EP0763260A1 - Thin film solar cell and process for producing the same - Google Patents

Thin film solar cell and process for producing the same

Info

Publication number
EP0763260A1
EP0763260A1 EP95920751A EP95920751A EP0763260A1 EP 0763260 A1 EP0763260 A1 EP 0763260A1 EP 95920751 A EP95920751 A EP 95920751A EP 95920751 A EP95920751 A EP 95920751A EP 0763260 A1 EP0763260 A1 EP 0763260A1
Authority
EP
European Patent Office
Prior art keywords
layer
buffer
solar cell
layers
film solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP95920751A
Other languages
German (de)
French (fr)
Inventor
Claus Beneking
Bernd Rech
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Publication of EP0763260A1 publication Critical patent/EP0763260A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/076Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Definitions

  • the invention relates to a thin-film solar cell based on the amorphous, hydrogenated silicon and / or its alloys.
  • Thin-film solar cells based on the amorphous hydrogenated silicon (a-Si: H) and its alloys are produced in a known manner with the doping sequence nip or pin by layer deposition on suitable opaque or transparent substrates, also as stacked solar cells in a cascade arrangement (so-called Stacked cells, eg pinpin) with identical or different band gaps of the sub-cells used.
  • a-Si: H amorphous hydrogenated silicon
  • Transparent, conductive oxide layers are generally used as contact layers on the light entry side / likewise transparent conductive oxide or metal layers or a combination on the side facing away from the light from both.
  • the incidence of light advantageously takes place from the p-doped side.
  • the band gap of the p-doped layer is chosen to be higher than that of the i-layer in order to improve the entry of light into the undoped i-layer which is relevant for the light conversion and for electrical improvement. This can e.g. can be achieved with the aid of alloys of a-Si: H with N, C or O.
  • the efficiency y of a solar cell can be calculated as the product of the parameters of the current / voltage characteristic open terminal voltage oc measured under sunlight, the short-circuit current density 'sc and the fill factor FF divided by the intensity of the
  • V (v oc * 3 sc * FF) / I S s- (1)
  • buffer layers can be used in several or even each sub-cell (FIG. 1b).
  • a buffer layer is a layer with a higher band gap than the subsequent i-layer, but the buffer layer, in contrast to the p-layer, is nominally undoped.
  • the higher band gap can, as with the p layer, be achieved by alloying the a-Si: H with, for example, N, C or 0, but also by changing the material of the amorphous silicon without alloy.
  • the increased band gap reduces the recombination in the p-i interface area and thereby increases the open terminal voltage.
  • Buffer layers with a graded band gap have also been described. "Nominally undoped” means that there is no active doping, even if due to carryover of dopants, e.g. from the p-deposition, one after the p-layer in the same
  • Reaction chamber prepared buffer layer can be slightly doped.
  • An intentional low doping of the buffer layer is also known.
  • Literature: RR Arya et al. describe an a-SiC buffer layer in which the carbon content is graded downwards from the p-doped a-SiC layer to the undoped a-Si i layer [1].
  • KS Lim et al. describe the same buffer structure, but with weak p-yp doping [2]. The best results so far have been achieved with "high quality" buffer layers in which the material used for the buffer is nominally undoped and has a photoconductivity with values above 1 * 10 (Ohm * cm) -l.
  • a buffer made of a-SiC is known, the a-SiC material having a high photoconductivity. It was prepared using a high hydrogen dilution during plasma deposition [3]. Furthermore, from S. Fujikake et al. a nominally undoped a-SiO buffer is known, the a-SiO material being highly photoconductive and prepared using Sin * , CO-, and H2 [4]. In addition to these special alloys, a-Si material with an increased band gap can also be used as a "high quality" buffer.
  • buffer layers in particular those with "high quality", are successfully used to increase the efficiency of a-Si solar cells. It has been found, however, that the use of these buffers can induce increased aging (decrease in efficiency under long-term exposure to light).
  • the object of the invention is therefore to provide a solar cell in which an increase in the initial efficiency is achieved with a simultaneous lower relative degradation and a significant increase in the (long-term) stabilized efficiency is achieved. It is also an object of the invention to provide a manufacturing method for such solar cells.
  • the solar cell of the type mentioned at the outset has an additional, relatively thin, low p-doped layer as a compensation layer between the p and buffer layers (high quality) (FIG. 3 a). This measure can also be used multiple times in stacked cells (FIG. 3b).
  • the doping should be small compared to the doping of the p-layer, so that this layer does not act as an extension of the p-layer.
  • the compensation layer can also be provided several times (FIG. 3b).
  • charge carriers are generated in the i-layer of the solar cell by light irradiation and transported to the p- or n-layer by the built-in electric field.
  • the efficiency of charge carrier separation depends on the strength of the built-in electric field and the defect density of the i-layer.
  • defect states in the part of the i or buffer layer adjacent to the p layer lie above the Fermini level and are emptied by electrons. Especially in the case of the p-buffer i-n cells, there are many defect states.
  • a positive space charge zone is formed which, together with the negative space charge of the acceptors, forms an electrical double layer in the p-layer, by means of which the electric field in the i-layer is broken down. After degradation, the field is no longer sufficient for good charge separation, especially in cells with a buffer, which is why the efficiency in cells with a buffer decreases sharply over time.
  • FIG. 1 a shows a schematic representation of a solar cell layer structure with a pin structure without a buffer layer (i), or with a p-buffer-in structure with a buffer layer in the pi transition region (ii) to increase efficiency;
  • Figure lb Schematic representation of a layer structure of a
  • Stacked solar cell made of amorphous silicon with a "p _" compensation layer between the p and i layers;
  • the p, i, and n layers were deposited in these three solar cells under comparable deposition conditions.
  • the Layer thicknesses of these layers were chosen identically for the three solar cells (p: 10 nm, i: 500 n, n: 25 nm).
  • the deposition parameters and layer thicknesses of the p, compensation and buffer layers are given in Table 1.
  • each solar cell in Table 2 is in the unaged (before aging) and aged (after 300 h illumination under an AMI .5 spectrum, at 50 ° C and open clamps)
  • the compensation layer described above was also used to improve the efficiency of stacked cells.
  • the layer structure of this solar cell is p-compensation layer-buffer-i (60 nm) - n - p - compensation layer - buffer - i (330 nm) - n.
  • the comparison solar cell was also deposited in a stacked cell structure (p-buffer-i-n-p-buffer-i-n). The efficiency of both cells as a function of the irradiation time is shown in FIG. 4.
  • Table 2 Parameters of the test solar cells before and after aging (300 h, 1 sun, 50 ° C, open clamps).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A thin film solar cell based on amorphous, hydrogenated silicon and/or its alloys is disclosed, as well as a process for producing such solar cells. The solar cell is made of a series of layers that comprise a non-doped layer, a buffer layer adjacent and joined to the non-doped layer at the light input side, a p-doped layer adjacent and joined to the latter at the light input side, and a n-doped layer adjacent and joined to the other side of the non-doped layer. The object of the invention is to create a solar cell with increased long-term stabilised effectiveness. For that purpose, a compensation layer is provided in the solar cell between the p-layer and the buffer layer.

