EP0775250A1 - Moteur thermique a basse temperature, moteur a basse temperature - Google Patents

Moteur thermique a basse temperature, moteur a basse temperature

Info

Publication number
EP0775250A1
EP0775250A1 EP94924714A EP94924714A EP0775250A1 EP 0775250 A1 EP0775250 A1 EP 0775250A1 EP 94924714 A EP94924714 A EP 94924714A EP 94924714 A EP94924714 A EP 94924714A EP 0775250 A1 EP0775250 A1 EP 0775250A1
Authority
EP
European Patent Office
Prior art keywords
ntm
gas
pressure
heat
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP94924714A
Other languages
German (de)
English (en)
Inventor
Georg Rauscher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0775250A1 publication Critical patent/EP0775250A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether

Definitions

  • the object of this invention is to largely eliminate the disadvantages of the known motors.
  • the solution is a low-temperature heat engine, a low-temperature engine (NTM) or low-temperature engine (TTM), which can also be referred to as a refrigeration engine, as described in the claims, which not only increases the thermal energy to the usual high, but also can implement at a low temperature level so that usable mechanical energy is obtained.
  • NTM low-temperature engine
  • TTM low-temperature engine
  • a liquid gas is pumped to a higher pressure level in a closed circuit with a pump 1, then evaporated in an evaporator 4, relaxed in a relaxation machine 8 that delivers useful power, thereby cooled, liquefied in the relaxation machine 8 or in a subsequent expansion device 24 and kept ready in a liquid collector 10 for recirculation.
  • the pump 1 only has to deliver one hundredth of the volume that passes through the expansion machine 8 to the high pressure side.
  • the volume ratio is reduced in accordance with the set back pressure and the useful power of the expansion machine 8 is also reduced by the efficiency and the drive power for the pump 1.
  • the gas (boiling or condensation temperature and pressure) and the pressure and pressure drop on the relaxation machine 8 and the temperature level are related and must be matched to the vapor pressure curve.
  • the pump 1 (in Fig.l) is driven by a separate motor 14.
  • the pump 1 can also take place mechanically via a gear transmission or an enveloping drive (drive 15) or directly from the motor shaft 16.
  • liquid gas In the liquid collector 10 on the low pressure side, liquid gas must be present at a pressure which is so low that the pressure drop required for the liquefaction results.
  • the low pressure results from a low temperature corresponding to the vapor pressure of the gas.
  • the pump 1 pumps a liquid gas from the suction line 11 on the low-pressure side into the kHD line 2 on the high-pressure side and into the high-pressure heat exchanger 29 or into the evaporator 4.
  • the pressure valve 3 prevents the pressure drop on the high pressure side when the machine is stopped and the pump itself cannot maintain the pressure (ZB flow machine).
  • the pressure valve 3 can also be omitted if the pump (eg positive displacement pump) keeps this pressure at a standstill.
  • Sufficient heat energy 5 is supplied to the evaporator that the gas evaporates under this increased pressure.
  • the necessary heat of vaporization is absorbed by the evaporator 4 from the environment, from the air, water or other gases, liquids or solids (e.g. earth or latent heat storage).
  • Combustion heat from a heat source 12 is not necessary, but can be used via a heat exchanger.
  • the performance of the air heat exchanger can be reduced to a minimum with insulated outer sides and closed and also insulated flaps or blinds.
  • the devices for limiting the temperature of the evaporator 4 are controlled by the heat sensor 21 directly or via a central control.
  • the vaporized gas flows through the pipeline 6 through the throttle element 7 into the expansion machine 8. With the throttle element 7, the gas flow in the warm HP line 6 can be reduced and also shut off.
  • the pressure energy in the gas is reduced to the necessary counter pressure and converted into mechanical energy.
  • the relaxation machine 8 is set in motion and delivers usable power to the shaft 16.
  • the gas is liquefied and supercooled by the high pressure drop. Liquefaction can be facilitated by the back pressure.
  • a bypass line 25 can be used between the warm high pressure line 6 and the low pressure line 9 with a bypass valve 26 additional gas can be released.
  • the bypass valve 26 opens when the pressure or the temperature in the LP line 9 rises by being controlled by the LP monitor 20 via a control line 28 or by the cold sensor 22 directly or via a central control unit or by increasing the pressure in the LP line 9 is just opened by this pressure, which can be supplied through line 27.
  • bypass valve 26 can also function as a maximum pressure relief valve.
  • pump 1 In order to maintain self-cooling and thus operational readiness, pump 1 must maintain a minimum pressure in wHD line 6 that is matched to the gas. For this purpose, the pump 1 can be switched on by the HD monitor 19 directly or via a central control unit if the pressure in the wHD line 6 is too low.
  • the relaxation can take place in one stage in the relaxation machine 8 or in multiple stages, that is to say additionally in a previously arranged throttle element 7 or relaxation element 24 arranged subsequently.
