EP0784242B1 - Verfahren zum Zuführen von Blättern - Google Patents
Verfahren zum Zuführen von Blättern Download PDFInfo
- Publication number
- EP0784242B1 EP0784242B1 EP97300142A EP97300142A EP0784242B1 EP 0784242 B1 EP0784242 B1 EP 0784242B1 EP 97300142 A EP97300142 A EP 97300142A EP 97300142 A EP97300142 A EP 97300142A EP 0784242 B1 EP0784242 B1 EP 0784242B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- stack
- sheets
- sensor
- feedhead
- sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/65—Apparatus which relate to the handling of copy material
- G03G15/6502—Supplying of sheet copy material; Cassettes therefor
- G03G15/6511—Feeding devices for picking up or separation of copy sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H1/00—Supports or magazines for piles from which articles are to be separated
- B65H1/08—Supports or magazines for piles from which articles are to be separated with means for advancing the articles to present the articles to the separating device
- B65H1/14—Supports or magazines for piles from which articles are to be separated with means for advancing the articles to present the articles to the separating device comprising positively-acting mechanical devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2511/00—Dimensions; Position; Numbers; Identification; Occurrences
- B65H2511/10—Size; Dimensions
- B65H2511/15—Height, e.g. of stack
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G2215/00—Apparatus for electrophotographic processes
- G03G2215/00362—Apparatus for electrophotographic processes relating to the copy medium handling
- G03G2215/00367—The feeding path segment where particular handling of the copy medium occurs, segments being adjacent and non-overlapping. Each segment is identified by the most downstream point in the segment, so that for instance the segment labelled "Fixing device" is referring to the path between the "Transfer device" and the "Fixing device"
- G03G2215/00379—Copy medium holder
- G03G2215/00383—Cassette
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G2215/00—Apparatus for electrophotographic processes
- G03G2215/00362—Apparatus for electrophotographic processes relating to the copy medium handling
- G03G2215/00367—The feeding path segment where particular handling of the copy medium occurs, segments being adjacent and non-overlapping. Each segment is identified by the most downstream point in the segment, so that for instance the segment labelled "Fixing device" is referring to the path between the "Transfer device" and the "Fixing device"
- G03G2215/00396—Pick-up device
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G2215/00—Apparatus for electrophotographic processes
- G03G2215/00362—Apparatus for electrophotographic processes relating to the copy medium handling
- G03G2215/00535—Stable handling of copy medium
- G03G2215/00717—Detection of physical properties
- G03G2215/00729—Detection of physical properties of sheet amount in input tray
Definitions
- the present invention relates to a sheet feeding method.
- copy sheets are fed from one or more trays into the print module.
- the stack of sheets must be kept within a range at which the feed head will property acquire, separate and feed each individual sheet.
- Various types of sensors have been utilized within sheet trays to maintain the stack of sheets within a predetermined acquisition range.
- other passive types of sheet trays utilize a biased tray in which the stack of sheets is continually forced against a portion of the feed head so as to always provide a ready sheet for feeding.
- US-A-5,033,731 describes a sheet stacking control system in which a plural mode stack height sensing and sheet delivery device in which a first signal is generated in response to a sheet being fed from the stack and a second distinct signal is generated at full stack condition.
- US-A-4,589,645 discloses a document set separator and stack height sensor adapted to generate signals at different preset levels to indicate the height of a stack to be fed.
- EP-A-0783138 which forms part of the state of the art under Article 54(3) EPC illustrates another system in which the sheet stack is moved upwards after a number of sheets have been fed.
- Fig. 1 schematically depicts an electrophotographic printing machine incorporating the features of the present invention therein. It will become evident from the following discussion that the remote stack height sensing control assembly of the present invention may be employed in a wide variety of devices and is not specifically limited in its application to the particular embodiment depicted herein.
- an original document is positioned in a document handler 27 on a raster input scanner (RIS) indicated generally by reference numeral 28.
- the RIS contains document illumination lamps, optics, a mechanical scanning drive and a charge coupled device (CCD) array.
- CCD charge coupled device
- the RIS captures the entire original document and converts it to a series of raster scan lines. This information is transmitted to an electronic subsystem (ESS) which controls a raster output scanner (ROS) described below.
- ESS electronic subsystem
- ROS raster output scanner
- FIG. 1 schematically illustrates an electrophotographic printing machine which generally employs a photoconductive belt 10.
