EP0568592A1 - Flextensor acoustic transducer for deep immersion. - Google Patents

Flextensor acoustic transducer for deep immersion.

Info

Publication number
EP0568592A1
EP0568592A1 EP92903815A EP92903815A EP0568592A1 EP 0568592 A1 EP0568592 A1 EP 0568592A1 EP 92903815 A EP92903815 A EP 92903815A EP 92903815 A EP92903815 A EP 92903815A EP 0568592 A1 EP0568592 A1 EP 0568592A1
Authority
EP
European Patent Office
Prior art keywords
transducer
motor
hull
shell
viscoelastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92903815A
Other languages
German (de)
French (fr)
Other versions
EP0568592B1 (en
Inventor
Michel Lagier
Philippe Dufourcq
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0568592A1 publication Critical patent/EP0568592A1/en
Application granted granted Critical
Publication of EP0568592B1 publication Critical patent/EP0568592B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K9/00Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers
    • G10K9/12Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated
    • G10K9/121Flextensional transducers

Definitions

  • the present invention relates to acoustic transducers of the flexural type capable of being submerged to a significant depth without suffering damage and always operating correctly. It applies to the emission and / or reception of acoustic or ultrasonic acoustic waves in fluid environments such as the submarine space.
  • Known flextensor transducers are generally composed of a flexible, watertight shell with a cylindrical side wall of elliptical cross section, vibrated by one or more pillars or bars of piezoelectric ceramic cells. Each pillar is kept in compression between the opposite parts furthest from the side wall. In emission, an alternating electric field is applied in the longitudinal direction of each pillar and the resulting movement, which takes place along the longitudinal axis of each pillar, is transmitted, amplified, to the surrounding liquid medium, the amplitude of this movement being maximum in the plane generated by the minor axes of the ellipses formed by each cross section.
  • a compression preload of the piezoelectric cells of each pillar is necessary to avoid breakage of the ceramic when the pillars are stressed in extension.
  • this prestressing is supplied directly by the shell when the pillars are assembled.
  • the housings provided in the shell for the pillars have, before assembly, shorter lengths than those of the pillars.
  • To set up the pillars it suffices to apply two opposite external forces to the facing parts closest to the wall lateral to compress the shell at this point and cause by elastic deformation thereof a just sufficient increase in the length of the housings to allow the installation of the pillars.
  • the prestressing force is applied when the action of the two external forces is suppressed.
  • the pillars then remain compressed in their housings between the parts of the inner lateral wall of the shell in contact with their ends.
  • This embodiment requires, in order to obtain correct operation of the transducers at a determined depth, to give the amplitude of the two external forces a value greater than that which is normally exerted by the hydrostatic pressure at this depth.
  • This has the disadvantage of limiting the use of these types of transducers to the depths for which the prestressing force of the pillar can still be ensured, to avoid breakage of the ceramic constituting the piezoelectric cells.
  • the prestressing force of each pillar can be obtained by means of a rod passing through each pillar along its longitudinal axis, the ends of the rod being held by bolting to the shell.
  • the hydrostatic pressure exerts, via the shell, a tensile force on each pillar which causes, when it is too strong, a rupture of the ceramic making up the piezoelectric cells.
  • the stacking of the piezoelectric cells can be carried out along a prestressing rod which is not fixed by its ends to shell.
  • the stack is maintained by two rails so as not to be subjected, as in the embodiment described above, to a tensile force directed along the longitudinal axis of the pillar.
  • the immersion of the transducer is such that one or two sides of the pillars are no longer in contact with the shell, the transducer can no longer function properly.
  • the invention proposes a flexural tensor acoustic transducer for deep immersion, comprising a hollow shell of oblong section and an electroacoustic motor intended to excite this shell along the major axis of this section, mainly characterized in that it further comprises viscoelastic means making it possible to absorb without presenting appreciable mechanical resistance the forces exerted by the hull on the engine under the effect of deformations originating from immersion, and having a significant stiffness at the operating frequencies of the engine to communicate to the hull the vibrations of this engine with good efficiency.
  • FIG. 1 a sectional view of a transducer according to a first embodiment of the invention
  • Figure 2 a characteristic diagram of the material making up the part 104 of Figure 1
  • - Figure 3 a sectional view of a second embodiment
  • Figure 1 a sectional view of a type 4 flexuring transducer according to the classification established by ROYSTER in the journal JASA N ° 38, 1965 p. 879 to 880.
  • This -transducteur includes a shell of elliptical section 101 in which is inserted a piezoelectric motor 102 placed along the major axis of the ellipse and which is supported by its two ends on the interior faces of the shell to make it vibrate, under the influence of an electric voltage, along an axis OX parallel to this major axis. Under this influence the whole shell begins to vibrate and the amplitude of the movement is maximum along an OY axis parallel to the minor axis of the ellipse.
  • the shell deforms by flattening along an axis 0Y, and therefore widening along the axis 0X since the interior 103 does not communicate with the outside and therefore contains only 1 air at atmospheric pressure.
  • This enlargement tends to draw on the motor 102, formed of a stack of piezoelectric ceramics. As these do not support the traction forces, they risk breaking in dynamics.
  • a part 104 formed of a viscoelastic material whose static stiffness is low and the dynamic stiffness is high is inserted, substantially in the middle of the motor 102.
  • two intermediate steel plates 105 and 106 have also been inserted between this viscoelastic part and the ceramics making up the motor, but this arrangement is not essential.
  • the dimensions of the viscoelastic part and of the metal plates are shown to be substantially equal to those of the ceramic plates forming the motor, but the exact dimensioning will be chosen according to the characteristics of the materials used.
  • the material used having a difference in compliance, or stiffness, between the low frequencies which correspond to static stresses and the high
  • OR - f Q _ is the resonance frequency before the seals are put in place.
  • Various materials make it possible to manufacture such a seal.
  • a typical characteristic for selecting these materials is that they have a glass transition at room temperature in the frequency range considered.
  • a polyurethane can be used as material, of which the stiffness modulus G expressed in N / m 2 and the loss factor tg ⁇ as a function of the frequency in Hz has shown in FIG. 2.
  • the transition is obtained for a frequency substantially equal to 10 ⁇ 2 Hz, that is to say for stresses on the material moving very slowly (period 100 seconds typically corresponding to the progressive crushing of the shell of the flexor when it is immersed more and more deeply).
  • the value G Q of the module at this transition is then substantially equal to 4.10 N / m.
  • the viscoelastic material can be placed in many other places and there is shown in FIG. 3 a second embodiment in which a seal 304 is inserted between the shell 301 and the motor 302.
  • This motor 302 comprises a stack of ceramics subjected to a prestressing using a rod 311 which crosses the stack right through. Clamping nuts 312 are screwed to the ends of the rod to compress the ceramics via a metal support piece
  • the viscoelastic seal 304 is formed by two plates inserted on either side between the shell and the part 313. In this configuration, this seal works in bending while in the previous embodiment it worked in compression, but the result is the same .
  • the other end of the flexuring transducer of FIG. 3 may be identical to the end shown in this figure, or else the motor may be directly fixed to the hull.
  • the realization comprising only one joint on one side is easier to manufacture but this joint is subjected to larger deformations, which are not always desirable.
  • a class 4 flextensor transducer whose depth is equal to 10 cm long and whose attachment is in accordance with Figure 3 to both ends of this engine.
  • the shell therefore has 4 flat seals 10 cm long (2 on each side).
  • Typical characteristics of such a transducer are for example:
  • the transducer will be manufactured by thickening this shell at the connection with the motor. The dynamic stiffness is then worth
  • the invention also extends to other types of flexors, such as those of class 2 or 5.
  • the viscoelastic filter 404 has the form of a ring placed between the motor 402, itself in the form of a ring, and the shell 401 which is in the form of two domes assembled by their circumferences.