  • the back pressure can be adjusted so that the Ver liquefaction not in the expansion machine 8, but in the expansion member 24th takes place.
  • the liquid gas flows through the LP line 9 to the liquid collector 10 and from there through the suction line 11 to the pump 1.
  • the liquid gas can be heated close to or completely up to the boiling point in the case of severe subcooling in an additional HP heat exchanger 29 after the pump 1, in order to thus still have excess cooling capacity, e.g. to use for cooling purposes.
  • the engine can be supplemented by a central control unit which, according to the temperature, pressure and speed data from the HD monitor 19, the LP monitor 20, the heat sensor 21, the cold sensor 22 and the speed sensor 23, the power of the evaporator 4, the heat source 5, the heat generator 12 and the throttle element 7 and thus torque, speed and the power of the relaxation machine 8 controls.
  • a central control unit which, according to the temperature, pressure and speed data from the HD monitor 19, the LP monitor 20, the heat sensor 21, the cold sensor 22 and the speed sensor 23, the power of the evaporator 4, the heat source 5, the heat generator 12 and the throttle element 7 and thus torque, speed and the power of the relaxation machine 8 controls.
  • the backflow preventer 17 and the pressure vessel 18 can additionally be installed in the pressure line.
  • the pressure vessel 18 functions as an energy store and can cover short load peaks and facilitate self-starting.
  • the heat sensor 21 or alternatively the HD monitor 19 can throttle the heat source, e.g. by operating cover flaps or blinds above the evaporator 4.
  • the machine can be compared to a refrigeration machine via a connection to the pipeline or directly to the collector 10 or to the expansion machine 8.
  • the pump 1 and the expansion machine 8 can be constructed according to the principles known from fluid and refrigeration technology (displacer or flow machine).
  • Low-temperature motor for driving land, air, water and underwater vehicles work machines and aggregates of all kinds, i.e. for all areas of application of conventional internal combustion engines. Partly also in the area of use of electric motors.
  • An environmentally friendly generator that supplies one or more houses can enforce the decentralized power supply.
  • the heating can also be done electrically instead of gas or oil. Electric heating instead of hot water makes house installation easier and cheaper.
  • NTM NTM
  • work machine e.g. power generator
  • the advantages are a closed cycle of the energy source (refrigerant, gas), more uniform mechanical stress on the components and more favorable noise behavior - less noise and no combustion. If combustion is still necessary in certain cases, it takes place continuously (gas turbine, steam engine, Sterling engine) and can thus be controlled more easily and the pollutant emissions can be reduced without time-consuming after-treatment.
  • the efficiency is significantly better when compared to conventional heat engines when operated with additional combustion 12 and infinitely large if the free energy from the sun, air, water or waste heat 5 is not calculated (useful output without primary energy such as gas, gasoline, diesel, etc.) .
  • NTM Low temperature heat engine Low temperature engine
  • Claim 1 Low-temperature motor that can gain mechanical energy from thermal energy at a low temperature level.
  • NTM according to the preceding claim, characterized in that the NTM, comparable to a refrigerator or a hydraulic drive, is constructed from individual components, according to Fig.l.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Les moteurs à combustion interne traditionnels présentent toute une série d'inconvénients inhérents au principe de conception et très difficiles à pallier. Ces inconvénients regroupent un mode de fonctionnement cyclique, des éléments constitutifs oscillants, des vibrations et du bruit, un rendement médiocre et des émissions toxiques de gaz d'échappement. C'est pourquoi ce nouveau moteur est conçu de manière très différente et écophile. L'invention concerne un moteur à basse température qui produit de l'énergie mécanique à basse température à partir d'énergie thermique. Il peut se présenter sous forme d'unité compacte ou être constitué de différents composants. Un gaz liquéfié est refoulé sous haute pression par une pompe (1) dans un circuit fermé, dans un évaporateur (4) où il est évaporé par apport de chaleur (par ex. chaleur perdue ou chaleur ambiante). Le fluide sous forme de vapeur ou de gaz passe par un dispositif de détente (8) et est surrefroidi et liquéfié lorsque la pression chute fortement. Les possibilités d'application de ce moteur sont comparables à celles des moteurs à combustion interne existants (véhicules, systèmes d'entraînement fixes et alimentation en énergie. Ce moteur peut également s'utiliser comme machine frigorifique.
EP94924714A 1994-07-04 1994-07-04 Moteur thermique a basse temperature, moteur a basse temperature Withdrawn EP0775250A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP1994/002179 WO1996001362A1 (fr) 1994-07-04 1994-07-04 Moteur thermique a basse temperature, moteur a basse temperature