- the photoconductive belt 10 is made from a photoconductive material coated on a ground layer, which, in turn, is coated on an anti-curl backing layer.
- Belt 10 moves in the direction of arrow 13 to advance successive portions sequentially through the various processing stations disposed about the path of movement thereof.
- Belt 10 is entrained about stripping roller 14, tensioning roller 16 and drive roller 20. As roller 20 rotates, it advances belt 10 in the direction of arrow 13.
- a corona generating device indicated generally by the reference numeral 22 charges the photoconductive belt 10 to a relatively high, substantially uniform potential.
- ESS 29 receives the image signals representing the desired output image and processes these signals to convert them to a continuous tone or greyscale rendition of the image which is transmitted to a modulated output generator, for example the raster output scanner (ROS), indicated generally by reference numeral 30.
- ESS 29 is a self-contained, dedicated minicomputer.
- the image signals transmitted to ESS 29 may originate from a RIS as described above or from a computer, thereby enabling the electrophotographic printing machine to serve as a remotely located printer for one or more computers.
- the printer may serve as a dedicated printer for a high-speed computer.
- ROS 30 includes a laser with rotating polygon mirror blocks.
- the ROS illuminates the charged portion of photoconductive belt 10.
- the ROS will expose the photoconductive belt to record an electrostatic latent image thereon corresponding to the continuous tone image received from ESS 29.
- ROS 30 may employ a linear array of light emitting diodes (LEDs) arranged to illuminate the charged portion of photoconductive belt 10 on a raster-by-raster basis.
- LEDs light emitting diodes
- belt 10 advances the latent image to a development station, C, where toner, in the form of liquid or dry particles, is electrostatically attracted to the latent image using commonly known techniques.
- the latent image attracts toner particles from the carrier granules forming a toner powder image thereon.
- a toner particle dispenser indicated generally by the reference numeral 44, dispenses toner particles into developer housing 46 of developer unit 38.
- sheet feeding apparatus 50 includes a nudger roll 53 contacting the uppermost sheet of stack 54.
- Nudger roll 53 rotates to advance the uppermost sheet from stack 54 into the nip formed by feed roll 52 and the retard roll 51 (Fig. 2) which advances the sheet into vertical transport 56.
- Vertical transport 56 directs the advancing sheet 48 of support material into registration transport 57 past image transfer station D to receive an image from photoreceptor belt 10 in a timed sequence so that the toner powder image formed thereon contacts the advancing sheet 48 at transfer station D.
- Transfer station D includes a corona generating device 58 which sprays ions onto the back side of sheet 48. This attracts the toner powder image from photoconductive surface 12 to sheet 48. After transfer, sheet 48 continues to move in the direction of arrow 60 by way of belt transport 62 which advances sheet 48 to fusing station F.
- Fusing station F includes a fuser assembly indicated generally by the reference numeral 70 which permanently affixes the transferred toner powder image to the copy sheet.
- fuser assembly 70 includes a heated fuser roller 72 and a pressure roller 74 with the powder image on the copy sheet contacting fuser roller 72.
- a gate 80 either allows the sheet to move directly via output 16 to an output device such as a finisher or stacker, or deflects the sheet into the duplex path 100, specifically, first into single sheet inverter 82 here. That is, if the sheet is either a simplex sheet, or a completed duplex sheet having both side one and side two images formed thereon, the sheet will be conveyed via gate 80 directly to output 16.
- the gate 80 will be positioned to deflect that sheet into the inverter 82 and into the duplex loop path 100, where that sheet will be inverted and then fed to acceleration nip 102 and belt transports 110, for recirculation back through transfer station D and fuser 70 for receiving and permanently fixing the side two image to the backside of that duplex sheet, before it exits via exit path 16.
- Cleaning station E includes a rotatably mounted fibrous brush in contact with photoconductive surface 12 to disturb and remove paper fibers and a cleaning blade to remove the nontransferred toner particles.
- the blade may be configured in either a wiper or doctor position depending on the application.
- a discharge lamp (not shown) floods photoconductive surface 12 with light to dissipate any residual electrostatic charge remaining thereon prior to the charging thereof for the next successive imaging cycle.
- the various machine functions are regulated by controller 29.
- the controller is preferably a programmable microprocessor which controls all of the machine functions hereinbefore described.
- the controller provides a comparison count of the copy sheets, the number of documents being recirculated, the number of copy sheets selected by the operator, time delays, jam corrections, etc..