Abstract

L'invention concerne les transducteurs acoustiques du type flextenseur dans lesquels un corps de section oblongue est sollicité par un moteur selon le grand axe de cette section. Elle consiste à utiliser des moyens viscoélastiques (104) pour absorber les déformations lentes de la coque (401) sous l'effet de l'immersion. Ces moyens viscoélastiques présentent une raideur importante aux fréquences d'utilisation du transducteur de manière à transmettre avec un bon rendement les vibrations du moteur à la coque. Elle permet de fabriquer un transducteur flextenseur pouvant supporter une immersion importante sans que le moteur se casse et dont le rendement est supérieur à 75 %.The invention relates to acoustic transducers of the flextensor type in which a body of oblong section is stressed by a motor along the major axis of this section. It consists in using viscoelastic means (104) to absorb the slow deformations of the hull (401) under the effect of immersion. These viscoelastic means have a high stiffness at the frequencies of use of the transducer so as to transmit with good efficiency the vibrations of the engine to the hull. It makes it possible to manufacture a flextensor transducer that can withstand significant immersion without the motor breaking and whose efficiency is greater than 75%.

Description

TRANSDUCTEUR ACOUSTIQUE FLEXTENSEUR POUR IMMERSION PROFONDE FLEXIBLE ACOUSTIC TRANSDUCER FOR DEEP IMMERSION
La présente invention se rapporte aux transducteurs acoustiques du type flextenseurs susceptibles d'être immergés à une profondeur importante sans subir de dégâts et en fonctionnant toujours correctement . Elle s'applique à l'émission et/ou à la réception des ondes acoustiques sonores ou ultra- sonores dans les milieux fluides tels que l'espace sous -marin .The present invention relates to acoustic transducers of the flexural type capable of being submerged to a significant depth without suffering damage and always operating correctly. It applies to the emission and / or reception of acoustic or ultrasonic acoustic waves in fluid environments such as the submarine space.
Les transducteurs flextenseurs connus sont composés généralement par une coque flexible, étanche, à paroi latérale cylindrique de section droite elliptique, mise en vibration par un ou plusieurs piliers ou barreaux de cellules piézoélectriques en céramique . Chaque pilier est maintenu en compression entre les parties opposées les plus éloignées de la paroi latérale . En émission, un champ électrique alternatif est appliqué dans la direction longitudinale de chaque pilier et le mouvement résultant, qui a lieu suivant l'axe longitudinal de chaque pilier, est retransmis, amplifié, au milieu liquide environnant , l'amplitude de ce mouvement étant maximum dans le plan engendré par les petits axes des ellipses formées par chaque section droite .Known flextensor transducers are generally composed of a flexible, watertight shell with a cylindrical side wall of elliptical cross section, vibrated by one or more pillars or bars of piezoelectric ceramic cells. Each pillar is kept in compression between the opposite parts furthest from the side wall. In emission, an alternating electric field is applied in the longitudinal direction of each pillar and the resulting movement, which takes place along the longitudinal axis of each pillar, is transmitted, amplified, to the surrounding liquid medium, the amplitude of this movement being maximum in the plane generated by the minor axes of the ellipses formed by each cross section.
Une précontrainte en compression des cellules piézoélectriques de chaque pilier est nécessaire pour éviter le bris de la céramique lorsque les piliers sont sollicités en extension . Cette précontrainte est, selon un premier mode de réalisation connu, fournie directement par la coque au moment de l'assemblage des piliers . Les logements prévus dans la coque pour les piliers ont, avant l'assemblage, des longueurs inférieures à celles des piliers . Pour mettre en place les piliers , il suffit d'appliquer deux forces extérieures opposées sur les parties en regard les plus rapprochées de la paroi latérale pour comprimer la coque à cet endroit et provoquer par déformation élastique de celle-ci une augmentation juste suffisante de la longueur des logements pour permettre l'installation des piliers. La force de précontrainte est appliquée lorsque l'action des deux forces extérieures est supprimée. Les piliers restent alors comprimés dans leurs logements entre les parties de la paroi latérale intérieure de la coque en contact avec leurs extrémités .A compression preload of the piezoelectric cells of each pillar is necessary to avoid breakage of the ceramic when the pillars are stressed in extension. According to a first known embodiment, this prestressing is supplied directly by the shell when the pillars are assembled. The housings provided in the shell for the pillars have, before assembly, shorter lengths than those of the pillars. To set up the pillars, it suffices to apply two opposite external forces to the facing parts closest to the wall lateral to compress the shell at this point and cause by elastic deformation thereof a just sufficient increase in the length of the housings to allow the installation of the pillars. The prestressing force is applied when the action of the two external forces is suppressed. The pillars then remain compressed in their housings between the parts of the inner lateral wall of the shell in contact with their ends.
