EP0776961B1 - Verfahren zum Behandeln von Abgas aus der Vergasung von kohlenstoffhaltigem Material - Google Patents

Verfahren zum Behandeln von Abgas aus der Vergasung von kohlenstoffhaltigem Material Download PDF

Info

Publication number
EP0776961B1
EP0776961B1 EP96116298A EP96116298A EP0776961B1 EP 0776961 B1 EP0776961 B1 EP 0776961B1 EP 96116298 A EP96116298 A EP 96116298A EP 96116298 A EP96116298 A EP 96116298A EP 0776961 B1 EP0776961 B1 EP 0776961B1
Authority
EP
European Patent Office
Prior art keywords
gas
exhaust gas
solids
temperatures
passed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96116298A
Other languages
English (en)
French (fr)
Other versions
EP0776961A1 (de
Inventor
Johannes Dr. Albrecht
Johannes Dr. Löffler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MG Technologies AG
Original Assignee
Metallgesellschaft AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallgesellschaft AG filed Critical Metallgesellschaft AG
Publication of EP0776961A1 publication Critical patent/EP0776961A1/de
Application granted granted Critical
Publication of EP0776961B1 publication Critical patent/EP0776961B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/463Gasification of granular or pulverulent flues in suspension in stationary fluidised beds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/54Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/721Multistage gasification, e.g. plural parallel or serial gasification stages
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • C10K1/026Dust removal by centrifugal forces
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water
    • C10J2300/1823Recycle loops, e.g. gas, solids, heating medium, water for synthesis gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1884Heat exchange between at least two process streams with one stream being synthesis gas

