EP0782928B1 - Farbxerographischer Drucker mit vielfachen linearen Reihen von oberflächenemittierenden Lasern mit gleichen Wellenlängen - Google Patents

Farbxerographischer Drucker mit vielfachen linearen Reihen von oberflächenemittierenden Lasern mit gleichen Wellenlängen Download PDF

Info

Publication number
EP0782928B1
EP0782928B1 EP19960308992 EP96308992A EP0782928B1 EP 0782928 B1 EP0782928 B1 EP 0782928B1 EP 19960308992 EP19960308992 EP 19960308992 EP 96308992 A EP96308992 A EP 96308992A EP 0782928 B1 EP0782928 B1 EP 0782928B1
Authority
EP
European Patent Office
Prior art keywords
printer
modulated light
linear
light beams
photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19960308992
Other languages
English (en)
French (fr)
Other versions
EP0782928A1 (de
Inventor
Tibor Fisli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xerox Corp
Original Assignee
Xerox Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xerox Corp filed Critical Xerox Corp
Publication of EP0782928A1 publication Critical patent/EP0782928A1/de
Application granted granted Critical
Publication of EP0782928B1 publication Critical patent/EP0782928B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/447Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources
    • B41J2/45Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources using light-emitting diode [LED] or laser arrays

Definitions

  • This invention relates to a color xerographic printer, and, more particularly, to a color xerographic printer with a monolithic structure of multiple linear arrays of surface emitting lasers with the same wavelengths to simultaneously expose widely separated positions on the same or different photoreceptors.
  • a Raster Output Scanner (ROS) or a Light Emitting Diode (LED) print bar known as imagers known from, e.g., JP-A-62 65 804 and JP-A-05 053 068 used in xerographic printers are well known in the art.
  • the ROS or the LED print bar is positioned in an optical scan system to write an image on the surface of a moving photoreceptor belt.
  • a modulated beam is directed onto the facets of a rotating polygon mirror which then sweeps the reflected beam across the photoreceptor surface. Each sweep exposes a raster line to a linear segment of a video signal image.
  • the LED print bar generally consists of a linear array of light emitting diodes. Each LED in the linear array is used to expose a corresponding area on a moving photoreceptor in response to the video data information applied to the drive circuits of the print bars.
  • the photoreceptor is advanced in the process direction to provide a desired image by the formation of sequential scan lines.
  • a plurality of the light emitting elements of the LED print bars are imaged to a photoreceptor surface usually by closely spaced radially indexed glass fibers known as "selfoc" lenses.
  • Light emitting diodes by their very nature, have a large spatial divergence, a broad spectrum and are unpolarized, all factors which severely limit the possible imaging of multiple LED arrays at multiple positions on a single photoreceptor or at multiple photoreceptors as needed in color xerographic printers.
  • Prior LED print bar xerographic line printers have taught only line exposure at a single position on one photoreceptor.
  • US-A-5 337 074 US-A-5 461 413 and EP-A-0 625 846 disclose using a single linear surface emitting laser array as the light source for a line printer.
  • a laser array has a smaller spatial divergence than a LED array and a smaller radiating aperture. Both of these factors increase the spot density.
  • the narrow spectrum of laser beams enables optical separation of the laser beams in accordance with the present invention.
  • the broad spectrum precludes similar separations of LED emissions.
  • a xerographic printer comprising:- at least one photoreceptor, at least one linear laser array for emitting modulated light beams having the same wavelength, a first telecentric lens means for refracting the modulated light beams, an aperture at which the telecentric lens means refracts the modulated light beams, and a second telecentric lens means for focusing the modulated light beams passing through the aperture onto the photoreceptor(s) to simultaneously expose a full scan line thereon.
  • the printer is a highlight color xerographic printer comprising first and second linear laser arrays for emitting first and second modulated light beams, each modulated light beam being angularly spaced from the other by the aperture, the second telecentric lens means focusing the first and second modulated light beams onto respective first and second regions of the photoreceptor to simultaneously expose a full scan line thereon.
