EP0769213B1 - Transformateur d'impedance a haute frequence - Google Patents

Transformateur d'impedance a haute frequence Download PDF

Info

Publication number
EP0769213B1
EP0769213B1 EP95924356A EP95924356A EP0769213B1 EP 0769213 B1 EP0769213 B1 EP 0769213B1 EP 95924356 A EP95924356 A EP 95924356A EP 95924356 A EP95924356 A EP 95924356A EP 0769213 B1 EP0769213 B1 EP 0769213B1
Authority
EP
European Patent Office
Prior art keywords
line portion
coupling
secondary line
adaptation circuit
circuit according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95924356A
Other languages
German (de)
English (en)
Other versions
EP0769213A1 (fr
Inventor
Bernard Cunin
Paul Geist
Alphonse Martz
Joseph-Albert Miehe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Communaute Europeenne
Original Assignee
Communaute Europeenne
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Communaute Europeenne filed Critical Communaute Europeenne
Publication of EP0769213A1 publication Critical patent/EP0769213A1/fr
Application granted granted Critical
Publication of EP0769213B1 publication Critical patent/EP0769213B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/04Coupling devices of the waveguide type with variable factor of coupling

Definitions

  • the present invention relates to the field of transmission signals between devices or circuits with different physical and electrical characteristics and requiring an adaptation, and relates to a coupling circuit and adapter intended to link together a low-voltage device output impedance and a device with very high input impedance, for the transmission of high frequency and microwave signals.
  • Slit-scanning cameras operating in synchronous scanning also called “synchroscan” are often used to observe recurrent light phenomena which repeat with a constant frequency f 0 of the order of a hundred megahertz (MHz).
  • Part of the light signal to be analyzed is converted by a fast photodiode 3 into a voltage of period 1 / f 0 which is shaped, then multiplied in frequency by a suitable circuit 4
  • the harmonic of rank n is then isolated by a bandpass filter 5, injected into a power amplifier 6 and, finally, applied to the deflection plates 7, 7 'of the scanning circuit 2' by through an adaptation unit 8, currently presenting in the form of a selective impedance transformer whose role is to optimize the power transfer between amplifier 6 and the scanning circuit 2 '.
  • V (t) V 0 sin (2 ⁇ nf 0 t) with n ⁇ 1
  • the amplitude V 0 is adjusted so that the power dissipated in the tube is close to the maximum allowed ( ⁇ 5 W)
  • the parameter n it is often taken equal to the unit (nf 0 ⁇ 100 MHz) because the realization of the adaptation transformer 8 is simpler: the time resolution is then about 1.5 ps.
  • type transformers magnetic employed at 100 MHz are unusable and cannot be adapted to the level of their secondary, due to its own inductance.
  • This known device also includes a device for adjusting the degree of coupling between primary and secondary by approximation or distance of the primary and secondary conductors in the coupling zone.
  • this coupling device does not allow a impedance matching between a circuit connected to the primary and a circuit connected to the secondary, which have markedly different impedances.
  • this known coupling device has no means allowing to reach an agreement at the secondary level.
  • the problem posed by the present invention therefore consists in design and realize a coupling and adaptation circuit, of simple structure, space-saving, ensuring high-frequency signal transmission and microwave (from a few tens of MHz to a few GHz) between two non-tuned and unsuitable devices with very high impedances different, especially between a high frequency amplifier or generator of a scanning synchronization loop and scanning device or circuit built-in or the deflection plates of a working slot scan camera in "synchroscan" mode.
  • the coupling and adaptation circuit to be designed must can also be awarded at the secondary level, depending on the device connected to the latter.
  • the present invention relates to a coupling circuit and adaptation for the transmission of high frequency and microwave signals, consisting, on the one hand, by two portions of lines having parts arranged parallel and weakly coupled together and, on the other hand, by a plane of mass arranged parallel to the secondary line portion and capable of part of a shielding envelope surrounding said coupling circuit and adaptation circuit characterized in that it further comprises a means of relative displacement of the secondary line portion with respect to the ground plane and / or variation in the length of the secondary line portion located opposite of said ground plane and in that it interconnects a low impedance device output and a device with very high input impedance relative to the aforementioned device, the portion of primary line, forming a short circuit, being connected to the low impedance device output and the secondary line portion being connected to the device with very high input impedance relative to the device connected to the primary.
  • the coupling and adaptation circuit 8 for high signal transmission frequency and microwave consists, on the one hand, by two portions of lines 9, 10 having parts 9 ', 10' arranged parallel and slightly coupled together and, on the other hand, by a ground plane 11 arranged in parallel to the portion of secondary line 10 and which may be part of an envelope of shield 11 'surrounding said coupling and adaptation circuit 8.