Definitions

  • the invention relates to a method for treating exhaust gas the gasification of carbonaceous material, the Gasification with the addition of gas containing free oxygen at temperatures in the range of 700 to 1100 ° C and thereby a solid-containing exhaust gas is formed, which one by conducts at least one cyclone for separating solids.
  • waste materials in particular are gasified and dust-containing fuel gas is fed through a cracking reactor with substoichiometric O 2 supply at temperatures of 1200 to 1600 ° C or even at even higher temperatures.
  • the aim of the known methods is to convert the hydrocarbons contained in the fuel gas and the carbon-containing dusts as completely as possible into carbon oxides and hydrogen in the cracking reactor and, at the same time, to melt the ash that is carried in dust form with the fuel gas.
  • the burned-out dust is difficult to burn out because the gaseous oxygen reacts preferentially with the gas components of the fuel gas.
  • the invention has for its object to carry out the treatment of the exhaust gas as inexpensively as possible, without having to bring the entire exhaust gas to the highest temperatures and thus to increase the process efficiency.
  • the object is achieved in the method mentioned at the outset by passing solid-containing exhaust gas at temperatures in the range from 700 to 1100 ° C.
  • a flue gas or fuel gas and slag generates the flue gas or fuel gas together with the part of the exhaust gas coming from the gas discharge line of the separating cyclone into a mixing chamber through which the gas mixture is passed at temperatures of 900 to 1200 ° C. and with a residence time of at least 0.5 sec. and that it came from the mix withdrawn gas mixture cools.
  • stoichiometric O 2 supply produces a fuel gas in the oxidation chamber and superstoichiometric O 2 supply a flue gas.
  • the oxidation chamber is given separated solids together with a partial flow of Exhaust gas on. This ensures that the oxidation chamber can be made relatively small. Furthermore, on this Way compared to the known methods, an energy saving achieved, since only the partial flow of the exhaust gas on the brings the highest temperatures in the oxidation chamber to rule.
  • the partial flow of the Exhaust gas accelerated by swirling the solids for ongoing reactions and the conversion of the solids into liquid slag.
  • the carbon-containing material subjected to gasification can be, for example, waste materials, biomass, sludge, coal, brown coal or other substances which are usually gasified.
  • the temperatures of the gasification range from 700 to 1100 ° C and mostly at least 800 ° C.
  • Solid-containing exhaust gas from the gasification is passed through at least one cyclone, which is referred to here as a separating cyclone.
  • the oxidation chamber is connected to this separating cyclone. It is possible but not absolutely necessary for one or more further cyclones to be interposed between the gasification and the separating cyclone.
  • the calorific value of the exhaust gas fed to the separating cyclone is usually in the range from 3000 to 10000 kJ / Nm 3 .
  • the removal takes place undesirable ingredients in two ways, namely once in the oxidation chamber at temperatures in the range of 1300 to 1800 ° C and usually 1500 to 1600 ° C, as well as in the Mixing chamber at temperatures from 900 to 1200 ° C and usually at least 1000 ° C. They are in the mixing chamber Residence times of the gas mixture, the remaining dust contains, at least 0.5 sec and mostly 1 to 5 sec temperatures and dwell times prevailing in the mixing chamber disruptive components are split in the gas mixture. Thereby you can withdraw a gas mixture from the mixing chamber, the largely free of hydrocarbons, dioxins and furans is.
  • the oxidation chamber can be operated reducing or oxidizing.
  • the O 2 content in the gas which is withdrawn from the oxidation chamber and passed into the mixing chamber is usually kept low and is approximately 1% by volume.
  • the oxygen content of the flue gas coming from the oxidation chamber is then completely converted in the mixing chamber when it is mixed with the remaining exhaust gas. If you want to intensify oxidation reactions in the mixing chamber, it makes sense to add additional free oxygen.
  • the channel of the separating cyclone coming solids together with the partial flow of the exhaust gas by pushing a propellant into the oxidation chamber.
  • the propellant gas can e.g. around Air, oxygen-enriched air or also technically act pure oxygen, including the addition of water vapor is possible.
  • Another option is to get one Partial stream of the gas mixture withdrawn from the mixing chamber as To use propellant.
  • the propellant gas can e.g. together with one Ejectors are used in which the separator cyclone coming channel flows.