  • the printer is a highlight color xerographic printer comprising first and second photoreceptors and first and second linear laser arrays for emitting first and second modulated light beams, each modulated light beam being angularly spaced from the other by the aperture, the second telecentric lens means focusing the first and second modulated light beams onto a respective one of the first and second photoreceptors to simultaneously expose a full scan line thereon.
  • the printer is a full color xerographic printer comprising first, second, third and fourth linear laser arrays for emitting first, second, third and fourth modulated light beams, the second telecentric lens means focusing each of the first, second, third and fourth modulated light beams onto a respective one of first, second, third and fourth regions of the photoreceptor to simultaneously expose a full scan line thereon.
  • the printer is a full color xerographic printer comprising first, second, third and fourth photoreceptors and first, second, third and fourth linear laser arrays for emitting first, second, third and fourth modulated light beams, the second telecentric lens means focusing each of the first, second, third and fourth modulated light beams onto a respective one of first, second, third and fourth photoreceptors to simultaneously expose a full scan line thereon.
  • a color printer uses multiple linear arrays of Vertical Cavity Surface Emitting Lasers (VCSELs) of the same wavelength to simultaneously expose widely separated positions on the same or different photoreceptors.
  • VCSELs Vertical Cavity Surface Emitting Lasers
  • a highlight color printer would use two or more linear laser arrays while a full color printer would use four or more linear laser arrays.
  • Each array is imaged by the same telecentric spherical lens and aperture to the photoreceptor.
  • the linear beams are concentrically spaced around the axis of the imaging optics.
  • the multiple linear arrays can be closely spaced in a monolithic structure or assembled in a precise unit.
  • Light emitting elements in each array can be spaced or staggered for line imaging at the printed pixel density.
  • FIG. 1 which utilizes a monolithic structure 102 of four linear arrays of vertical cavity surface emitting lasers (VCSELs) to simultaneously expose four photoreceptors to enable one pass full color printing.
  • VCSELs vertical cavity surface emitting lasers
  • the monolithic array structure 102 of the printer 100 is selectively addressed by video image signals processed through Electronic Sub System (ESS) 104 and modulated by drive circuit 106 to produce a modulated beam from each individual VCSEL in the array.
  • ESS Electronic Sub System
  • the laser array structure 102 shown in detail in Figure 2, consists of a combination of four linear VCSEL arrays 108, 110, 112 and 114 arranged in parallel (or series) in the scan direction within the monolithic array 102, each array 108,110,112,114 emitting light at the same wavelength.
  • the equally spaced individual VCSELs within each of the four linear arrays are arranged linearly in the scan plane direction with equal center to center spacing 116 between the individual VCSELs.
  • the sagittal distance between the VCSEL arrays and the length of the arrays are such that they provide sufficient field angle for untruncated scanning beam separation for the optical system for the color printer 100.
  • the length of the individual linear VCSEL arrays 108, 110, 112 and 114 will equal the scan length along the photoreceptor divided by the optical system magnification and the length is independent of resolution.
  • the VCSELs 118 in the first linear array 108 emit light 120
  • the VCSELs 122 in the second linear array 110 emit light 124
  • the VCSELs 126 in the third linear array 112 emit light 128, and the VCSELs 130 in the fourth linear array 114 emit light 132.
  • the VCSELs have a half power beam divergence of about 8 to 10 degrees.
  • the monolithic VCSEL array structure 102 with its four linear arrays 108, 110, 112 and 114 can be made in many different ways.
  • a high density array of vertical cavity surface emitting lasers can emit from the epitaxial side of the array, as described in US-A-5 062 115.
  • a high density array of vertical cavity surface emitting lasers can emit from the substrate side of the array, as described in US-A-5 216 263. In both cases, all elements of the array emit at substantially the same wavelength and have no provision for control of the polarization state.
