US3781781A - Piezoelectric transducer - Google Patents
Piezoelectric transducer Download PDFInfo
- Publication number
- US3781781A US3781781A US00273911A US3781781DA US3781781A US 3781781 A US3781781 A US 3781781A US 00273911 A US00273911 A US 00273911A US 3781781D A US3781781D A US 3781781DA US 3781781 A US3781781 A US 3781781A
- Authority
- US
- United States
- Prior art keywords
- cylinders
- transducer
- piezoelectric
- ceramic
- end caps
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910000831 Steel Inorganic materials 0.000 claims description 19
- 239000010959 steel Substances 0.000 claims description 19
- 125000006850 spacer group Chemical group 0.000 claims description 14
- 239000004677 Nylon Substances 0.000 claims description 9
- 229920001778 nylon Polymers 0.000 claims description 9
- 239000004417 polycarbonate Substances 0.000 claims description 5
- 229920000515 polycarbonate Polymers 0.000 claims description 5
- 239000000919 ceramic Substances 0.000 abstract description 29
- 230000002706 hydrostatic effect Effects 0.000 abstract description 8
- 239000000463 material Substances 0.000 abstract description 6
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 abstract description 2
- 229910002113 barium titanate Inorganic materials 0.000 abstract description 2
- 238000010276 construction Methods 0.000 abstract description 2
- 229910052451 lead zirconate titanate Inorganic materials 0.000 abstract 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 239000004359 castor oil Substances 0.000 description 5
- 235000019438 castor oil Nutrition 0.000 description 5
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 5
- 239000004020 conductor Substances 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 229920001084 poly(chloroprene) Polymers 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 229920005549 butyl rubber Polymers 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- FRWYFWZENXDZMU-UHFFFAOYSA-N 2-iodoquinoline Chemical compound C1=CC=CC2=NC(I)=CC=C21 FRWYFWZENXDZMU-UHFFFAOYSA-N 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- LTPBRCUWZOMYOC-UHFFFAOYSA-N beryllium oxide Inorganic materials O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000007799 cork Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- -1 polyurethane Chemical class 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
- B06B1/02—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
- B06B1/06—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
- B06B1/0607—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
- B06B1/0622—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
- B06B1/0633—Cylindrical array
Definitions
- ABSTRACT U-S- Cl. V disclosure rexates to the novel construction of a Clsingle or a multiple element underwater ound trans- Fleld of Search 3 quizf comprising one or more cylindrical capped ezoelectric ceramic elements (barium titanate, lead References Clted zirconate-titanate, or other material of similar proper- UNIT ED STATES PATENTS ties) in a linear configuration.
- cylindrical capped ezoelectric ceramic elements barium titanate, lead References Clted zirconate-titanate, or other material of similar proper- UNIT ED STATES PATENTS ties
- This invention is directed to an acoustical transducer and more particularly to a piezoelectric type transducer which is stable, of broad frequency range, and a nonresonant line type transducer.
- piezoelectric ceramic cylinders have been mounted .in various ways to form underwater sound transducers.
- One method is to slip the cylinders overa rod for structural support and to separate them from the rod and from each other by compliant washers or spacers made of natural rubber, neoprene, or a mixture of cork and neoprene.
- compliant washers or spacers made of natural rubber, neoprene, or a mixture of cork and neoprene.
- the line transducer and the sensor element described herein consist of one or more end-capped piezoelectric ceramic cylinders slipped over a thin-walled steel tube.
- the ends of each cylinder are sealed by rings and separated from adjacent cylinders by thin Nylon spacers.
- the entire assembly is made waterproof by an airfree butyl rubber hose, or boot, molded from a special compound having low water-vapor permeability and good hydroacoustic characteristics.
- Castor oil fills the steel tube and the space between the ceramic cylinders and the butyl boot to provide acoustic coupling between the sensor elements and the boot.
- the air space between the steel tube, the piezoelectric cylinders and the end caps provides an acoustic mismatch between the air space and the end caps which prevents the acoustic sound pressure from reaching the inside surface of the cylinder.
- Another object is to isolate the transducer elements such that hydrostatic and acoustic pressures do not have a deleterious effect on the elements.
- Still another object is to provide a structure which has high sensitivity and acoustic isolation between the interior and the exterior of the radiating ceramic elements.
- Yet another object is to provide a transducer which may be made as a single unit or with a plurality of units joined together linearly.
- FIG. 1 illustrates a cross-sectional view of the transducer.
- FIG. 2 illustrates two piezoelectric elements separated from each other illustrating the parts that separate the two elements when assembled in place.
- FIG. 3 illustrates the outer end of one cylinder in combination with the outer end cap and the electrical connectors in the end cap and spacers in between.
- FIG. 4 illustrates a typical free-field voltage sensitivity of a transducer comprising 20 piezoelectric cylindrical elements.