  • a gasification reactor (1) is fed through line (2) gasifying, carbonaceous material supplied.
  • Oxygen-containing gas e.g. Air or with oxygen Enriched air is fed through line (3) and serves at the same time as a fluidizing gas.
  • the gasification in the circulating fluidized bed being a Gas-solid mixture through the channel (4) constantly to one Return cyclone (5) is guided. Separated solids go back through line (6) into the lower area of the Reactor (1), part of the solids is discharged through line (7) deducted.
  • the special is for the method according to the invention
  • Design of the gasification is not essential.
  • the gasification can e.g. in the circulating fluidized bed, in the stationary Fluidized bed, using a rotary tube or a Moving rust or in some other way take place at the dust-containing exhaust gas is generated.
  • the superstoichiometric, stoichiometric or substoichiometric oxidation in the chamber (15) takes place under Supply of air, air enriched with oxygen or else technically pure oxygen, which is used as a propellant or through line (16).
  • the propellant gas of the line (13) is brought up by the fan (17).
  • that is Using an ejector is not absolutely necessary and you can e.g. by adjusting the pressure loss in the line (22) do without it.
  • Liquid Slag is removed from the chamber (15) through the line (18) removed and passed into a water bath, not shown.
  • the Oxidation chamber (15) can also be passed through line (19) ashes, dusts and / or Add additives to support slag formation.
  • Carbon content of the supplied solids practically completely implemented, are also brought up with the exhaust gas Split hydrocarbons.
  • a hot flue gas or fuel gas is directed into a mixing chamber (21) and leads the mixing chamber through the Line (22) also from the upper area of the Separation cyclones (10) exhaust gas drawn off.
  • the gases from the Lines (20) and (22) are mixed in the mixing chamber (21), where for temperatures in the range of 900 to 1200 ° C and preferably at least 1000 ° C.
  • the Residence time of the gas mixture in the mixing chamber (21) set at least 0.5 sec and usually 1 to 4 sec. This ensures that residual hydrocarbons as well especially dioxins and furans in the gas mixture destroyed become.
  • the gas mixture withdrawn from the mixing chamber (21) passes through the line (24) to a waste heat boiler (25) and from there to one only schematically shown dedusting (26). Secluded Dust can be removed through the line (27) of the oxidation chamber (15) give up. Cooled and dedusted gas is drawn in the line (28) and it can be a known, not shown Add gas cleaning.
  • One way how to mix the gas the line (24) can cool and dedust is detailed in DE-A-4412004.
  • the temperature in the chamber (15) is 1600 ° C, 1980 Nm3 / h flue gas and 2550 kg / h slag are withdrawn.
  • the gas mixture in the mixing chamber (21) in an amount of 6940 Nm 3 / h has a mixing temperature of 1,100 ° C and a residence time of 2 seconds.
  • the gas flowing out in the line (24) is largely free of hydrocarbons, dioxins and furans.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treating Waste Gases (AREA)
  • Gasification And Melting Of Waste (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Behandeln von Abgas aus der Vergasung von kohlenstoffhaltigem Material, wobei die Vergasung unter Zugabe von freien Sauerstoff enthaltendem Gas bei Temperaturen im Bereich von 700 bis 1100°C erfolgt und dabei ein feststoffhaltiges Abgas gebildet wird, das man durch mindestens einen Zyklon zum Abscheiden von Feststoffen leitet.
Verfahren dieser Art sind in DE-A-4235412 und DE-A-4412004 beschrieben. Hierbei werden insbesondere Abfallstoffe vergast und staubhaltiges Brenngas bei unterstöchiometrischer O2-Zufuhr bei Temperaturen von 1200 bis 1600°C oder auch bei noch höheren Temperaturen durch einen Spaltreaktor geleitet. Das Ziel der bekannten Verfahren liegt darin, im Spaltreaktor die im Brenngas enthaltenen Kohlenwasserstoffe und die kohlenstoffhaltigen Stäube möglichst vollständig in Kohlenoxide und Wasserstoff umzusetzen und gleichzeitig die mit dem Brenngas staubförmig mitgeführte Asche einzuschmelzen. Hierbei ist es aber erforderlich, das gesamte Brenngas auf hohe Temperaturen zu bringen. Gleichzeitig gelingt der Ausbrand des mitgeführten Staubes nur schlecht, weil der gasförmige Sauerstoff bevorzugt mit den Gaskomponenten des Brenngases reagiert. Um diesem Problem bei den bekannten Verfahren zu begegnen, muß man mit einem Spaltreaktor von relativ großem Volumen arbeiten.