- the control of all of the exemplary systems heretofore described may be accomplished by conventional control switch inputs from the printing machine consoles selected by the operator.
- Conventional sheet path sensors or switches may be utilized to keep track of the position of the document and the copy sheets.
- the feed head is made up of a nudger roll 53, a feed roll 52, and a retard roll 51.
- the sheets in the stack 54 are nudged by the nudger roll 53 into the nip formed by the feed roll 52 and the retard roll 51.
- the nudger roll is mounted on a pivot which is centered more or less on the axis of feed roll 52.
- the nudger roll 53 translates down in the direction of arrow 152 which causes the sensor flag 150, attached/coupled to the support of the nudger roll, to pivot and uncover the sensor 160.
- the sensor 160 causes the elevator tray drive assembly to actuate, thereby raising the stack and causing the nudger roll 53 to translate upwards in the direction of arrow 154, once again closing sensor 160, which stops the elevator movement.
- a feed belt acquisiton scheme could also use the same principle to use the feedhead as the sensing member.
- the stack height sensor As a result of incorporating the stack height sensor into the feedhead, several advantages are realized. There is no additional drag imparted to the sheets as the result of a sensing arm or other sensing member. This also reduces the possibility of skewing the sheets with an additional sensing member.
- the feedhead due to the normal force required to acquire the sheets also provides an accurate measurement of stack height. The normal force of the feedhead also eliminates inaccurracies that could be caused by curled sheets in a feed tray.
- the stack height is also measured "on the fly" as the sheets are being acquired and fed, thus providing an efficient stack height sensing scheme.
- the sensor flag 150 is a pivotally mounted flag which is mechanically connected to the pivoting feed head frame.
- the feed head frame is mounted on the drawer/cassette holding the paper stack.
- the drawer/cassette or the feed head frame have locating features 156 that will locate sensor unit 160 on an interior member of the printing machine. This arrangement is illustrated in Figures 3 and 4.
- the mechanical coupling arrangement eliminates all electrical connections to the feed tray, thereby eliminating one source of breakdown and cost.
- Figure 4 illustrates the mounting of the sensor flag 150 and sensor unit 160 mounted on an interior member of the printing machine.
- the entire sensor assembly arrangement is modularly mounted and has freedom of movement so that the entire unit will self-align when locating features 156 are inserted into allignment features 158 on the sensor assembly.
- This movement freedom can be accomplished by several different aproaches.
- One approach illustrated uses a resilient foam type mounting, alternatively, the freedom of movement could be accomplished using spring centered pins in oversized holes to allow for movement of the unit.
- the mechanical power to elevate the stack is delivered from the interior of the machine to the drawer/cassette via seperable couplings
- FIG. 5 illustrates the entire elevator drive arrangement utilizing two sensors (160,162), two trays (180,182), and a bi-directional elevator drive motor (170).
- the motor 170 drives an output shaft 171, which is connected to two single directional clutches, 172 and 174.
- the clutch 172 causes the tray 180 to raise and the tray 182 remains stationary.
- the drive motor 170 receives a signal from the sensor 162 it is driven in the opposite direction (counterclockwise) causing the clutch 174 to actuate the tray 182 and raise the stack within to the feed head of the tray.
- the clutch 172 slips in the counterclockwise direction, causing the tray 180 to remain stationary.
- FIG. 6 A similar arrangement is illustrated in Fig. 6 for a pair of feedhead drives 200, 202.
- a bidirectional motor 210 and a series of one way clutches 220, 222 connect the two feedhead drives 200, 202.
- the motor 210 is driven in a first direction 238, the first feedhead 200 is driven to forward sheets to the printing machine.
- the motor 210 is reversed in a second direction 240, the second feedhead 202 is likewise driven.
- the mechanical power to drive the feedheads is delivered from the interior of the machine to the drawer/cassette via seperable couplings As it is not practical to feed from two sources at a time, this arrangement provides an efficient and cost effective feedhead drive scheme.
- a stack height control assembly that is remote from the feedhead.
- a floating flag sensor arrangement is mounted so that it is engaged with a paper supply drawer/cassette as the drawer/cassette is moved into an operative position.
- the feedhead by way of the nudger roll acts as the stack height sensor and through a mechanical engagement with the sensor, which is removed and remote from the supply drawer/cassette, signals as the stack is depleted and the elevator mechanism should raise the stack.