- FIG. 1 there is shown by illustration a multi-element piezoelectric type transducer made in accordance with the teaching of this invention.
- the device includes a central thin walled cylindrical tube 11 such as steel about which are placed two cylindrical linearly aligned piezoelectric ceramic cylinders 12 coaxial with the steel tube.
- Each ceramic cylinder is provided with polycarbonate end caps 13 bonded thereto by epoxy adhesive.
- the end caps are stepped with a portion separating the ceramic cylinder from the steel tube and a portion which extends outwardly along the end of the ceramic cylinder.
- the portion that extends along the end of the cylinder is spaced from the steel tube and receives therein an O-ring 14 which provides a seal between the end caps and the steel tube.
- Each of the end caps of each adjacent cylinder are separated by a Nylon ring or spacer IS.
- the ends of the steel tube are threaded and receive thereon outer end caps 16 and 17.
- End cap 16 has a thick bottom that has an aperture therein through which the device may be filled with oil and a screw plug 21 screwed into the aperture to prevent oil leakage through the aperture.
- the end cap 17 is cylindrical with a threaded portion 22 that threads onto the steel tube and a portion 23 that extends in the opposite direction from the central solid portion 24.
- Nylon spacers 25 and 26 are placed between the outermost end caps 13 on the piezoelectric cylinders 12 and the outer end caps 16 and 17 in order to hold the piezoelectric cylinders firmly in place.
- An acoustic boot 27 of butyl rubber or any other suitable type such as neoprene or polyvinyl is spaced from and encloses the piezoelectric cylinders and is secured at its ends to the outer end caps 16 and 17 by metal bands 28 or any other suitable method.
- Each of the outer end caps is provided with suitable passages 29 to provide a passage from the inner area of the steel tube to the area between the boot and the ceramic cylinders.
- the space between the boot and ceramic cylinders and the space within the steel tube is filled with a substance having substantially the same acoustical properties as that of water such as castor oil, a silicone fluid or an elastomer compound such as polyurethane.
- the fluid is filled through the filler aperture in the outer end cap 16 and through passages 29.
- the spacings 30 between the ceramic cylinders and the outer surface of the steel tube are filled with air.
- An electrical connector 31 is secured to the outer extending end of end cap 17 by suitable screws 32 and an O-ring is provided between the electrical connector and the outer extending end to prevent leakage therebetween.
- the electrical leads 33 and 34 supplied through cable 35 pass through suitable apertures in the end cap 17 and connect with high pressure glass-tometal seal connectors 36.
- One electrical conductor is connected between the connector 36 and the inside surface of each ceramic cylinder and another conductor is connected between the connector 36 and the outside surface of each of said ceramic cylinders.
- the electrical cable 35 is bonded or otherwise secured to the electrical connector 31 to prevent leakage into the area in which the conductors are secured to the glass to metal seal connectors.
- FIG. 2 is an enlarged view of the central thin-walled cylindrical tube with two ceramic cylinders 12 spaced from each other thereby illustrating the end caps 13 of the ceramic cylinders, the O-rings 14, and the Nylon spacer 15 that separates the cylinders when they are secured into place.
- FIG. 3 illustrates a view of the end of the central thinwalled cylindrical tube secured to the outer end cap 17 which illustrates the electrical connectors 36 secured thereto by the glass to metal seals. Further, there is shown, one end of the ceramic cylinder 12, the end cap 13 adjacent thereto with the Nylon spacers 26 that force the ceramic cylinders firmly into place. An O-ring prevents leakage of oil into the air space between the ceramic cylinder and the tubular member and electrical conductor 40 connects with the inside of the ceramic cylinder. r e r in operation, the transducer is made to contain as many piezoelectric cylindrical elements aligned in axial alignment as desired.
- An electrical voltage signal is applied to the piezoelectric elements which causes the elements to expand and contract radially in accordance with the applied signals, as is well known in the art.
- the expansion and contraction of the cylinders causes pressure on the castor oil which transmits the pressure to the surrounding water. Thereby producing a compressional wave in the water corresponding to the signal applied to the piezoelectric elements.
- the transducer will also operate as a receiver by compressional waves on the transducer causing the piezoelectric elements to contract and expand thereby producing an electrical output which is transmitted to a receiver.
- the operation is not unique and is not different from that of the prior art.
- the piezoelectric ceramic cylinder assembly described herein is considered to be unique.
- the annular polycarbonate end caps provide strong, compliant support for each cylinder and, together with the O-ring, acoustically isolate the ceramic cylinder from the supporting thin-walled steel tube. Because the ends of the ceramic cylinder are exposed to the acoustic sound pressure at all hydrostatic pressures and temperatures and are not in contact with materials whose acoustic characteristics change with hydrostatic pressure or with temperature, the electroacoustic characteristics of the piezoelectric ceramic cylinders are not changed by changing boundary conditions, as can happen in other assembly methods.