Ce mode de réalisation exige, pour obtenir un fonctionnement correct des transducteurs à une profondeur déterminée, de donner à l'amplitude des deux forces extérieures une valeur supérieure à celle qui est exercée normalement par la pression hydrostatique à cette profondeur. Ceci a pour inconvénient de limiter l'utilisation de ces types de transducteurs aux profondeurs pour lesquelles la force de précontrainte du pilier peut encore être assurée, pour éviter le bris de la céramique constituant les cellules piézoélectriques .This embodiment requires, in order to obtain correct operation of the transducers at a determined depth, to give the amplitude of the two external forces a value greater than that which is normally exerted by the hydrostatic pressure at this depth. This has the disadvantage of limiting the use of these types of transducers to the depths for which the prestressing force of the pillar can still be ensured, to avoid breakage of the ceramic constituting the piezoelectric cells.
Selon un deuxième mode de réalisation connu, la force de précontrainte de chaque pilier peut être obtenue au moyen d'une tige traversant chaque pilier suivant son axe longitudinal, les extrémités de la tige étant maintenues par boulonnage à la coque. Mais dans ce cas, la pression hydrostatique exerce, par l'intermédiaire de la coque, un effort de traction sur chaque pilier qui entraîne, lorsqu'il est trop fort, une rupture de la céramique composant les cellules piézoélectriques .According to a second known embodiment, the prestressing force of each pillar can be obtained by means of a rod passing through each pillar along its longitudinal axis, the ends of the rod being held by bolting to the shell. But in this case, the hydrostatic pressure exerts, via the shell, a tensile force on each pillar which causes, when it is too strong, a rupture of the ceramic making up the piezoelectric cells.
Enfin selon un troisième mode de réalisation connu, dont une description peut être trouvée dans le brevet US 4 420 826, l'empilement des cellules piézoélectriques peut être réalisé le long d'une tige de précontrainte qui n'est pas fixée par ses extrémités à la coque. Le maintien de l'empilement est assuré par deux rails pour ne pas être soumis, comme dans le mode de réalisation précédemment décrit, à un effort de traction dirigé selon l'axe longitudinal du pilier. Cependant, là encore, lorsque l'immersion du transducteur est telle qu'un ou deux côtés des piliers ne sont plus en contact avec la coque, le transducteur ne peut plus fonctionner correctement.Finally according to a third known embodiment, a description of which can be found in US Pat. No. 4,420,826, the stacking of the piezoelectric cells can be carried out along a prestressing rod which is not fixed by its ends to shell. The stack is maintained by two rails so as not to be subjected, as in the embodiment described above, to a tensile force directed along the longitudinal axis of the pillar. However, here again, when the immersion of the transducer is such that one or two sides of the pillars are no longer in contact with the shell, the transducer can no longer function properly.
La demanderesse a également proposé dans le demande de brevet français n° 88 14416 déposée le 4/11/88 deux autres modes de réalisations d'un transducteur flextenseur dans lesquels on ajoute aux piliers de céramique une contremasse, qui peut être éventuellement assurée par un dispositif fluidique . Ces dispositifs fonctionnent correctement mais ces organes supplémentaires compliquent leur fabrication. Pour pallier ces inconvénients l'invention propose un transducteur acoustique flextenseur pour immersion profonde, comportant une coque creuse de section oblongue et un moteur électroacoustique destiné à exciter cette coque selon le grand axe de cette section, principalement caractérisé en ce qu'il comprend en outre des moyens viscoelastiques permettant d'absorber sans présenter de résistance mécanique appréciable les efforts exercés par la coque sur le moteur sous l'effet des déformations provenant de l'immersion, et présentant une raideur importante aux fréquences de fonctionnement du moteur pour communiquer à la coque les vibrations de ce moteur avec un bon rendement .The Applicant has also proposed in the French patent application n ° 88 14416 filed on 4/11/88 two other embodiments of a flextensor transducer in which a countermass is added to the ceramic pillars, which can possibly be provided by a fluidic device. These devices work correctly but these additional organs complicate their manufacture. To overcome these drawbacks, the invention proposes a flexural tensor acoustic transducer for deep immersion, comprising a hollow shell of oblong section and an electroacoustic motor intended to excite this shell along the major axis of this section, mainly characterized in that it further comprises viscoelastic means making it possible to absorb without presenting appreciable mechanical resistance the forces exerted by the hull on the engine under the effect of deformations originating from immersion, and having a significant stiffness at the operating frequencies of the engine to communicate to the hull the vibrations of this engine with good efficiency.
D'autres particularités et avantages de l'invention apparaîtront clairement dans la description suivante faite à titre d'exemple non limitatif en regard des figures annexées qui représentent :Other features and advantages of the invention will appear clearly in the following description given by way of nonlimiting example with reference to the appended figures which represent:
- la figure 1, une vue en coupe d'un transducteur selon un premier mode de réalisation de l'invention ; la figure 2, un diagramme caractéristique du matériau composant la pièce 104 de la figure 1 ; - la figure 3, une vue en coupe d'un deuxième mode de réalisation ; et- Figure 1, a sectional view of a transducer according to a first embodiment of the invention; Figure 2, a characteristic diagram of the material making up the part 104 of Figure 1; - Figure 3, a sectional view of a second embodiment; and
- la figure 4, des vues en coupe de profil et de dessus d'un troisième mode de réalisation.- Figure 4, sectional side views from above of a third embodiment.
On a représenté sur la figure 1 une vue en coupe d'un transducteur flextenseur du type 4 selon le classement établi par ROYSTER dans la revue JASA N° 38, 1965 p . 879 à 880.There is shown in Figure 1 a sectional view of a type 4 flexuring transducer according to the classification established by ROYSTER in the journal JASA N ° 38, 1965 p. 879 to 880.
Ce -transducteur comprend une coque de section elliptique 101 dans laquelle est inséré un moteur piézoé- lectrique 102 placé selon le grand axe de l'ellipse et qui s 'appu.e par ses deux extrémités sur les faces intérieures de la coque pour la faire vibrer, sous l'influence d'une tension électrique, selon un axe OX parallèle à ce grand axe . Sous cette influence toute la coque se met à vibrer et l'amplitude du mouvement est maximum selon un axe OY parallèle au petit axe de l'ellipse .This -transducteur includes a shell of elliptical section 101 in which is inserted a piezoelectric motor 102 placed along the major axis of the ellipse and which is supported by its two ends on the interior faces of the shell to make it vibrate, under the influence of an electric voltage, along an axis OX parallel to this major axis. Under this influence the whole shell begins to vibrate and the amplitude of the movement is maximum along an OY axis parallel to the minor axis of the ellipse.
Lorsqu'un tel transducteur doit fonctionner à une immersion profonde, par exemple supérieure à 100m, la coque se déforme en s'aplatissant selon un axe 0Y, et donc en s'élargissant selon l'axe 0X puisque l'intérieur 103 ne communique pas avec l'extérieur et ne contient donc que de 1 air à la pression athmosphérique . Cet élargissement tend à tirer sur le moteur 102, formé d'un empilement de céramiques piézoélectriques . Comme celles-ci ne supportent pas les efforts de traction, elles risquent de se casser en dynamique.When such a transducer must operate at a deep immersion, for example greater than 100m, the shell deforms by flattening along an axis 0Y, and therefore widening along the axis 0X since the interior 103 does not communicate with the outside and therefore contains only 1 air at atmospheric pressure. This enlargement tends to draw on the motor 102, formed of a stack of piezoelectric ceramics. As these do not support the traction forces, they risk breaking in dynamics.
Selon l'invention, on insère, sensiblement au milieu du moteur 102, une pièce 104 formée d'un matériau viscoélastique dont la raideur statique est faible et la raideur dynamique est élevée. Dans l'exemple représenté, pour faciliter la réalisation mécanique, on a inséré en outre deux plaques d'acier intermédiaires 105 et 106 entre cette pièce viscoélastique et les céramiques composant le moteur, mais cette disposition n est pas essentielle. De même sur le dessin les dimensions de la pièce viscoélastique et des plaques métalliques sont représentées sensiblement égales à celles des plaques de céramique formant le moteur, mais le dimensionnement exact sera choisi en fonction des caractéristiques des matériaux utilisés .According to the invention, a part 104 formed of a viscoelastic material whose static stiffness is low and the dynamic stiffness is high is inserted, substantially in the middle of the motor 102. In the example shown, to facilitate mechanical production, two intermediate steel plates 105 and 106 have also been inserted between this viscoelastic part and the ceramics making up the motor, but this arrangement is not essential. Similarly in the drawing, the dimensions of the viscoelastic part and of the metal plates are shown to be substantially equal to those of the ceramic plates forming the motor, but the exact dimensioning will be chosen according to the characteristics of the materials used.
Ainsi lorsque le transducteur est immergé, la coqueSo when the transducer is submerged, the shell
101 s'écrase et les deux parties droite et gauche du moteur situées de part et d'autre de la pièce 104 s'écartent en exerçant une traction sur celle-ci. Comme la compliance (inverse de la raideur) statique du matériau utilisé est forte, celui-ci se déforme progressivement sous l'influence de la déformation de la coque et il s'étire sans exercer de traction appréciable sur101 crashes and the two right and left parts of the motor located on either side of the part 104 move apart pulling on it. As the static compliance (inverse of the stiffness) of the material used is high, it gradually deforms under the influence of the deformation of the shell and it stretches without exerting appreciable traction on