- This control scheme removes complex electrical connectors from the drawer/cassette assembly and allows a wide range of substrates to be fed from the paper supply drawer.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Sheets, Magazines, And Separation Thereof (AREA)
Claims (6)
- Verfahren zum Zuführen von Einzelblättern von einem Stapel von Blättern (54), der von einer Blattauflage getragen wird, wobei das Verfahren das Betätigen eines schwenkbaren Zuführkopfes (50), der mit der Oberseite des Stapels von Blättern (54) in Kontakt ist, um die Einzelblätter zuzuführen; das Überwachen eines Sensors (160, 150), der von der Blattauflage entfernt und funktionell mit dem Zuführkopf (50) verbunden ist, wenn Blätter von dem Stapel (54) zugeführt werden, um die Auflage zu betätigen und eine richtige Stapelhöhe aufrechtzuerhalten, wobei der Sensor ein Sensorzeichen (150) und eine Sensoreinheit (160) umfasst und das Sensorzeichen (150) an dem Zuführkopf (50) zur Bewegung damit angebracht ist und die Sensoreinheit (160) unabhängig von dem Zuführkopf angebracht ist, so dass Bewegung des Zuführkopfes (50) relative Bewegung des Sensorzeichens (150) und der Sensoreinheit (160) zueinander bewirkt, dadurch gekennzeichnet, dass das Verfahren das Zuführen einer Vielzahl von Blättern von dem Stapel vor dem Betätigen der Auflage beim Empfang eines Signals von dem Sensor (150, 160), den Stapel wieder auf die richtige Stapelhöhe zu bringen, umfasst.
- Verfahren nach Anspruch 1, wobei die Blattauflage eine verschiebbare Schublade zum Aufnehmen des Stapels von Blättern (54) umfasst.
- Verfahren nach Anspruch 1 oder Anspruch 2, wobei der Zuführkopf (50) schwenkbar an der Blattauflage angebracht ist, so dass, wenn Blätter von dem Stapel (54) zugeführt werden, der Zuführkopf (50) sich um eine Achse dreht.
- Verfahren nach einem der Ansprüche 1 bis 3, wobei die Blattauflage des Weiteren Fixierstrukturen umfasst, die lösbar mit dem Sensor verbunden sind, so dass, wenn die Blattauflage aus einer aktiven Position in eine Beschickungsposition bewegt wird, sich die Fixierstrukturen von dem Sensor trennen.
- Verfahren nach einem der Ansprüche 1 bis 4, wobei der Zuführkopf eine Anschiebwalze (53), die mit der Oberseite des Stapels (54) in Kontakt kommt;
eine Zuführwalze (52), die von der Anschiebwalze (53) vorgeschobene Blätter aufnimmt; und
ein Verzögerungselement (51) umfasst, das mit der Zuführwalze (52) einen Zuführspalt bildet, wobei die Zuführwalze (52) und die Anschiebwalze (53) schwenkbar angebracht sind, so dass sie sich als eine Einheit um eine Achse drehen, die auf die Zuführwalze (52) zentriert ist. - Verfahren nach einem der vorangehenden Ansprüche, wobei die Blattauflage aus einer Funktionsposition an eine Beschickungsposition bewegt werden kann.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/583,829 US5653434A (en) | 1996-01-11 | 1996-01-11 | Stack height control remote from feedhead |
US08/583,830 US5842694A (en) | 1996-01-11 | 1996-01-11 | Stack height control with height sensing feedhead |
US583830 | 1996-01-11 | ||
US583829 | 1996-01-11 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0784242A2 EP0784242A2 (de) | 1997-07-16 |
EP0784242A3 EP0784242A3 (de) | 1998-04-15 |
EP0784242B1 true EP0784242B1 (de) | 2003-09-03 |
Family
ID=27078913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97300142A Expired - Lifetime EP0784242B1 (de) | 1996-01-11 | 1997-01-10 | Verfahren zum Zuführen von Blättern |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0784242B1 (de) |
DE (1) | DE69724481T2 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101359195B (zh) * | 2007-07-30 | 2011-02-16 | 京瓷美达株式会社 | 供纸装置和具有供纸装置的图像形成装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009062158A (ja) * | 2007-09-07 | 2009-03-26 | Canon Inc | シート給送装置及びこれを備えた画像形成装置 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0783138A1 (de) * | 1995-09-12 | 1997-07-09 | Fuji Xerox Co., Ltd. | Papierzuführvorrichtung |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3981497A (en) * | 1975-06-23 | 1976-09-21 | International Business Machines Corporation | Automatic document alignment method and apparatus for document feed equipment |
CH616388A5 (en) * | 1977-04-18 | 1980-03-31 | Kurt Ruenzi | Separating device for paper sheets |
