EP0762970B1 - Process and device for letting out air or gas from air or life jackets for divers - Google Patents

Process and device for letting out air or gas from air or life jackets for divers Download PDF

Info

Publication number
EP0762970B1
EP0762970B1 EP94926839A EP94926839A EP0762970B1 EP 0762970 B1 EP0762970 B1 EP 0762970B1 EP 94926839 A EP94926839 A EP 94926839A EP 94926839 A EP94926839 A EP 94926839A EP 0762970 B1 EP0762970 B1 EP 0762970B1
Authority
EP
European Patent Office
Prior art keywords
air
valve
piston
pilot
life jacket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94926839A
Other languages
German (de)
French (fr)
Other versions
EP0762970A1 (en
Inventor
Thomas Kromp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GfT Gesellschaft fur Tauchtechnik mbH and Co KG
Original Assignee
Gft Gesellschaft fur Tauchtechnik Mbh & Co KG
GfT Gesellschaft fur Tauchtechnik mbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE4425223A external-priority patent/DE4425223A1/en
Application filed by Gft Gesellschaft fur Tauchtechnik Mbh & Co KG, GfT Gesellschaft fur Tauchtechnik mbH and Co KG filed Critical Gft Gesellschaft fur Tauchtechnik Mbh & Co KG
Publication of EP0762970A1 publication Critical patent/EP0762970A1/en
Application granted granted Critical
Publication of EP0762970B1 publication Critical patent/EP0762970B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/02Divers' equipment
    • B63C11/04Resilient suits
    • B63C11/08Control of air pressure within suit, e.g. for controlling buoyancy ; Buoyancy compensator vests, or the like

Definitions

  • the invention relates to a method and a device for discharging air or Gas from life and life jackets of divers, especially scuba divers.
  • the actuators for controlling the air intake and exhaust valves or gas in and out of the west are in the easily accessible area of the same arranged and are generally operated by pressing a button.
  • the air intake valve is supplied with compressed air from the compressed air bottle.
  • By pressing the Inlet valve is controlled from the locked position to an open position now the compressed air to clear the way into the vest and thereby the buoyancy of the Increase divers.
  • the exhaust valve is opened to let air out to let the vest out and thus reduce the buoyancy.
  • a disadvantage of the known systems is that they are locally above the air volume must be attached to the vest to ensure that the air escapes can and is not caught like an air bubble under a bell, which is immersed in the water with the opening facing downwards
  • the disadvantage of the known air outlet valves is that in the open position the inner part of the vest in direct connection with that surrounding the diver Water is so that, depending on the design of the valves, a smaller or larger one Amount of water can get into the vest and thus the available air volume to adjust the buoyancy is less.
  • US-A 4379656 shows a method for deflating air from life jackets by divers, in which through an approximately continuous suction process Air volume proportions as follows from the interior of the life jacket to the surrounding one Medium to be delivered:
  • a so-called "Coanda Pumping Action” is described, which is based on the fact that one with the west interior on the one hand and with the compressed air bottle on the other connected valve actuated by the pressure in the compressed air bottle in two ways becomes.
  • the compressed air at the valve can be activated by pressing a Closure element in the area of the outlet device directly into the interior the vest, which creates a buoyancy that it allowed the diver to show up.
  • the valve can Take the switch position by operating a lever, that not only the locking element in an opening position, but also in the interior the life jacket has air under a predetermined pressure Valve pending.
  • the aim of the invention is to design a method and a device by means of which increases the safety of the diver by optimizing the air outlet valve is, the local arrangement of the air outlet valve should be arbitrary. Of Another is the direct connection of the west inner part via the open outlet valve be avoided with the water, so as to prevent unwanted Water enters the vest. Finally, the outlet behavior should be linearized, to simplify the setting of the buoyancy / downforce.
  • This goal is alternatively achieved in that the air acts as a pump, Rotary unit mechanically driven by a motor unit is sucked in.
  • the motor unit is preferably supplied with compressed air from the area of the inflator hose provided.
  • the check valve is used and the check valve and the pilot piston cooperating Piston replaced by the drive and delivery elements motor and pump, whereby the process of air intake, compression and displacement in its general Shape is preserved.
  • a device for discharging air or gas life and life jackets of divers achieved with at least one in active connection with the life and life jacket standing housing, which contains at least one valve through which a piston actuatable between two end positions within an actuating element a piston chamber is movable by its alternating movement at least in an air-sucking, air-compressing and air-displacing manner a downstream check valve and at least one shut-off valve actuated.
  • the air volume flow Q emerging from the west interior results from the delivery volume V K multiplied by the number of work cycles per unit of time or by the frequency f [Hz] with which the piston is actuated.
  • the emerging air volume flow can be set exactly and independently of environmental conditions such as pressure loss, flow resistance, viscosity and temperature.
  • the piston speed can be according to a further idea of the invention can be controlled according to a sine function so that the piston is soft in its Moves into end positions and due to the reduction in speeds when reached of the end positions the maximum speed of the piston outside the end positions can be chosen high. This can damage pistons and housing avoided due to high end position speeds of the piston become.
  • the piston is preferably in at least one of its two end positions however in both end positions, over defined times in relation to his Speed set to 0 to ensure optimal deflation, so that dynamic influences e.g. due to inertia of the Check valve and / or the check valve can at least be reduced.
  • the piston can be controlled manually or automatically with control electronics respectively.
  • the actuation can be done using pneumatic, hydraulic or electromagnetic aids can be brought about.
  • a device for releasing air or gas from life and life vests a housing that is operatively connected to the life and life jacket, the contains at least one valve, through which a motor-acting unit with a rotary unit acting as a pump is connected, which again via a line to the interior of the life and life jacket connected is.
  • the valve is a 2/2 proportional directional control valve.
  • one with a computer unit in operative connection with the measuring device Height of the air volume flow detected.
  • the device 1 includes a housing 2, which has a screw connection 3 is releasably connected to a vest 4.
  • a housing 2 which has a screw connection 3 is releasably connected to a vest 4.
  • the space 7 receiving the valves 5, 6 is pressure-tight by means of a closure element 8 sealed.
  • the west interior 9, which is only indicated here, stands in the area of the screw connection 3 via a corresponding recess 10 with the Housing interior 11 of the device 1 in operative connection, so that the same pressures to rule.
  • a sealed piston 13 is arranged between two end positions 14.15 is movable back and forth.
  • This alternating movement of the piston 13 is arranged as an actuating element in a pneumatic cylinder 16 serving pilot piston 17 realized, the piston rod 18 with the associated Face 19 of the piston 13 is connected.
  • the piston 13 On the pilot spool 17 facing away from the end face 20, the piston 13 cooperates with a check valve 21, which is supported on a stationary valve seat 23 via a compression spring 22.
  • a check valve 21 On the side of the valve seat 23 facing away from the piston chamber 12 there is a also designed as a check valve, but in the opposite direction acting check valve 24 is provided, which is analogous to the check valve 21 a compression spring 25 which cooperates on the rear wall section 26 End cap 27 supports.
  • Both the check valve 21 and the check valve 24 are via corresponding sealing elements 28, 29 with respect to the corresponding ones Components, namely the piston 13 and the valve seat 23, sealed. That which closes the piston chamber 12 with respect to the housing interior 11 Rear wall 30 has through openings 31.
  • the piston 13 is also provided with passage openings 32 so that it is in the west interior 9 each adjusting pressure in the rest position of the piston 13 also at the Seal 28 of the check valve 21 is present.
  • connection 33 is provided for an inflator hose 34, which is only indicated here, About which compressed air from the compressed air bottle not shown through the Pilot compressed air supply line 35 can be fed to the pilot inlet valve 6, that with appropriate actuation air into the recess 11 and thus into the interior of the west 9 can bring. This is indicated in area 36.
  • the pilot outlet valve 5 is designed as a 4/2-way valve, wherein four connections and two switch positions are possible. The two outputs of the Pilot outlet valves 5 are connected via the feed lines 37, 38 to the inputs of the Pneumatic cylinder 16 guided, i.e.
  • FIG. 2 shows the work cycle of sucking in the air from the west interior 9 in the piston chamber 12.
  • the direction of flow is shown with arrows.
  • the Pilot outlet valve 5 is in the rest position in this state, i.e. that the Spring 46 of the same pushes the valve 5 into a position from the pilot compressed air supply line 35 compressed air via the cross position of the valve 5 on the ring surface of the Pneumatic cylinder 16 is guided and the pilot piston 17 consequently retracts, whereby the piston 13 is moved in the direction of the end position 14.
  • the electric de-energized pilot outlet valve 5 is in such a position that the pressure in the supply line 38 can be reduced via the exhaust line 41, in which the check valve 62 mentioned in FIG. 1 is inserted.
  • FIG. 3 now shows the work cycle of displacing the air from the piston chamber 12.
  • the pilot outlet valve 5 is electrically controlled, i.e. switched in the forward direction, namely from the pilot compressed air supply line 35 to the supply line 38 or on the piston side Input of the pilot piston 17, whereby the piston 13 against the spring 22nd is deflected and the air in the piston chamber 12 is first compressed until that Check valve 24 against the force of the spring 25 opens and the air from the piston chamber 12 out through the through hole 39 in the valve seat 23 and the through openings 40 in the cap 27 into the medium surrounding the vest 4 becomes.
  • the shut-off valve 24 closes due to the force of the Spring 25.
  • the air volume flow results from the sequence of one or more Work cycles. If little air volume flow is to be set, i.e. with a low operating frequency can be worked, the piston 13 in its upper for as long Dead center remains until the next stroke is to be carried out.
  • the Pistons 13 can also be moved to the starting position to the next Lingering work cycle at rest.
  • the check valve 21 is an axial approach 63 formed, the axial extent in the end position 15 of the piston 13 to goes beyond the seal 29.
  • Figure 4 shows a schematic representation of the circuit diagram according to Figures 1 to 3.
  • the pilot inlet valve 6 is via the inflator connection 33 and the pilot compressed air supply line 35 is applied and ends in the area 36 of the west interior 9. By actuating the pilot inlet valve 6 Compressed air passed into the west interior 9, which means that the buoyancy of the here is not further shown diver is increased.
  • the pilot outlet valve is connected via line 32 5 acted upon, with compressed air via lines 37 and 38 to the piston chamber or to the annular space of the pilot piston 17.
  • the pilot piston 17 In dependence of the respective direction of flow becomes the pilot piston 17 and the associated piston Piston 13 moves up and down alternately, between the respective End positions 14 and 15.
  • air is drawn over the line shown here Passage openings 31 sucked into the piston chamber 12, compressed here and from this released through the through openings 40 to the surrounding medium.
  • Figure 5 shows an alternative circuit diagram to Figure 4.
  • a 3/2 way valve 43 is provided in FIG a line 44 acts on the piston bottom side on the pilot piston 17.
  • the provision of the pilot piston 17 takes place in this case by means of an appropriately dimensioned Return spring 45 as soon as the piston surface of the pneumatic cylinder 16 is depressurized against exhaust air. Otherwise the control is the same as for the 4/2 Directional control valve according to FIG. 4.
  • FIG. 6 shows an alternative circuit diagram to FIG. 5, with the process of air intake, compression and displacement being effected differently from FIGS. 1 to 4.
  • the components shown in this figure can be provided in the housing 2 (not shown here) analogously to the components according to FIGS. 1 to 4. The same applies to the supply of compressed air from the area of the inflator hose 47, which is only indicated here.
  • the vest 48 the air inlet valve 49, which is connected to the inflator hose 47 via the line 50 (pilot compressed air supply line); the pilot outlet valve 51 designed as a 2/2 proportional directional valve, which is also connected via a line 52 to the inflator hose 47; a motorized unit 53; a rotationally acting pump 54, which is connected to the motor 53 via a shaft 55 and is operatively connected to the interior 57 of the vest via a further line 56.
  • the pneumatic pneumatic unit 53 is acted upon by compressed air via the 2/2 way proportional valve 51 and is thus set in rotation.
  • the rotary movement of the motor unit 53 is now used to mechanically drive the rotary pneumatic unit 54, which acts as a pump, via the shaft 55, as a result of which the unit 54 sucks in air from the west interior 57 via line 56 and via line 58, into which a check valve 59 is inserted, displaced into the surrounding medium.
  • the check valve 59 prevents the penetration of water into the pump chamber and thus also into the interior 57 of the vest 48.
  • the volume flow Q (m 3 / min) is recorded here by using a measuring device 60 to determine the speed n (rpm ) unit 54 or 53 is measured and multiplied by the delivery volume VG (m 3 / rev) of unit 54.
  • Q VG xn