  • the VCSEL array structure 102 with its four linear arrays 108, 110, 112 and 114 may be either a monolithic diode laser array or two non-monolithic laser subarrays closely spaced into a single integrated array, as will be described fully later. With either type of source, the laser array structure 102 provides a substantially common spatial origin for all four laser beams.
  • the monolithic array structure 102 is arranged symmetrically about the optical axis in both meridians with VCSEL arrays 108 and 110 equally spaced from the optical axis on one side in the process direction and VCSEL arrays 112 and 114 equally spaced from the optical axis on the opposite side also in the process direction. In the scan direction the mid-length of the monolithic structure 102 is spaced on the optical axis of the imaging lens.
  • the monolithic array structure 102 emits a linear array of modulated beams 120, 124, 128 and 132, at the same wavelength. Only the extreme rays of the beams are shown.
  • the linear beams 120, 124, 128 and 132 are diverging from the array 102 and are refracted by a multiple element spherical telecentric lens 134 through the circular aperture 136.
  • the spherical lens is telecentric in both tangential and sagittal meridians.
  • the telecentric nature of the lenses 134 in both axes provides a flat field for good depth of focus and, at the same time, permits the passage all of the beams from the four linear arrays 120, 124, 128 and 132 without truncation, thus providing high power throughput of all the beams.
  • a telecentric projection lens can image widely spaced VCSEL arrays with sufficient angular separation that permits the spatial separation of the emerging beams from each array, in order to direct them to their assigned xerographic stations.
  • the VCSEL arrays in the monolithic array structure 102 are at the object plane of the spherical telecentric lens 134.
  • the telecentric lens 134 collects the light cones from the four linear beams 120, 124, 128 and 132 and "bends" them toward (and through) the circular aperture 136.
  • the aperture 136 shown in Figure 1 also functions as a stop to control the spot size.
  • the aperture 136 shown in Figure 3 is circular to provide round spots on the photoreceptor.
  • the four converging linear beams 120, 124, 128 and 132 pass through the aperture 136 and are focused by the spherical lens group 138 upon photoreceptors 140, 142, 144, 146.
  • the spherical lens group 138 is a spherical triplet, which, in combination with lens group 134, focuses the beams 120, 124, 128, 132 with uniform size, energy and linearity in the proper position on the photoreceptors 140,142,144,146.
  • the spherical lens 138 will focus the first modulated linear beams 120 upon a first photoreceptor 140.
  • the spherical lens 138 will focus the second modulated linear beams 124 upon a second photoreceptor 142.
  • the spherical lens 138 will focus the third modulated linear beams 128 upon a third photoreceptor 144.
  • the spherical lens 138 will focus the fourth modulated linear beams 132 upon a fourth photoreceptor 146.
  • the four beams 120, 124, 128 and 132 from the four arrays 108, 110, 112, 114 are imaged on the photoreceptors 140, 142, 144, 146 in good focus, without bow, with uniform energy and high linearity because the position of the VCSELs in the individual arrays are well controlled in the image plane and the characteristics of the telecentric spherical lens groups 134 and 138 are capable of high quality imaging.
  • the combination of spherical lenses 134 and 138 also provides good linearity to each of the four linear beams 120, 124, 128 and 132 along the corresponding four photoreceptors 140, 142, 144 and 146.
  • each laser beam is independently modulated with image information, a distinct latent image is simultaneously printed on each photoreceptor. All the VCSELs in the linear array will be addressed at the same time so that the linear array will simultaneously expose the entire line on the photoreceptor.
  • the photoreceptors 140, 142, 144 and 146 are charged by charging stations (not shown) prior to exposure by beams 120, 124, 128 and 132 respectively.
  • a development station also not shown
  • a fully developed image is then transferred to an output sheet (not shown) at a transfer station (not shown) from each photoreceptor 140, 142, 144, 146.