- the thin Nylon spacer between adjacent cylinder assemblies acoustically decouples the cylinders and prevents a low-frequency resonance in the operational frequency band.
- the castor oil inside the thin-walled steel tube makes the device acoustically transparent in water by providing a medium with acoustic characteristics similar to those of water; by introducing the oil at the bottom of the line transducer when it is being filled, air is not trapped in the space between the outside acoustic boot and the ceramic cylinders. Additionally, the air space between the ceramic cylinders and the outer surface of the steel tube produces an acoustic mismatch between the air space and inner end caps to prevent the sound pressure from reaching the inside surface of the ceramic cylinder.
- a line transducer whose electroacoustie characteristics are stable over a wide frequency range at temperatures from about 2 C to about 30 C at hydrostatic pressures up to 6.9 MPa (1,000 psig). It has been determined that a transducer contructed of 20 piezoelectric ceramic cylinders, 3.0 cm long X 3.0 cm diameter such as shown, assembled in an axial arrangement will produce a typical free-field voltage sensitivity as shown in FIG. 4.
- the thin-walled tube can be made of aluminum, but greater strength is provided by steel. Silicone fluid or an elastomer compound such as polyurethane, both of which have acoustic properties similar to those of water, can be used instead of castor oil. Instead of butyl rubber, the acoustic boot can be made of neoprene or polyvinyl chloride; however, butyl has the lowest water permeability.
- An acoustical transducer for operation in a liquid medium which comprises,
- the spacer between said end caps on said cylinders are made of Nylon.
- said end caps on said piezoelectric cylinder are made of polycarbonate.
- tubular member is a thin-walled steel tube.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transducers For Ultrasonic Waves (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Abstract
This disclosure relates to the novel construction of a singleor a multiple-element underwater sound transducer comprising one or more cylindrical, capped, piezoelectric ceramic elements (barium titanate, lead zirconate-titanate, or other material of similar properties) in a linear configuration. The structure results in acoustically decoupling each element from adjacent elements and from all of the supporting structure while retaining acoustic stability of the transducer over the broadest possible frequency range and with wide variation in temperature and hydrostatic pressure.
Description
' 1111111111 States Patent 1191 Graves, Jr.
1 1 Dec. 25, 1973 PIEZOELECTRIC TRANSDUCER 3,432,000 3/1969 Ongkiehong et al 340 x 2,922,140 1/1960 Levine el al 340/l0 X [75] [memor- Orlando 3,217,288 11 1965 Sims 1 340/8 LF 73 A i The Unite; States of America as 2,732,536 1/1956 Miller 340/10 X represented by the Secretary of the Navy, Washington, DC. Primary Examiner-Benjamin A. Borchelt Assistant Examinerl-larold Tudor [22] Flled' July 1972 Attorney-R. S. Sciascia et al. [21,] Appl. No.: 273,911
[57] ABSTRACT U-S- Cl. "V disclosure rexates to the novel construction of a Clsingle or a multiple element underwater ound trans- Fleld of Search 3 ducef comprising one or more cylindrical capped ezoelectric ceramic elements (barium titanate, lead References Clted zirconate-titanate, or other material of similar proper- UNIT ED STATES PATENTS ties) in a linear configuration. The structure results in 2,923,916 2/1960 woodwmthw 340/10 acoustically decoupling each element from adjacent 3,713,086 1 1973 Trott 340 10 elements and from of the Supporting Structure 3,277,436 10/1966 Fitzgerald 61 a1 340/10 while retaining acoustic stability of the transducer 9,653 3/1967 Martin et al....... 3 0/10 over the broadest possible frequency range and with 3,178,681 1965 Hol'sman 6i 340/8 LF wide variation in temperature and hydrostatic pres- 3,328,752 6/1967 Sims 340 8 LF Sum 3,546,497 l2/l970 Craster 340/10 X 5 Claims, 4 Drawing Figures |6 \xmcbrs s1 1 8 2 i 30 so 26 i 1 34 as 229 24 it} -29 A M I 52 SHEET 10F 2 mm mm 2 COM a /A 91 an PMENIEB M025 1915 3781; 781
I-Ieretofore, piezoelectric ceramic cylinders have been mounted .in various ways to form underwater sound transducers. One method is to slip the cylinders overa rod for structural support and to separate them from the rod and from each other by compliant washers or spacers made of natural rubber, neoprene, or a mixture of cork and neoprene. When these normally compliant materials are exposed to hydrostatic pressure or to extremes of temperature, however, their acoustomechanical properties change, and the electroacoustic characteristics of the piezoelectric assembly change. The sensitivity of the line transducer then changes as hydrostatic pressure or temperature changes.