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Fluid-Driven Valves (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Pipeline Systems (AREA)

Abstract

PCT No. PCT/EP94/02719 Sec. 371 Date Feb. 20, 1996 Sec. 102(e) Date Feb. 20, 1996 PCT Filed Aug. 16, 1994 PCT Pub. No. WO95/05306 PCT Pub. Date Feb. 23, 1995A method and a device for letting out gas from a life jacket for divers, the device being adapted to be in gas flow communication with an interior of the life jacket. Gas is drawn into the device from the interior of the life jacket, compressed in the device, and discharged from the device to a medium surrounding the device.

Description

Die Erfindung betrifft ein Verfahren und eine Einrichtung zum Ablassen von Luft bzw. Gas aus Schwimm- und Rettungswesten von Tauchern, insbesondere von Gerätetauchern. The invention relates to a method and a device for discharging air or Gas from life and life jackets of divers, especially scuba divers.

Die Betätigungselemente zum Ansteuern der Ventile zum Ein- und Auslassen von Luft bzw. Gas in und aus den Westen sind im leicht zu erreichenden Bereich derselben angeordnet und werden im allgemeinen durch Knopfdruck betätigt. Das Lufteinlaßventil wird hierzu mit Druckluft aus der Preßluftflasche versorgt. Durch Betätigung des Einlaßventiles wird dieses von der Sperrstellung in eine offene Position gesteuert, um nun der Druckluft den Weg in die Weste freizugeben und dadurch den Auftrieb des Tauchers zu erhöhen. In gleicher Weise wird das Auslaßventil geöffnet, um Luft aus der Weste austreten zu lassen und somit den Auftrieb zu verringern. The actuators for controlling the air intake and exhaust valves or gas in and out of the west are in the easily accessible area of the same arranged and are generally operated by pressing a button. The air intake valve is supplied with compressed air from the compressed air bottle. By pressing the Inlet valve is controlled from the locked position to an open position now the compressed air to clear the way into the vest and thereby the buoyancy of the Increase divers. In the same way, the exhaust valve is opened to let air out to let the vest out and thus reduce the buoyancy.

Nachteilig bei den bekannten Systemen ist, daß diese örtlich oberhalb des Luftvolumens in der Weste angebracht werden müssen, um sicherzustellen, daß die Luft entweichen kann und nicht gefangen wird ähnlich einer Luftblase unter einer Glocke, welche mit der Öffnung nach unten in das Wasser eingetaucht wird Ein weiterer Nachteil besteht bei den bekannten Luftauslaßventilen darin, daß bei geöffneter Stellung der Innenteil der Weste in direkter Verbindung mit dem den Taucher umgebenden Wasser ist, so daß je nach Konstruktion der Ventile eine kleinere oder größere Wassermenge in die Weste gelangen kann und damit das verfügbare Luftvolumen zum Einstellen des Auftriebes geringer wird. A disadvantage of the known systems is that they are locally above the air volume must be attached to the vest to ensure that the air escapes can and is not caught like an air bubble under a bell, which is immersed in the water with the opening facing downwards The disadvantage of the known air outlet valves is that in the open position the inner part of the vest in direct connection with that surrounding the diver Water is so that, depending on the design of the valves, a smaller or larger one Amount of water can get into the vest and thus the available air volume to adjust the buoyancy is less.

Eine derartige Maßgabe ist in dem Lehrbuch Pady Diver Manual, Pady EU Services, Hettlingen, in dem Kapitel 1 auf Seite 21 im Abschnitt "Merkmale" beschrieben. Hier wird sogar noch ein separates Wasserablaßventil zur besseren Entleerung von eingedrungenem Wasser empfohlen. Des weiteren ist das Auslaßverhalten des bzw. der Ventile streng nichtlinear, d.h. abhängig von den Umgebungsbedingungen, womit die gewünschte Einstellung des Auftriebes in unverhältnismäßiger Weise erschwert wird. Such a requirement is in the textbook Pady Diver Manual, Pady EU Services, Hettlingen, described in chapter 1 on page 21 in the section "Features". Here there is even a separate water drain valve for better emptying of penetrated Water recommended. Furthermore, the outlet behavior of the Valves strictly non-linear, i.e. depending on the environmental conditions, with which the desired setting of the buoyancy is disproportionately difficult.