Description

Dünnschicht-Solarzelle und Verfahren zu ihrer HerstellungThin film solar cell and process for its manufacture
1. Technisches Gebiet1. Technical field
Die Erfindung betrifft eine Dünnschicht-Solarzelle auf der Basis des amorphen, hydrierten Siliziums und/oder seiner Legierungen.The invention relates to a thin-film solar cell based on the amorphous, hydrogenated silicon and / or its alloys.
2. Stand der Technik2. State of the art
Dünnschicht-Solarzellen auf der Basis des amorphen hydrierten Siliziums (a-Si:H) und seiner Legierungen werden in bekannter Weise mit der Dotierungsfolge n-i-p oder p-i-n durch Schicht- abscheidung auf geeigneten opaken oder transparenten Substraten hergestellt, auch als gestapelte Solarzellen in Kaskadenanordnung (sog. Stapelzellen, z.B. p-i-n-p-i-n) mit identischer oder unterschiedlicher Bandlücke der verwendeten Teilzellen.Thin-film solar cells based on the amorphous hydrogenated silicon (a-Si: H) and its alloys are produced in a known manner with the doping sequence nip or pin by layer deposition on suitable opaque or transparent substrates, also as stacked solar cells in a cascade arrangement (so-called Stacked cells, eg pinpin) with identical or different band gaps of the sub-cells used.
Als Kontaktschichten dienen auf der Lichteintrittsseite in der Regel transparente, lei fähige Oxidschichten (sog. TCO-Schichten, wie z.B. ITO, Sn02/ ZnO, Ti02)/ auf der licht-abgewandten Seite ebenfalls transparente leitfähige Oxid- oder etallschichten oder eine Kombination aus beiden.Transparent, conductive oxide layers (so-called TCO layers, such as ITO, Sn0 2 / ZnO, Ti0 2 ) are generally used as contact layers on the light entry side / likewise transparent conductive oxide or metal layers or a combination on the side facing away from the light from both.
Der Lichteinfall erfolgt in vorteilhafter Weise von der p- dotierten Seite her. Zur Verbesserung des Lichteintritts in die für die Lichtumwandlung maßgebliche, undotierte i-Schicht und zur elektrischen Verbesserung, wird die Bandlücke der p-dotierten Schicht höher als die der i-Schicht gewählt. Dies kann z.B. mit Hilfe von Legierungen des a-Si:H mit N, C oder O erreicht werden.The incidence of light advantageously takes place from the p-doped side. The band gap of the p-doped layer is chosen to be higher than that of the i-layer in order to improve the entry of light into the undoped i-layer which is relevant for the light conversion and for electrical improvement. This can e.g. can be achieved with the aid of alloys of a-Si: H with N, C or O.
Der Wirkungsgrad y einer Solarzelle läßt sich als Produkt der unter Sonnenlicht gemessenen Kenngrößen der Strom/Spannungs- kennlinie offene Klemmenspannung oc, der Kurzschlußstromdichte 'sc und dem Füllfaktor FF, geteilt durch die Intensität desThe efficiency y of a solar cell can be calculated as the product of the parameters of the current / voltage characteristic open terminal voltage oc measured under sunlight, the short-circuit current density 'sc and the fill factor FF divided by the intensity of the
Sonnenlichts I_s schreiben:Sunlight I_ s write:
V = (voc*3sc*FF)/ISs- (1)V = (v oc * 3 sc * FF) / I S s- (1)
Von verschiedenen Autoren wurde beschrieben, daß sich vor allem die offene Klemmenspannung Voc, aber auch jsc und FF von a-Si p-j - n- bzw. n-i-p-Solarzellen durch die Einfügung einer zusätzlichen, dünnen, sog. Pufferschicht (englisch: "buffer (layer)" oder "p-i interface _ayer" ) in die p-i-Grenzflache (d.h. zwischen p- und i- Schicht) erhöhen lassen. Dadurch erreicht man einen insgesamt deutlich höheren Wirkungsgrad (Fig. la).Various authors have described that, above all, the open terminal voltage V oc , but also j sc and FF of a-Si pj - n or nip solar cells can be changed by inserting an additional, thin, so-called buffer layer (English: " buffer (layer) "or" pi interface _ayer ") into the pi interface (ie between the p and i layers). This results in an overall significantly higher efficiency (Fig. La).
In Stapel-Solarzellen, z.B. mit p-i-n-p-i-n-Struktur können in mehreren oder sogar jeder Teilzelle Pufferschichten zum Einsatz kommen (Fig. lb).In stacked solar cells, e.g. With p-i-n-p-i-n structure, buffer layers can be used in several or even each sub-cell (FIG. 1b).
Unter einer Pufferschicht versteht man eine Schicht mit höherer Bandlücke als die nachfolgende i-Schicht, wobei die Pufferschicht im Gegensatz zu der p-Schicht jedoch nominell undotiert ist. Die höhere Bandlücke kann dabei, - wie bei der p-Schicht -, durch Legieren des a-Si:H mit beispielsweise N, C oder 0, aber auch durch Materialveränderung des amorphen Siliziums ohne Legierung erreicht werden. Durch die erhöhte Bandlücke wird die Rekombination im p-i-Grenzflächenbereich verringert und dadurch die offene Klemmenspannung erhöht.A buffer layer is a layer with a higher band gap than the subsequent i-layer, but the buffer layer, in contrast to the p-layer, is nominally undoped. The higher band gap can, as with the p layer, be achieved by alloying the a-Si: H with, for example, N, C or 0, but also by changing the material of the amorphous silicon without alloy. The increased band gap reduces the recombination in the p-i interface area and thereby increases the open terminal voltage.