SUMMARY OF THE INVENTION The line transducer and the sensor element described herein consist of one or more end-capped piezoelectric ceramic cylinders slipped over a thin-walled steel tube. The ends of each cylinder are sealed by rings and separated from adjacent cylinders by thin Nylon spacers. The entire assembly is made waterproof by an airfree butyl rubber hose, or boot, molded from a special compound having low water-vapor permeability and good hydroacoustic characteristics. Castor oil fills the steel tube and the space between the ceramic cylinders and the butyl boot to provide acoustic coupling between the sensor elements and the boot. The air space between the steel tube, the piezoelectric cylinders and the end caps provides an acoustic mismatch between the air space and the end caps which prevents the acoustic sound pressure from reaching the inside surface of the cylinder.
STATEMENT OF THE OBJECTS It is therefore an object of the present invention to produce a stable, broad frequency range, nonresonant line transducer.
Another object is to isolate the transducer elements such that hydrostatic and acoustic pressures do not have a deleterious effect on the elements.
Still another object is to provide a structure which has high sensitivity and acoustic isolation between the interior and the exterior of the radiating ceramic elements.
Yet another object is to provide a transducer which may be made as a single unit or with a plurality of units joined together linearly.
Other objects and advantages of the invention will become obvious from a more careful review of the following specification considered in view of the drawing.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 illustrates a cross-sectional view of the transducer.
FIG. 2 illustrates two piezoelectric elements separated from each other illustrating the parts that separate the two elements when assembled in place.
FIG. 3 illustrates the outer end of one cylinder in combination with the outer end cap and the electrical connectors in the end cap and spacers in between.
FIG. 4 illustrates a typical free-field voltage sensitivity of a transducer comprising 20 piezoelectric cylindrical elements.
DESCRIPTION OF THE DRAWING Now referring to the drawing FIG. 1, there is shown by illustration a multi-element piezoelectric type transducer made in accordance with the teaching of this invention. As shown, the device includes a central thin walled cylindrical tube 11 such as steel about which are placed two cylindrical linearly aligned piezoelectric ceramic cylinders 12 coaxial with the steel tube. Each ceramic cylinder is provided with polycarbonate end caps 13 bonded thereto by epoxy adhesive. The end caps are stepped with a portion separating the ceramic cylinder from the steel tube and a portion which extends outwardly along the end of the ceramic cylinder. The portion that extends along the end of the cylinder is spaced from the steel tube and receives therein an O-ring 14 which provides a seal between the end caps and the steel tube. Each of the end caps of each adjacent cylinder are separated by a Nylon ring or spacer IS. The ends of the steel tube are threaded and receive thereon outer end caps 16 and 17. End cap 16 has a thick bottom that has an aperture therein through which the device may be filled with oil and a screw plug 21 screwed into the aperture to prevent oil leakage through the aperture. The end cap 17 is cylindrical with a threaded portion 22 that threads onto the steel tube and a portion 23 that extends in the opposite direction from the central solid portion 24. Nylon spacers 25 and 26 are placed between the outermost end caps 13 on the piezoelectric cylinders 12 and the outer end caps 16 and 17 in order to hold the piezoelectric cylinders firmly in place. An acoustic boot 27 of butyl rubber or any other suitable type such as neoprene or polyvinyl is spaced from and encloses the piezoelectric cylinders and is secured at its ends to the outer end caps 16 and 17 by metal bands 28 or any other suitable method.
Each of the outer end caps is provided with suitable passages 29 to provide a passage from the inner area of the steel tube to the area between the boot and the ceramic cylinders. The space between the boot and ceramic cylinders and the space within the steel tube is filled with a substance having substantially the same acoustical properties as that of water such as castor oil, a silicone fluid or an elastomer compound such as polyurethane. The fluid is filled through the filler aperture in the outer end cap 16 and through passages 29. The spacings 30 between the ceramic cylinders and the outer surface of the steel tube are filled with air.
An electrical connector 31 is secured to the outer extending end of end cap 17 by suitable screws 32 and an O-ring is provided between the electrical connector and the outer extending end to prevent leakage therebetween. The electrical leads 33 and 34 supplied through cable 35 pass through suitable apertures in the end cap 17 and connect with high pressure glass-tometal seal connectors 36. One electrical conductor is connected between the connector 36 and the inside surface of each ceramic cylinder and another conductor is connected between the connector 36 and the outside surface of each of said ceramic cylinders. The electrical cable 35 is bonded or otherwise secured to the electrical connector 31 to prevent leakage into the area in which the conductors are secured to the glass to metal seal connectors.
FIG. 2 is an enlarged view of the central thin-walled cylindrical tube with two ceramic cylinders 12 spaced from each other thereby illustrating the end caps 13 of the ceramic cylinders, the O-rings 14, and the Nylon spacer 15 that separates the cylinders when they are secured into place.