  • said circuit 8 further comprises a means 12 of relative displacement of the secondary line portion 10 relative to in ground plane 11 and / or in variation of the length of the line portion secondary 10 located opposite said ground plane 11 and interconnects a device 6 with low output impedance and device 2; 7, 7 'at impedance relatively high input, the primary line portion 9, forming a short circuit, being connected to device 6 with low output impedance and the line portion secondary 10 being connected to the device with relatively high input impedance.
  • the circuit 8 of coupling and adaptation also includes means 13, 13 ' relative displacement, in terms of spacing distance, of the primary line portion 9 relative to the line portion secondary 10 or vice versa, especially their respective parts 9 'and 10' opposite, thus making it possible to adjust the degree of coupling between the two portions of lines 9 and 10 and therefore the transformation ratio k, between primary and secondary, with adaptation of the RS output resistance of device 6 with the input resistance R'S + R'P of the device 7, 7 ', due to losses ohmic and dielectric.
  • the sum LG2 of the values of the inductances of the device 7, 7 'with very high impedance d 'input, connection wires 14, 14' and a possible auxiliary self-inductance coil 15 is fixed in such a way that: where CG2 corresponds to the overall capacity of the device 7, 7 'with very high input impedance, connection wires 14, 14' and the portion of secondary line 10 and ⁇ corresponds to the pulsation or angular frequency of the transmitted signals ( See Figures 2 and 3).
  • the midpoint 16 of the secondary line portion 10 can advantageously be brought to the ground, for example by connection to the ground plane 11.
  • the agreement at the secondary level can be achieved, by example, either by means of adjusting the length of the secondary line portion 10 located in the housing constituted by the shielding envelope 11 ′, these members being able to be arranged on the external face of said box and level of the output of the lines of connection 14, 14 'or ends of the line portion secondary 10 (passing through the armored box at an 11 "zone made of an insulating material), either by a displacement system by translation of said ground plane 11 relative to the portion of secondary line 10 in a direction perpendicular to the axis of the part 10 '.
  • the means 12 for relative displacement of the portion of the secondary line 10 with respect to the ground plane 11 consists of a bending deformation of said ground plane 11.
  • the primary line portion 9 is mounted on a support 13 can be moved or tilted, for example by deformation, in a direction perpendicular to the longitudinal axes of parts 9 'and 10' of the primary 9 and secondary 10 line portions parallel to each other, by actuating a member 13 'for adjusting the position of said support 13.
  • the organs 12 and 13 'of deformation and position adjustment consist of low pitch screws, housed in fixed insulating supports 17, 17 ', each provided with at least one corresponding threaded orifice, the heads said screws being advantageously located outside of the shielding envelope 11 ′ so as to facilitate accessibility thereof and manual adjustment.
  • the coupling circuit 8 and adaptation according to the invention is more particularly intended to be integrated into a scan 2 synchronization loop connected to deflection plates 7, 7 'or to the scanning circuit of a camera 1 to slot scanning operating in synchronous scanning mode, the ends of the secondary line portion 10 being connected respectively via connection lines 14, 14 'to one of the two deflection plates 7 or 7 'of said camera 1 ( Figures 1 and 2).
  • Circuit 8 is essentially made up of two sections or portions of air microstrip type lines which are parallel on a length of about 3 cm and weakly coupled.
  • the second line 10 (or secondary) is connected to the deflection assembly, in particular at the plates 7, 7 ′, and its point medium 16 is grounded to increase the rate of rejection of the common mode.
  • This decoupling of the scanning circuit 2 ' compared to the other camera tube electrodes 1 is interesting especially when one of them is pulsed.
  • ground plane 11 is part integral with an external electromagnetic shielding 11 'which avoids radiation losses (this shielding is only represented by broken lines in Figure 2 so as not to complicate the drawing).
  • the characteristic impedance Z1 and the length of the line primary 9 are low enough that its equivalent inductance L1 is negligible in front of RS.
  • the screw 13 makes it possible to modify the separation of the two parts 9 'and 10' opposite said portions 9 and 10 of lines and therefore the degree of coupling (weak) between primary and secondary: we can describe this effect by a step-down transformer perfect, with adjustable k ratio ( ⁇ 0.1).
  • the amplifier assembly 6 / circuit 8 / deflection circuit (plates 7, 7 ') is equivalent to the quadrupole shown in Figure 3.
  • LG2 designates the overall inductance which integrates that of the wires or connection lines 14, 14 ′ and, if necessary, that of an auxiliary choke 15; it is chosen such that:
  • the coupling and adaptation circuit 8 has therefore been produced in using techniques specific to circuits operating in high frequencies and microwave, in particular, using loosely coupled "microstrip" or microstrip lines by electric field. This design guarantees a space requirement reduced and negligible losses provided that the radiation by an external shielding 11 '.
  • the judicious choice of geometric parameters of the secondary line 10 makes it possible to decrease sufficiently inductance L2 so that the image converter tube of the camera 2 can operate at a frequency very close to its resonance.