Publications (1)

Publication Number Publication Date
EP0775250A1 true EP0775250A1 (fr) 1997-05-28

Family

ID=8165869

Family Applications (2)

Application Number Title Priority Date Filing Date
EP94924714A Withdrawn EP0775250A1 (fr) 1994-07-04 1994-07-04 Moteur thermique a basse temperature, moteur a basse temperature
EP95924967A Withdrawn EP0778917A1 (fr) 1994-07-04 1995-07-03 Moteur a basse temperature

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP95924967A Withdrawn EP0778917A1 (fr) 1994-07-04 1995-07-03 Moteur a basse temperature

Country Status (4)

Country Link
EP (2) EP0775250A1 (fr)
AU (2) AU7490894A (fr)
DE (1) DE4481032D2 (fr)
WO (2) WO1996001362A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007113062A1 (fr) * 2006-03-31 2007-10-11 Klaus Wolter Procédé, dispositif et système de conversion d'énergie
EP2044318A1 (fr) * 2006-07-26 2009-04-08 Turner, Geoffrey Russell Systeme d'alimentation en energie
DE102007027572A1 (de) * 2007-06-08 2009-01-08 Samak, Nabil Temperatur-Differenz betriebener Stromgenerator = TDSG
BE1018868A3 (nl) * 2009-08-26 2011-10-04 Schutter Rotterdam B V Inrichting voor de conversie van afvalwarmte van een productieproces naar elektrische energie.
DE102010056196B4 (de) * 2010-12-24 2022-01-27 Daimler Ag Abwärmenutzungsvorrichtung und zugehöriges Betriebsverfahren
DE102011054400B4 (de) * 2011-10-11 2016-11-10 Deutsches Zentrum für Luft- und Raumfahrt e.V. Stickstoff-basierter Kreisprozess zur Energiegewinnung während einer lunaren Nacht
FR2996252A1 (fr) * 2012-09-28 2014-04-04 Francois Kneider Dispositif et procede de conversion d'energie thermique en energie cinetique a basse temperature
DE102017105613A1 (de) 2017-03-16 2018-09-20 Volkswagen Aktiengesellschaft Kolbenmaschine und Kreisprozessvorrichtung
WO2019001645A1 (fr) 2017-06-30 2019-01-03 Ingo Tjards Centrale de production d'énergie électrique
WO2024179614A1 (fr) * 2023-04-07 2024-09-06 陈振堂 Moteur à air liquéfié à refroidissement automatique