FIG. 3 illustrates a view of the end of the central thinwalled cylindrical tube secured to the outer end cap 17 which illustrates the electrical connectors 36 secured thereto by the glass to metal seals. Further, there is shown, one end of the ceramic cylinder 12, the end cap 13 adjacent thereto with the Nylon spacers 26 that force the ceramic cylinders firmly into place. An O-ring prevents leakage of oil into the air space between the ceramic cylinder and the tubular member and electrical conductor 40 connects with the inside of the ceramic cylinder. r e r in operation, the transducer is made to contain as many piezoelectric cylindrical elements aligned in axial alignment as desired. An electrical voltage signal is applied to the piezoelectric elements which causes the elements to expand and contract radially in accordance with the applied signals, as is well known in the art. The expansion and contraction of the cylinders causes pressure on the castor oil which transmits the pressure to the surrounding water. Thereby producing a compressional wave in the water corresponding to the signal applied to the piezoelectric elements.
The transducer will also operate as a receiver by compressional waves on the transducer causing the piezoelectric elements to contract and expand thereby producing an electrical output which is transmitted to a receiver. The operation is not unique and is not different from that of the prior art.
The piezoelectric ceramic cylinder assembly described herein is considered to be unique. The annular polycarbonate end caps provide strong, compliant support for each cylinder and, together with the O-ring, acoustically isolate the ceramic cylinder from the supporting thin-walled steel tube. Because the ends of the ceramic cylinder are exposed to the acoustic sound pressure at all hydrostatic pressures and temperatures and are not in contact with materials whose acoustic characteristics change with hydrostatic pressure or with temperature, the electroacoustic characteristics of the piezoelectric ceramic cylinders are not changed by changing boundary conditions, as can happen in other assembly methods. The thin Nylon spacer between adjacent cylinder assemblies acoustically decouples the cylinders and prevents a low-frequency resonance in the operational frequency band.
The castor oil inside the thin-walled steel tube makes the device acoustically transparent in water by providing a medium with acoustic characteristics similar to those of water; by introducing the oil at the bottom of the line transducer when it is being filled, air is not trapped in the space between the outside acoustic boot and the ceramic cylinders. Additionally, the air space between the ceramic cylinders and the outer surface of the steel tube produces an acoustic mismatch between the air space and inner end caps to prevent the sound pressure from reaching the inside surface of the ceramic cylinder.
By use of a structural assembly as set forth above, one can provide a line transducer whose electroacoustie characteristics are stable over a wide frequency range at temperatures from about 2 C to about 30 C at hydrostatic pressures up to 6.9 MPa (1,000 psig). It has been determined that a transducer contructed of 20 piezoelectric ceramic cylinders, 3.0 cm long X 3.0 cm diameter such as shown, assembled in an axial arrangement will produce a typical free-field voltage sensitivity as shown in FIG. 4.
Other materials such as aluminum, magnesium, aluminum oxide, and beryllium oxide can be used for the annular end caps, but maximum decoupling will be obtained when polycarbonate end caps and Nylon spacers are used. The thin-walled tube can be made of aluminum, but greater strength is provided by steel. Silicone fluid or an elastomer compound such as polyurethane, both of which have acoustic properties similar to those of water, can be used instead of castor oil. Instead of butyl rubber, the acoustic boot can be made of neoprene or polyvinyl chloride; however, butyl has the lowest water permeability.
Obviously many modifications and variations of the present invention are possible in the light of the above teachings. It is therefore to be understood that within the scope of the appended claims the invention may be practiced otherwise than as specifically described.
What is claimed is:
1. An acoustical transducer for operation in a liquid medium; which comprises,
a metallic elongated tubular member,
a plurality of piezoelectric cylinders mounted around said tubular member coaxial therewith in end-toend alignment with each other and forming a radial spacing between said cylinders and said tubular member,
' an end cap assembled. onto each end of each of said cylinders,
a spacer of noncompressible electrically insulative material separating the adjacent end caps of each of said cylinders,
an O-ring on each side of each of said spacers between said spacer and said end caps on adjacent ends of said cylinders,
means securing said cylinders firmly in position on said tubular member,
an acoustic boot secured about said cylinders, and
an acoustic transmitting medium within the area between said boot and said cylinders and within said tubular member.
2. An acoustical transducer as claimed in claim 1;
wherein,
the area confined by the inner surface of each of said piezoelectric cylinders and the outer surface of said tubular member is filled with air.
3. An acoustical transducer as claimed in claim 2;
wherein,
the spacer between said end caps on said cylinders are made of Nylon.
4. An acoustic transducer as claimed in claim 3;
wherein,
said end caps on said piezoelectric cylinder are made of polycarbonate.