Landscapes

  • Microwave Amplifiers (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Filters And Equalizers (AREA)
  • Details Of Connecting Devices For Male And Female Coupling (AREA)
  • Details Of Television Scanning (AREA)

Description

La présente invention concerne le domaine de la transmission des signaux entre appareils ou circuits présentant des caractéristiques physiques et électriques différentes et nécessitant une adaptation, et a pour objet un circuit de couplage et d'adaptation destiné à relier entre eux un dispositif à faible impédance de sortie et un dispositif à très forte impédance d'entrée, pour la transmission de signaux haute fréquence et hyperfréquence.
Bien que l'invention ne soit pas limitée dans ses applications à des types spécifiques de dispositifs à relier, elle sera décrite ci-après plus particulièrement dans le cadre d'une mise en oeuvre en rapport avec une caméra à balayage de fente.
Les caméras à balayage de fente fonctionnant en balayage synchrone, également appelée "synchroscan", sont souvent utilisées pour observer des phénomènes lumineux récurrents qui se répètent avec une fréquence constante f0 de l'ordre d'une centaine de mégahertz (MHz).
Ce mode de fonctionnement est très intéressant car il présente différents avantages majeurs, à savoir que:
  • la sensibilité de mesure est très élevée puisque la trace lumineuse sur l'écran résulte de l'accumulation d'un grand nombre de traces élémentaires,
  • la tension V(t) appliquée aux plaques de déflexion du tube convertisseur d'images est sinusoïdale et, de ce fait, son élaboration est plus aisée que celle d'une rampe linéaire,
  • elle est relativement peu sensible aux fluc ations de phase du signal lumineux.
Le schéma fonctionnel d'une telle caméra 1 et de sa boucle de synchronisation 2 de son circuit de balayage 2' est reproduit sur la figure 1 des dessins annexés.
Une partie du signal lumineux à analyser est convertie par une photodiode rapide 3 en une tension de période 1/f0 qui est mise en forme, puis multipliée en fréquence par un circuit adapté 4
L'harmonique de rang n est ensuite isolé par un filtre passe-bande 5, injecté dans un amplificateur de puissance 6 et, enfin, appliqué aux plaques de déflexion 7, 7' du circuit de balayage 2' par l'intermédiaire d'une unité d'adaptation 8, se présentant actuellement sous la forme d'un transformateur d'impédance sélectif dont le rôle est d'optimiser le transfert de puissance entre l'amplificateur 6 et le circuit de balayage 2'.
La différence de potentiel V(t) développée aux bornes des plaques de déflexion 7, 7' est donc de la forme: V(t) = V0sin(2πnf0t) avec n ≥ 1
Pour les sensibilités de déviation habituelles (< 300 V/cm) et pour une amplitude V0 assez élevée (∼ 1 kV) on peut considérer que la déviation du faisceau électronique dans un champ de 1,5 cm de rayon est une fonction quasi-linéaire du temps.
Actuellement la résolution temporelle des caméras dites "synchroscan" est principalement déterminée par la résolution spatiale dynamique du tube (∼ 60µm) divisée par la vitesse de déflexion.
Cette dernière étant proportionnelle à la dérivée temporelle de la tension V(t), il est évident que l'on a intérêt à optimiser le produit nV0.
En général, l'amplitude V0 est réglée de manière à ce que la puissance dissipée dans le tube soit voisine du maximum autorisé (∼ 5 W) Quant au paramètre n, il est souvent pris égal à l'unité (nf0 ∼ 100 MHz) car la réalisation du transformateur d'adaptation 8 est plus simple: la résolution temporelle est alors d'environ 1,5 ps.
En pratique, la fréquence de balayage est limitée supérieurement par la résonance du tube qui se situe habituellement entre 500 et 600 MHz. Il s'ensuit que sa valeur maximale correspond à : n = 5, valeur pour laquelle la résolution théorique est inférieure à 500 fs. Or, dans ce domaine de fréquence, les transformateurs de type magnétique employés à 100 MHz sont inutilisables et ne peuvent être adaptés au niveau de leur secondaire, du fait de l'inductance propre de ce dernier.
On connaít déjà par le document US-A-3 166 723 un dispositif de couplage bidirectionnel pour la transmission de signaux haute fréquence et hyperfréquence constitué par deux portions de lignes présentant des parties disposées parallèlement et faiblement couplées entre-elles et par un plan de masse disposé parallèlement à la portion des ligne secondaire et pouvant faire partie d'une enveloppe de blindage entourant ledit circuit.
Ce dispositif connu comporte également un dispositif de réglage du degré de couplage entre le primaire et le secondaire par rapprochement ou éloignement des conducteurs primaire et secondaire dans la zone de couplage.
Toutefois, ce dispositif de couplage ne permet pas de réaliser une adaptation d'impédance entre un circuit relié au primaire et un circuit relié au secondaire, qui présentent des impédances nettement différentes.
De plus, ce dispositif de couplage connu ne comporte aucun moyen permettant de réaliser un accord au niveau du secondaire.
Le problème posé à la présente invention consiste, par conséquent, à concevoir et à réaliser un circuit de couplage et d'adaptation, de structure simple, peu encombrant, permettant d'assurer la transmission de signaux haute fréquence et hyperfréquence (de quelques dizaines de MHz à quelques GHz) entre deux dispositifs non accordés et non adaptés, présentant des impédances très différentes, notamment entre un amplificateur ou générateur haute fréquence d'une boucle de synchronisation du balayage et le dispositif ou circuit de balayage intégré ou les plaques de déviation d'une caméra à balayage de fente fonctionnant en mode dit "synchroscan".
En outre, le circuit de couplage et d'adaptation à concevoir devra également pouvoir être accordé au niveau de son secondaire, en fonction du dispositif relié à ce dernier.