Die US-A 4379656 zeigt ein Verfahren zum Ablassen von Luft aus Rettungswesten von Tauchern, bei welchem durch einen in etwa kontinuierlichen Ansaugvorgang Luftmengenanteile wie folgt aus dem Innenraum der Rettungsweste an das sie umgebende Medium abgegeben werden: US-A 4379656 shows a method for deflating air from life jackets by divers, in which through an approximately continuous suction process   Air volume proportions as follows from the interior of the life jacket to the surrounding one Medium to be delivered:

Beschrieben wird eine sogenannte "Coanda Pumping Action", die darauf beruht, daß ein einerseits mit dem Westeninnenraum und andererseits mit der Preßluftflasche verbundenes Ventil durch den Druck in der Preßluftflasche in zweierlei Hinsicht betätigt wird. Zum einen kann die am Ventil anstehende Druckluft durch Betätigen eines Verschlußelementes im Bereich der Auslaßvorrichtung unmittelbar in den Innenraum der Weste geleitet werden, wodurch eine Tariermöglichkeit geschaffen wird, die es dem Taucher erlaubt, aufzutauchen. Andererseits kann das Ventil eine solche Schaltstellung durch Betätigung eines Hebels einnehmen, daß nicht nur das Verschlußelement in eine Öffnungsposition geführt wird, sondern auch die im Innenraum der Rettungsweste vorhandene unter einem vorgegebenen Druck stehende Luft am Ventil ansteht. Infolge des am Ventil anstehenden höheren Druckes aus der Preßluftflasche werden Luftmengenanteile über das Ventil aus dem Innenraum der Rettungsweste in etwa kontinuierlich angesaugt, wobei sich der Vorgang des Ansaugens in einem Mitreißen der Luftmengenanteile infolge der gegebenen Druckdifferenzen am Ventil darstellt. Ein kontrollierter Ansaugvorgang, bei welchem stets definierte Luftmengenanteile je Zeiteinheit aus dem Innenraum der Rettungsweste entfernt werden können, ist durch dieses Verfahren nicht möglich, da sich das Druckverhältnis zwischen dem Innenraum der Rettungsweste und dem am Ventil anstehenden Druck aus der Preßluftflasche stets ändert. Somit kann zwar Luft aus dem Innenraum der Rettungsweste entfernt werden, wobei die nicht bestimmbare Menge jedoch erhebliche Gefahren für den Taucher mit sich bringt. Darüberhinaus besteht auch die Gefahr, daß infolge des zu betätigenden Verschlußelementes Wasser über das Ventil in den Bereich des Innenraumes der Rettungsweste gelangen kann, wodurch - wie bereits vorab beschrieben - das verfügbare Luftvolumen zum Einstellen des Auftriebes geringer wird. A so-called "Coanda Pumping Action" is described, which is based on the fact that one with the west interior on the one hand and with the compressed air bottle on the other connected valve actuated by the pressure in the compressed air bottle in two ways becomes. On the one hand, the compressed air at the valve can be activated by pressing a Closure element in the area of the outlet device directly into the interior the vest, which creates a buoyancy that it allowed the diver to show up. On the other hand, the valve can Take the switch position by operating a lever, that not only the locking element in an opening position, but also in the interior the life jacket has air under a predetermined pressure Valve pending. As a result of the higher pressure from the compressed air bottle at the valve air volume shares via the valve from the interior of the life jacket approximately continuously sucked in, the process of sucking in entrainment of the air volume due to the given pressure differences on Represents valve. A controlled intake process, in which always defined air volume fractions are removed from the interior of the life jacket per unit of time is not possible with this method, since the pressure ratio between the interior of the life jacket and the pressure at the valve the compressed air bottle always changes. This allows air to escape from the interior of the life jacket are removed, but the undetermined amount is considerable Brings dangers to the diver. There is also a risk that that as a result of the closure element to be operated water through the valve in the Area of the interior of the life jacket can reach, which - as already described in advance - the available air volume for adjusting the buoyancy is lower becomes.

Ziel der Erfindung ist es, ein Verfahren und eine Einrichtung zu konzipieren, mittels welchen durch Optimierung des Luftauslaßventiles die Sicherheit des Tauchers erhöht wird, wobei die örtliche Anordnung des Luftauslaßventiles beliebig sein soll. Des weiteren soll die direkte Verbindung des Westeninnenteiles über das geöffnete Auslaßventil mit dem Wasser vermieden werden, um somit zu verhindern, daß ungewollt Wasser in die Weste eindringt. Schließlich soll das Auslaßverhalten linearisiert werden, um das Einstellen des Auftriebes/Abtriebes zu vereinfachen. The aim of the invention is to design a method and a device by means of which increases the safety of the diver by optimizing the air outlet valve is, the local arrangement of the air outlet valve should be arbitrary. Of Another is the direct connection of the west inner part via the open outlet valve be avoided with the water, so as to prevent unwanted Water enters the vest. Finally, the outlet behavior should be linearized, to simplify the setting of the buoyancy / downforce.  

Dieses Ziel wird bei dem erfindungsgemäßen Verfahren zum Ablassen von Luft bzw. Gas aus Schwimm- und Rettungswesten von Tauchern, insbesondere von Gerätetauchern, dadurch erreicht, daß eine vorgebbare Luftmenge bzw. vorgebbare Luftmengenanteile diskontinuierlich aus dem Innenraum der Schwimm- und Rettungsweste angesaugt, komprimiert und in das sie umgebende Medium verdrängt wird bzw. werden. In the method according to the invention for releasing air or Gas from life and life jackets of divers, especially from scuba divers, thereby achieved that a predeterminable air volume or air volume fractions discontinuously from the interior of the life and life jacket is sucked in, compressed and displaced into the surrounding medium.

Dieses Ziel wird alternativ dadurch erreicht, daß die Luft durch eine als Pumpe wirkende, mechanisch durch eine motorische Einheit angetriebene, rotatorische Einheit angesaugt wird. This goal is alternatively achieved in that the air acts as a pump, Rotary unit mechanically driven by a motor unit is sucked in.

Vorteilhafte Weiterbildungen des erfindungsgemäßen Verfahrens gem. den nebengeordneten Hauptpatentansprüchen sind den zugehörigen Unteransprüchen zu entnehmen. Advantageous further developments of the method according to the invention. the sibling Main patent claims can be found in the associated subclaims.

Die motorische Einheit wird vorzugsweise mit Druckluft aus dem Bereich des Inflatorschlauches versorgt. Bei diesem alternativen Verfahren wird somit der mit dem Rückschlagventil sowie dem Sperrventil und dem Vorsteuerkolben zusammenwirkende Kolben durch die Antriebs- und Förderelemente Motor und Pumpe ausgetauscht, wobei der Vorgang des Luftansaugens, Komprimierens und Verdrängens in seiner allgemeinen Form erhalten bleibt. The motor unit is preferably supplied with compressed air from the area of the inflator hose provided. In this alternative method, the check valve is used and the check valve and the pilot piston cooperating Piston replaced by the drive and delivery elements motor and pump, whereby the process of air intake, compression and displacement in its general Shape is preserved.

Das Ziel wird des weiteren durch eine Einrichtung zum Ablassen von Luft bzw. Gas aus Schwimm- und Rettungswesten von Tauchern, insbesondere von Gerätetauchern, erreicht mit mindestens einem mit der Schwimm- und Rettungsweste in Wirkverbindung stehenden Gehäuse, das mindestens ein Ventil beinhaltet, durch das ein mittels eines Betätigungselementes betätigbarer Kolben zwischen zwei Endlagen innerhalb eines Kolbenraumes bewegbar ist, der durch seine alternierende Bewegung in luftansaugender, luftkomprimierender sowie luftverdrängender Weise mindestens ein nachgeschaltetes Rückschlagventil sowie mindestens ein Sperrventil betätigt. The goal is further achieved by a device for discharging air or gas life and life jackets of divers, especially scuba divers, achieved with at least one in active connection with the life and life jacket standing housing, which contains at least one valve through which a piston actuatable between two end positions within an actuating element a piston chamber is movable by its alternating movement at least in an air-sucking, air-compressing and air-displacing manner a downstream check valve and at least one shut-off valve actuated.