5. An acoustic transducer as claimed in claim 4;
wherein,
said tubular member is a thin-walled steel tube.
Claims (4)
- 2. An acoustical transducer as claimed in claim 1; wherein, the area confined by the inner surface of each of said piezoelectric cylinders and the outer surface of said tubular member is filled with air.
- 3. An acoustical transducer as claimed in claim 2; wherein, the spacer between said end caps on said cylinders are made of Nylon.
- 4. An acoustic transducer as claimed in claim 3; wherein, said end caps on said piezoelectric cylinder are made of polycarbonate.
- 5. An acoustic transducer as claimed in claim 4; wherein, said tubular member is a thin-walled steel tube.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US27391172A | 1972-07-21 | 1972-07-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3781781A true US3781781A (en) | 1973-12-25 |
Family
ID=23045953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00273911A Expired - Lifetime US3781781A (en) | 1972-07-21 | 1972-07-21 | Piezoelectric transducer |
Country Status (2)
Country | Link |
---|---|
US (1) | US3781781A (en) |
CA (1) | CA982685A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4162476A (en) * | 1976-02-18 | 1979-07-24 | Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence | Acceleration balanced hydrophone II |
US4178577A (en) * | 1978-02-06 | 1979-12-11 | The United States Of America As Represented By The Secretary Of The Navy | Low frequency hydrophone |
US5018116A (en) * | 1990-05-04 | 1991-05-21 | Magnavox Government And Industrial Electronics Company | Inter-element mounting for stacked piezoelectric transducers |
FR2725868A1 (en) * | 1994-10-14 | 1996-04-19 | Thomson Csf | SUBMARINE ACOUSTIC TRANSMITTER FOR LARGE IMMERSION |
WO2000067648A1 (en) * | 1999-05-11 | 2000-11-16 | Atrionix, Inc. | Apparatus and method incorporating an ultrasound transducer onto a delivery member |
US6500174B1 (en) | 1997-07-08 | 2002-12-31 | Atrionix, Inc. | Circumferential ablation device assembly and methods of use and manufacture providing an ablative circumferential band along an expandable member |
US6599288B2 (en) | 2000-05-16 | 2003-07-29 | Atrionix, Inc. | Apparatus and method incorporating an ultrasound transducer onto a delivery member |
US20030176816A1 (en) * | 1997-07-08 | 2003-09-18 | Maguire Mark A. | Medical device with sensor cooperating with expandable member |
US6752805B2 (en) | 2000-06-13 | 2004-06-22 | Atrionix, Inc. | Surgical ablation probe for forming a circumferential lesion |
US20040169439A1 (en) * | 2002-07-22 | 2004-09-02 | Minoru Toda | Handheld device having ultrasonic transducer for axial transmission of acoustic signals |
US6869431B2 (en) | 1997-07-08 | 2005-03-22 | Atrionix, Inc. | Medical device with sensor cooperating with expandable member |
EP1769759A2 (en) * | 1999-05-11 | 2007-04-04 | Atrionix, Inc. | Apparatus and method incorporating an ultrasound transducer onto a delivery member |
US20090190442A1 (en) * | 2004-08-05 | 2009-07-30 | Atlas Elektronik Gmbh | Electroacoustic Underwater Antenna |
CN102901981A (en) * | 2012-10-22 | 2013-01-30 | 中国船舶重工集团公司第七一五研究所 | High hydrostatic pressure-resistant small piezoelectric hydrophone and manufacturing method thereof |
US20130057424A1 (en) * | 2011-09-05 | 2013-03-07 | Electronics And Telecommunications Research Institute | Analog-digital converter and converting method using clock delay |
CN103674383A (en) * | 2013-12-05 | 2014-03-26 | 中国科学技术大学 | Piezoelectric film type underwater explosion pressure sensor and measuring method thereof |
US20150198733A1 (en) * | 2009-06-24 | 2015-07-16 | Tecwel As | Transducer assembly |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2732536A (en) * | 1956-01-24 | miller | ||
US2922140A (en) * | 1954-06-25 | 1960-01-19 | Edo Corp | Selectively directive compressional wave transducers |
US2923916A (en) * | 1960-02-02 | woodworth | ||
US3178681A (en) * | 1960-01-07 | 1965-04-13 | Rayflex Exploration Company | Hydrophone |
US3217288A (en) * | 1961-07-26 | 1965-11-09 | Claude C Sims | Noise measurement hydrophone |
US3277436A (en) * | 1956-02-09 | 1966-10-04 | James W Fitzgerald | Hollow electro-acoustic transducer |
US3309653A (en) * | 1963-06-28 | 1967-03-14 | Bendix Corp | Ceramic transducer assembly |