A cet effet, la présente invention a pour objet un circuit de couplage et d'adaptation pour la transmission de signaux haute fréquencc et hyperfréquence, constitué, d'une part, par deux portions de lignes présentant des parties disposées parallèlement et faiblement couplées entre-elles et, d'autre part, par un plan de masse disposé parallèlement à la portion de ligne secondaire et pouvant faire partie d'une enveloppe de blindage entourant ledit circuit de couplage et d'adaptation, circuit caractérisé en ce qu'il comporte, en outre, un moyen de déplacement relatif de la portion de ligne secondaire par rapport au plan de masse et/ou de variation de la longueur de la portion de ligne secondaire située en regard dudit plan de masse et en ce qu'il relie entre-eux un dispositif à faible impédance de sortie et un dispositif à très forte impédance d'entrée par rapport au dispositif précité, la portion de ligne primaire, formant court-circuit, étant reliée au dispositif à faible impédance de sortie et la portion de ligne secondaire étant reliée au dispositif à très forte impédance d'entrée par rapport au dispositif relié au primaire.
L'invention sera mieux comprise, grâce à la description ci-après, qui se rapporte à des modes de réalisation préférés, donnés à titre d'exemples non limitatifs, et expliqués aux dessins schématiques annexés, dans lesquels:
  • la figure 1 est une représentation schématique d'une caméra à balayage de fente fonctionnant en mode dit "synchroscan" ensemble avec sa boucle de synchronisation du balayage;
  • la figure 2 est une vue en perspective d'un circuit de couplage et d'adaptation selon l'invention, relié aux deux dispositifs à accorder, et,
  • la figure 3 est un schéma électrique équivalent de l'ensemble [dispositif à faible impédance de sortie (amplificateur ou générateur HF) -circuit de couplage et d'adaptation- dispositif à très forte impédance d'entrée], représenté à la figure 2.
  • Comme le montre notamment la figure 2 des dessins annexés, le circuit 8 de couplage et d'adaptation pour la transmission de signaux haute fréquence et hyperfréquence, est constitué, d'une part, par deux portions de lignes 9, 10 présentant des parties 9', 10' disposées parallèlement et faiblement couplées entre-elles et, d'autre part, par un plan de masse 11 disposé parallèlement à la portion de ligne secondaire 10 et pouvant faire partie d'une enveloppe de blindage 11' entourant ledit circuit 8 de couplage et d'adaptation.
    Conformément à l'invention, ledit circuit 8 comporte, en outre, un moyen 12 de déplacement relatif de la portion de ligne secondaire 10 par rapport au plan de masse 11 et/ou de variation de la longueur de la portion de ligne secondaire 10 située en regard dudit plan de masse 11 et relie entre-eux un dispositif 6 à faible impédance de sortie et un dispositif 2 ; 7, 7' à impédance d'entrée relativement élevée, la portion de ligne primaire 9, formant court-circuit, étant reliée au dispositif 6 à faible impédance de sortie et la portion de ligne secondaire 10 étant reliée au dispositif à impédance d'entrée relativement élevée.
    Selon une première caractéristique de l'invention, le circuit 8 de couplage et d'adaptation comprend également des moyens 13, 13' de déplacement relatif, en termes de distance d'espacement, de la portion de ligne primaire 9 par rapport à la portion de ligne secondaire 10 ou réciproquement, plus particulièrement de leurs parties 9' et 10' respectives en regard, permettant ainsi de régler le degré de couplage entre les deux portions de lignes 9 et 10 et donc le rapport de transformation k, entre primaire et secondaire, avec adaptation de la résistance de sortie RS du dispositif 6 avec le résistance d'entrée R'S + R'P du dispositif 7, 7', due aux pertes ohmiques et diélectriques.
    Conformément à un mode de réalisation préféré de l'invention, représenté aux figures 2 et 3 des dessins annexés, la portion de ligne primaire 9 consiste en une ligne microruban ou microstrip à air dont la longueur et l'impédance caractéristique Z1 sont suffisamment faibles pour que son inductance équivalente L1 soit négligeable par rapport à la résistance de sortie RS du dispositif 6 à faible impédance de sortie et la portion de ligne secondaire 10 est composée d'une ligne microruban à air et présente une impédance caractéristique Z2 suffisamment élevée pour que ladite portion de ligne secondaire 10 puisse être assimilée à une inductance pure L2 dont la valeur est donné par l'expression: L2 = Z2 x l/c
  • avec l: longueur de la portion de ligne secondaire 10 en regard du plan de masse 11,
  • et c: vitesse de la lumière
  • Selon une autre caractéristique avantageuse de l'invention, il est prévu que, pour une valeur donnée de l'inductance L2 de la portion de ligne secondaire 10, la somme LG2 des valeurs des inductances du dispositif 7, 7' à très forte impédance d'entrée, des fils de connexion 14, 14' et d'une éventuelle bobine de self-inductance d'appoint 15 est fixée de telle manière que:
    Figure 00070001
       où CG2 correspond à la capacité globale du dispositif 7, 7' à très forte impédance d'entrée, des fils de connexion 14, 14' et de la portion de ligne secondaire 10 et ω correspond à la pulsation ou fréquence angulaire des signaux transmis (Voir figures 2 et 3).
    Afin de pouvoir fournir, au niveau du secondaire, des tensions de signes opposées (et de valeurs absolues identiques) et d'améliorer le taux de réjection du mode commun, le point milieu 16 de la portion de ligne secondaire 10, généralement confondu avec le point milieu de la partie 10', peut avantageusement être mis à la masse, par exemple par connexion au plan de masse 11.
    L'accord au niveau du secondaire pourra être réalisé, par exemple, soit par des organes de réglage de la longueur de la portion de ligne secondaire 10 située dans le boítier constitué par l'enveloppe de blindage 11', ces organes pouvant être disposés sur la face externe dudit boítier et niveau de la sortie des lignes de connexion 14, 14' ou des extrémités de la portion de ligne secondaire 10 (traversant le boítier blindé au niveau d'une zone 11" réalisée en un matériau isolant), soit par un système de déplacement par translation dudit plan de masse 11 par rapport à la portion de ligne secondaire 10 selon une direction perpendiculaire à l'axe de la partie 10'..