Auch Pufferschichten mit gradierter Bandlücke wurden beschrieben. "Nominell undotiert" heißt, daß nicht aktiv dotiert wird, wenn auch aufgrund von Dotierstoff-Verschleppungen, z.B. von der p- Deposition her, eine nach der p-Schicht in derselbenBuffer layers with a graded band gap have also been described. "Nominally undoped" means that there is no active doping, even if due to carryover of dopants, e.g. from the p-deposition, one after the p-layer in the same
Reaktionskammer präparierte Pufferschicht geringfügig dotiert sein kann. Auch eine beabsichtigte geringe Dotierung der Pufferschicht ist bekannt. Literatur: R.R. Arya et al. beschreiben eine a-SiC- Pufferεchicht, bei der der Kohlenstoffgehalt von der p-dotierten a-SiC Schicht zur undotierten a-Si i-Schicht hin abfallend gradiert wird [1]. K.S. Lim et al. beschreiben dieselbe Pufferstruktur, aber mit schwacher p- yp Dotierung [2]. Die bisher besten Ergebnisse wurden mit Pufferschichten "hoher Qualität" erreicht, bei denen das für den Puffer verwendete Material nominell undotiert ist und eine Photoleitfähigkeit mit Werten oberhalb von 1*10 (Ohm*cm)-l besitzt.Reaction chamber prepared buffer layer can be slightly doped. An intentional low doping of the buffer layer is also known. Literature: RR Arya et al. describe an a-SiC buffer layer in which the carbon content is graded downwards from the p-doped a-SiC layer to the undoped a-Si i layer [1]. KS Lim et al. describe the same buffer structure, but with weak p-yp doping [2]. The best results so far have been achieved with "high quality" buffer layers in which the material used for the buffer is nominally undoped and has a photoconductivity with values above 1 * 10 (Ohm * cm) -l.
Aus T. Yoshida et al. ist ein Puffer aus a-SiC bekannt, wobei das a-SiC Material eine hohe Photoleitfähigkeit aufweist. Es wurde unter Verwendung einer hohen Wasserstoffverdünnung bei der Plasma- Deposition präpariert [3]. Darüberhinaus ist aus S. Fujikake et al. ein nominell undotierter a-SiO Puffer bekannt, wobei das a-SiO Material hoch photoleitend ist und unter Verwendung von Sin* , CO-, und H2 präpariert wurde [4]. Ferner kommt neben diesen speziellen Legierungen auch a-Si Material mit erhöhter Bandlücke als Puffer "hoher Qualität" in Betracht.From T. Yoshida et al. a buffer made of a-SiC is known, the a-SiC material having a high photoconductivity. It was prepared using a high hydrogen dilution during plasma deposition [3]. Furthermore, from S. Fujikake et al. a nominally undoped a-SiO buffer is known, the a-SiO material being highly photoconductive and prepared using Sin * , CO-, and H2 [4]. In addition to these special alloys, a-Si material with an increased band gap can also be used as a "high quality" buffer.
Solche Pufferschichten, insbesondere solche mit "hoher Qualität", werden mit Erfolg zur Wirkungsgraderhöhung von a-Si Solarzellen eingesetzt. Es hat sich aber herausgestellt, daß durch die Verwendung dieser Puffer eine verstärkte Alterung (Abnahme des Wirkungsgrades unter langandauernder Lichteinstrahlung) induziert werden kann.Such buffer layers, in particular those with "high quality", are successfully used to increase the efficiency of a-Si solar cells. It has been found, however, that the use of these buffers can induce increased aging (decrease in efficiency under long-term exposure to light).
Es ist in diesem Zusammenhang einerseits aus Y.-M. Li et al. bekannt, daß bei Verwendung von undotierten Pufferschichten aus a- SiC mit hoher Qualität keine zusätzliche Alterung gefunden wurde [51-In this context, it is on the one hand from Y.-M. Li et al. known that no additional aging was found when using undoped high-quality a-SiC buffer layers [51-
Andererseits wurde beispielsweise von P. Lechner et al . , aber auch von C. Beneking et. al. eine deutliche Verstärkung der Lichtalterung bei Zellen mit Pufferschichten hoher Qualität gefunden [6,7].On the other hand, for example, P. Lechner et al. , but also by C. Beneking et. al. a significant increase in light aging was found in cells with high-quality buffer layers [6,7].
Der diesbezüglich beschriebene Stand der Technik ist in Fig. 2 zur Verdeutlichung zusammengefaßt: Setzt man den Anfangswirkungsgrad einer p-i-n-Solarzelle aus a- Si:H gleich eins, so wird ein Anfangswirkungsgrad größer eins (z.B. 1,1) durch die Einfügung der Pufferschicht erreicht.The prior art described in this regard is summarized in FIG. 2 for clarification: If the initial efficiency of a pin solar cell made of a-Si: H is equal to one, an initial efficiency greater than one (eg 1.1) is achieved by inserting the buffer layer.