  • the charge, development and transfer stations are conventional in the art. Further details of xerographic stations in a multiple exposure single pass system are disclosed in US-A-4 661 901; US-A-4 791 452; and US-A-4 833 503.
  • the full color printer 100 of Figure 1 utilizes a monolithic structure 102 of four linear arrays of vertical cavity surface emitting lasers (VCSELs) of the same wavelength to simultaneous expose four photoreceptors to enable one pass full color printing. Only monochrome lasers are needed with no specific polarization orientation to the beams required. No special thin film coatings are needed for the separation of beams.
  • VCSELs vertical cavity surface emitting lasers
  • the four linear VCSEL arrays 108, 110, 112 and 114 are equally spaced 10mm apart in the monolithic array structure 102 with the total distance across the four arrays being approximately 30mm. This 30mm width gives sufficient angular divergence of the four scanning beams for clear, truncation free separation.
  • the preferred length of each array is approximately 35mm.
  • the object area of the complete VCSEL array will be approximately 30mm x 35mm. This geometry would require approximately 8.5X system magnification for a 297mm (11.7in) long scan line.
  • the wavelength of the four linear beams 120, 124, 128 and 132 produced by the VCSELs is 780nm.
  • the combined system magnification of lens 134 and lens 138 will be approximately 8.5 X to produce the required 297mm (11.7in) long scan.
  • the total optical path length from the common monolithic array structure source 102 to the individual photoreceptors 140, 142, 144 and 146 will be approximately 633mm.
  • the distance from the last surface of lens 138 to the photoreceptors 140, 142, 144, 146 will be approximately 460mm.
  • the complete imaging lens (134 and 138) can be designed to produce acceptable pixel placement and differential bow, or can be corrected by the insertion of parallel plate glass windows as described in U.S. Patent Application No. 08/354,080, "Method and Apparatus for Elimination of Bow in a Raster Scanning System".
  • the size of the color printer 100 can be reduced by the use of folding mirrors in the optical path length after the spherical lens 138 as shown in Figure 4.
  • First modulated linear beam 120 will be reflected by mirrors 148 and 150 to the second photoreceptor 142.
  • Second modulated linear beam 124 will be reflected by mirrors 152 and 154 to the first photoreceptor 140.
  • Third modulated beam 128 will be reflected by mirrors 156 and 158 to the fourth photoreceptor 146.
  • Fourth modulated beam 132 will be reflected by mirrors 160 and 162 to the third photoreceptor 144.
  • the 630mm total optical path length is sufficient to accommodate the folding for up to 254mm (10 inch) photoreceptor separation in the process direction.
  • the object distance for the four photoreceptors do not have to be the same since the folding can accommodate the differences, but the projected scan length from start-of-scan (SOS) to end-of-scan (EOS) must be the same.
  • the folding mirrors can be aligned so that the four linear beams expose four different positions on a single photoreceptor (not shown).
  • All of the VCSELs in the linear array will be addressed simultaneously so that the linear array will simultaneously expose all the pixels in a line on the photoreceptor.
  • the term of art used to describe the entire line of pixels on the photoreceptor is the "scan line", although, technically, in this application the beam is not being scanned along a line. However, this application will conform to conventional nomenclature and describe the simultaneously exposed pixel line on the photoreceptor as a "scan line”.
  • a ROS will scan a beam along the scan line of the photoreceptor sequentially exposing each pixel, one at a time.
  • the present application with a linear laser array simultaneously exposes all the pixels along the scan line at the same time.
  • the present application does not have the rotating mirror scanning element like the ROS and the linear laser array prints a line at a time while the ROS prints a pixel at a time.
  • the optical system of the color printer 100 shown in Figure 1 works equally well with only two linear VCSEL arrays, rather than four, and only two corresponding photoreceptors, rather than four, to provide a highlight color printer which prints black and white and a highlight color.
  • the VCSEL arrays would be arranged symmetrically about the optical axis such as linear VCSEL arrays 110 and 112 or linear VCSEL arrays 108 and 114.