    Toutefois, selon une variante de réalisation simple et préférée de l'invention, et comme le montre la figure 2 des dessins annexés, le moyen 12 de déplacement relatif de la portion de ligne secondaire 10 par rapport au plan de masse 11 consiste en un organe de déformation par flexion dudit plan de masse 11.
    Par ailleurs, en vue de l'ajustement de la distance entre les parties 9' et 10' en regard des portions de ligne 9 et 10, il peut être prévu, comme le montre également la figure 2 des dessins annexés, que la portion de ligne primaire 9 soit montée sur un support 13 pouvant être déplacé ou être incliné, par déformation par exemple, dans une direction perpendiculaire aux axes longitudinaux des parties 9' et 10' des portions de lignes primaire 9 et secondaire 10 parallèles entre elles, ce en actionnant un organe 13' de réglage de la position dudit support 13.
    Selon une autre caractéristique de l'invention, les organes 12 et 13' de déformation et de réglage de la position consistent en des vis à faible pas, logées dans des supports isolants fixes 17, 17', pourvus chacun d'au moins un orifice fileté correspondant, les têtes desdites vis étant avantageusement situées à l'extérieur de l'enveloppe de blindage 11' de manière à en faciliter l'accessibilité et le réglage manuel.
    Bien que décrite ci-dessus dans le cadre général d'une liaison entre un dispositif 6 à faible impédance de sortie et un dispositif 7, 7' à très forte impédance d'entrée, le circuit 8 de couplage et d'adaptation selon l'invention est plus particulièrement destiné à être intégré à une boucle de synchronisation du balayage 2 reliée aux plaques de déflexion 7, 7' ou au circuit de balayage d'une caméra 1 à balayage de fente fonctionnant en mode de balayage synchrone, les extrémités de la portion de ligne secondaire 10 étant reliées respectivement par l'intermédiaire de lignes de connexion 14, 14' à l'une des deux plaques de déflexion 7 ou 7' de ladite caméra 1 (Figures 1 et 2).
    Un exemple pratique de réalisation de l'invention, dans le cadre d'une application telle que mentionnée ci-dessus, peut être décrit en se reportant aux figures 1, 2 et 3 des dessins annexés.
    Comme le montrent ces figures, le circuit 8 de couplage et d'adaptation comporte un ajustage fin de l'accord de la capacité des plaques 7, 7' de déviation ou de déflexion (
    Figure 00090001
    4 pF) et un réglage de la transformation entre la résistance de sortie R'S (= 50 Ω) de l'amplificateur 6 et la résistance d'entrée du circuit de déflexion correspondant sensiblement aux pertes R'S + R'P dans le tube.
    Le circuit 8 est formé essentiellement de deux tronçons ou portions de lignes de type "microstrip" à air qui sont parallèles sur une longueur d'environ 3 cm et faiblement couplées.
    L'une 9 desdites lignes (dite primaire) est court-circuitée, son autre extrémité étant reliée au générateur d'attaque (amplificateur 6) de résistance interne ou de sortie RS (= 50 Ω).
    La deuxième ligne 10 (ou secondaire) est connectée à l'ensemble de déflexion, notamment aux plaques 7, 7', et son point milieu 16 est mis à la masse de manière à augmenter le taux de réjection du mode commun. Ce découplage du circuit de balayage 2' par rapport aux autres électrodes du tube de la caméra 1 est intéressant surtout lorsque l'une d'elle est pulsée.
    Enfin, on peut noter que le plan de masse 11 fait partie intégrante d'un blindage électromagnétique extérieur 11' qui évite les pertes par rayonnement (ce blindage n'est représenté que par des traits interrompus sur la figure 2 pour ne pas compliquer le dessin).
    L'impédance caractéristique Z1 et la longueur de la ligne primaire 9 sont assez faibles pour que son inductance équivalente L1 soit négligeable devant RS.
    Au contraire, celle de la ligne secondaire 10 de longueur 1(≈ 4 cm), est élevée (Z2 ≈ 100 Ω) et dans ces conditions, ce tronçon ou cette portion secondaire équivaut pratiquement à une inductance L2 ajustable donnée par l'expression: L2 = Z2 x l/c ≈ 15 nH
    En agissant sur la vis 12 on fait varier la distance entre le plan de masse 11 et la ligne secondaire 10: il en résulte une variation de même sens de Z2 et, par suite, de L2.
    Par ailleurs, la vis 13' permet de modifier la séparation des deux parties 9' et 10' en regard desdites portions 9 et 10 de lignes et donc le degré de couplage (faible) entre primaire et secondaire: on peut décrire cet effet par un transformateur abaisseur de tension parfait, de rapport k ajustable (∼ 0,1).
    L'ensemble amplificateur 6/circuit 8/circuit de déflexion (plaques 7, 7') équivaut au quadripôle représenté sur la figure 3.
    Dans ce schéma, les résistances série R'S et parallèle R'P caractérisent respectivement les pertes ohmiques et diélectriques dans le circuit de déflexion (plaques 7, 7'). LG2 désigne l'inductance globale qui intègre celle des fils ou lignes de connexion 14, 14' et, si nécessaire, celle d'une self d'appoint 15; elle est choisie telle que:
    Figure 00110001
    On en déduit les conditions d'adaptation:
    Figure 00110002
    Figure 00110003
    Ces deux équations montrent que:
    • le circuit de balayage s'accorde finement en ajustant l'inductance variable L2 (vis 12),
    • l'adaptation des résistances est obtenue en réglant le coefficient k et, donc, le couplage entre primaire et secondaire (vis 13').
    Le circuit 8 de couplage et d'adaptation a donc été réalisé en faisant appel à des techniques propres aux circuits fonctionnant en hautes fréquences et en hyperfréquence, en particulier, en utilisant des lignes du type "microstrip" ou microruban faiblement couplées par champ électrique. Cette conception garantit un encombrement réduit et des pertes négligeables à condition de minimiser le rayonnement par un blindage extérieur 11'.
    Par ailleurs, le choix judicieux des paramètres géométriques de la ligne secondaire 10 permet de diminuer suffisamment l'inductance L2 pour que le tube convertisseur d'images de la caméra 2 puisse fonctionner à une fréquence très proche de sa résonance.
    De plus, ce circuit, peu encombrant et très peu coûteus à réaliser est muni de deux réglages simples et précis pour contrôler l'accord du circuit de déflexion et le rapport de transformation.