^ les deux parties du moteur. Celles-ci ne sont donc pas soumises à des efforts de traction susceptibles de les casser.^ the two parts of the engine. These are therefore not subjected to tensile forces liable to break them.
Par contre lorsque le moteur est soumis aux tensions électriques alternatives destinées à générer la vibration acoustique, comme la compliance du matériau viscoélastiqueOn the other hand when the motor is subjected to alternating electrical voltages intended to generate the acoustic vibration, such as the compliance of the viscoelastic material
10 utilisé est très faible pour les fréquences utilisées, qui correspondent sensiblement à la fréquence de résonance du transducteur, ce matériau se comporte comme s'il était parfaitement rigide . Le barreau formé par les deux parties du moteur, les plaques d'acier et la pièce 104, vibre ainsi d'un10 used is very low for the frequencies used, which correspond substantially to the resonant frequency of the transducer, this material behaves as if it were perfectly rigid. The bar formed by the two parts of the engine, the steel plates and the part 104, thus vibrates with a
-_> seul bloc en transmettant ses vibrations à la coque du transducteur.-_> single block by transmitting its vibrations to the shell of the transducer.
Le matériau utilisé présentant une différence de compliance, ou de raideur, entre les basses fréquences qui correspondent aux sollicitations statiques et les hautesThe material used having a difference in compliance, or stiffness, between the low frequencies which correspond to static stresses and the high
20 fréquences qui correspondent aux sollicitations dynamiques, on peut résumer le comportement de la pièce formée avec ce matériau en disant qu'elle se comporte comme un filtre mécanique pas se -haut.20 frequencies which correspond to dynamic stresses, we can summarize the behavior of the part formed with this material by saying that it behaves like a mechanical filter not above.
Un transducteur est caractérisé par :A transducer is characterized by:
2525
K : raideur du moteur piézoélectrique K : raideur de la coqueK: stiffness of the piezoelectric motor K: stiffness of the shell
Q : facteur de qualité 5 fr- (fréquence de résonanceQ: quality factor 5 fr- (resonant frequency
30 sur bande de fréquence) .30 on frequency band).
Si V* est la pression limite pour laquelle le moteur est désolidarisé de la coque, KQ la raideur statique du joint et K sa raideur dynamique complexe (K = K'+jK") , on a :If V * is the limit pressure for which the engine is detached from the hull, K Q the static stiffness of the joint and K its complex dynamic stiffness (K = K '+ jK "), we have:
„. , G". K"„. , G ". K"
35t δ = ci- ^r G étant le module de cisaillement complexe (G = G* + jG ) .35t δ = ci- ^ r G being the complex shear modulus (G = G * + jG).
Les contraintes sur le matériau du joint sont, pour une pression hydrostatique à atteindre égale à nP.. :The stresses on the material of the joint are , for a hydrostatic pressure to reach equal to nP ..:
K. K_K. K_
OU - fQ_ est la fréquence de résonance avant la mise en place des joints.OR - f Q _ is the resonance frequency before the seals are put in place.
On obtient donc :So we get:
K ~> 3 QK„ tgδ " ** ' K ~> 3 QK „tgδ" * * '
Cette dernière condition permet d'obtenir un rendement supérieur à 75%.This last condition makes it possible to obtain a yield greater than 75%.
Divers matériaux permettent de fabriquer un tel joint. Une caractéristique typique permettant de sélectionner ces matériaux est qu'ils ont une transition vitreuse à la température ambiante dans la gamme de fréquences considérées . A titre d'exemple, on peut utiliser comme matériau un polyuréthanne, dont a représenté sur la figure 2 le module de raideur G exprimé en N/m2 et le facteur de perte tgδ en fonction de la fréquence en Hz.Various materials make it possible to manufacture such a seal. A typical characteristic for selecting these materials is that they have a glass transition at room temperature in the frequency range considered. By way of example, a polyurethane can be used as material, of which the stiffness modulus G expressed in N / m 2 and the loss factor tgδ as a function of the frequency in Hz has shown in FIG. 2.
On constate que la transition est obtenue pour une fréquence sensiblement égale à 10~2Hz, c'est-à-dire pour des sollicitations sur le matériau évoluant très lentement (période 100 secondes correspondant typiquement à l'écrasement progressif de la coque du flextenseur lorsque celui-ci s'immerge de plus en plus profondément) . La valeur GQ du module à cette transition est alors sensiblement égale à 4.10 N/m .It is noted that the transition is obtained for a frequency substantially equal to 10 ~ 2 Hz, that is to say for stresses on the material moving very slowly (period 100 seconds typically corresponding to the progressive crushing of the shell of the flexor when it is immersed more and more deeply). The value G Q of the module at this transition is then substantially equal to 4.10 N / m.
Dès que l'on atteint une fréquence de 1000 Hz, largement inférieure aux fréquences utilisées dans le flextenseur, le module atteint 1, 5.108 N/m2 et tg δ vaut 5.10"2. La dynamique des raideurs est alors égale à 37, 5 pour ce matériau, ce qui permet d'obtenir des résultats tout à fait satisfaisants .As soon as we reach a frequency of 1000 Hz, much lower than the frequencies used in the flextensor, the module reaches 1, 5.10 8 N / m 2 and tg δ is 5.10 " 2. The dynamics of stiffness is then equal to 37 5 for this material, which makes it possible to obtain completely satisfactory results.