Vorteilhafte Weiterbildungen der erfindungsgemäßen Einrichtung sind den zugehörigen Unteransprüchen zu entnehmen. Advantageous developments of the device according to the invention are the associated See subclaims.

Durch die Erfindung wird es nunmehr möglich, daß mittels eines Kolbens mit integriertem Rückschlagventil einerseits Luft aus dem Westeninnenraum in einen Kolbenraum angesaugt und im nächsten Arbeitstakt Luft aus dem Kolbenraum über ein weiteres nachgeschaltetes, als Rückschlagventil ausgebildetes, Sperrventil die Luft verdrängt und an das die Weste umgebende Medium abgegeben wird. Durch den Vorgang des Ansaugens der Luft aus dem Westeninnenraum wird die örtliche Anbringung des Luftauslaßventiles frei wählbar. Der Vorgang des Luftverdrängens aus dem Kolbenraum ermöglicht die Wahl eines kleineren Auslaßquerschnittes, was zur Folge hat, daß das komplette Ventil konstruktiv sehr klein ausgeführt werden kann. Aufgrund des verringerten Auslaßquerschnittes und der daraus resultierenden großen Strömungsgeschwindigkeit der austretenden Luft kann nun das Eintreten von Wasser in den Kolbenraum weitestgehend vermieden werden. Eventuell in den Kolbenraum eindringendes Wasser wird beim Arbeitstakt Verdrängen wieder herausgedrückt. Durch die Vorgänge des Ansaugens und Verdrängens der Luft über den Kolben wird mit jedem Arbeitstakt eine genau definierte Luftmenge aus dem Westeninnenraum gefördert, welche dem Produkt des Kolbenquerschnittes und dem Kolbenhub entspricht. Dies wird durch die nachstehende Formelableitung verifiziert: VK=AK x HK, worin

  • VK=Fördervolumen pro Arbeitstakt
  • AK = Kolbenquerschnitt
  • HK=Kolbenhub
  • AK=dK x dK x pi/4, worin
  • dK=Kolbendurchmesser
  • The invention now makes it possible for air to be drawn in from the west interior into a piston space on the one hand by means of a piston with an integrated check valve, and air from the piston space is displaced in the next work cycle via another downstream check valve designed as a check valve and to which the vest surrounding medium is released. The location of the air outlet valve can be freely selected by the process of sucking in the air from the interior of the west. The process of displacing air from the piston chamber enables the selection of a smaller outlet cross section, which means that the entire valve can be made very small in construction. Due to the reduced outlet cross-section and the resulting high flow velocity of the exiting air, the entry of water into the piston chamber can now be largely avoided. Any water entering the piston chamber is pushed out again during the displacement cycle. Through the processes of sucking in and displacing the air via the piston, a precisely defined amount of air is conveyed from the interior of the west with each work cycle, which corresponds to the product of the piston cross-section and the piston stroke. This is verified by the formula derivation below: V K = A K x H K , wherein
  • V K = funding volume per work cycle
  • A K = piston cross section
  • H K = piston stroke
  • A K = d K xd K x pi / 4, wherein
  • d K = piston diameter
  • Der aus dem Westeninnenraum austretende Luftvolumenstrom Q ergibt sich aus dem Fördervolumen VK multipliziert mit der Anzahl der Arbeitstakte pro Zeiteinheit bzw. mit der Frequenz f [Hz], mit welcher der Kolben betätigt wird. Q = VK x f bzw. Q = AK x HK x f. The air volume flow Q emerging from the west interior results from the delivery volume V K multiplied by the number of work cycles per unit of time or by the frequency f [Hz] with which the piston is actuated. Q = V K xf or Q = A K x H K x f.

    Da der Kolbenquerschnitt AK konstant ist und der Kolbenhub HK sowie die Frequenz f über entsprechende Betätigungselemente einstellbar sind, ist der austretende Luftvolumenstrom exakt und unabhängig von Umgebungsbedingungen wie z.B. Druckverlust, Durchflußwiderstand, Viskosität und Temperatur einstellbar. Since the piston cross-section A K is constant and the piston stroke H K and the frequency f can be set by means of corresponding actuating elements, the emerging air volume flow can be set exactly and independently of environmental conditions such as pressure loss, flow resistance, viscosity and temperature.

    Die Kolbengeschwindigkeit kann einem weiteren Gedanken der Erfindung gemäß entsprechend einer Sinusfunktion gesteuert werden, so daß der Kolben weich in seine Endlagen einfährt und aufgrund der Reduzierung der Geschwindigkeiten bei Erreichen der Endlagen die Maximalgeschwindigkeit des Kolbens außerhalb der Endlagen hoch gewählt werden kann. Durch diese Maßgabe können Beschädigungen an Kolben und Gehäuse infolge zu hoher Endlagengeschwindigkeiten des Kolbens vermieden werden. The piston speed can be according to a further idea of the invention can be controlled according to a sine function so that the piston is soft in its   Moves into end positions and due to the reduction in speeds when reached of the end positions the maximum speed of the piston outside the end positions can be chosen high. This can damage pistons and housing avoided due to high end position speeds of the piston become.

    Vorzugsweise wird der Kolben in mindestens einer seiner beiden Endlagen, vorzugsweise jedoch in beiden Endlagen, über jeweils definierte Zeiten in bezug auf seine Geschwindigkeit auf den Wert 0 gesetzt, um das Ablassen der Luft optimal zu gewährleisten, so daß dynamische Einflüsse z.B. aufgrund von Massenträgheit des Rückschlagventiles und/oder des Sperrventiles zumindest verringert werden können. The piston is preferably in at least one of its two end positions however in both end positions, over defined times in relation to his Speed set to 0 to ensure optimal deflation, so that dynamic influences e.g. due to inertia of the Check valve and / or the check valve can at least be reduced.

    Des weiteren besteht die Möglichkeit, daß der Kolben in mindestens einer seiner Endlagen das Rückschlagventil und/oder das Sperrventil mechanisch betätigt, so daß sich ein eventuell verbleibender Rest von Luftüberdruck oder Luftunterdruck abbauen kann. There is also the possibility that the piston in at least one of its End positions the check valve and / or the check valve mechanically operated so that any remaining residual air pressure or negative air pressure is reduced can.

    Die Steuerung des Kolbens kann manuell oder automatisch mit einer Regelelektronik erfolgen. Die Betätigung kann unter Verwendung pneumatischer, hydraulischer oder elektromagnetischer Hilfsmittel herbeigeführt werden. The piston can be controlled manually or automatically with control electronics respectively. The actuation can be done using pneumatic, hydraulic or electromagnetic aids can be brought about.

    Eine nach dem vorbeschriebenen Verfahren gemäß Anspruch 2 arbeitende Einrichtung zum Ablassen von Luft bzw. Gas aus Schwimm- und Rettungswesten beinhaltet ein mit der Schwimm- und Rettungsweste in Wirkverbindung stehendes Gehäuse, das mindestens ein Ventil beinhaltet, durch das eine motorisch wirkende Einheit, die mit einer als Pumpe wirkenden rotatorischen Einheit verbunden ist, angetrieben wird, die wiederum über eine Leitung mit dem Innenraum der Schwimm- und Rettungsweste verbunden ist. Das Ventil ist hierbei ein 2/2 Proportionalwegeventil. Ferner ist eine mit einer Rechnereinheit in Wirkverbindung stehende Meßeinrichtung vorgesehen, die die Höhe des Luftvolumenstromes erfaßt. A device according to the above-described method according to claim 2 for releasing air or gas from life and life vests a housing that is operatively connected to the life and life jacket, the contains at least one valve, through which a motor-acting unit with a rotary unit acting as a pump is connected, which again via a line to the interior of the life and life jacket connected is. The valve is a 2/2 proportional directional control valve. Furthermore, one with a computer unit in operative connection with the measuring device Height of the air volume flow detected.