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1951352A (en) * 1931-04-24 1934-03-20 Doble Warren Feed fluid controller
FR868124A (fr) * 1940-08-22 1941-12-18 Turbine à gaz
FR992219A (fr) * 1944-05-30 1951-10-16 Procédé et appareil pour la production de force motrice
US3287901A (en) * 1963-11-22 1966-11-29 Atmospheric Energy Ltd Closed cycle power generating apparatus
US3878683A (en) * 1969-07-01 1975-04-22 Kenji Imai Method of cooling substance or generating power by use of liquefied gas
US3681609A (en) * 1970-12-03 1972-08-01 Harold L Boese Non-pollution motors including cryogenic fluid as the motive means
FR2326596A1 (fr) * 1975-10-01 1977-04-29 Piechocki Kurt Moteur thermo-cyclo-moleculaire fonctionnant a l'energie thermique de la temperature ambiante
FR2485085A1 (fr) * 1979-01-29 1981-12-24 Clavier Philippe Machine thermodynamique
DE3602896A1 (de) * 1986-01-31 1987-08-06 Wilhelm Haeberle Verfahren und vorrichtung zur umwandlung von waermeenergie in mechanische energie
DE3943161A1 (de) * 1989-12-28 1991-07-04 Walter Diel Fluessiggasdampfmotoren/-turbinen mit luftwaerme, erdwaerme, wasserwaerme als energietraeger zur krafterzeugung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9601362A1 *

Also Published As

Publication number Publication date
AU2926795A (en) 1996-01-25
AU7490894A (en) 1996-01-25
WO1996001362A1 (fr) 1996-01-18
EP0778917A1 (fr) 1997-06-18
WO1996001363A1 (fr) 1996-01-18
DE4481032D2 (de) 1997-10-02

Similar Documents

Publication Publication Date Title
US6606860B2 (en) Energy conversion method and system with enhanced heat engine
DE69325598T2 (de) Wärmemaschine und wärmepumpe
US4201058A (en) Method and apparatus for generating steam
US6827104B2 (en) Seal and valve systems and methods for use in expanders and compressors of energy conversion systems
US5724814A (en) Vapor force engine
DE19524171A1 (de) Niedertemperaturmotor (NTM), Tieftemperaturmotor (TTM) bzw. Kältekraftmaschine (KKM)
WO2006079551A2 (fr) Centrale électrique à découplage thermique
DE19757588A1 (de) Stromerzeugungssystem mit Gasturbine und Energiespeicher
WO2009080007A2 (fr) Dispositif de chauffage pour chauffer un bâtiment au moyen d'un moteur à combustion interne
DE4304688A1 (de) Niedertemperatur-Wärmekraftmaschine Niedertemperaturmotor (NTM), Fahrzeuge und Arbeitsmaschinen mit NTM
EP0775250A1 (fr) Moteur thermique a basse temperature, moteur a basse temperature
US4087974A (en) Method and apparatus for generating steam
US9869272B1 (en) Performance of a transcritical or supercritical CO2 Rankin cycle engine
DE102010004128A1 (de) Universal-Kreiskolbenkompressor
DE202017100590U1 (de) System zur Wärmerückgewinnung und Ladeluftverdichtung
US3695036A (en) Internal expansion vapor engine
EP3473821B1 (fr) Installation de production combinée de chaleur et d'électricité et procédé de régulation d'une installation de production combinée de chaleur et d'électricité
DE102009039725A1 (de) Der aus Flüssiggas-Füllungsdifferenz selbstverstärkte "NZPG(M)" oder auch "Anergie Antriebskreislauf" oder auch "Hydroanergie Stromgenerator(Motor)", der als direkter mechanischer Antrieb und/oder nur als Stromquelle eingesetzt wird [z.B. in Häusern, Maschinen oder in (auch Hybrid-) Fahrzeugen], mit oder ohne im selben Kreislauf zusätzlich integrierter Wärmepumpe. Bzw."Der selbstverstärkte NZPG(M)"
DE10160593B4 (de) Wärmekraftanlage
EP1529928B1 (fr) Moteur écocompatible à piston rotatif actionné par un gas sous pression et son procédé à cycle thermodynamique
DE102007010019B3 (de) Wärmekraftmaschine
DE3001315A1 (de) Gewinn mechanischer leistung aus umwelt- oder abwaerme, antrieb einer waermepumpen- bzw. kaeltepumpenanlage
WO2010034780A2 (fr) Machine thermique et procédé permettant de la faire fonctionner
DE2917648A1 (de) Einrichtungen zur optimalen nutzung von solarenergie in form von heizwaerme und technischer arbeit
DE102011103613B4 (de) Wärmeverstromungsanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960925

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 19990318

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19990729