    Claims (9)

    1. Circuit de couplage et d'adaptation pour la transmission de signaux haute fréquence et hyperfréquence, constitué, d'une part, par deux portions de lignes (9, 10) présentant des parties (9', 10') disposées parallèlement et faiblement couplées entre elles et, d'autre part, par un plan de masse (11) disposé parallèlement à la portion de ligne secondaire (10) et pouvant faire partie d'une enveloppe de blindage (11') entourant ledit circuit (8) de couplage et d'adaptation, circuit caractérisé en ce qu'il comporte, en outre, un moyen (12) de déplacement relatif de la portion de ligne secondaire (10) par rapport au plan de masse (11) et/ou de variation de la longueur de la portion de ligne secondaire (10) située en regard dudit plan de masse (11) et en ce qu'il relie entre eux un dispositif (6) à faible impédance de sortie et un dispositif (2; 7, 7') à très forte impédance d'entrée par rapport au dispositif (6), la portion de ligne (9) primaire, formant court-circuit, étant reliée au dispositif (6) à faible impédance de sortie et la portion de ligne (10) secondaire étant reliée au dispositif (2; 7 ,7') à très forte impédance d'entrée par rapport au dispositif (6) au primaire.
    2. Circuit de couplage et d'adaptation selon la revendication 1, caractérisé en ce qu'il comprend également des moyens (13, 13') de déplacement relatif, en termes de distance d'espacement, de la portion de ligne primaire (9) par rapport à la portion de ligne secondaire (10) ou réciproquement.
    3. Circuit de couplage et d'adaptation selon l'une quelconque des revendications 1 et 2, caractérisé en ce que la portion de ligne primaire (9) consiste en une ligne microruban à air dont la longueur et l'impédance caractéristique (Z1) sont suffisamment faibles pour que son inductance équivalente (L1) soit négligeable par rapport à la résistance de sortie (RS) du dispositif (6) à faible impédance de sortie et en ce que la portion de ligne secondaire (10) est composée d'une ligne microruban à air et présente une impédance caractéristique (Z2) suffisamment élevée pour que ladite portion de ligne secondaire (10) puisse être assimilée à une inductance pure (L2) dont la valeur est donnée par l'expression: L2 = Z2 x l/c
      avec l: longueur de la portion de ligne secondaire (10) en regard du plan de masse (11),
      et c: vitesse de la lumière
    4. Circuit de couplage de d'adaptation selon la revendication 3, caractérisé en ce que, pour une valeur donnée de l'inductance (L2) de la portion de ligne secondaire (10), la somme (LG2) des valeurs des inductances du dispositif (7, 7') à très forte impédance d'entrée, des fils de connexion (14, 14') et d'une éventuelle bobine de self-inductance d'appoint (15) est fixée de telle manière que:
      Figure 00150001
         où CG2 correspond la capacité globale du dispositif (7, 7') à très forte impédance d'entrée, des fils de connexion (14, 14') et de la portion de ligne secondaire (10) et ω correspond à la fréquence angulaire des signaux transmis.
    5. Circuit de couplage et d'adaptation selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le point milieu (16) de la portion de ligne secondaire (10) est mis à la masse.
    6. Circuit de couplage et d'adaptation selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le moyen (12) de déplacement relatif de la portion de ligne secondaire (10) par rapport au plan de masse (11) consiste en un organe de déformation par flexion dudit plan de masse (11).
    7. Circuit de couplage et d'adaptation selon l'une quelconque des revendications 2 à 6, caractérisé en ce que la portion de ligne primaire (9) est montée sur un support (13) pouvant être déplacé ou être incliné, par déformation par exemple, dans une direction perpendiculaire aux axes longitudinaux des parties (9' et 10') des portions de lignes primaire (9) et secondaire (10) parallèles entre elles, ce en actionnant un organe (13') de réglage de la position dudit support (13).
    8. Circuit de couplage et d'adaptation selon les revendications 6 et 7, caractérisé en ce que les organes (12 et 13') de déformation et de réglage de la position consistent en des vis à faible pas, logées dans des supports isolants fixes (17, 17'), pourvus chacun d'au moins un orifice fileté correspondant, les têtes desdites vis étant avantageusement situées à l'extérieur de l'enveloppe de blindage (11').
    9. Circuit de couplage et d'adaptation selon l'une quelconque des revendications 5 à 8, caractérisé en ce qu'il est intégré à une boucle de synchronisation du balayage (2) reliée aux plaques de déflexion (7, 7') ou au circuit de balayage d'une caméra (1) à balayage de fente fonctionnant en mode de balayage synchrone, les extrémités de la portion de ligne secondaire (10) étant reliées respectivement par l'intermédiaire de lignes de connexion (14, 14'), à l'une des deux plaques de déflexion (7 ou 7') de ladite caméra (1).
    EP95924356A 1994-07-07 1995-06-22 Transformateur d'impedance a haute frequence Expired - Lifetime EP0769213B1 (fr)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    FR9408598A FR2722338B1 (fr) 1994-07-07 1994-07-07 Dispositif de couplage et d'adaptation pour la transmission de signaux haute frequence ou hyperfrequence
    FR9408598 1994-07-07
    PCT/FR1995/000836 WO1996002073A1 (fr) 1994-07-07 1995-06-22 Transformateur d'impedance a haute frequence