Der Erfindung liegt die Aufgabe zugrunde, die Behandlung des Abgases möglichst kostengünstig durchzuführen, dabei nicht das gesamte Abgas auf die höchsten Temperaturen bringen zu müssen und so den Prozeßwirkungsgrad zu erhöhen. Erfindungsgemäß wird die Aufgabe beim eingangs genannten Verfahren dadurch gelöst, daß man feststoffhaltiges Abgas mit Temperaturen im Bereich von 700 bis 1100°C in einen Abscheidezyklon leitet, der im oberen Bereich eine Gasabzugsleitung und im unteren Bereich einen Feststoffe abführenden Kanal aufweist, daß man durch den Kanal zusammen mit den abgeführten Feststoffen einen Partialstrom von 5 bis 30% des dem Abscheidezyklon zugeführten Abgases in eine Oxidationskammer leitet und in der Oxidationskammer bei unterstöchiometrischer bis überstöchiometrischer O2-Zufuhr und Temperaturen im Bereich von 1300 bis 1800°C ein Rauchgas oder Brenngas und Schlacke erzeugt, daß man das Rauchgas oder Brenngas zusammen mit dem aus der Gasabzugsleitung des Abscheidezyklons kommenden Teil des Abgases in eine Mischkammer leitet, durch welche das Gasgemisch mit Temperaturen von 900 bis 1200°C und mit einer Verweilzeit von mindestens 0,5 sec geführt wird, und daß man das aus der Mischkammer abgezogene Gasgemisch kühlt. Bei unterstöchiometrischem O2-Angebot entsteht in der Oxidationskammer ein Brenngas und bei überstöchiometrischem O2-Angebot ein Rauchgas.
Beim erfindungsgemäßen Verfahren gibt man der Oxidationskammer abgeschiedene Feststoffe zusammen mit einem Partialstrom des Abgases auf. Dadurch erreicht man, daß die Oxidationskammer relativ klein ausgeführt werden kann. Ferner wird auf diese Weise gegenüber den bekannten Verfahren eine Energieersparnis erzielt, da man nur den Partialstrom des Abgases auf die höchsten Temperaturen bringt, die in der Oxidationskammer herrschen. In der Oxidationskammer sorgt der Partialstrom des Abgases durch Verwirbelung der Feststoffe für beschleunigt ablaufende Reaktionen und die Umwandlung der Feststoffe in flüssige Schlacke.
Bei dem der Vergasung unterworfenen kohlenstoffhaltigen Material kann es sich z.B. um Abfallstoffe, Biomassen, Schlämme, Kohle, Braunkohle oder andere Stoffe handeln, die üblicherweise vergast werden. Die Temperaturen der Vergasung liegen im Bereich von 700 bis 1100°C und zumeist bei mindestens 800°C. Feststoffhaltiges Abgas aus der Vergasung wird durch mindestens einen Zyklon, der hier als Abscheidezyklon bezeichnet ist, geleitet. An diesen Abscheidezyklon ist die Oxidationskammer angeschlossen. Es ist möglich aber nicht unbedingt erforderlich, daß zwischen der Vergasung und dem Abscheidezyklon ein oder mehrere weitere Zyklone zwischengeschaltet sind. Der Heizwert des dem Abscheidezyklon zugeführten Abgases liegt üblicherweise im Bereich von 3000 bis 10000 kJ/Nm3.
Beim erfindungsgemäßen Verfahren erfolgt die Beseitigung unerwünschter Inhaltsstoffe in zweifacher Weise, nämlich einmal in der Oxidationskammer bei Temperaturen im Bereich von 1300 bis 1800°C und üblicherweise 1500 bis 1600°C, sowie in der Mischkammer bei Temperaturen von 900 bis 1200°C und üblicherweise mindestens 1000°C. In der Mischkammer liegen die Verweilzeiten des Gasgemisches, das noch restlichen Staub enthält, bei mindestens 0,5 sec und zumeist 1 bis 5 sec. Bei den in der Mischkammer herrschenden Temperaturen und Verweilzeiten werden störende Bestandteile im Gasgemisch gespalten. Dadurch kann man aus der Mischkammer ein Gasgemisch abziehen, das weitestgehend frei von Kohlenwasserstoffen, Dioxinen und Furanen ist.
Die Oxidationskammer kann man reduzierend oder oxidierend betreiben. Bei oxidierender Fahrweise wird üblicherweise der O2-Gehalt im Gas, das man aus der Oxidationskammer abzieht und in die Mischkammer leitet, niedrig gehalten und liegt bei etwa 1 Vol.-%. In der Mischkammer wird dann der Sauerstoffgehalt des aus der Oxidationskammer kommenden Rauchgases beim Vermischen mit dem restlichen Abgas vollständig umgesetzt. Wenn man Oxidationsreaktionen in der Mischkammer verstärkten will, bietet es sich an, zusätzlichen freien Sauerstoff zuzuführen.
Es kann zweckmäßig sein, die vom Kanal des Abscheidezyklons kommenden Feststoffe zusammen mit dem Partialstrom des Abgases durch ein Treibgas in die Oxidationskammer zu drücken. Hierdurch wird eine gute Verwirbelung der Feststoffe in der Oxidationskammer erreicht. Bei dem Treibgas kann es sich z.B. um Luft, mit Sauerstoff angereicherte Luft oder auch um technisch reinen Sauerstoff handeln, wobei auch der Zusatz von Wasserdampf möglich ist. Eine weitere Möglichkeit besteht darin, einen Teilstrom des aus der Mischkammer abgezogenen Gasgemisches als Treibgas zu verwenden. Das Treibgas kann z.B. zusammen mit einem Ejektor angewandt werden, in welchen der vom Abscheidezyklon kommende Kanal mündet.
Ausgestaltungsmöglichkeiten des Verfahrens werden mit Hilfe der Zeichnung erläutert. Die Zeichnung zeigt ein Fließschema des Verfahrens.
Einem Vergasungsreaktor (1) wird durch die Leitung (2) zu vergasendes, kohlenstoffhaltiges Material zugeführt. Sauerstoffhaltiges Gas, z.B. Luft oder mit Sauerstoff angereicherte Luft wird durch Leitung (3) herangeführt und dient gleichzeitig auch als Fluidisierungsgas. Im Reaktor (1) erfolgt die Vergasung in der zirkulierenden Wirbelschicht, wobei ein Gas-Feststoff-Gemisch durch den Kanal (4) ständig zu einem Rückführ-Zyklon (5) geführt wird. Abgeschiedene Feststoffe gelangen durch die Leitung (6) zurück in den unteren Bereich des Reaktors (1), ein Teil der Feststoffe wird durch die Leitung (7) abgezogen.