US3328752A (en) * | 1965-12-20 | 1967-06-27 | Claude C Sims | Extended frequency range pressure balanced hydrophone |
US3432000A (en) * | 1966-03-25 | 1969-03-11 | Shell Oil Co | Submersible detector for sensing underwater sounds |
US3546497A (en) * | 1967-11-08 | 1970-12-08 | Plessey Co Ltd | Piezoelectric transducer element |
US3713086A (en) * | 1969-09-25 | 1973-01-23 | W Trott | Hydrophone |
-
1972
- 1972-07-21 US US00273911A patent/US3781781A/en not_active Expired - Lifetime
-
1973
- 1973-07-12 CA CA176,240A patent/CA982685A/en not_active Expired
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2732536A (en) * | 1956-01-24 | miller | ||
US2923916A (en) * | 1960-02-02 | woodworth | ||
US2922140A (en) * | 1954-06-25 | 1960-01-19 | Edo Corp | Selectively directive compressional wave transducers |
US3277436A (en) * | 1956-02-09 | 1966-10-04 | James W Fitzgerald | Hollow electro-acoustic transducer |
US3178681A (en) * | 1960-01-07 | 1965-04-13 | Rayflex Exploration Company | Hydrophone |
US3217288A (en) * | 1961-07-26 | 1965-11-09 | Claude C Sims | Noise measurement hydrophone |
US3309653A (en) * | 1963-06-28 | 1967-03-14 | Bendix Corp | Ceramic transducer assembly |
US3328752A (en) * | 1965-12-20 | 1967-06-27 | Claude C Sims | Extended frequency range pressure balanced hydrophone |
US3432000A (en) * | 1966-03-25 | 1969-03-11 | Shell Oil Co | Submersible detector for sensing underwater sounds |
US3546497A (en) * | 1967-11-08 | 1970-12-08 | Plessey Co Ltd | Piezoelectric transducer element |
US3713086A (en) * | 1969-09-25 | 1973-01-23 | W Trott | Hydrophone |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4162476A (en) * | 1976-02-18 | 1979-07-24 | Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence | Acceleration balanced hydrophone II |
US4178577A (en) * | 1978-02-06 | 1979-12-11 | The United States Of America As Represented By The Secretary Of The Navy | Low frequency hydrophone |
EP0456302A3 (en) * | 1990-05-04 | 1992-08-05 | Magnavox Government And Industrial Electronics Company | Inter-element mounting for stacked piezoelectric transducers |
US5018116A (en) * | 1990-05-04 | 1991-05-21 | Magnavox Government And Industrial Electronics Company | Inter-element mounting for stacked piezoelectric transducers |
EP0456302A2 (en) * | 1990-05-04 | 1991-11-13 | Magnavox Electronic Systems Company | Inter-element mounting for stacked piezoelectric transducers |
FR2725868A1 (en) * | 1994-10-14 | 1996-04-19 | Thomson Csf | SUBMARINE ACOUSTIC TRANSMITTER FOR LARGE IMMERSION |
WO1996011752A1 (en) * | 1994-10-14 | 1996-04-25 | Thomson-Csf | Deep-sea acoustic transmitter |
AU696506B2 (en) * | 1994-10-14 | 1998-09-10 | Thomson-Csf | Deep-sea acoustic transmitter |
US6500174B1 (en) | 1997-07-08 | 2002-12-31 | Atrionix, Inc. | Circumferential ablation device assembly and methods of use and manufacture providing an ablative circumferential band along an expandable member |
US6869431B2 (en) | 1997-07-08 | 2005-03-22 | Atrionix, Inc. | Medical device with sensor cooperating with expandable member |
US20030176816A1 (en) * | 1997-07-08 | 2003-09-18 | Maguire Mark A. | Medical device with sensor cooperating with expandable member |
US6954977B2 (en) | 1997-07-08 | 2005-10-18 | Maguire Mark A | Circumferential ablation device assembly and methods of use and manufacture providing an ablative circumferential band along an expandable member |
US6953460B2 (en) | 1997-07-08 | 2005-10-11 | Maguire Mark A | Medical device with sensor cooperating with expandable member |
US6758847B2 (en) | 1997-07-08 | 2004-07-06 | Atrionix, Inc. | Circumferential ablation device assembly and methods of use and manufacture providing an ablative circumferential band along an expandable member |
US6607502B1 (en) | 1998-11-25 | 2003-08-19 | Atrionix, Inc. | Apparatus and method incorporating an ultrasound transducer onto a delivery member |
US7241295B2 (en) | 1999-03-19 | 2007-07-10 | Astrionix | Circumferential ablation device assembly and methods of use and manufacture providing an ablative circumferential band along an expandable member |
WO2000067648A1 (en) * | 1999-05-11 | 2000-11-16 | Atrionix, Inc. | Apparatus and method incorporating an ultrasound transducer onto a delivery member |
EP1769759A3 (en) * | 1999-05-11 | 2007-04-11 | Atrionix, Inc. | Apparatus and method incorporating an ultrasound transducer onto a delivery member |