    Die Erfindung ist anhand eines Ausführungsbeispieles in der Zeichnung dargestellt und wird wie folgt beschrieben. Es zeigen:

    Figur 1:
    Ventil in Ruhestellung
    Figur 2:
    Ventil im Arbeitstakt Luft ansaugen
    Figur 3:
    Ventil im Arbeitstakt Luft verdrängen
    Figur 4:
    Schaltschema des Ventiles gemäß den Figuren 1 bis 3.
    Figur 5:
    Alternatives Schaltschema zu Figur 4
    Figur 6:
    Alternatives Schaltschema zu Figur 4 unter Verwendung motorischer und rotatorischer Einheiten
    The invention is illustrated in the drawing using an exemplary embodiment and is described as follows. Show it:
    Figure 1:
    Valve at rest
    Figure 2:
    Suck air into the valve every working cycle
    Figure 3:
    Displace air in the work cycle
    Figure 4:
    Circuit diagram of the valve according to Figures 1 to 3.
    Figure 5:
    Alternative circuit diagram to Figure 4
    Figure 6:
    Alternative circuit diagram to Figure 4 using motor and rotary units

    Die erfindungsgemäße Einrichtung 1 beinhaltet ein Gehäuse 2, das über eine Verschraubung 3 mit einer Weste 4 lösbar verbunden ist. Im Bereich des Gehäuses 2 sind unter anderem ein 4/2 Vorsteuerauslaßventil 5 sowie ein 2/2 Vorsteuereinlaßventil 6 angeordnet, die in diesem Beispiel beide als Proportionalwegeventile ausgebildet sind. Der die Ventile 5,6 aufnehmende Raum 7 ist druckdicht mittels eines Verschlußelementes 8 abgedichtet. Der hier nur angedeutete Westeninnenraum 9 steht im Bereich der Verschraubung 3 über eine entsprechende Ausnehmung 10 mit dem Gehäuseinnenraum 11 der Einrichtung 1 in Wirkverbindung, so daß gleiche Drücke herrschen. Innerhalb eines sich an den Gehäuseinnenraum 11 anschließenden Kolbenraumes 12 ist ein abgedichteter Kolben 13 angeordnet, der zwischen zwei Endlagen 14,15 hin und her bewegbar ist. Diese alternierende Bewegung des Kolbens 13 wird mittels eines in einem Pneumatikzylinder 16 angeordneten als Betätigungselement dienenden Vorsteuerkolbens 17 realisiert, dessen Kolbenstange 18 mit der zugehörigen Stirnfläche 19 des Kolbens 13 verbunden ist. Auf der dem Vorsteuerkolben 17 abgewandten Stirnseite 20 wirkt der Kolben 13 mit einem Rückschlagventil 21 zusammen, das sich über eine Druckfeder 22 an einem stationären Ventilsitz 23 abstützt. Auf der dem Kolbenraum 12 abgewandten Seite des Ventilsitzes 23 ist ein ebenfalls als Rückschlagventil ausgebildetes, jedoch in entgegengesetzter Richtung wirkendes Sperrventil 24 vorgesehen, das analog zu dem Rückschlagventil 21 mit einer Druckfeder 25 zusammenwirkt, die sich am rückwärtigen Wandabschnitt 26 einer Abschlußkappe 27 abstützt. Sowohl das Rückschlagventil 21 als auch das Sperrventil 24 sind über entsprechende Dichtungselemente 28,29 gegenüber den korrespondierenden Bauteilen, nämlich dem Kolben 13 und dem Ventilsitz 23, abgedichtet. Die den Kolbenraum 12 gegenüber dem Gehäuseinnenraum 11 abschließende Rückwand 30 weist Durchtrittsöffnungen 31 auf. Gleiches gilt für den Kolben 13, der ebenfalls mit Durchtrittsöffnungen 32 versehen ist, so daß der sich im Westeninnenraum 9 jeweils einstellende Druck in der Ruhestellung des Kolbens 13 auch an der Dichtung 28 des Rückschlagventiles 21 ansteht. Am Gehäuse 2 der Einrichtung 1 ist ein Anschluß 33 für einen hier nur angedeuteten Inflatorschlauch 34 vorgesehen, über welchen Druckluft von der nicht weiter dargestellten Preßluftflasche durch die Vorsteuerdruckluftzuleitung 35 dem Vorsteuereinlaßventil 6 zugeführt werden kann, das bei entsprechender Betätigung Luft in die Ausnehmung 11 und somit in den Westeninnenraum 9 einbringen kann. Dies ist im Bereich 36 angedeutet. Wie bereits angesprochen, ist das Vorsteuerauslaßventil 5 als 4/2-Wegeventil ausgebildet, wobei vier Anschlüsse und zwei Schaltstellungen realisierbar sind. Die beiden Ausgänge des Vorsteuerauslaßventiles 5 werden über die Zuleitungen 37,38 auf die Eingänge des Pneumatikzylinders 16 geführt, d.h. die Zuleitung 37 auf die Ringfläche zum Einfahren des Vorsteuerkolbens 17 und die Zuleitung 38 auf die Kolbenfläche zum Ausfahren des Vorsteuerkolbens 17. Infolge der festen Verbindung des Vorsteuerkolbens 17 mit dem Kolben 13 wird dieser in analoger Weise innerhalb des Kolbenraumes 12 zwischen den Endlagen 14 und 15 alternierend hin und her bewegt. In Ruhestellung des Vorsteuerauslaßventiles 5 ist der Druck hierbei auf die Ringfläche geleitet, so daß der Vorsteuerkolben 17 eingefahren ist und der Kolben 13 sich im unteren Totpunkt (Endlage 14) befindet. Bei Ansteuerung des Vorsteuerauslaßventiles 5 wird der Druck über die Leitung 38 auf die Kolbenfläche des Vorsteuerkolbens 17 geleitet, so daß derselbe ausfährt und den Kolben 13 gegen die Federkraft der Druckfeder 22 in Richtung des oberen Totpunktes (Endlage 15) bewegt. In gleicher Weise wird das Sperrventil 24 gegen die Federkraft der Druckfeder 25 ausgelenkt und vom Ventilsitz 23 abgehoben. Sofern in dieser Position Luft im Kolbenraum 12 vorhanden gewesen wäre, würde diese durch den mit einer konzentrischen Durchgangsbohrung 39 ausgerüsteten Ventilsitz 23 und die in der Abschlußkappe 27 vorhandenen Durchgangsöffnungen 40 an das die Weste 4 umgebende Medium abgegeben werden. Dem Vorsteuerauslaßventil 5 nachgeschaltet ist ein Rückschlagventil 62, durch welches das Eindringen von Wasser in den Raum 7 verhindert wird. The device 1 according to the invention includes a housing 2, which has a screw connection 3 is releasably connected to a vest 4. In the area of the housing 2 include a 4/2 pilot outlet valve 5 and a 2/2 pilot inlet valve 6 arranged, both of which are designed as proportional directional control valves in this example are. The space 7 receiving the valves 5, 6 is pressure-tight by means of a closure element 8 sealed. The west interior 9, which is only indicated here, stands in the area of the screw connection 3 via a corresponding recess 10 with the Housing interior 11 of the device 1 in operative connection, so that the same pressures to rule. Within a piston chamber adjoining the housing interior 11 12 is a sealed piston 13 is arranged between two end positions 14.15 is movable back and forth. This alternating movement of the piston 13 is arranged as an actuating element in a pneumatic cylinder 16 serving pilot piston 17 realized, the piston rod 18 with the associated Face 19 of the piston 13 is connected. On the pilot spool 17 facing away from the end face 20, the piston 13 cooperates with a check valve 21, which is supported on a stationary valve seat 23 via a compression spring 22. On the side of the valve seat 23 facing away from the piston chamber 12 there is a also designed as a check valve, but in the opposite direction acting check valve 24 is provided, which is analogous to the check valve 21 a compression spring 25 which cooperates on the rear wall section 26 End cap 27 supports. Both the check valve 21 and the check valve 24 are via corresponding sealing elements 28, 29 with respect to the corresponding ones Components, namely the piston 13 and the valve seat 23, sealed. That which closes the piston chamber 12 with respect to the housing interior 11 Rear wall 30 has through openings 31. The same applies to the piston 13, the is also provided with passage openings 32 so that it is in the west interior 9 each adjusting pressure in the rest position of the piston 13 also at the Seal 28 of the check valve 21 is present. On the housing 2 of the device 1 is a connection 33 is provided for an inflator hose 34, which is only indicated here, About which compressed air from the compressed air bottle not shown through the Pilot compressed air supply line 35 can be fed to the pilot inlet valve 6, that with appropriate actuation air into the recess 11 and thus into the interior of the west 9 can bring. This is indicated in area 36. As already mentioned,   the pilot outlet valve 5 is designed as a 4/2-way valve, wherein four connections and two switch positions are possible. The two outputs of the Pilot outlet valves 5 are connected via the feed lines 37, 38 to the inputs of the Pneumatic cylinder 16 guided, i.e. the lead 37 on the ring surface for retraction of the pilot piston 17 and the feed line 38 to the piston surface for extension of the pilot piston 17. As a result of the firm connection of the pilot piston 17 with the piston 13 this is in an analogous manner within the piston chamber 12 alternately moved back and forth between the end positions 14 and 15. At rest of the pilot outlet valve 5, the pressure here is directed to the annular surface, so that the pilot piston 17 is retracted and the piston 13 is at bottom dead center (End position 14). When driving the pilot outlet valve 5, the pressure passed via line 38 to the piston surface of the pilot piston 17, so that the same extends and the piston 13 against the spring force of the compression spring 22 in Moved towards top dead center (end position 15). In the same way it will Check valve 24 deflected against the spring force of the compression spring 25 and from the valve seat 23 lifted off. If there was air in the piston chamber 12 in this position would be through the one equipped with a concentric through hole 39 Valve seat 23 and the through openings present in the end cap 27 40 are given to the medium surrounding the vest 4. The pilot outlet valve 5 is a check valve 62, through which the Entry of water into room 7 is prevented.