  • any two of the linear VCSEL arrays 108, 110, 112 and 114 could be used despite being asymmetric about the optical axis or even on the same side of the optical axis.
  • the extreme off-axis position of the VCSELs does influence the complexity of the imaging lens.
  • the highlight color printer can be adapted with the proper folding of the beams by mirrors to expose two separated positions on a single photoreceptor.
  • the optical system of the color printer 100 shown in Figure 1 works equally well with only one linear VCSEL arrays, rather than four, and only one corresponding photoreceptors, rather than four, to provide a black and white printer.
  • the single linear array can be at any of the four spatial positions of the four linear VCSEL arrays. Alternately, the single linear array could be along the optical axis of the xerographic printer. Telecentric lenses will still be need for flat field, linearity, uniform spot size and uniform power and focusing is still needed in both meridians but cross-cylinder lenses could be used.
  • the aperture 136 ( Figure 3) also functions as a stop to control the spot size by controlling the effective F/number of the imaging system.
  • the aperture 136 in Figure 3 is circular to provide round spots in the scan line on the photoreceptor.
  • Spots that are narrower (or wider) in either in the sagittal or in the process direction can be generated by the usage of an aperture that is larger in the meridian where the smaller spot is required.
  • This arrangement permits "high addressability” (higher scan line density with smaller spots) and/or overlapping larger spots of the same scan line density for "hyperacuity" printing in the process direction.
  • the aperture 134 can be rectangular ( Figures 5A and 5C) or ellipsoidal ( Figures 5B and 5D).
  • the long axis of the rectangle or ellipse can be along the cross-scan or process or sagittal direction in Figures 5A and 5B to provide spots smaller in that cross-scan or process or sagittal direction on the photoreceptor for hyperacuity or other type of highly addressed printing.
  • the narrow dimension of the aperture has sufficient value to produce the required overlapping spot size in the fast scan (tangential) direction.
  • a laser array structure 200 shown in Figure 6 is a non-monolithic combination of two monolithic structures 202 and 204 of VCSEL arrays.
  • Each monolithic array structure 202, 204 contains two linear arrays of VCSELs emitting at the same wavelength.
  • Monolithic array structure 202 has linear VCSEL arrays 206, 208 and monolithic array structure 204 has linear VCSEL arrays 210, 212.
  • the laser array structure 200 shown in Figure 6 emits the same wavelengths, similar to the monolithic array structure 102 shown in Figure 2.
  • the advantage of this non-monolithic combination is that monolithic array structures 202 and 204 are easier to fabricate.
  • the sagittal separation between adjacent arrays on different monolithic array structures can be much larger than the tangential spacing between the VCSEL elements, since each array is imaged at a different exposure position.
  • the sagittal spacing between monolithic subarray structures is minimized by locating the linear arrays near the edge of each monolithic subarray structure.
  • Gain guided VCSELs are well suited for the color printing applications of the embodiments because they exhibit essentially no astigmatism, although desired controlled astigmatism can be introduced by non-circular apertures.
  • variation of the imaging lens' focal length due to the wavelength dependence of its refractive index can be compensated by (1) adding a glass plate to one array or by (2) monolithically adding an appropriate diffractive lens to individual elements of one array, as described in US-A-5 073 041.
  • a monolithic structure of two or four VCSEL arrays of the present invention is cheaper to manufacture than the two or four separate LED print bars of the prior art.
  • the VCSEL arrays are accurately aligned within the monolithic structure as opposed to the prior art four separate LED print bars which must be accurately aligned with each other.
  • a monolithic structure of two or four VCSEL arrays considerably reduces the size and total spatial volume of a color xerographic printer. And monolithic source arrays are cost-effective since assemblies of multiple chips is reduced or in some cases eliminated.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Color Electrophotography (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
  • Color, Gradation (AREA)
  • Semiconductor Lasers (AREA)
  • Dot-Matrix Printers And Others (AREA)