Im Verlaufe der Lichtalterung kann dieser Vorteil erhalten bleiben ("gutes Ergebnis", obere Kurve), aber der Puffer kann auch eine so starke zusätzliche Degradation bewirken, daß der Anfangsvorteil mehr als verlorengeht.This advantage can be maintained in the course of light aging ("good result", upper curve), but the buffer can also cause such an additional degradation that the initial advantage is more than lost.
Zusammengefaßt zeigte sich als Nachteil, daß das oben beschriebene "gute Ergebnis" (Fig. 2) reproduzierbar mit der Struktur p- Puffer(hohe Qualität)-i-n nicht erreicht werden kann.In summary, it turned out to be a disadvantage that the "good result" described above (FIG. 2) cannot be achieved reproducibly with the structure p-buffer (high quality) -i-n.
3. Aufgabe der Erfindung3. Object of the invention
Aufgabe der Erfindung ist es daher, eine Solarzelle zu schaffen, bei der eine Erhöhung des Anfangswirkungsgrades bei gleichzeitiger geringerer relativer Degradation erzielt wird und eine deutliche Erhöhung des (langzeit-)stabilisierten Wirkungsgrades erreicht wird. Es ist zudem Aufgabe der Erfindung ein Herstellungsverfahren für solche Solarzellen zu schaffen.The object of the invention is therefore to provide a solar cell in which an increase in the initial efficiency is achieved with a simultaneous lower relative degradation and a significant increase in the (long-term) stabilized efficiency is achieved. It is also an object of the invention to provide a manufacturing method for such solar cells.
. Lösung. solution
Zur Lösung weist die Solarzelle der eingangs genannten Art zwischen p- und Pufferschicht (-hoher Qualität-) eine zusätzliche, relativ dünne, niedrig p-dotierte Schicht als Kompensationsschicht auf (Fig. 3a). In Stapelzellen kann diese Maßnahme auch mehrfach angewendet werden (Figur 3b).To solve the problem, the solar cell of the type mentioned at the outset has an additional, relatively thin, low p-doped layer as a compensation layer between the p and buffer layers (high quality) (FIG. 3 a). This measure can also be used multiple times in stacked cells (FIG. 3b).
Die Dotierung soll klein gegenüber der Dotierung der p-Schicht sein, damit diese Schicht nicht als Verlängerung der p-Schicht wirkt. Im Falle einer Stapelzelle kann die Kompensationsschicht auch mehrfach vorgesehen sein (Figur 3b).The doping should be small compared to the doping of the p-layer, so that this layer does not act as an extension of the p-layer. In the case of a stack cell, the compensation layer can also be provided several times (FIG. 3b).
Es wurde erkannt, daß bei p-i-n- und p-Puffer-i-n-Solarzel]en durch Lichteinstrahlung Ladungsträger in der i-Schicht der Solarzelle generiert und durch das eingebaute elektrische Feld zur p-, bzw n-Schicht transportiert werden. Die Effizienz der Ladungsträgertrennung hängt dabei von der Stärke des eingebauten elektrischen Feldes und der Defektdichte der i-Schicht ab.It was recognized that in p-i-n and p-buffer-i-n solar cells, charge carriers are generated in the i-layer of the solar cell by light irradiation and transported to the p- or n-layer by the built-in electric field. The efficiency of charge carrier separation depends on the strength of the built-in electric field and the defect density of the i-layer.
Es wurde erkannt, daß Defektzustände im an die p-Schicht grenzenden Teil der i- bzw. Pufferschicht oberhalb des Ferminiveaus liegen und von Elektronen entleert werden. Besonders im Falle der p-Puffer-i-n-Zellen sind viele Defektzustände vorhanden. Es bildet sich eine positive Raumladungszone, die zusammen mit der negativen Raumladung der Akzeptoren in der p- Schicht eine elektrische Doppelschicht bildet, durch welche das elektrische Feld in der i-Schicht abgebaut wird. Nach Degradation reicht das Feld besonders bei Zellen mit Puffer nicht mehr für eine gute Ladungstrennung aus, weshalb der Wirkungsgrad bei Zellen mit Puffer zeitlich stark abnimmt.It was recognized that defect states in the part of the i or buffer layer adjacent to the p layer lie above the Fermini level and are emptied by electrons. Especially in the case of the p-buffer i-n cells, there are many defect states. A positive space charge zone is formed which, together with the negative space charge of the acceptors, forms an electrical double layer in the p-layer, by means of which the electric field in the i-layer is broken down. After degradation, the field is no longer sufficient for good charge separation, especially in cells with a buffer, which is why the efficiency in cells with a buffer decreases sharply over time.