    Figur 2 zeigt den Arbeitstakt des Ansaugens der Luft aus dem Westeninnenraum 9 in den Kolbenraum 12. Die Strömungsrichtung ist hierbei mit Pfeilen dargestellt. Das Vorsteuerauslaßventil 5 befindet sich in diesem Zustand in Ruhestellung, d.h. daß die Feder 46 desselben das Ventil 5 in eine Position drückt, das von der Vorsteuerdruckluftzuleitung 35 Druckluft über die Kreuzstellung des Ventiles 5 auf die Ringfläche des Pneumatikzylinders 16 geleitet wird und der Vorsteuerkolben 17 demzufolge einfährt, wodurch der Kolben 13 in Richtung der Endlage 14 bewegt wird. Das elektrisch stromlos geschaltete Vorsteuerauslaßventil 5 ist hierbei in einer solchen Position, daß der Druck in der Zuleitung 38 über die Abluftleitung 41 abgebaut werden kann, in welcher das in Figur 1 angesprochene Rückschlagventil 62 eingesetzt ist. Durch die Bewegung des Kolbens 13 in Richtung seiner Endlage 14 wird die Luft aus dem Westeninnenraum 9 über die Durchtrittsöffnungen 31 in der Rückwand 30 und die Durchtrittsöffnungen 32 im Kolben 13 sowie das nunmehr aufgrund des sich einstellenden Unterdruckes im Kolbenraum 12 abgehobene Rückschlagventil 21 in den Kolbenraum 12 gesaugt. Das Sperrventil 24 ist hierbei noch geschlossen, aufgrund des Unterdrukkes im Kolbenraum 12 relativ zum Druck des umgebenden Mediums und aufgrund der Vorspannung der Feder 25. FIG. 2 shows the work cycle of sucking in the air from the west interior 9 in the piston chamber 12. The direction of flow is shown with arrows. The Pilot outlet valve 5 is in the rest position in this state, i.e. that the Spring 46 of the same pushes the valve 5 into a position from the pilot compressed air supply line 35 compressed air via the cross position of the valve 5 on the ring surface of the Pneumatic cylinder 16 is guided and the pilot piston 17 consequently retracts, whereby the piston 13 is moved in the direction of the end position 14. The electric de-energized pilot outlet valve 5 is in such a position that the pressure in the supply line 38 can be reduced via the exhaust line 41, in which the check valve 62 mentioned in FIG. 1 is inserted. Through the movement the piston 13 in the direction of its end position 14, the air from the west interior 9 via the passage openings 31 in the rear wall 30 and the passage openings 32 in the piston 13 and now due to the emerging Vacuum in the piston chamber 12 lifted check valve 21 in the piston chamber 12 sucked. The check valve 24 is still closed due to the low pressure   in the piston chamber 12 relative to the pressure of the surrounding medium and due to the Preload of the spring 25.

    Figur 3 zeigt nun den Arbeitstakt des Verdrängens der Luft aus dem Kolbenraum 12. Auch hier ist die Strömungsrichtung durch Pfeile markiert. Das Vorsteuerauslaßventil 5 ist hierbei elektrisch angesteuert, d.h. in Durchlaßrichtung geschaltet, und zwar von der Vorsteuerdruckluftzuleitung 35 zu der Zuführleitung 38 bzw. auf den kolbenseitigen Eingang des Vorsteuerkolbens 17, wodurch der Kolben 13 gegen die Feder 22 ausgelenkt wird und die Luft im Kolbenraum 12 zunächst komprimiert wird, bis das Sperrventil 24 gegen die Kraft der Feder 25 öffnet und die Luft aus dem Kolbenraum 12 heraus durch die Durchgangsbohrung 39 im Ventilsitz 23 sowie die Durchgangsöffnungen 40 in der Kappe 27 in das die Weste 4 umgebende Medium abgegeben wird. Nachdem der Kolben 13 seinen oberen Totpunkt (Endlage 15) erreicht hat bzw. keine weitere Luft verdrängt wird, schließt das Sperrventil 24 aufgrund der Kraft der Feder 25. Der Luftvolumenstrom ergibt sich aus der Folge von einem oder mehreren Arbeitstakten. Soll wenig Luftvolumenstrom eingestellt werden, d.h. mit kleiner Arbeitstaktfrequenz gearbeitet werden, kann der Kolben 13 so lange in seinem oberen Totpunkt bleiben, bis der nächste Hub ausgeführt werden soll. Wahlweise kann der Kolben 13 auch in Ausgangsstellung gefahren werden, um dort bis zum nächsten Arbeitstakt in Ruhestellung zu verweilen. Am Rückschlagventil 21 ist ein axialer Ansatz 63 angeformt, dessen axiale Erstreckung in der Endlage 15 des Kolbens 13 bis über die Dichtung 29 hinaus geht. Dies dient dem Zweck, daß, sofern noch Druckluftanteile im Kolbenraum 12 vorhanden sein sollten und deren Druck nun geringer ist als die Kraft der Feder 25, das Sperrventil 24 wieder schließen würde, nunmehr jedoch auf der Stirnfläche 64 des Ansatzes aufsitzt, da der Kolben 13 noch nicht in die andere Richtung bewegt wird. Der Öffnungshub des Sperrventiles 24 relativ zum Ventilsitz 23 sowie des Rückschlagventiles 21 zum Kolben 13 wird vorzugsweise (nicht dargestellt) gemessen und die Umsteuerung des Vorsteuerkolbens 17 und somit des Kolbens 13 dementsprechend eingeleitet. FIG. 3 now shows the work cycle of displacing the air from the piston chamber 12. Here, too, the direction of flow is marked by arrows. The pilot outlet valve 5 is electrically controlled, i.e. switched in the forward direction, namely from the pilot compressed air supply line 35 to the supply line 38 or on the piston side Input of the pilot piston 17, whereby the piston 13 against the spring 22nd is deflected and the air in the piston chamber 12 is first compressed until that Check valve 24 against the force of the spring 25 opens and the air from the piston chamber 12 out through the through hole 39 in the valve seat 23 and the through openings 40 in the cap 27 into the medium surrounding the vest 4 becomes. After the piston 13 has reached its top dead center (end position 15) or no more air is displaced, the shut-off valve 24 closes due to the force of the Spring 25. The air volume flow results from the sequence of one or more Work cycles. If little air volume flow is to be set, i.e. with a low operating frequency can be worked, the piston 13 in its upper for as long Dead center remains until the next stroke is to be carried out. Optionally, the Pistons 13 can also be moved to the starting position to the next Lingering work cycle at rest. At the check valve 21 is an axial approach 63 formed, the axial extent in the end position 15 of the piston 13 to goes beyond the seal 29. This serves the purpose that, if still compressed air should be present in the piston chamber 12 and the pressure of which is now lower than the force of the spring 25, the check valve 24 would close again, but now sits on the end face 64 of the approach, since the piston 13 is not yet in the other direction is moved. The opening stroke of the check valve 24 relative to Valve seat 23 and the check valve 21 to the piston 13 is preferred (Not shown) measured and the reversal of the pilot piston 17 and thus initiated the piston 13 accordingly.