Claims (9)

  1. Xerografischer Drucker (100) mit:
    mindestens einem Fotorezeptor (140,142, 144, 146),
    mindestens einer linearen Laseranordnung (102, 108, 110, 112, 114; 200, 202, 204, 206, 208, 210, 212) zum Emittieren modulierter Lichtstrahlen (120, 124, 128, 132) mit derselben Wellenlänge,
    einer ersten telezentrischen Linseneinrichtung (134) zum Brechen der modulierten Lichtstrahlen (120, 124, 128, 132),
    einer Apertur (136), an der die telezentrische Linseneinrichtung (134) die modulierten Lichtstrahlen (120, 124, 128, 132) bricht, und
    einer zweiten telezentrischen Linseneinrichtung (138) zum Fokussieren der die Apertur (136) passierenden modulierten Lichtstrahlen (120, 124, 128, 132) auf den/die Fotorezeptor(en) (140, 142, 144, 146) zum gleichzeitigen Belichten einer vollständigen Scanlinie auf ihm/ihnen.
  2. Drucker nach Anspruch 1, wobei die erste telezentrische Linseneinrichtung (134) ein Querzylindertriplett ist und die zweite telezentrische Linseneinrichtung (138) ein Querzylindertriplett ist.
  3. Drucker nach Anspruch 1, wobei die erste telezentrische Linseneinrichtung (134) ein sphärisches Triplett ist und die zweite telezentrische Linseneinrichtung (138) ein sphärisches Triplett ist.
  4. Drucker nach Anspruch 3, wobei der Drucker ein xerografischer Schmuckfarbdrucker mit einer ersten und zweiten linearen Laseranordnung (110, 112; 108, 114) zum Emittieren eines ersten und zweiten modulierten Lichtstrahls (124, 128; 120, 132) ist, wobei jeder modulierte Lichtstrahl (124, 128; 120, 132) durch die Apertur (136) in einen bestimmten Winkel zum anderen beabstandet ist, wobei die zweite telezentrische Linseneinrichtung (138) den ersten und zweiten modulierten Lichtstrahl (124, 128; 120, 132) auf den ersten bzw. zweiten Bereich des Fotorezeptors (140, 142, 144, 146) fokussiert, um so gleichzeitig eine volle Scanlinie auf ihm zu belichten.
  5. Drucker nach Anspruch 3, wobei der Drucker ein xerografischer Schmuckfarbdrucker mit einem ersten und zweiten Fotorezeptor (140, 142, 144, 146) und einer ersten und zweiten linearen Laseranordnung (110, 112; 108, 114) zum Emittieren eines ersten und zweiten modulierten Lichtstrahls (124, 128; 120, 132) ist, wobei jeder modulierte Lichtstrahl (124, 128; 120, 132) durch die Apertur (136) zum anderen um einen bestimmten Winkel beabstandet ist, wobei die zweite telezentrische Linseneinrichtung (138) den ersten und zweiten modulierten Lichtstrahl (124, 128; 120, 132) auf den ersten bzw. zweiten Fotorezeptor (140, 142, 144, 146) fokussiert, um so gleichzeitig eine volle Scanlinie auf ihm zu belichten.
  6. Drucker nach Anspruch 3, wobei der Drucker ein xerografischer Vollfarbdrucker mit einer ersten, zweiten, dritten und vierten linearen Laseranordnung (108, 110, 112, 114; 206, 208, 210, 212) zum Emittieren eines ersten, zweiten, dritten und vierten modulierten Lichtstrahls (120, 124, 128, 132) ist, wobei die zweite telezentrische Linseneinrichtung (138) den ersten, zweiten, dritten und vierten modulierten Lichtstrahl (120, 124, 128, 132) auf den ersten, zweiten, dritten bzw. vierten Bereich des Fotorezeptors fokussiert, um so gleichzeitig eine volle Scanlinie auf ihm zu belichten.
  7. Drucker nach Anspruch 3, wobei der Drucker ein xerografischer Vollfarbdrucker mit einem ersten, zweiten, dritten und vierten Fotorezeptor (140, 142, 144, 146) und einer ersten, zweiten, dritten und vierten linearen Laseranordnung (108, 110, 112, 114; 206, 208, 210, 212) zum Emittieren eines ersten, zweiten, dritten und vierten modulierten Lichtstrahls (120, 124, 128, 132) ist, wobei die zweite telezentrische Linseneinrichtung (138) den ersten, zweiten, dritten und vierten modulierten Lichtstrahl (120, 124, 128, 132) auf den ersten, zweiten, dritten bzw. vierten Fotorezeptor (140, 142, 144, 146) fokussiert, um so gleichzeitig eine volle Scanlinie auf ihm zu belichten.
  8. Drucker nach einem der Ansprüche 4 bis 7, wobei die linearen Laseranordnungen (108, 110, 112, 114) gleichmäßig zueinander beabstandet und symmetrisch um die optische Achse des Druckers herum angeordnet sind.
  9. Drucker nach einem der Ansprüche 4 bis 7, wobei die linearen Laseranordnungen (108, 110, 112, 114) asymmetrisch um die optische Achse des Druckers herum angeordnet sind.
EP19960308992 1995-12-22 1996-12-11 Farbxerographischer Drucker mit vielfachen linearen Reihen von oberflächenemittierenden Lasern mit gleichen Wellenlängen Expired - Lifetime EP0782928B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US57779395A 1995-12-22 1995-12-22
US577793 1995-12-22