US4589645A (en) | 1985-10-03 | 1986-05-20 | Xerox Corporation | Document set separator and stack height sensor |
JPH01267233A (ja) * | 1988-04-19 | 1989-10-25 | Toshiba Corp | 画像形成装置 |
JPH0270634A (ja) * | 1988-09-01 | 1990-03-09 | Konica Corp | 給紙装置 |
US5033731A (en) | 1990-03-12 | 1991-07-23 | Xerox Corporation | Dual mode stack height and sheet delivery detector |
JP2635878B2 (ja) * | 1992-02-06 | 1997-07-30 | 富士通株式会社 | 給紙装置 |
-
1997
- 1997-01-10 EP EP97300142A patent/EP0784242B1/de not_active Expired - Lifetime
- 1997-01-10 DE DE69724481T patent/DE69724481T2/de not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0783138A1 (de) * | 1995-09-12 | 1997-07-09 | Fuji Xerox Co., Ltd. | Papierzuführvorrichtung |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101359195B (zh) * | 2007-07-30 | 2011-02-16 | 京瓷美达株式会社 | 供纸装置和具有供纸装置的图像形成装置 |
Also Published As
Publication number | Publication date |
---|---|
DE69724481D1 (de) | 2003-10-09 |
EP0784242A3 (de) | 1998-04-15 |
EP0784242A2 (de) | 1997-07-16 |
DE69724481T2 (de) | 2004-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5842694A (en) | Stack height control with height sensing feedhead | |
US6775514B2 (en) | Substrate size monitoring system for use in copier/printers | |
EP0871076B1 (de) | Zwillingsvorrichtung zum Geraderichten von Druckpapier und die zugehörige Steuervorrichtung | |
US7527263B2 (en) | Pre-registration apparatus | |
EP0929002B1 (de) | Sicherheitsverriegelungsmechanismus | |
US5775690A (en) | Two step optimized stalled roll registration and deskew | |
EP0707242B1 (de) | Blattzuführanordnung | |
US5709380A (en) | Replaceable compact feed roll unit | |
JPH1135226A (ja) | 排出媒体検出装置及びこの装置を有する媒体搬送装置、画像形成装置 | |
EP0841272B1 (de) | Vorrichtung zum Zuführen und Ablegen von Bogen | |
US5653434A (en) | Stack height control remote from feedhead | |
US5769410A (en) | Lift and drive actuators for feeder CRU | |
JP2008156121A (ja) | 媒体給送機及び給送方法 | |
US5349199A (en) | Sensing apparatus for reducing sheet detection and registration errors by using multiple light beam reflections | |
US20120147435A1 (en) | Retard feeder | |
JPH07285701A (ja) | 自己調心低ジャム率アイドラアセンブリ | |
US6505030B1 (en) | Pre-fuser transport assembly for handling a variety of sheets, and a reproduction machine having same | |
US6650865B2 (en) | Stalled roll registration system and method employing a ball-on-belt input transport | |
EP0784242B1 (de) | Verfahren zum Zuführen von Blättern | |
US6547234B1 (en) | Quadruple capacity feeder cassette | |
US5983053A (en) | Non-contacting hybrid jumping developer dirt emission baffle seal | |
US6116594A (en) | Sheet registration device | |
US6035490A (en) | Cover hinge with integral detent | |
US6745000B2 (en) | Cradle for a fusing assembly | |
EP0736472B1 (de) | Exzentrische Leitrolle zur Ausrichtung von langen Bögen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE FR GB |
|
17P | Request for examination filed |
Effective date: 19981015 |
|
17Q | First examination report despatched |
Effective date: 20010730 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
RTI1 | Title (correction) |
Free format text: METHOD OF FEEDING SHEETS |
|
RTI1 | Title (correction) |
Free format text: METHOD OF FEEDING SHEETS |
|
RTI1 | Title (correction) |
Free format text: METHOD OF FEEDING SHEETS |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 69724481 Country of ref document: DE Date of ref document: 20031009 Kind code of ref document: P |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20040604 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 746 Effective date: 20041130 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: D6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20121224 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20130305 Year of fee payment: 17 Ref country code: DE Payment date: 20121226 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 69724481 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20140110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140801 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20140930 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 69724481 Country of ref document: DE Effective date: 20140801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140131 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140110 |