Für das erfindungsgemäße Verfahren ist die spezielle Ausgestaltung der Vergasung nicht wesentlich. Die Vergasung kann z.B. in der zirkulierenden Wirbelschicht, in der stationären Wirbelschicht, unter Verwendung eines Drehrohrs oder eines Wanderrostes oder in anderer Weise erfolgen, bei der ein staubhaltiges Abgas entsteht.
Aus dem Rückführ-Zyklon (5) zieht man durch die Leitung (9) feststoffhaltiges Abgas mit einer Temperatur im Bereich von 700 bis 1100°C ab. Dieses Abgas leitet man in den Abscheidezyklon (10), der speziell ausgestaltet ist. Der untere Bereich des Zyklons (10) geht in einen relativ weiten Kanal (11) über, der üblicherweise einen Innendurchmesser im Bereich von 100 bis 500 mm aufweist. Dadurch gelangen nicht nur die im Zyklon abgeschiedenen Feststoffe sondern auch ein Partialstrom des Abgases von 5 bis 30% des Abgases der Leitung (9) in den Kanal (11). Die Feststoffe und der Abgas-Partialstrom werden durch den Ejektor (12) angesaugt und mit Hilfe des Treibgases aus der Leitung (13) in die Oxidationskammer (15) gedrückt. Die überstöchiometrische, stöchiometrische oder unterstöchiometrische Oxidation in der Kammer (15) erfolgt unter Zufuhr von Luft, mit Sauerstoff angereicherter Luft oder auch technisch reinem Sauerstoff, die man als Treibgas verwendet oder durch die Leitung (16) zuführt. Das Treibgas der Leitung (13) wird durch das Gebläse (17) herangeführt. Für die Praxis ist die Verwendung eines Ejektors nicht unbedingt nötig und man kann z.B. durch Einstellen des Druckverlustes in der Leitung (22) darauf verzichten.
In der Oxidationskammer (15) herrschen Temperaturen im Bereich von 1300 bis 1800°C und vorzugsweise 1500 bis 1600°C. Flüssige Schlacke wird aus der Kammer (15) durch die Leitung (18) abgezogen und in ein nicht dargestelltes Wasserbad geleitet. Der Oxidationskammer (15) kann man zusätzlich durch die Leitung (19) im Verfahren anfallende Asche, Stäube und/oder die Schlackebildung unterstützende Additive zuführen. Bei den in der Kammer (15) herrschenden hohen Temperaturen wird der Kohlenstoff-Gehalt der zugeführten Feststoffe praktisch restlos umgesetzt, auch werden mit dem Abgas herangeführte Kohlenwasserstoffe gespalten.
Aus der Oxidationskammer (15) zieht man durch die Leitung (20) ein heißes Rauchgas oder Brenngas ab. Dieses Gas leitet man in eine Mischkammer (21) und führt der Mischkammer durch die Leitung (22) auch das aus dem oberen Bereich des Abscheidezyklons (10) abgezogene Abgas zu. Die Gase aus den Leitungen (20) und (22) werden in der Mischkammer (21) gemischt, wobei man für Temperaturen im Bereich von 900 bis 1200°C und vorzugsweise mindestens 1000°C sorgt. Gleichzeitig wird die Verweilzeit des Gasgemisches in der Mischkammer (21) auf mindestens 0,5 sec und üblicherweise 1 bis 4 sec eingestellt. Dadurch erreicht man, daß restliche Kohlenwasserstoffe sowie insbesondere auch Dioxine und Furane im Gasgemisch zerstört werden. Um die Oxidationsreaktionen in der Mischkammer (21) noch zu fördern, kann es zweckmäßig sein, Luft, mit Sauerstoff angereicherte Luft oder technisch reinen Sauerstoff zusätzlich durch die Leitung (23) heranzuführen, doch wird dies zumeist nicht erforderlich sein.
Das aus der Mischkammer (21) abgezogene Gasgemisch gelangt durch die Leitung (24) zu einem Abhitzekessel (25) und von da zu einer nur schematisch dargestellten Entstaubung (26). Abgeschiedenen Staub kann man durch die Leitung (27) der Oxidationskammer (15) aufgeben. Gekühltes und entstaubtes Gas zieht man in der Leitung (28) ab und kann es einer an sich bekannten, nicht dargestellten Gasreinigung zuführen. Eine Möglichkeit, wie man das Gasgemisch der Leitung (24) kühlen und entstauben kann, ist detailliert in DE-A-4412004 beschrieben.
Beispiel:
Es wird in einer der Zeichnung entsprechenden Anlage ohne die Leitungen (19) und (23) gearbeitet, wobei man dem Vergasungsreaktor (1) pro Stunde 5880 kg kommunalen Müll zuführt, den man bei 900°C mit O2 angereicherter Luft (O2-Gehalt 30 Vol.%) zu einer Menge von 1906 Nm3/h Schwachgas vergast. Die nachfolgenden Daten sind teilweise berechnet:
Feststoff-Umlauf durch Leitung (6): 200 t/h;
Feststoff-Abzug durch Leitung (7) : 4 t/h;
das Abgas in der Leitung (9) in einer Menge von 6160 Nm3/h enthält pro Nm3 100 g staubförmige Feststoffe; durch den Ejektor (12) gelangen pro Stunde 1200 Nm3 Abgas und 800 kg Feststoffe in die Oxidationskammer (15), welcher man 915 Nm3/h O2 zuführt. Die Temperatur in der Kammer (15) liegt bei 1600°C, es werden 1980 Nm3/h Rauchgas und 2550 kg/h Schlacke abgezogen. Das Gasgemisch in der Mischkammer (21) in einer Menge von 6940 Nm3/h hat eine Mischtemperatur von 1.100°C und eine Verweilzeit von 2 sec. Das in der Leitung (24) abströmende Gas ist weitestgehend frei von Kohlenwasserstoffen, Dioxinen und Furanen.