    Figur 4 zeigt in schematische Darstellung das Schaltschema gemäß den Figuren 1 bis 3. Erkennbar sind die Rettungsweste 4 samt Westeninnenraum 9, das 2/2 Vorsteuereinlaßventil 6, das ein Proportional-Wegeventil ist, das 4/2 Vorsteuerauslaßventil 5, das ebenfalls ein Proportional-Wegeventil ist, der Pneumatikzylinder 16 samt Vorsteuerkolben 17, Kolbenstange 18 und Kolben 13, das Rückschlagventil 21 samt zugehöriger Feder 22, das ebenfalls als Rückschlagventil ausgebildete Sperrventil 24 samt zugehöriger Feder 25. Das Vorsteuereinlaßventil 6 wird über den Inflatoranschluß 33 und die Vorsteuerdruckluftzuleitung 35 beaufschlagt und endet im Bereich 36 des Westeninnenraumes 9. Durch Betätigung des Vorsteuereinlaßventiles 6 wird Druckluft in den Westeninnenraum 9 geleitet, wodurch der Auftrieb des hier nicht weiter dargestellten Tauchers erhöht wird. Über die Leitung 32 wird das Vorsteuerauslaßventil 5 beaufschlagt, wobei Druckluft über die Leitungen 37 bzw. 38 zum Kolbenraum bzw. zum Ringraum des Vorsteuerkolbens 17 geführt wird. In Abhängigkeit von der jeweiligen Strömungsrichtung wird der Vorsteuerkolben 17 und der damit verbundene Kolben 13 alternierend auf und ab bewegt, und zwar zwischen den jeweiligen Endlagen 14 und 15. In Abhängigkeit der bereits vorher dargelegten Ansaug-, Kompressions- und Verdrängungsphase wird Luft über die hier als Strich dargestellten Durchtrittsöffnungen 31 in den Kolbenraum 12 gesaugt, hier komprimiert und aus diesem heraus über die Durchgangsöffnungen 40 an das Umgebungsmedium abgegeben. Figure 4 shows a schematic representation of the circuit diagram according to Figures 1 to 3. You can see the life jacket 4 including the interior 9 of the vest, the 2/2 pilot inlet valve 6, which is a proportional directional valve, the 4/2 pilot outlet valve 5, which is also a proportional directional control valve, the pneumatic cylinder 16 including the pilot piston 17, piston rod 18 and piston 13, the check valve 21 together with the associated Spring 22, the check valve 24 also formed as a check valve together with the associated spring 25. The pilot inlet valve 6 is via the inflator connection   33 and the pilot compressed air supply line 35 is applied and ends in the area 36 of the west interior 9. By actuating the pilot inlet valve 6 Compressed air passed into the west interior 9, which means that the buoyancy of the here is not further shown diver is increased. The pilot outlet valve is connected via line 32 5 acted upon, with compressed air via lines 37 and 38 to the piston chamber or to the annular space of the pilot piston 17. In dependence of the respective direction of flow becomes the pilot piston 17 and the associated piston Piston 13 moves up and down alternately, between the respective End positions 14 and 15. Depending on the suction, compression and displacement phase previously described, air is drawn over the line shown here Passage openings 31 sucked into the piston chamber 12, compressed here and from this released through the through openings 40 to the surrounding medium.

    Figur 5 zeigt ein alternatives Schaltschema zu Figur 4. Anstelle des 4/2 Wegeventiles gemäß Figur 2 ist in Figur 5 lediglich ein 3/2 Wegeventil 43 vorgesehen, das über eine Leitung 44 kolbenbodenseitig auf den Vorsteuerkolben 17 einwirkt. Die Rückstellung des Vorsteuerkolbens 17 erfolgt in diesem Fall mittels einer entsprechend dimensionierten Rückstellfeder 45, sobald die Kolbenfläche des Pneumatikzylinders 16 drucklos gegen Abluft geschaltet ist. Ansonsten erfolgt die Steuerung wie bei dem 4/2 Wegeventil gemäß Figur 4. Figure 5 shows an alternative circuit diagram to Figure 4. Instead of the 4/2 way valve According to FIG. 2, only a 3/2 way valve 43 is provided in FIG a line 44 acts on the piston bottom side on the pilot piston 17. The provision of the pilot piston 17 takes place in this case by means of an appropriately dimensioned Return spring 45 as soon as the piston surface of the pneumatic cylinder 16 is depressurized against exhaust air. Otherwise the control is the same as for the 4/2 Directional control valve according to FIG. 4.

    Figur 6 zeigt ein zu Figur 5 alternatives Schaltschema, wobei abweichend zu den Figuren 1 bis 4 der Vorgang des Luftansaugens, Komprimierens und Verdrängens anders herbeigeführt wird. Die in dieser Figur dargestellten Bauteile können analog zu den Bauteilen gemäß den Figuren 1 bis 4 in dem Gehäuse 2 (hier nicht dargestellt) vorgesehen werden. Gleiches gilt für die Zufuhr von Druckluft aus dem Bereich des Inflatorschlauches 47, der hier lediglich angedeutet ist. Ferner sind folgende Bauteile schematisch dargestellt: die Weste 48, das Lufteinlaßventil 49, das über die Leitung 50 (Vorsteuerdruckluftzuleitung) mit dem Inflatorschlauch 47 verbunden ist; das als 2/2 Proportionalwegeventil ausgebildete Vorsteuerauslaßventil 51, das ebenfalls über eine Leitung 52 mit dem Inflatorschlauch 47 verbunden ist; eine motorisch wirkende Einheit 53; eine rotatorisch wirkende Pumpe 54, die über eine Welle 55 mit dem Motor 53 verbunden ist und über eine weitere Leitung 56 mit dem Innenraum 57 der Weste in Wirkverbindung steht. Bei dieser alternativen Lösungsform wird die motorisch wirkende Pneumatikeinheit 53 über das 2/2 Wegeproportionalventil 51 mit Druckluft beaufschlagt und dadurch in Drehbewegung versetzt. Die Drehbewegung der motorischen Einheit 53 wird nun genutzt, um die als Pumpe wirkende rotatorische Pneumatikeinheit 54 mechanisch über die Welle 55 anzutreiben, wodurch die Einheit 54 Luft über die Leitung 56 aus dem Westeninnenraum 57 ansaugt und diese über die Leitung 58, in die ein Rückschlagventil 59 eingesetzt ist, in das umgebende Medium verdrängt. Das Rückschlagventil 59 verhindert hierbei das Eindringen von Wasser in den Pumpenraum und somit auch in den Innenraum 57 der Weste 48. Die Höhe des Volumenstromes Q (m3/min) wird hierbei erfaßt, indem über eine Meßeinrichtung 60 die Drehzahl n (U/min) der Einheit 54 bzw. 53 gemessen wird und mit dem Fördervolumen VG (m3/U) der Einheit 54 multipliziert wird. Q = VG x n FIG. 6 shows an alternative circuit diagram to FIG. 5, with the process of air intake, compression and displacement being effected differently from FIGS. 1 to 4. The components shown in this figure can be provided in the housing 2 (not shown here) analogously to the components according to FIGS. 1 to 4. The same applies to the supply of compressed air from the area of the inflator hose 47, which is only indicated here. Furthermore, the following components are shown schematically: the vest 48, the air inlet valve 49, which is connected to the inflator hose 47 via the line 50 (pilot compressed air supply line); the pilot outlet valve 51 designed as a 2/2 proportional directional valve, which is also connected via a line 52 to the inflator hose 47; a motorized unit 53; a rotationally acting pump 54, which is connected to the motor 53 via a shaft 55 and is operatively connected to the interior 57 of the vest via a further line 56. In this alternative solution, the pneumatic pneumatic unit 53 is acted upon by compressed air via the 2/2 way proportional valve 51 and is thus set in rotation. The rotary movement of the motor unit 53 is now used to mechanically drive the rotary pneumatic unit 54, which acts as a pump, via the shaft 55, as a result of which the unit 54 sucks in air from the west interior 57 via line 56 and via line 58, into which a check valve 59 is inserted, displaced into the surrounding medium. The check valve 59 prevents the penetration of water into the pump chamber and thus also into the interior 57 of the vest 48. The volume flow Q (m 3 / min) is recorded here by using a measuring device 60 to determine the speed n (rpm ) unit 54 or 53 is measured and multiplied by the delivery volume VG (m 3 / rev) of unit 54. Q = VG xn

    Zur Erfassung der aus dem Westeninnenraum 57 angesaugten Luftmenge V kann entweder der Luftvolumenstrom über die Zeit mathematisch integriert werden (V = ∫ Q dt) oder durch direkte Erfassung der Anzahl der Umdrehungen der Einheit 54 über die Meßeinrichtung 60 und durch innerhalb einer Rechnereinheit 61 schrittweisen Summierung der pro Umdrehung geförderten Luftmenge der Einheit 54 die aktuell angesaugte Luftmenge erfaßt werden. To record the air volume V drawn in from the interior of the west 57, either the air volume flow can be mathematically integrated over time ( V = ∫ Q German ) or by directly detecting the number of revolutions of the unit 54 via the measuring device 60 and by gradually summing the air volume of the unit 54 conveyed per revolution within a computer unit 61 the currently sucked-in air volume.