Le matériau viscoélastique peut être placé en bien d'autres endroits et on a représenté sur le figure 3 un deuxième mode de réalisation dans lequel un joint 304 est inséré entre la coque 301 et le moteur 302.The viscoelastic material can be placed in many other places and there is shown in FIG. 3 a second embodiment in which a seal 304 is inserted between the shell 301 and the motor 302.
Ce moteur 302 comprend un empilement de céramiques sousmis à une précontrainte à l'aide d'une tige 311 qui traverse l'empilement de part en part. Des écrous de serrage 312 viennent se visser aux extrémités de la tige pour comprimer les céramiques par l'intermédiaire d'une pièce d'appui métalliqueThis motor 302 comprises a stack of ceramics subjected to a prestressing using a rod 311 which crosses the stack right through. Clamping nuts 312 are screwed to the ends of the rod to compress the ceramics via a metal support piece
313 et d'une rondelle isolante 314.313 and an insulating washer 314.
Le joint viscoélastique 304 est formé de deux plaques insérées de part et d'autre entre la coque et la pièce 313. Dans cette configuration ce joint fonctionne en flexion alors que dans l'exemple de réalisation précédent il fonctionnait en compression, mais le résultat est le même .The viscoelastic seal 304 is formed by two plates inserted on either side between the shell and the part 313. In this configuration, this seal works in bending while in the previous embodiment it worked in compression, but the result is the same .
Selon le cas l'autre extrémité du transducteur flextenseur de la figure 3 peut être identique à l'extrémité représentée sur cette figure, ou bien le moteur peut être directement fixé sur la coque . La réalisation ne comportant qu'un joint d'un seul côté est plus facile à fabriquer mais ce joint est soumis à des déformations plus importantes, qui ne sont pas toujours souhaitables . Pour fixer les idées et bien montrer les ordres de grandeur des moyens de réalisation de l'invention, on considérera un transducteur flextenseur de classe 4 dont la profondeur est égale à 10 cm de long et dont la fixation est conforme à la figure 3 aux deux extrémités de ce moteur. La coque comporte donc 4 joints plats de 10 cm de long (2 de chaque côté) . Les caractéristiques typiques d'un tel transducteur sont par exemple :Depending on the case, the other end of the flexuring transducer of FIG. 3 may be identical to the end shown in this figure, or else the motor may be directly fixed to the hull. The realization comprising only one joint on one side is easier to manufacture but this joint is subjected to larger deformations, which are not always desirable. To fix the ideas and clearly show the orders of magnitude of the means of carrying out the invention, we will consider a class 4 flextensor transducer whose depth is equal to 10 cm long and whose attachment is in accordance with Figure 3 to both ends of this engine. The shell therefore has 4 flat seals 10 cm long (2 on each side). Typical characteristics of such a transducer are for example:
- P = 30 bars - fr = 3 kHz -K = 109 N/m- P = 30 bars - fr = 3 kHz -K = 10 9 N / m
1 m bars) , on obtient1 m bars), we get
ou est le module statique, égal avec le matériau décrit ci-dessus à 4 4..11006 6 NN//mm22,, SS eett ee étant respectivement la surface totale et l'épaisseur des joints. On obtient pour la surface d'un joint (S/4) une valeurwhere is the static modulus, equal to the material described above at 4 4..1100 6 6 NN // mm 2 2 ,, SS eett ee being respectively the total surface and the thickness of the joints. We obtain for the surface of a joint (S / 4) a value
2 de 25 cm soit une hauteur (suivant OX) égale à 2, 5 cm. Si l'épaisseur de coque est par exemple de 15 mm, on fabriquera le transducteur en épaississant cette coque au niveau du raccord avec le moteur. La raideur dynamique vaut alors2 of 25 cm or a height (according to OX) equal to 2.5 cm. If the shell thickness is for example 15 mm, the transducer will be manufactured by thickening this shell at the connection with the motor. The dynamic stiffness is then worth
K = KQ . ^ = 3, 1.109, de sorte que K = 3 Km.K = K Q. ^ = 3, 1.10 9 , so that K = 3 K m .
La nouvelle fréquence de résonance obtenue est donc proche deThe new resonance frequency obtained is therefore close to
2, 5 kHz et on est donc bien dans le domaine utilisable vu plus haut. Pour la condition liée au rendement, c'est-à-dire2.5 kHz and we are therefore in the usable range seen above. For the performance condition, i.e.
K/tgδ >3 Q , on a K/tgδ = 6,2.10 tandis que 3 QK est égal à m 1, 26.1010. Le rendement est donc nettement supérieur à 75%.K / tgδ> 3 Q, we have K / tgδ = 6,2.10 while 3 QK is equal to m 1, 26.1010. The yield is therefore clearly greater than 75%.
L'invention s'étend également aux autres types de flextenseurs, tels que ceux de classe 2 ou 5.The invention also extends to other types of flexors, such as those of class 2 or 5.
Dans ce cas, comme représenté sur la figure 4, le filtre viscoélastique 404 a la forme d'un anneau placé entre le moteur 402, lui-même en forme d'anneau, et la coque 401 qui se présente sous la forme de deux coupoles assemblées par leurs circon érences . In this case, as shown in FIG. 4, the viscoelastic filter 404 has the form of a ring placed between the motor 402, itself in the form of a ring, and the shell 401 which is in the form of two domes assembled by their circumferences.

Claims

REVENDICATIONS
1. Transducteur acoustique flextenseur pour immersion profonde, comportant une coque creuse (101) de section oblongue et un moteur électroacoustique (102) destiné à exciter cette coque selon le grand axe de cette section, caractérisé en ce qu'il comprend en outre des moyens viscoelastiques (104) permettant d'absorber sans présenter de résistance mécanique appréciable les efforts exercés par la coque sur le moteur sous l'effet des déformations provenant de l'immersion, et présentant une raideur importante aux fréquences de fonctionnement du moteur pour communiquer à la coque les vibrations de ce moteur avec un bon rendement.1. Flextensor acoustic transducer for deep immersion, comprising a hollow shell (101) of oblong section and an electroacoustic motor (102) intended to excite this shell along the major axis of this section, characterized in that it further comprises means viscoelastics (104) allowing the forces exerted by the shell on the engine to be absorbed without exhibiting appreciable mechanical resistance under the effect of deformations originating from immersion, and exhibiting significant stiffness at the operating frequencies of the engine to communicate to the hull the vibrations of this engine with good efficiency.
2. Transducteur selon la revendication 1, caractérisé en ce que le rendement est supérieur à 75%.2. Transducer according to claim 1, characterized in that the efficiency is greater than 75%.
3. Transducteur selon l'une quelconque des revendications 1 et 2, caractérisé en ce que le matériau formant les moyens viscoelastiques (104) présente une transition vitreuse à la température ambiante à une fréquence inférieure à la fréquence de fonctionnement du transducteur.3. Transducer according to any one of claims 1 and 2, characterized in that the material forming the viscoelastic means (104) has a glass transition at room temperature at a frequency lower than the operating frequency of the transducer.
4. Transducteur selon la revendication 3, caractérisé en ce que le matériau viscoélastique (104) est un polyuréthanne présentant une transition vitreuse à la température ambiante à4. Transducer according to claim 3, characterized in that the viscoelastic material (104) is a polyurethane having a glass transition at room temperature at
-2 une fréquence sensiblement égale à 10 Hz .-2 a frequency substantially equal to 10 Hz.
5. Transducteur selon l'une quelconque des revendications 1 à 4, caractérisé en ce que ce transducteur est du type 4 selon le classement de ROYSTER et qu'il comporte un moteur (104) allongé selon le grand axe de la coque (101) ; ce moteur étant coupé en deux parties sensiblement en son milieu et les moyens viscoelastiques (104) étant formés d'un joint reliant ces deux parties . 5. Transducer according to any one of claims 1 to 4, characterized in that this transducer is of type 4 according to the classification of ROYSTER and that it comprises a motor (104) elongated along the major axis of the hull (101) ; this motor being cut into two parts substantially in the middle and the viscoelastic means (104) being formed of a seal connecting these two parts.
6. Transducteur selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'il est du type 4 selon le classement de ROYSTER et qu'il comporte un moteur (102) allongé selon le grand axe de la coque (101) et fixé à la coque par ses deux extrémités ; les moyens viscoelastiques (304) étant formés d'au moins un joint interposé entre la coque (301) et les moyens de fixation (313) d'au moins une des extrémités du moteur à la coque.6. Transducer according to any one of claims 1 to 4, characterized in that it is of type 4 according to the classification of ROYSTER and that it comprises a motor (102) elongated along the long axis of the hull (101) and fixed to the hull by its two ends; the viscoelastic means (304) being formed of at least one seal interposed between the hull (301) and the fixing means (313) of at least one of the ends of the engine to the hull.
7. Transducteur selon la revendication 6, caractérisé en ce que les moyens viscoelastiques (304) sont situés aux deux extrémités du moteur (302) .7. A transducer according to claim 6, characterized in that the viscoelastic means (304) are located at the two ends of the motor (302).
8. Transducteur selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le transducteur est du type 2 ou 5 dans le classement de ROYSTER et que sa section selon un plan perpendiculaire au plan de section oblongue est circulaire ; le moteur étant circulaire et les moyens viscoelastiques (404) formant un anneau situé entre le moteur (402) et la coque (401) . 8. Transducer according to any one of claims 1 to 4, characterized in that the transducer is of type 2 or 5 in the classification of ROYSTER and that its section along a plane perpendicular to the plane of oblong section is circular; the motor being circular and the viscoelastic means (404) forming a ring located between the motor (402) and the hull (401).
EP92903815A 1991-01-25 1992-01-14 Flextensor acoustic transducer for deep immersion Expired - Lifetime EP0568592B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9100860A FR2672179B1 (en) 1991-01-25 1991-01-25 FLEXIBLE ACOUSTIC TRANSDUCER FOR DEEP IMMERSION.
FR9100860 1991-01-25
PCT/FR1992/000025 WO1992013338A1 (en) 1991-01-25 1992-01-14 Flextensor acoustic transducer for deep immersion

Publications (2)

Publication Number Publication Date
EP0568592A1 true EP0568592A1 (en) 1993-11-10
EP0568592B1 EP0568592B1 (en) 1996-08-14

Family

ID=9409057

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92903815A Expired - Lifetime EP0568592B1 (en) 1991-01-25 1992-01-14 Flextensor acoustic transducer for deep immersion

Country Status (6)

Country Link
US (1) US5431058A (en)
EP (1) EP0568592B1 (en)
CA (1) CA2101053C (en)
DE (1) DE69212806T2 (en)
FR (1) FR2672179B1 (en)
WO (1) WO1992013338A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2695284B1 (en) * 1992-08-28 1994-10-14 Thomson Csf Tonpilz shock protected transducer.
GB9225898D0 (en) * 1992-12-11 1993-02-03 Univ Strathclyde Ultrasonic transducer
JP3323366B2 (en) * 1995-06-28 2002-09-09 沖電気工業株式会社 Underwater transducer
US6236143B1 (en) * 1997-02-28 2001-05-22 The Penn State Research Foundation Transfer having a coupling coefficient higher than its active material
US6465936B1 (en) * 1998-02-19 2002-10-15 Qortek, Inc. Flextensional transducer assembly and method for its manufacture
US6211601B1 (en) * 1998-03-04 2001-04-03 The United States Of America As Represented By The Secretary Of The Navy Multi-tuned acoustic cylindrical projector
FR2776161B1 (en) 1998-03-10 2000-05-26 Thomson Marconi Sonar Sas REMOVABLE ANNULAR ACOUSTIC EMISSION ANTENNA
FR2800229B1 (en) 1999-10-22 2002-04-05 Thomson Marconi Sonar Sas BROADBAND SUBMARINE ACOUSTIC TRANSDUCER
US6518689B2 (en) * 2000-02-18 2003-02-11 Honeywell Federal Manufacturing & Technologies, Llc Piezoelectric wave motor
FR2809580B1 (en) 2000-05-26 2002-08-30 Thomson Marconi Sonar Sas ELECTRODYNAMIC TRANSDUCER FOR UNDERWATER ACOUSTICS
GB0226162D0 (en) * 2002-11-08 2002-12-18 Qinetiq Ltd Vibration sensor
FR2850217A1 (en) * 2003-01-17 2004-07-23 Cedrat Technologies PIEZOACTIVE ACTUATOR WITH AMPLIFIED MOVEMENT
US9417017B2 (en) 2012-03-20 2016-08-16 Thermal Corp. Heat transfer apparatus and method
GB201219331D0 (en) * 2012-10-26 2012-12-12 Optasense Holdings Ltd Fibre optic cable for acoustic/seismic sensing
US9568382B1 (en) * 2015-09-26 2017-02-14 Bertec Corporation Force measurement assembly with damping and force measurement system including the same
CN115278419A (en) * 2022-07-14 2022-11-01 哈尔滨工程大学 Broadband underwater acoustic transducer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4420826A (en) * 1981-07-06 1983-12-13 Sanders Associates, Inc. Stress relief for flextensional transducer
CA1171950A (en) * 1981-12-22 1984-07-31 Garfield W. Mcmahon Underwater transducer with depth compensation
US4820753A (en) * 1988-03-15 1989-04-11 The B. F. Goodrich Company Acoustic window and material therefor
US4845687A (en) * 1988-05-05 1989-07-04 Edo Corporation, Western Division Flextensional sonar transducer assembly
FR2639786B1 (en) * 1988-11-04 1991-07-26 Thomson Csf FLEXTENING TRANSDUCER
US5291461A (en) * 1990-11-28 1994-03-01 Raytheon Company Elastomer structure for transducers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9213338A1 *

Also Published As

Publication number Publication date
FR2672179B1 (en) 1993-04-16
US5431058A (en) 1995-07-11
CA2101053A1 (en) 1992-07-26
WO1992013338A1 (en) 1992-08-06
CA2101053C (en) 2002-04-02
DE69212806T2 (en) 1997-02-20
FR2672179A1 (en) 1992-07-31
DE69212806D1 (en) 1996-09-19
EP0568592B1 (en) 1996-08-14

Similar Documents

Publication Publication Date Title
EP0568592B1 (en) Flextensor acoustic transducer for deep immersion
EP0005409B1 (en) Piezoelectric transducers with mechanical amplification for very low frequencies and acoustic antennas
EP2670536B1 (en) Low-frequency electro-acoustic transducer and method of generating acoustic waves
FR2850218A1 (en) Piezoactive actuator for optical applications, has elastomer zone formed along its actuating axis, to dampen its deformations and one free space formed orthogonal to actuating axis
FR2800229A1 (en) Surface boat underwater acoustic signal transmitter having flexing piezoelectric strip underside cap section inside air cavity and outer cap face water exposed
EP0367681A1 (en) Flextensional transducer
FR2911734A1 (en) Piezoelectric device for generating electrical voltage, has vibrating blade with two plane shape branches connected by portion of curved connection, and piezoelectric element disposed on external face of one of branches
FR2797552A1 (en) ELECTRO-ACOUSTIC TRANSDUCER
EP3804116B1 (en) Vibration energy harvester
EP0728535A1 (en) Process and device for reducing the resonant frequency of the cavities of submerged transducers
EP0656232B1 (en) Method for high power acoustic wave emission and corresponding transducer horns
FR2688972A1 (en) ELECTRO-ACOUSTIC TRANSDUCERS COMPRISING A FLEXIBLE AND SEALED EMITTING SHELL.
EP0799097B1 (en) Acoustic transducer shaped as a prestressed ring
FR2776065A1 (en) Resonant piezoelectric force sensor for measuring compressive forces, usable in machine tools, roller bearings etc.
EP3677051B1 (en) Aquatic acoustic enclosure
FR2960922A1 (en) ULTRASONIC PROGRESSIVE WAVE MICRO PUMP FOR LIQUID
EP0473480B1 (en) Electroacoustic transducer for use under water and comprising a system for automatically compensating the hydrostatic pressure
CA2109466C (en) Method and transducers for transmitting low frequency acoustic waves in a liquid
EP2591549B1 (en) Module for the mechanical uncoupling of a resonator having a high quality factor
EP0785825B1 (en) Deep-sea acoustic transmitter
EP1582764A1 (en) Antivibration device for vehicles and link rod with such a device
FR2650766A1 (en) PRODUCTION OF ELECTROMECHANICALLY ELECTRICALLY EXCITED RESONATORS SERVED BY MAGNETOSTRICTIVE EFFECT
FR2739521A1 (en) Pressure resistant piezoelectric transducer for use in sonar antenna
EP1023950A1 (en) Directional wide band hydrophone, in particular for a towed linear acoustic antenna
CH706079B1 (en) Watch, has oscillating assembly including vibrating blade placed outside of sealed case and connected to another vibrating blade, where vibration is transmitted from latter to former vibrating blade to emit audible sound to outside of case

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930604

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON-CSF

17Q First examination report despatched

Effective date: 19951002

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REF Corresponds to:

Ref document number: 69212806

Country of ref document: DE

Date of ref document: 19960919

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19961107

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011220

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011228

Year of fee payment: 11

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030801

GBPC Gb: european patent ceased through non-payment of renewal fee