Es wurde erkannt, daß durch Einfügung einer niedrig p-dotierten Schicht zu Beginn des Puffers die positive Raumladung der Defektzustände kompensiert wird (daher "Kompensationsschicht").It was recognized that by inserting a low p-doped layer at the beginning of the buffer, the positive space charge of the defect states is compensated for (hence "compensation layer").
Dies verringert die Ausbildung der unerwünschten elektrischen Doppelschicht und so auch den Feldabbau in der i-Schicht. Damit bleibt auch nach Alterung von Zellen mit Puffer noch genügend Feld in der i-Schicht, um die lichterzeugten Ladungsträger zu trennen. Die lichtinduzierte Wirkungsgradabnahme ist dadurch geringer.This reduces the formation of the undesired electrical double layer and thus also the field degradation in the i-layer. This means that even after cells with a buffer have aged, there is still enough field in the i-layer to separate the light-generated charge carriers. The light-induced decrease in efficiency is therefore less.
Im folgenden ist die Erfindung an Hand von Ausführungsbeispielen im einzelnen näher erläutert. Es zeigen:The invention is explained in more detail below on the basis of exemplary embodiments. Show it:
Figur la Schematische Darstellung einer Solarzellenschichtstruktur mit p-i-n-Struktur ohne Pufferschicht (i), bzw. mit p-Puffer-i-n-Struktur mit Pufferschicht im p-i -Übergangsbereich (ii) zur Wirkungsgraderhöhung; Figur lb Schematische Darstellung einer Schichtstruktur einerFIG. 1 a shows a schematic representation of a solar cell layer structure with a pin structure without a buffer layer (i), or with a p-buffer-in structure with a buffer layer in the pi transition region (ii) to increase efficiency; Figure lb Schematic representation of a layer structure of a
Stapelzelle mit p-i-n-p-i-n-Struktur ohne Pufferschicht (i), bzw. mit p-Puffer 1-i-n-p-Puffer 2-i-n-Struktur mit zusätzliche Pufferschichten (ii);Stack cell with p-i-n-p-i-n structure without buffer layer (i), or with p-buffer 1-i-n-p buffer 2-i-n structure with additional buffer layers (ii);
Figur 2 Relativer Wirkungsgrad von a-Si :H-Solarzellen, normiert auf den Anfangswirkungsgrad einer p-i-n-Zelle ohne Pufferschicht als Funktion der Einstrahlungsdauer inFigure 2 Relative efficiency of a-Si: H solar cells, normalized to the initial efficiency of a p-i-n cell without a buffer layer as a function of the irradiation time in
Stunden für eine p-i-n-Struktur ohne Puf erschicht (a), für eine p-Puffer-i-n-Struktur ohne Induzierung zusätzlicher Degradation durch die Pufferschicht( "gutes Ergebnis") (b) und für eine p-Puffer-i-n-Struktur mit zusätzlicher Degradation durch die PufferschichtHours for a pin structure without puf (a), for a p-buffer-in structure without inducing additional degradation by the buffer layer ("good result") (b) and for a p-buffer-in structure with additional Degradation through the buffer layer
("schlechtes Ergebnis") (c);("poor result") (c);
Figur 3 Schematische Darstellung einer Einfach- (a) undFigure 3 Schematic representation of a simple (a) and
Stapelsolarzelle (b) aus amorphen Silizium mit "p_"- Kompensationsschicht zwischen p- und i-Schicht;Stacked solar cell (b) made of amorphous silicon with a "p _" compensation layer between the p and i layers;
Figur 4 Lichtalterung von Stapel-Solarzellen mit und ohneFigure 4 Light aging of stacked solar cells with and without
Kompensationsschicht zwischen p- und Pufferschicht;Compensation layer between p and buffer layers;
5. Ausführungsbeispiele; Versuchsbeschreibungen5. embodiments; Test descriptions
Es wurden folgende Solarzellen präpariert:The following solar cells were prepared:
5.1 Einfachzellen mit folgender Schichtstruktur:5.1 single cells with the following layer structure:
a) p-i-n b) p-puffer-i-n c) p-Kompensationsschicht-Puffer-i-na) p-i-n b) p-buffer-i-n c) p-compensation layer buffer-i-n
Die p-, i-, und n-Schichten wurden bei diesen drei Solarzellen unter vergleichbaren Depositionsbedingungen abgeschieden. Die Schichtdicken dieser Schichten wurden bei den drei Solarzellen identisch gewählt (p: 10 nm, i: 500 n , n: 25 nm) . Die Depositionsparameter und Schichtdicken der p-, Kompensations- und Pufferschicht sind in Tabelle 1 angegeben.The p, i, and n layers were deposited in these three solar cells under comparable deposition conditions. The Layer thicknesses of these layers were chosen identically for the three solar cells (p: 10 nm, i: 500 n, n: 25 nm). The deposition parameters and layer thicknesses of the p, compensation and buffer layers are given in Table 1.
In Tabelle 2 sind für jede Solarzelle zum Vergleich im ungealterten (vor der Alterung) und im gealtertem (nach 300 h Beleuchtung unter einem AMI .5-Spektrum, bei 50°C und offenen Klemmen) ZustandFor comparison, each solar cell in Table 2 is in the unaged (before aging) and aged (after 300 h illumination under an AMI .5 spectrum, at 50 ° C and open clamps)
- die gemessene LeerlaufSpannung Voc in milli-Volt,- the measured open circuit voltage V oc in milli-volts,
- die Kurzschlußstromdichte jsc in milli-Ampere pro cm ,- the short-circuit current density j sc in milli-amperes per cm,
- der Füllfaktor FF in %, sowie- the fill factor FF in%, and
- der Wirkungsgrad y in %- the efficiency y in%
angegeben.specified.
5.2 Mehrfachzellen5.2 Multiple cells
Die oben beschriebene Kompensationsschicht wurde ebenfalls eingesetzt um den Wirkunggrad von Stapelzellen zu verbessern.The compensation layer described above was also used to improve the efficiency of stacked cells.
Der Schichtaufbau dieser Solarzelle ist p-Kompensationsschicht- Puffer-i (60 nm) - n - p - Kompensationschicht - Puffer - i (330 nm) - n.The layer structure of this solar cell is p-compensation layer-buffer-i (60 nm) - n - p - compensation layer - buffer - i (330 nm) - n.
Die Vergleichssolarzelle ist ebenfalls in Stapelzellenstruktur abgeschieden worden (p-puffer-i-n-p-puffer-i-n) . Den Wirkungsgrad beider Zellen als Funktion der Einstrahlungsdauer zeigt Figur 4.The comparison solar cell was also deposited in a stacked cell structure (p-buffer-i-n-p-buffer-i-n). The efficiency of both cells as a function of the irradiation time is shown in FIG. 4.
Die Ausführungsbeispiele zeigen im Ergebnis:The exemplary embodiments show the result:
1. Die Wirkungsgraderhöhung im ungealterten Zustand durch die Einfügung einer Pufferschicht (Tabelle 2) von y=8,0 auf y=9,0. 2. Die verstärkte Degradation von p-Puffer-i-n Zellen ohne Kompensationschicht (Tabelle 2) von y=9,l auf y=6,2.1. The increase in efficiency in the unaged condition by inserting a buffer layer (Table 2) from y = 8.0 to y = 9.0. 2. The increased degradation of p-buffer in cells without compensation layer (Table 2) from y = 9, l to y = 6.2.
3. Die deutliche Verbesserung der Stabilität bei gleichzeitig hohem Anfangswirkungsgrad durch Einfügung der Kompensations¬ schicht, sowohl bei Einfach- wie auch bei Stapelzellen (Tabelle 2 und Figur 4) von y=9,0 zu y=7,l im Vergleich zu y=9,l zu y=6,2, bzw. bei Stapelzellen von y=10,3 zu y=9,0 im Vergleich zu y=9,9 zu y=7,5.3. The significant improvement in stability with a high initial efficiency by inserting the compensation layer, both in single and in stack cells (Table 2 and Figure 4) from y = 9.0 to y = 7.1 compared to y = 9, l to y = 6.2, or in the case of stacked cells from y = 10.3 to y = 9.0 in comparison to y = 9.9 to y = 7.5.
Literatur:Literature:
[1] R.R. Arya, A. Catalano, and R.S. Oswald, Appl. Phys. Lett. 49 (1986) 1089[1] R.R. Arya, A. Catalano, and R.S. Oswald, Appl. Phys. Lett. 49 (1986) 1089
[2] K.S. Lim et al., J. Appl. Phys. 56 (1984) 538[2] K.S. Lim et al., J. Appl. Phys. 56 (1984) 538
[3] T. Yoshida, K. Maruya a, O. Nabeta, Y.[3] T. Yoshida, K. Maruya a, O. Nabeta, Y.
Ichikawa, H. Sakai, and Y. Uchida, Proc. 19tn IEEE-PVSC, New Orleans, Louisana, 1987, p. 1095Ichikawa, H. Sakai, and Y. Uchida, Proc. 19 tn IEEE-PVSC, New Orleans, Louisana, 1987, p. 1095
[4] S. Fujikake et al., MRS Proc. Vol. 258 (1992) p. 875[4] S. Fujikake et al., MRS Proc. Vol. 258 (1992) p. 875
[5] Y.-M. Li et al., Proc. MRS Spring Meeting, San Francisco, 1994, im Druck[5] Y.-M. Li et al., Proc. MRS Spring Meeting, San Francisco, 1994, in press
[6] P. Lechner et al., MRS Proc. Vol. 149 (1989) p. 583[6] P. Lechner et al., MRS Proc. Vol. 149 (1989) p. 583
[7] C. Beneking et al. , Proc. 12th EC-PVSEC, Amsterdam, 1994, im Druck Tabelle 1 : Prozeßparameter für p-, Kompensations- und Pufferschicht[7] C. Beneking et al. , Proc. 12 th EC PVSEC, Amsterdam, 1994, in press Table 1: Process parameters for p, compensation and buffer layers
p-Schicht Kompensationsschicht Pufferp-layer compensation layer buffer
Gasflüsse TMB (2 % in He): 7.5 TMB (2 % in He): 2Gas flows TMB (2% in He): 7.5 TMB (2% in He): 2
(sccm) SiH4: 21 SiH4: 50 SiH4: 6(sccm) SiH4: 21 SiH4: 50 SiH4: 6
CH4: 25 CH4: 30 CH4: 2CH4: 25 CH4: 30 CH4: 2
H2: 1 19 H2: - H2: 170H2: 1 19 H2: - H2: 170
Heizertemperatur 285 285 285Heater temperature 285 285 285
(°C)(° C)
Depositionsdruck 1000 800 1500Deposition pressure 1000 800 1500
(mTorr)(mTorr)
HF-Leistung 4 3.6 5RF power 4 3.6 5
(W)(W)
Depositionszeit 45 15 300Deposition time 45 15 300
0000
Schichtdicke 10 2 10Layer thickness 10 2 10
(nm)(nm)
Tabelle 2: Kenngrößen der Testsolarzellen vor und nach der Alterung (300 h, 1 Sonne, 50 °C, offene Klemmen).Table 2: Parameters of the test solar cells before and after aging (300 h, 1 sun, 50 ° C, open clamps).
Vor der Alterung p-i-n p-puffer-i-n p-Kompensationsschicht- Puffer-i-n y (%) 8.0 9.1 9.0Before aging p-i-n p-buffer-i-n p-compensation layer-buffer-i-n y (%) 8.0 9.1 9.0
Voc (mV) 820 885 885Voc (mV) 820 885 885
Isc (mA/cm2) 13.8 14.5 14.3Isc (mA / cm2) 13.8 14.5 14.3
FF (%) 70.4 70.6 71.2FF (%) 70.4 70.6 71.2
Nach der Alterung y (%) 6.3 6.2 7.1After aging y (%) 6.3 6.2 7.1
Voc (mV) 812 845 860Voc (mV) 812 845 860
Isc (mA/cm2) 13.6 13.2 13.9Isc (mA / cm2) 13.6 13.2 13.9
FF (%) 57.4 55.5 59.4 FF (%) 57.4 55.5 59.4