Claims (4)

  1. Verfahren zum Behandeln von Abgas aus der Vergasung von kohlenstoffhaltigem Material, wobei die Vergasung unter Zugabe von freien Sauerstoff enthaltendem Gas bei Temperaturen im Bereich von 700 bis 1100°C erfolgt und dabei ein feststoffhaltiges Abgas gebildet wird, das man durch mindestens einen Zyklon zum Abscheiden von Feststoffen leitet, dadurch gekennzeichnet, das man feststoffhaltiges Abgas mit Temperaturen im Bereich von 700 bis 1100°C in einen Abscheidezyklon leitet, der im oberen Bereich eine Gasabzugsleitung und im unteren Bereich einen Feststoffe abführenden Kanal aufweist, daß man durch den Kanal zusammen mit den abgeführten Feststoffen einen Partialstrom von 5 bis 30% des dem Abscheidezyklon zugeführten Abgases in eine Oxidationskammer leitet und in der Oxidationskammer bei unterstöchiometrischer bis überstöchiometrischer O2-Zufuhr und Temperaturen im Bereich von 1300 bis 1800°C ein Rauchgas oder Brenngas und Schlacke erzeugt, daß man das Rauchgas oder Brenngas zusammen mit dem aus der Gasabzugsleitung des Abscheidezyklons kommenden Teil des Abgases in eine Mischkammer leitet, durch welche das Gasgemisch mit Temperaturen von 900 bis 1200°C und mit einer Verweilzeit von mindestens 0,5 sec geführt wird, und daß man das aus der Mischkammer abgezogene Gasgemisch kühlt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die vom Kanal des Abscheidezyklons kommenden Feststoffe zusammen mit dem Partialstrom des Abgases durch ein Treibgas in die Oxidationskammer drückt.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man der Mischkammer freien Sauerstoff enthaltendes Gas zuführt.
  4. Verfahren nach Anspruch 1 oder einem der folgenden, dadurch gekennzeichnet, daß man der Oxydationskammer Zuschlagstoffe zuführt.
EP96116298A 1995-11-28 1996-10-11 Verfahren zum Behandeln von Abgas aus der Vergasung von kohlenstoffhaltigem Material Expired - Lifetime EP0776961B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19544200 1995-11-28
DE19544200A DE19544200A1 (de) 1995-11-28 1995-11-28 Verfahren zum Behandeln von Abgas aus der Vergasung von kohlenstoffhaltigem Material

