piezoelectric annuli (101, 102) stacked to form a transmitter cylinder, which is threaded onto a tube (303) supporting at its two ends plugs (306, 307), characterized in that the elastic coefficient of the tube is much smaller than that of the stack of piezoelectric annuli and that its dimensions are such that it supports the most part of the loads due to the pressure exerted on the plugs at its ends so as to protect the stack of annuli from the loads due to the pressure, and in that it furthermore comprises a set of decoupling annuli (301) inserted respectively between the piezoelectric annuli and the effectiveness of which stems from the axial stress reduction due to the resistant tube (303).
  2. Transmitter according to Claim 1, characterized in that the decoupling annuli have a three-layer structure comprising a hard and rigid internal layer (201) and two flexible and elastic external layers (202, 203).
  3. Transmitter according to Claims [sic] 2, characterized in that the internal layer is made of polyethylene and the external layer of neoprene.
  4. Transmitter according to any one of Claims 1 to 3, characterized in that the thicknesses of the decoupling annuli (301) differ from one another so as to obtain a weighting of the transmission of the piezoelectric annuli (101) as a function of their location along the height of the antenna.
  5. Transmitter according to any one of Claims 1 to 4, characterized in that the internal tube (303) is formed from a carbon/resin composite.
EP95935491A 1994-10-14 1995-10-13 Deep-sea acoustic transmitter Expired - Lifetime EP0785825B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9412285 1994-10-14
FR9412285A FR2725868B1 (en) 1994-10-14 1994-10-14 UNDERWATER ACOUSTIC TRANSMITTER FOR LARGE IMMERSION
PCT/FR1995/001350 WO1996011752A1 (en) 1994-10-14 1995-10-13 Deep-sea acoustic transmitter

Publications (2)

Publication Number Publication Date
EP0785825A1 EP0785825A1 (en) 1997-07-30
EP0785825B1 true EP0785825B1 (en) 1999-03-31

Family

ID=9467866

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95935491A Expired - Lifetime EP0785825B1 (en) 1994-10-14 1995-10-13 Deep-sea acoustic transmitter

Country Status (6)

Country Link
US (1) US5784341A (en)
EP (1) EP0785825B1 (en)
AU (1) AU696506B2 (en)
DE (1) DE69508779T2 (en)
FR (1) FR2725868B1 (en)
WO (1) WO1996011752A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006013220B3 (en) * 2006-03-22 2007-08-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Ultrasound converter with phased-array strip-form piezo-elements, has sound-radiating surface curved along given direction of curvature

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3444508A (en) * 1967-09-08 1969-05-13 Sparton Corp Directional sonar system
US3781781A (en) * 1972-07-21 1973-12-25 Us Navy Piezoelectric transducer
FR2219598B1 (en) * 1973-02-23 1978-12-01 Thomson Csf
FR2647909B1 (en) * 1989-06-02 1992-04-30 Thomson Csf METHOD AND DEVICE FOR CORRECTING SIGNALS PROVIDED BY HYDROPHONES FROM AN ANTENNA AND SONAR ANTENNA USING SUCH A DEVICE
FR2656720B1 (en) * 1989-12-29 1992-03-20 Thomson Csf ACOUSTIC WAVE REFLECTOR WHICH CAN OPERATE UNDER STRONG IMMERSION.
US5099460A (en) * 1990-08-13 1992-03-24 Seabeam Instruments, Inc. Sonar transducer
FR2691596B1 (en) * 1992-05-22 1995-04-28 Thomson Csf Acoustic underwater antenna with area sensor.

Also Published As

Publication number Publication date
AU3749295A (en) 1996-05-06
US5784341A (en) 1998-07-21
WO1996011752A1 (en) 1996-04-25
DE69508779D1 (en) 1999-05-06
DE69508779T2 (en) 1999-10-07
FR2725868A1 (en) 1996-04-19
AU696506B2 (en) 1998-09-10
FR2725868B1 (en) 1997-01-03
EP0785825A1 (en) 1997-07-30

Similar Documents

Publication Publication Date Title
EP1222653B1 (en) Underwater broadband acoustic transducer
EP3414756B1 (en) Acoustic absorber, acoustic wall and method for design and production
EP2670536B1 (en) Low-frequency electro-acoustic transducer and method of generating acoustic waves
EP0177383B1 (en) Broadband omnidirectional elastic wave transducer and method of manufacturing it
FR2556165A1 (en) MULTI-LAYER POLYMER HYDROPHONE NETWORK
FR2466931A1 (en) DIRECTIONAL ELECTRO-ACOUSTIC TRANSDUCER
EP3198586B1 (en) Omnidirectional antenna
EP0367681A1 (en) Flextensional transducer
EP0568592A1 (en) Flextensor acoustic transducer for deep immersion.
EP0785825B1 (en) Deep-sea acoustic transmitter
EP0317380A1 (en) Lining with low sound reflectivity
CA2202301C (en) Deep-sea acoustic transmitter
CH691335A5 (en) Device might be dumped and having a sound transducer.
FR2864226A1 (en) Micro-machined vibrating structure for use in microgyrometer, has anchoring end integrated to fixed support, and naturally uncoupled zone located between anchoring end and free end of vibrating wall
EP0881001B1 (en) Electrodynamic transducer for underwater acoustics
EP4075422A1 (en) Micrometric loudspeaker
FR2748183A1 (en) HYDROPHONE AND METHOD FOR THE PRODUCTION THEREOF
FR2955731A1 (en) Acoustic enclosure for emitting acoustic waves, has viscoelastic membrane displaced under action of wavy excitation to attenuate stationary acoustic wave created by cavity, at or around resonance frequency
EP3677051B1 (en) Aquatic acoustic enclosure
WO1999064897A1 (en) High-resolution seismic acquisition device
EP1062055B1 (en) Collapsible annular acoustic transmission antenna
EP3278330B1 (en) Acoustic impedance matching device and loudspeaker provided with such a device
EP0413633A1 (en) Broad-band underwater transmitter
CA2109466C (en) Method and transducers for transmitting low frequency acoustic waves in a liquid
EP2881807A1 (en) Acoustic dispersion membrane for a musical watch

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970407

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT

17Q First examination report despatched

Effective date: 19971001

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

REF Corresponds to:

Ref document number: 69508779

Country of ref document: DE

Date of ref document: 19990506

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990520

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20141008

Year of fee payment: 20

Ref country code: DE

Payment date: 20141007

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20141014

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69508779

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20151012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20151012