Claims

P a t e n t a n s p r ü c h e Patent claims
1. Dünnschicht-Solarzelle auf der Basis des amorphen, hydrierten Siliziums und/oder seiner Legierungen mit einer1. Thin-film solar cell based on the amorphous, hydrogenated silicon and / or its alloys with a
a) eine undotierte Schicht (i ) ,a) an undoped layer (i),
b) eine dieser zur Lichteintrittsseite benachbarte und mit ihr verbundene Puf erschicht,b) one of these adjacent to the light entry side and connected to it puffs up,
c) eine dieser zur Lichteintrittsseite benachbarte und mit ihr verbundene, p-dotierte Schicht (p) undc) one of these p-doped layer (p) and adjacent to the light entry side and connected to it
d) eine auf der anderen Seite der undotierten Schicht mit dieser verbundene, n-dotierte Schicht (n)d) an n-doped layer (s) connected to this on the other side of the undoped layer
aufweisende Schichtenfolge (p-Puffer-i-n) ,showing layer sequence (p-buffer-i-n),
d a d u r c h g e k e n n z e i c h n e t, d a ßd a d u r c h g e k e n n z e i c h n e t, d a ß
e) zwischen der p- und Pufferschicht eine Kompensationsschi.cht (p_) vorgesehen ist.e) a compensation layer (p_) is provided between the p and buffer layers.
2. Dünnschichtsolarzelle nach Anspruch 1,2. Thin-film solar cell according to claim 1,
d a d u r c h g e k e n n z e i c h n e t, d a ßd a d u r c h g e k e n n z e i c h n e t, d a ß
mehrere Schichtenfolgen (p-Puffer-i-n) mit einander verbunden und eine oder mehrere Kompensationsschichten (p_) vorgesehen sind. several layer sequences (p-buffer-in) are connected to one another and one or more compensation layers (p_) are provided.
3. Verfahren zur Herstellung einer Dünnschichtsolarzelle auf der Basis des amorphen, hydrierten Siliziums und/oder seiner Legierungen mit einer3. Process for the production of a thin-film solar cell based on the amorphous, hydrogenated silicon and / or its alloys with a
a) eine undotierte Schicht (i),a) an undoped layer (i),
b) eine dieser zur Lichteintrittsseite benachbarte und mit ihr verbundene Pufferschicht,b) a buffer layer adjacent to and connected to the light entry side,
c) eine dieser zur Lichteintrittsseite benachbarte und mit ihr verbundene, μ-dotierte Schicht (p) undc) one of these adjoining the light entry side and connected to it, μ-doped layer (p) and
d) eine auf der anderen Seite der undotierten Schicht mit dieser verbundene, n-dotierte Schicht (n)d) an n-doped layer (s) connected to this on the other side of the undoped layer
aufweisende Schichtenfolge (p-Puffer-i-n) ,showing layer sequence (p-buffer-i-n),
d a d u r c h g e k e n n z e i c h n e t, d a ßd a d u r c h g e k e n n z e i c h n e t, d a ß
e) zwischen der p- und Pufferschicht eine Kompensationsschicht (p_) vorgesehen wird. e) a compensation layer (p_) is provided between the p and buffer layers.
EP95920751A 1994-06-01 1995-05-27 Thin film solar cell and process for producing the same Withdrawn EP0763260A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4419273 1994-06-01
DE19944419273 DE4419273C2 (en) 1994-06-01 1994-06-01 Thin film solar cell
PCT/DE1995/000725 WO1995033284A1 (en) 1994-06-01 1995-05-27 Thin film solar cell and process for producing the same