    Publications (2)

    Publication Number Publication Date
    EP0769213A1 EP0769213A1 (fr) 1997-04-23
    EP0769213B1 true EP0769213B1 (fr) 1998-05-20

    Family

    ID=9465271

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP95924356A Expired - Lifetime EP0769213B1 (fr) 1994-07-07 1995-06-22 Transformateur d'impedance a haute frequence

    Country Status (9)

    Country Link
    US (1) US5774026A (fr)
    EP (1) EP0769213B1 (fr)
    JP (1) JPH10505716A (fr)
    CA (1) CA2194470A1 (fr)
    DE (1) DE69502610T2 (fr)
    DK (1) DK0769213T3 (fr)
    ES (1) ES2119456T3 (fr)
    FR (1) FR2722338B1 (fr)
    WO (1) WO1996002073A1 (fr)

    Families Citing this family (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    AUPO076496A0 (en) * 1996-07-01 1996-07-25 Radio Frequency Systems Pty Limited Input coupling adjustment arrangement for radio frequency filters
    KR100295154B1 (ko) 1998-06-12 2001-09-17 윤종용 임피던스정합회로
    JP4575261B2 (ja) * 2005-09-14 2010-11-04 株式会社東芝 高周波用パッケージ
    CN101437393B (zh) 2006-03-23 2014-03-12 花王株式会社 生物膜形成抑制剂组合物
    US7724484B2 (en) * 2006-12-29 2010-05-25 Cobham Defense Electronic Systems Corporation Ultra broadband 10-W CW integrated limiter

    Family Cites Families (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB573365A (en) * 1941-06-03 1945-11-19 John Collard Improvements in or relating to high-frequency transformers
    US3166723A (en) * 1961-03-06 1965-01-19 Micro Radionics Inc Variable directional coupler having a movable articulated conductor
    US3363201A (en) * 1965-03-25 1968-01-09 Harold B. Isaacson Variable attenuator having low minimum insertion loss
    US3560885A (en) * 1968-11-18 1971-02-02 Textron Inc Variable radio-frequency coupler
    JPH0722242B2 (ja) * 1985-12-27 1995-03-08 島田理化工業株式会社 同軸導波管変換器
    DE3617359C1 (de) * 1986-05-23 1987-10-01 Georg Dr-Ing Spinner 3-dB-Richtkoppler