AU770477B2 (en) * | 1999-05-11 | 2004-02-19 | Atrionix, Inc. | Apparatus and method incorporating an ultrasound transducer onto a delivery member |
EP1769759A2 (en) * | 1999-05-11 | 2007-04-04 | Atrionix, Inc. | Apparatus and method incorporating an ultrasound transducer onto a delivery member |
US6599288B2 (en) | 2000-05-16 | 2003-07-29 | Atrionix, Inc. | Apparatus and method incorporating an ultrasound transducer onto a delivery member |
US6752805B2 (en) | 2000-06-13 | 2004-06-22 | Atrionix, Inc. | Surgical ablation probe for forming a circumferential lesion |
US7342350B2 (en) | 2002-07-22 | 2008-03-11 | Measurement Specialties, Inc. | Handheld device having ultrasonic transducer for axial transmission of acoustic signals |
US7218040B2 (en) * | 2002-07-22 | 2007-05-15 | Measurement Specialties, Inc. | Handheld device having ultrasonic transducer for axial transmission of acoustic signals |
US20060273696A1 (en) * | 2002-07-22 | 2006-12-07 | Minoru Toda | Handheld device having ultrasonic transducer for axial transmission of acoustic signals |
US20040169439A1 (en) * | 2002-07-22 | 2004-09-02 | Minoru Toda | Handheld device having ultrasonic transducer for axial transmission of acoustic signals |
US20090190442A1 (en) * | 2004-08-05 | 2009-07-30 | Atlas Elektronik Gmbh | Electroacoustic Underwater Antenna |
AU2005270542B2 (en) * | 2004-08-05 | 2010-07-22 | Atlas Elektronik Gmbh | Electroacoustic underwater antenna |
US7800980B2 (en) * | 2004-08-05 | 2010-09-21 | Atlas Elektronik Gmbh | Electroacoustic underwater antenna |
US20150198733A1 (en) * | 2009-06-24 | 2015-07-16 | Tecwel As | Transducer assembly |
US20130057424A1 (en) * | 2011-09-05 | 2013-03-07 | Electronics And Telecommunications Research Institute | Analog-digital converter and converting method using clock delay |
US8659464B2 (en) * | 2011-09-05 | 2014-02-25 | Electronics And Telecommunications Research Institute | Analog-digital converter and converting method using clock delay |
CN102901981A (en) * | 2012-10-22 | 2013-01-30 | 中国船舶重工集团公司第七一五研究所 | High hydrostatic pressure-resistant small piezoelectric hydrophone and manufacturing method thereof |
CN102901981B (en) * | 2012-10-22 | 2016-01-27 | 中国船舶重工集团公司第七一五研究所 | A kind of high hydrostatic pressure-resistant small piezoelectric hydrophone and preparation method thereof |
CN103674383A (en) * | 2013-12-05 | 2014-03-26 | 中国科学技术大学 | Piezoelectric film type underwater explosion pressure sensor and measuring method thereof |
Also Published As
Publication number | Publication date |
---|---|
CA982685A (en) | 1976-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3781781A (en) | Piezoelectric transducer | |
US3187300A (en) | Pressure-compensated transducer | |
US3660809A (en) | Pressure sensitive hydrophone | |
US4231112A (en) | High-power underwater transducer with improved performance and reliability characteristics and method for controlling said improved characteristics | |
US3992693A (en) | Underwater transducer and projector therefor | |
US5357486A (en) | Acoustic transducer | |
US3713086A (en) | Hydrophone | |
US3371311A (en) | Towed pressure transducers with vibration isolation | |
US10001574B2 (en) | Hermetically sealed hydrophones with very low acceleration sensitivity | |
US4004266A (en) | Transducer array having low cross-coupling | |
US4017824A (en) | Acceleration-insensitive hydrophone | |
US6160763A (en) | Towed array hydrophone | |
NO174270B (en) | Piezoelectric transducer | |
US3002179A (en) | Low frequency hydrophone | |
US3105161A (en) | Hollow conical electromechanical transducer in sealed housing | |
US3056589A (en) | Radially vibratile ceramic transducers | |
US3277436A (en) | Hollow electro-acoustic transducer | |
US2413462A (en) | Transducer | |
US3336573A (en) | Crystal pressure sensitive geophones for use in soft earth | |
US3328752A (en) | Extended frequency range pressure balanced hydrophone | |
US3827023A (en) | Piezoelectric transducer having good sensitivity over a wide range of temperature and pressure | |
CN113534114A (en) | High-stability underwater sound standard device and manufacturing method thereof | |
US2977572A (en) | Hydrophone | |
US3497731A (en) | Bender type transducers | |
US2834952A (en) | Transducer |