Publications (1)

Publication Number Publication Date
EP0763260A1 true EP0763260A1 (en) 1997-03-19

Family

ID=6519604

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95920751A Withdrawn EP0763260A1 (en) 1994-06-01 1995-05-27 Thin film solar cell and process for producing the same

Country Status (3)

Country Link
EP (1) EP0763260A1 (en)
DE (1) DE4419273C2 (en)
WO (1) WO1995033284A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006135493A2 (en) 2005-06-09 2006-12-21 Blue Blood Biotech Corp. A composition for wound healing and use thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008049374A1 (en) 2008-09-27 2010-04-01 JODLAUK, Jörg Semiconductor fiber structure for manufacturing e.g. thick film solar cell, has one, two and three dimensional structures including preset geometry and alignment, and utilized in solar cells for power generation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6249672A (en) * 1985-08-29 1987-03-04 Sumitomo Electric Ind Ltd Amorphous photovoltaic element
JP2634812B2 (en) * 1987-03-31 1997-07-30 鐘淵化学工業 株式会社 Semiconductor device
JP2634811B2 (en) * 1987-03-31 1997-07-30 鐘淵化学工業 株式会社 Semiconductor device
JPH02106076A (en) * 1988-10-14 1990-04-18 Fuji Electric Co Ltd Thin film solar cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9533284A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006135493A2 (en) 2005-06-09 2006-12-21 Blue Blood Biotech Corp. A composition for wound healing and use thereof

Also Published As

Publication number Publication date
DE4419273A1 (en) 1996-02-01
DE4419273C2 (en) 1998-11-26
WO1995033284A1 (en) 1995-12-07

Similar Documents

Publication Publication Date Title
DE3650012T2 (en) Semiconductor device.
DE3280418T2 (en) AMORPHOUS SEMICONDUCTOR AND PHOTOVOLTAIC DEVICE MADE OF AMORPHOUS SILICON.
DE69217287T2 (en) Multi-junction photovoltaic device and manufacturing method
DE69330835T3 (en) A process for producing a tandem photovoltaic device with improved efficiency and device produced thereby
DE69926960T2 (en) Method for producing a photovoltaic device
EP0025872B1 (en) Semiconductor component part for the conversion of solar rays into electrical energy
DE3244626C2 (en)
DE10101035B4 (en) Thin-film solar cell, solar cell module and method of manufacturing a thin-film solar cell
EP0219763B1 (en) Solar cell
DE4408791B4 (en) Process for producing a silicon oxide semiconductor film
DE3111828A1 (en) DEVICE FOR IMPLEMENTING ELECTROMAGNETIC RADIATION IN ELECTRICAL ENERGY
WO1993015527A1 (en) Integrated-circuit stacked-cell solar module
DE3438477A1 (en) SOLAR CELL AND METHOD FOR THEIR PRODUCTION
DE19727253A1 (en) Multiple or single junction photovoltaic device especially solar cell
DE10237515A1 (en) Stack-shaped photoelectric converter
DE3135411C2 (en) Photosensitive device with superimposed pin layers of an amorphous silicon alloy material
DE3732619C2 (en)
DE69634059T2 (en) Integrated thin-film solar cell module and manufacturing method
DE2846096C2 (en) Solar cell made from semiconductor material
DE2711365A1 (en) SEMI-CONDUCTOR ARRANGEMENT WITH SCHOTTKY BORDER LAYER
DE3851402T2 (en) INTEGRATED SUN CELL AND MANUFACTURING METHOD.
DE3305030C2 (en)
DE3408317C2 (en) Amorphous silicon solar cell
DE102011086351A1 (en) Process for producing a solar cell with PECVD combination layer and solar cell with PECVD combination layer
WO1991012632A1 (en) Light-stable semiconductor material based on amorphous germanium and process for manufacturing it

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19961120

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR GR IT LI MC PT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FORSCHUNGSZENTRUM JUELICH GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20140114