    Also Published As

    Publication number Publication date
    WO1996002073A1 (fr) 1996-01-25
    FR2722338B1 (fr) 1996-09-13
    CA2194470A1 (fr) 1996-01-25
    EP0769213A1 (fr) 1997-04-23
    DE69502610D1 (de) 1998-06-25
    JPH10505716A (ja) 1998-06-02
    FR2722338A1 (fr) 1996-01-12
    DK0769213T3 (da) 1999-03-15
    ES2119456T3 (es) 1998-10-01
    DE69502610T2 (de) 1998-11-26
    US5774026A (en) 1998-06-30

    Similar Documents

    Publication Publication Date Title
    EP0109867B1 (fr) Dispositif capteur de champ magnétique alternatif à haute sensibilité, et à large bande, et appareil de mesure l&#39;utilisant
    FR2992102A1 (fr) Rail collecteur guide d&#39;onde
    EP2156201B1 (fr) Système d&#39;émission d&#39;impulsion électrique et dispositif de découplage capacitif pour un tel système
    EP0769213B1 (fr) Transformateur d&#39;impedance a haute frequence
    EP1905120A1 (fr) Adapteur d&#39;impedance automatique coaxial
    FR2680927A1 (fr) Processeur non lineaire a reflexion equilibree utilisant des transistors a effet de champ.
    FR2827962A1 (fr) Dispositif de mesure a effet hall de l&#39;intensite d&#39;un courant electrique
    EP0468857A1 (fr) Dispositif de réception sans fil pour appareils d&#39;imagerie par résonance magnétique nucléaire
    US4004165A (en) Ultrasonic signal generators
    EP0467818A1 (fr) Elément de transition entre guides d&#39;ondes électromagnétiques, notamment entre un guide d&#39;ondes circulaire et un guide d&#39;ondes coaxial
    FR2509536A1 (fr) Filtre hyperfrequence comportant des couplages entre troncons de ligne et des moyens de reglage
    EP1955081B1 (fr) Mesure deportee du courant traversant une charge
    EP0017301B1 (fr) Modulateur à déplacement de fréquence
    EP0221608A1 (fr) Oscillateur hyperfréquence modulé linéairement en fréquence et à coefficient de surtension externe élevé
    EP0031769B1 (fr) Perfectionnements aux échantillonneurs à très large bande
    EP0578561B1 (fr) Récepteur du type à antenne intérieure en ferrite
    EP0476764A1 (fr) Dispositif d&#39;égalisation de spectre
    FR2571907A1 (fr) Dispositif a onde acoustique de surface
    EP0477087A1 (fr) Dispositif de traitement d&#39;un signal provenant d&#39;un capteur ayant une réponse du type dérivatif
    FR2737611A1 (fr) Dispositif de couplage magnetique entre un conducteur principal d&#39;une ligne tem et un guide d&#39;ondes formant resonateur en lambdag/2
    WO2002093687A1 (fr) Dispositif autoadaptatif du facteur de surtension d&#39;une antenne
    EP2076960A2 (fr) Oscillateur hyperfréquence en technologie des circuits intégrés
    BE397632A (fr)
    FR2670296A1 (fr) Dispositif de mesure de l&#39;impedance de transfert d&#39;un cable.
    EP0060772A1 (fr) Démodulateur d&#39;un signal modulé en fréquence

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19961008

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): BE DE DK ES FR GB GR IE IT LU NL PT

    17Q First examination report despatched

    Effective date: 19970603

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): BE DE DK ES FR GB GR IE IT LU NL PT

    REF Corresponds to:

    Ref document number: 69502610

    Country of ref document: DE

    Date of ref document: 19980625

    ITF It: translation for a ep patent filed

    Owner name: STUDIO INGG. FISCHETTI & WEBER

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19980724

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: FRENCH

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2119456

    Country of ref document: ES

    Kind code of ref document: T3

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: SC4A

    Free format text: AVAILABILITY OF NATIONAL TRANSLATION

    Effective date: 19980729

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: T3

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20010502

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20010504

    Year of fee payment: 7

    Ref country code: FR

    Payment date: 20010504

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GR

    Payment date: 20010509

    Year of fee payment: 7

    Ref country code: DK

    Payment date: 20010509

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20010601

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IE

    Payment date: 20010608

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20010628

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20010630

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: LU

    Payment date: 20010727

    Year of fee payment: 7

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: PT

    Payment date: 20020214

    Year of fee payment: 8

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020622

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020622

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020623

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020624

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020630

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020731

    BERE Be: lapsed

    Owner name: COMMUNAUTE EUROPEENNE *CE

    Effective date: 20020630

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20021231

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030101

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030101

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: EBP

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20020622

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030228

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20030101

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: MM4A

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20031231

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: MM4A

    Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

    Effective date: 20031231

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20030711

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050622