Publications (2)

Publication Number Publication Date
EP0782928A1 EP0782928A1 (de) 1997-07-09
EP0782928B1 true EP0782928B1 (de) 2000-07-19

Family

ID=24310192

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19960308992 Expired - Lifetime EP0782928B1 (de) 1995-12-22 1996-12-11 Farbxerographischer Drucker mit vielfachen linearen Reihen von oberflächenemittierenden Lasern mit gleichen Wellenlängen

Country Status (3)

Country Link
EP (1) EP0782928B1 (de)
JP (1) JPH09185207A (de)
DE (1) DE69609401T2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107833973A (zh) * 2017-10-30 2018-03-23 上海幂方电子科技有限公司 柔性电子器件或系统的全印刷制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008036937A (ja) * 2006-08-04 2008-02-21 Seiko Epson Corp ラインヘッド及び該ラインヘッドを用いた画像形成装置
JP5593891B2 (ja) * 2010-07-06 2014-09-24 株式会社リコー 面発光レーザモジュール、光走査装置及び画像形成装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4661901A (en) 1982-12-23 1987-04-28 International Business Machines Corporation Microprocessor control system utilizing overlapped programmable logic arrays
US4833503A (en) 1987-12-28 1989-05-23 Xerox Corporation Electronic color printing system with sonic toner release development
US5073041A (en) 1990-11-13 1991-12-17 Bell Communications Research, Inc. Integrated assembly comprising vertical cavity surface-emitting laser array with Fresnel microlenses
US5216263A (en) 1990-11-29 1993-06-01 Xerox Corporation High density, independently addressable, surface emitting semiconductor laser-light emitting diode arrays
US5062115A (en) 1990-12-28 1991-10-29 Xerox Corporation High density, independently addressable, surface emitting semiconductor laser/light emitting diode arrays
JP3333832B2 (ja) * 1991-08-26 2002-10-15 富士ゼロックス株式会社 マルチビーム走査光学系
US5461413A (en) 1991-07-22 1995-10-24 At&T Ipm Corp. Laser array printing
JPH06265804A (ja) * 1993-03-16 1994-09-22 Ricoh Co Ltd 光走査装置
US5625402A (en) * 1993-04-30 1997-04-29 Eastman Kodak Company Digital printers using multiple lasers or laser arrays with different wavelengths

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107833973A (zh) * 2017-10-30 2018-03-23 上海幂方电子科技有限公司 柔性电子器件或系统的全印刷制备方法

Also Published As

Publication number Publication date
DE69609401T2 (de) 2001-01-25
EP0782928A1 (de) 1997-07-09
DE69609401D1 (de) 2000-08-24
JPH09185207A (ja) 1997-07-15

Similar Documents

Publication Publication Date Title
JP3257646B2 (ja) レーザービームプリンター
CN100514211C (zh) 激光扫描光学系统及图像形成装置
US7538789B2 (en) Optical scanning device and image forming apparatus using the same
EP0713323B1 (de) Vielpunkt-Polygonrasterausgabeabtaster mit optimierter Linienabstandsschärfentiefe
EP0781662B1 (de) Farbxerographischer Drucker mit vielfachen linearen Reihen von oberflächenemittierenden Lasern mit verschiedenen Polarisationszuständen und Wellenlängen
US7466331B2 (en) Bow-free telecentric optical system for multiple beam scanning systems
US5617133A (en) Method and apparatus for adjusting orientation of light beams in a raster scanning system
JP2004276532A (ja) カラー画像形成装置
US5341158A (en) Raster output scanner for a xerographic printing system having laser diodes arranged in a line parallel to the fast scan direction
US5691761A (en) Method and apparatus for multi-channel printing in a raster output scanning system
US5563647A (en) Method and apparatus for reducing differences in image heights of images generated by plural light beams having dissimilar wavelengths
EP0782928B1 (de) Farbxerographischer Drucker mit vielfachen linearen Reihen von oberflächenemittierenden Lasern mit gleichen Wellenlängen
US6696681B2 (en) F-θ lens, beam scanning device, and imaging apparatus
EP0781663B1 (de) Farbxerographischer Drucker mit vielfachen linearen Reihen von oberflächenemittierenden Lasern mit verschiedenen Wellenlängen
JP2000180749A (ja) 光走査装置
EP0621558A2 (de) "Flying Spot" Laserdrucker mit räumlichen Multimode Lasern und Lasermatrizen
JPH08318640A (ja) 光バープリントヘッドを備えた無レンズ印刷装置
EP0747777A2 (de) Farbdruckgerät mit einem Umlauf mit Flüssigkristallen
JPH08234126A (ja) ラスタ走査光学システム
JP2021081582A (ja) 光源装置
JP2000241754A (ja) 結像素子アレイおよびこれを用いた光プリントヘッド並びに画像形成装置
JP2006195238A (ja) 光走査装置の調整方法及びそれを用いたカラー画像形成装置
JPH11242169A (ja) 露光装置
JP2005250103A (ja) マルチビーム走査光学装置及びそれを用いた画像形成装置
JP2001042255A (ja) 結像素子アレイおよびこれを用いた光プリントヘッド並びに画像形成装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19980109

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19990921

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 69609401

Country of ref document: DE

Date of ref document: 20000824

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20001204

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20001206

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20001212

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011211

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020702

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20011211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020830

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST