EP0769213B1 - Transformateur d'impedance a haute frequence - Google Patents

Transformateur d'impedance a haute frequence Download PDF

Info

Publication number
EP0769213B1
EP0769213B1 EP95924356A EP95924356A EP0769213B1 EP 0769213 B1 EP0769213 B1 EP 0769213B1 EP 95924356 A EP95924356 A EP 95924356A EP 95924356 A EP95924356 A EP 95924356A EP 0769213 B1 EP0769213 B1 EP 0769213B1
Authority
EP
European Patent Office
Prior art keywords
line portion
coupling
secondary line
adaptation circuit
circuit according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95924356A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP0769213A1 (fr
Inventor
Bernard Cunin
Paul Geist
Alphonse Martz
Joseph-Albert Miehe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Communaute Europeenne
Original Assignee
Communaute Europeenne
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Communaute Europeenne filed Critical Communaute Europeenne
Publication of EP0769213A1 publication Critical patent/EP0769213A1/fr
Application granted granted Critical
Publication of EP0769213B1 publication Critical patent/EP0769213B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/04Coupling devices of the waveguide type with variable factor of coupling

Definitions

  • the present invention relates to the field of transmission signals between devices or circuits with different physical and electrical characteristics and requiring an adaptation, and relates to a coupling circuit and adapter intended to link together a low-voltage device output impedance and a device with very high input impedance, for the transmission of high frequency and microwave signals.
  • Slit-scanning cameras operating in synchronous scanning also called “synchroscan” are often used to observe recurrent light phenomena which repeat with a constant frequency f 0 of the order of a hundred megahertz (MHz).
  • Part of the light signal to be analyzed is converted by a fast photodiode 3 into a voltage of period 1 / f 0 which is shaped, then multiplied in frequency by a suitable circuit 4
  • the harmonic of rank n is then isolated by a bandpass filter 5, injected into a power amplifier 6 and, finally, applied to the deflection plates 7, 7 'of the scanning circuit 2' by through an adaptation unit 8, currently presenting in the form of a selective impedance transformer whose role is to optimize the power transfer between amplifier 6 and the scanning circuit 2 '.
  • V (t) V 0 sin (2 ⁇ nf 0 t) with n ⁇ 1
  • the amplitude V 0 is adjusted so that the power dissipated in the tube is close to the maximum allowed ( ⁇ 5 W)
  • the parameter n it is often taken equal to the unit (nf 0 ⁇ 100 MHz) because the realization of the adaptation transformer 8 is simpler: the time resolution is then about 1.5 ps.
  • type transformers magnetic employed at 100 MHz are unusable and cannot be adapted to the level of their secondary, due to its own inductance.
  • This known device also includes a device for adjusting the degree of coupling between primary and secondary by approximation or distance of the primary and secondary conductors in the coupling zone.
  • this coupling device does not allow a impedance matching between a circuit connected to the primary and a circuit connected to the secondary, which have markedly different impedances.
  • this known coupling device has no means allowing to reach an agreement at the secondary level.
  • the problem posed by the present invention therefore consists in design and realize a coupling and adaptation circuit, of simple structure, space-saving, ensuring high-frequency signal transmission and microwave (from a few tens of MHz to a few GHz) between two non-tuned and unsuitable devices with very high impedances different, especially between a high frequency amplifier or generator of a scanning synchronization loop and scanning device or circuit built-in or the deflection plates of a working slot scan camera in "synchroscan" mode.
  • the coupling and adaptation circuit to be designed must can also be awarded at the secondary level, depending on the device connected to the latter.
  • the present invention relates to a coupling circuit and adaptation for the transmission of high frequency and microwave signals, consisting, on the one hand, by two portions of lines having parts arranged parallel and weakly coupled together and, on the other hand, by a plane of mass arranged parallel to the secondary line portion and capable of part of a shielding envelope surrounding said coupling circuit and adaptation circuit characterized in that it further comprises a means of relative displacement of the secondary line portion with respect to the ground plane and / or variation in the length of the secondary line portion located opposite of said ground plane and in that it interconnects a low impedance device output and a device with very high input impedance relative to the aforementioned device, the portion of primary line, forming a short circuit, being connected to the low impedance device output and the secondary line portion being connected to the device with very high input impedance relative to the device connected to the primary.
  • the coupling and adaptation circuit 8 for high signal transmission frequency and microwave consists, on the one hand, by two portions of lines 9, 10 having parts 9 ', 10' arranged parallel and slightly coupled together and, on the other hand, by a ground plane 11 arranged in parallel to the portion of secondary line 10 and which may be part of an envelope of shield 11 'surrounding said coupling and adaptation circuit 8.
  • said circuit 8 further comprises a means 12 of relative displacement of the secondary line portion 10 relative to in ground plane 11 and / or in variation of the length of the line portion secondary 10 located opposite said ground plane 11 and interconnects a device 6 with low output impedance and device 2; 7, 7 'at impedance relatively high input, the primary line portion 9, forming a short circuit, being connected to device 6 with low output impedance and the line portion secondary 10 being connected to the device with relatively high input impedance.
  • the circuit 8 of coupling and adaptation also includes means 13, 13 ' relative displacement, in terms of spacing distance, of the primary line portion 9 relative to the line portion secondary 10 or vice versa, especially their respective parts 9 'and 10' opposite, thus making it possible to adjust the degree of coupling between the two portions of lines 9 and 10 and therefore the transformation ratio k, between primary and secondary, with adaptation of the RS output resistance of device 6 with the input resistance R'S + R'P of the device 7, 7 ', due to losses ohmic and dielectric.
  • the sum LG2 of the values of the inductances of the device 7, 7 'with very high impedance d 'input, connection wires 14, 14' and a possible auxiliary self-inductance coil 15 is fixed in such a way that: where CG2 corresponds to the overall capacity of the device 7, 7 'with very high input impedance, connection wires 14, 14' and the portion of secondary line 10 and ⁇ corresponds to the pulsation or angular frequency of the transmitted signals ( See Figures 2 and 3).
  • the midpoint 16 of the secondary line portion 10 can advantageously be brought to the ground, for example by connection to the ground plane 11.
  • the agreement at the secondary level can be achieved, by example, either by means of adjusting the length of the secondary line portion 10 located in the housing constituted by the shielding envelope 11 ′, these members being able to be arranged on the external face of said box and level of the output of the lines of connection 14, 14 'or ends of the line portion secondary 10 (passing through the armored box at an 11 "zone made of an insulating material), either by a displacement system by translation of said ground plane 11 relative to the portion of secondary line 10 in a direction perpendicular to the axis of the part 10 '.
  • the means 12 for relative displacement of the portion of the secondary line 10 with respect to the ground plane 11 consists of a bending deformation of said ground plane 11.
  • the primary line portion 9 is mounted on a support 13 can be moved or tilted, for example by deformation, in a direction perpendicular to the longitudinal axes of parts 9 'and 10' of the primary 9 and secondary 10 line portions parallel to each other, by actuating a member 13 'for adjusting the position of said support 13.
  • the organs 12 and 13 'of deformation and position adjustment consist of low pitch screws, housed in fixed insulating supports 17, 17 ', each provided with at least one corresponding threaded orifice, the heads said screws being advantageously located outside of the shielding envelope 11 ′ so as to facilitate accessibility thereof and manual adjustment.
  • the coupling circuit 8 and adaptation according to the invention is more particularly intended to be integrated into a scan 2 synchronization loop connected to deflection plates 7, 7 'or to the scanning circuit of a camera 1 to slot scanning operating in synchronous scanning mode, the ends of the secondary line portion 10 being connected respectively via connection lines 14, 14 'to one of the two deflection plates 7 or 7 'of said camera 1 ( Figures 1 and 2).
  • Circuit 8 is essentially made up of two sections or portions of air microstrip type lines which are parallel on a length of about 3 cm and weakly coupled.
  • the second line 10 (or secondary) is connected to the deflection assembly, in particular at the plates 7, 7 ′, and its point medium 16 is grounded to increase the rate of rejection of the common mode.
  • This decoupling of the scanning circuit 2 ' compared to the other camera tube electrodes 1 is interesting especially when one of them is pulsed.
  • ground plane 11 is part integral with an external electromagnetic shielding 11 'which avoids radiation losses (this shielding is only represented by broken lines in Figure 2 so as not to complicate the drawing).
  • the characteristic impedance Z1 and the length of the line primary 9 are low enough that its equivalent inductance L1 is negligible in front of RS.
  • the screw 13 makes it possible to modify the separation of the two parts 9 'and 10' opposite said portions 9 and 10 of lines and therefore the degree of coupling (weak) between primary and secondary: we can describe this effect by a step-down transformer perfect, with adjustable k ratio ( ⁇ 0.1).
  • the amplifier assembly 6 / circuit 8 / deflection circuit (plates 7, 7 ') is equivalent to the quadrupole shown in Figure 3.
  • LG2 designates the overall inductance which integrates that of the wires or connection lines 14, 14 ′ and, if necessary, that of an auxiliary choke 15; it is chosen such that:
  • the coupling and adaptation circuit 8 has therefore been produced in using techniques specific to circuits operating in high frequencies and microwave, in particular, using loosely coupled "microstrip" or microstrip lines by electric field. This design guarantees a space requirement reduced and negligible losses provided that the radiation by an external shielding 11 '.
  • the judicious choice of geometric parameters of the secondary line 10 makes it possible to decrease sufficiently inductance L2 so that the image converter tube of the camera 2 can operate at a frequency very close to its resonance.

Landscapes

  • Microwave Amplifiers (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Details Of Connecting Devices For Male And Female Coupling (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Filters And Equalizers (AREA)
  • Details Of Television Scanning (AREA)
EP95924356A 1994-07-07 1995-06-22 Transformateur d'impedance a haute frequence Expired - Lifetime EP0769213B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9408598A FR2722338B1 (fr) 1994-07-07 1994-07-07 Dispositif de couplage et d'adaptation pour la transmission de signaux haute frequence ou hyperfrequence
FR9408598 1994-07-07
PCT/FR1995/000836 WO1996002073A1 (fr) 1994-07-07 1995-06-22 Transformateur d'impedance a haute frequence

Publications (2)

Publication Number Publication Date
EP0769213A1 EP0769213A1 (fr) 1997-04-23
EP0769213B1 true EP0769213B1 (fr) 1998-05-20

Family

ID=9465271

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95924356A Expired - Lifetime EP0769213B1 (fr) 1994-07-07 1995-06-22 Transformateur d'impedance a haute frequence

Country Status (9)

Country Link
US (1) US5774026A (da)
EP (1) EP0769213B1 (da)
JP (1) JPH10505716A (da)
CA (1) CA2194470A1 (da)
DE (1) DE69502610T2 (da)
DK (1) DK0769213T3 (da)
ES (1) ES2119456T3 (da)
FR (1) FR2722338B1 (da)
WO (1) WO1996002073A1 (da)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPO076496A0 (en) * 1996-07-01 1996-07-25 Radio Frequency Systems Pty Limited Input coupling adjustment arrangement for radio frequency filters
KR100295154B1 (ko) 1998-06-12 2001-09-17 윤종용 임피던스정합회로
JP4575261B2 (ja) * 2005-09-14 2010-11-04 株式会社東芝 高周波用パッケージ
US8829055B2 (en) 2006-03-23 2014-09-09 Kao Corporation Biofilm formation inhibitor composition
US7724484B2 (en) * 2006-12-29 2010-05-25 Cobham Defense Electronic Systems Corporation Ultra broadband 10-W CW integrated limiter

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB573365A (en) * 1941-06-03 1945-11-19 John Collard Improvements in or relating to high-frequency transformers
US3166723A (en) * 1961-03-06 1965-01-19 Micro Radionics Inc Variable directional coupler having a movable articulated conductor
US3363201A (en) * 1965-03-25 1968-01-09 Harold B. Isaacson Variable attenuator having low minimum insertion loss
US3560885A (en) * 1968-11-18 1971-02-02 Textron Inc Variable radio-frequency coupler
JPH0722242B2 (ja) * 1985-12-27 1995-03-08 島田理化工業株式会社 同軸導波管変換器
DE3617359C1 (de) * 1986-05-23 1987-10-01 Georg Dr-Ing Spinner 3-dB-Richtkoppler

Also Published As

Publication number Publication date
DE69502610D1 (de) 1998-06-25
ES2119456T3 (es) 1998-10-01
JPH10505716A (ja) 1998-06-02
FR2722338B1 (fr) 1996-09-13
FR2722338A1 (fr) 1996-01-12
EP0769213A1 (fr) 1997-04-23
DK0769213T3 (da) 1999-03-15
CA2194470A1 (fr) 1996-01-25
US5774026A (en) 1998-06-30
WO1996002073A1 (fr) 1996-01-25
DE69502610T2 (de) 1998-11-26

Similar Documents

Publication Publication Date Title
EP0109867B1 (fr) Dispositif capteur de champ magnétique alternatif à haute sensibilité, et à large bande, et appareil de mesure l'utilisant
FR2992102A1 (fr) Rail collecteur guide d'onde
EP2156201B1 (fr) Système d'émission d'impulsion électrique et dispositif de découplage capacitif pour un tel système
EP0769213B1 (fr) Transformateur d'impedance a haute frequence
EP1905120A1 (fr) Adapteur d'impedance automatique coaxial
FR2680927A1 (fr) Processeur non lineaire a reflexion equilibree utilisant des transistors a effet de champ.
FR2827962A1 (fr) Dispositif de mesure a effet hall de l'intensite d'un courant electrique
EP0467818B1 (fr) Elément de transition entre guides d'ondes électromagnétiques, notamment entre un guide d'ondes circulaire et un guide d'ondes coaxial
EP0468857A1 (fr) Dispositif de réception sans fil pour appareils d'imagerie par résonance magnétique nucléaire
US4004165A (en) Ultrasonic signal generators
FR2509536A1 (fr) Filtre hyperfrequence comportant des couplages entre troncons de ligne et des moyens de reglage
EP1955081B1 (fr) Mesure deportee du courant traversant une charge
EP0017301B1 (fr) Modulateur à déplacement de fréquence
EP0221608A1 (fr) Oscillateur hyperfréquence modulé linéairement en fréquence et à coefficient de surtension externe élevé
EP0031769B1 (fr) Perfectionnements aux échantillonneurs à très large bande
EP0578561B1 (fr) Récepteur du type à antenne intérieure en ferrite
FR2571907A1 (fr) Dispositif a onde acoustique de surface
EP0477087A1 (fr) Dispositif de traitement d'un signal provenant d'un capteur ayant une réponse du type dérivatif
FR2737611A1 (fr) Dispositif de couplage magnetique entre un conducteur principal d'une ligne tem et un guide d'ondes formant resonateur en lambdag/2
WO2002093687A1 (fr) Dispositif autoadaptatif du facteur de surtension d'une antenne
EP2076960A2 (fr) Oscillateur hyperfréquence en technologie des circuits intégrés
BE397632A (da)
FR2670296A1 (fr) Dispositif de mesure de l'impedance de transfert d'un cable.
FR2863781A1 (fr) Dispositif de couplage d'amplificateurs radiofrequence a etat solide
BE466941A (da)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19961008

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE DK ES FR GB GR IE IT LU NL PT

17Q First examination report despatched

Effective date: 19970603

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE DK ES FR GB GR IE IT LU NL PT

REF Corresponds to:

Ref document number: 69502610

Country of ref document: DE

Date of ref document: 19980625

ITF It: translation for a ep patent filed

Owner name: STUDIO INGG. FISCHETTI & WEBER

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980724

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2119456

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19980729

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20010502

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010504

Year of fee payment: 7

Ref country code: FR

Payment date: 20010504

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20010509

Year of fee payment: 7

Ref country code: DK

Payment date: 20010509

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010601

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20010608

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20010628

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20010630

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20010727

Year of fee payment: 7

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20020214

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020622

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020731

BERE Be: lapsed

Owner name: COMMUNAUTE EUROPEENNE *CE

Effective date: 20020630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030101

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030101

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030228

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20030101

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20031231

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050622