Publications (2)

Publication Number Publication Date
EP0776961A1 EP0776961A1 (de) 1997-06-04
EP0776961B1 true EP0776961B1 (de) 2001-02-28

Family

ID=7778544

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96116298A Expired - Lifetime EP0776961B1 (de) 1995-11-28 1996-10-11 Verfahren zum Behandeln von Abgas aus der Vergasung von kohlenstoffhaltigem Material

Country Status (2)

Country Link
EP (1) EP0776961B1 (de)
DE (2) DE19544200A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19754802B4 (de) * 1997-12-10 2008-04-03 Sasol-Lurgi Technology Company (Pty) Ltd Verfahren zum thermischen Behandeln eines aus der Vergasung kohlenstoffhaltiger Materialien kommenden Gasgemisches
DE10021448A1 (de) * 2000-05-03 2001-11-08 Messer Griesheim Gmbh Verfahren und Vorrichtung für die Verbrennung von organischem Reststoff
US8317510B2 (en) * 2006-07-13 2012-11-27 The Regents Of The University Of Michigan Method of waste heat recovery from high temperature furnace exhaust gases
CN105647587A (zh) * 2016-03-04 2016-06-08 广东工业大学 锯末高温气化炉

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2836175A1 (de) * 1978-08-18 1980-02-28 Metallgesellschaft Ag Verfahren zum vergasen fester, feinkoerniger brennstoffe
DE3673362D1 (de) * 1985-12-27 1990-09-13 Shell Int Research Oxydation von flugasche.
DE4235412A1 (de) * 1992-10-21 1994-04-28 Metallgesellschaft Ag Verfahren zum Vergasen von brennbare Bestandteile enthaltenden Abfallstoffen
DE4412004A1 (de) * 1994-04-07 1995-10-12 Metallgesellschaft Ag Verfahren zum Vergasen von Abfallstoffen in der zirkulierenden Wirbelschicht

Also Published As

Publication number Publication date
DE59606497D1 (de) 2001-04-05
EP0776961A1 (de) 1997-06-04
DE19544200A1 (de) 1997-06-05

Similar Documents

Publication Publication Date Title
DE3922612C2 (de) Verfahren zur Erzeugung von Methanol-Synthesegas
EP0594231B1 (de) Verfahren zum Vergasen von brennbare Bestandteile enthaltenden Abfallstoffen
EP0497418B1 (de) Verfahren zum Verbrennen von Kohle in der zirkulierenden Wirbelschicht
EP1749872A2 (de) Verfahren zur endothermen Vergasung von Kohlenstoff
WO1995021903A1 (de) Verfahren zur erzeugung von brenngas
EP0075972B1 (de) Verfahren zum Vergasen fester Brennstoffe
DE3327743C2 (de) Verfahren zum Vergasen von Feinkohle
DE19780163C1 (de) Verfahren zum Herstellen von flüssigem Roheisen oder flüssigen Stahlvorprodukten sowie Anlage zur Durchführung des Verfahrens
DE60204353T2 (de) Verfahren und vorrichtung zum vergasen von kohlenstoffhaltigem material
EP1201731A1 (de) Verfahren zum Vergasen von kohlenstoffhaltigen Feststoffen in der Wirbelschicht sowie dafür geeigneter Vergaser
DE19735153C2 (de) Verfahren und Vorrichtung zur Vergasung von Abfallstoffen
DE2735565C2 (de) Einhitziges Verfahren zur Erzeugung von im wesentlichen aus Kohlenoxid und Wasserstoff bestehenden Reduktionsgasen für Erzreduktionen und Vorrichtung zu seiner Durchführung
DE3631015A1 (de) Verfahren zur erzeugung eines kohlenmonoxid-wasserstoff enthaltenden reingases
EP0676465B1 (de) Verfahren zum Vergasen von Abfallstoffen in der zirkulierenden Wirbelschicht
EP0776961B1 (de) Verfahren zum Behandeln von Abgas aus der Vergasung von kohlenstoffhaltigem Material
DE2729764A1 (de) Verfahren zur vergasung von kohlenstoffhaltigem material
EP0796349A1 (de) Verfahren zum herstellen von eisenschwamm sowie anlage zur durchführung des verfahrens
DE3439600C2 (de)
AT392079B (de) Verfahren zum druckvergasen von kohle fuer den betrieb eines kraftwerkes
DE3130031A1 (de) Verfahren zur vergasung von kohle
DE3441355C2 (de)
DE10010358A1 (de) Verfahren und Vorrichtung zum Vergasen von brennbarem Material
DE3441356C2 (de)
DE4339973C1 (de) Verfahren zur Vergasung von Abfallstoffen
DE897310C (de) Verfahren und Vorrichtung zur Vergasung von Brennstoffen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19971204

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: METALLGESELLSCHAFT AKTIENGESELLSCHAFT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20000821

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 59606497

Country of ref document: DE

Date of ref document: 20010405

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: MG TECHNOLOGIES AG

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN P. & C. S.N.C.

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011011

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20011011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020628

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051011

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20131009

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59606497

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150501