    Claims (49)

    1. Method for letting out air or gas from air and life jackets for divers, in particular for scuba divers in which method a predeterminable volume of air or predeterminable air volume fractions is/are discontinuously sucked out of the inner chamber (9, 57) of the air and life jacket (4, 48) compressed and displaced into the medium surrounding the vest.
    2. Method for letting out air or gas from air and life jackets for divers, in particular for scuba divers in which method a predeterminable volume of air or predeterminable air volume fractions is/are continuously sucked out of the inner chamber (9, 57) of the air and life jacket (4, 48) compressed and displaced into the medium surrounding the vest, characterized in that the air is sucked out by a rotary unit (54) which acts as a pump and is driven mechanically by a motive unit (53).
    3. Method according to Claim 1, characterized in that the suction, compression and displacement of the air takes place cyclically with a predeterminable frequency.
    4. Method according to one of Claims 1 or 3, characterized in that the combined operation of suction, compression and displacement of the air is carried out by means of an actuating element (17) which moves a piston (13) in a reciprocating manner between two limit positions (14, 15).
    5. Method according to one of Claims 3 or 4, characterized in that the limit positions (14, 15) of the piston (13) are determined by at least one limit switch.
    6. Method according to one of Claims 3 to 5, characterized in that the switch-over operation for reversing the direction of the piston (13) is initiated in the area of the respective limit position (14, 15) of the piston (13).
    7. Method according to one of Claims 3 to 6, characterized in that the piston (13) is moved with an adjustable stroke between its limit positions (14, 15).
    8. Method according to one of Claims 3 to 7, characterized in that the piston speed is controlled in accordance with a sine function.
    9. Method according to one of Claims 3 to 8, characterized in that the piston (13), in at least one of its limit positions (14, 15), is set over predeterminable time units to the value 0 with regard to its speed.
    10. Method according to one of Claims 3 to 9, characterized in that the opening travel of the non-return valve (21) and of the shut-off valve (24) is measured, and the change-over operations of the piston (13) are controlled as a function of this measurement.
    11. Method according to one of Claims 3 to 9, characterized in that the cycle frequency of the piston (13) is controlled by a proportional valve (5), in particular a proportional directional control valve.
    12. Method according to one of Claims 3 to 11, characterized in that the current stroke of the piston (13) is measured and compared with a predeterminable desired stroke.
    13. Method according to one of Claims 3 to 12, characterized in that the actuating element (17) is connected to the piston (13) and is acted on by the proportional valve (5).
    14. Method according to Claim 2, characterized in that the motive unit (53) is supplied with compressed air, in particular from the area of the inflater hose (47).
    15. Method according to Claim 14, characterized in that the level of the volumetric flow rate of the compressed air is set by means of a valve (51).
    16. Method according to one of Claims 14 or 15, characterized in that the level of the volumetric flow rate is set in a continuously variable manner by means of a proportional directional control valve (51).
    17. Method according to one of Claims 14 to 16, characterized in that the air volumetric flow rate is calculated, specifically by measuring the rotational speed of the rotary and/or motive unit (54, 53) and multiplying this value by the delivery volume of the unit (54).
    18. Method according to one of Claims 14 to 16, characterized in that the volume of air sucked out is determined by calculation, by mathematical integration of the air volumetric flow rate over time.
    19. Method according to one of Claims 14 to 16, characterized in that the volume of air sucked out is determined by calculation, by directly adding the volume of air delivered per revolution of the unit (54) in a stepwise manner.
    20. Device for letting out air or gas from air and life jackets for divers, in particular for scuba divers, having at least one housing (2) which is in active communication with the air and life jacket (4) and contains at least one valve (5), by means of which a piston (13), which can be actuated by means of an actuating element (17), can be moved between two limit positions (14, 15) inside a piston chamber (12), which piston, by means of its alternating movement, actuates at least one downstream non-return valve (21) and at least one shut-off valve (24) in an air-sucking, air-compressing and air-displacing manner.
    21. Device according to Claim 20, characterized in that the housing (2) is provided outside the air and life jacket (4) and is connected to the inner chamber (9) of the jacket, in particular in a detachable manner (3), via an inlet area (10, 11).
    22. Device according to Claim 20, characterized in that the housing (2), or its essential components which it surrounds, is/are arranged in the area of the inner chamber of the air and life jacket.
    23. Device according to one of Claims 20 to 22, characterized in that a port (33) for an inflater hose (34) is provided on the housing (2).
    24. Device according to one of Claims 20 to 23, characterized in that the port (33) is connected, via at least one pilot compressed-air feed line (35), to at least one pilot discharge valve (5) and/or pilot admission value (6) provided in the area of the housing (2).
    25. Device according to one of Claims 20 to 24, characterized in that the pilot discharge valve (5) is a three/two-way valve.
    26. Device according to one of Claims 20 to 24, characterized in that the pilot discharge valve (5) is a four/two-way valve.
    27. Device according to Claims 25 or 26, characterized in that the pilot discharge valve (5) is a proportional directional control valve.
    28. Device according to one of Claims 24 to 27, characterized in that the pilot discharge valve (5) is connected, via corresponding connection lines (37, 38), to a pneumatic cylinder (16) which contains a pilot piston (17) which serves as the actuating element, one of the feed lines (38) being provided on the piston base side and the other (37) being provided on the piston ring side.
    29. Device according to Claim 28, characterized in that the pilot piston (17) is arranged coaxially with respect to the piston (13) and is connected to the latter.
    30. Device according to one of Claims 20 to 29, characterized in that the piston (13) can move inside the piston chamber (12) between a rear wall (30) and a stationary valve seat (23), the pilot piston (17) being provided in the area of the rear wall (30).
    31. Device according to one of Claims 20 to 30, characterized in that both the rear wall (30) and the piston (13) are provided with passage openings (31, 32), the passage openings (31) in the rear wall (30) being in active communication with the inner chamber (9) of the air and life jacket (4).
    32. Device according to one of Claims 20 to 31, characterized in that the non-return valve (21) is provided coaxially with respect to the piston (13) and, on the side which is remote from the pilot piston (17) bears in a sealed manner (28) against the corresponding end face of the piston (13).
    33. Device according to one of Claims 20 to 32, characterized in that a spring, in particular a compression spring (22), extends between the non-return valve (21) and the valve seat (23).
    34. Device according to one of Claims 20 to 33, characterized in that the valve seat (23) is provided with at least one passage bore (39).
    35. Device according to one of Claims 20 to 34, characterized in that the shut-off valve (24) is arranged on that side of the valve seat (23) which is remote from the non-return valve (21), which shut-off valve (24) is likewise designed as a non-return valve but acts in the opposite direction.
    36. Device according to Claim 35, characterized in that the shut-off valve (24) is provided coaxially with respect to the piston (13) and with respect to the non-return valve (21) and bears in a sealed manner (29) against the corresponding end side of the valve seat (23).
    37. Device according to one of Claims 35 or 36, characterized in that a spring, in particular a compression spring (25), is arranged between the shut-off valve (24) and a wall section (26) which closes off the housing (2).
    38. Device according to one of Claims 20 to 37, characterized in that the piston (13), in its limit positions (14, 15), mechanically actuates the non-return valve (21) and/or the shut-off valve (24).
    39. Device according to Claim 38, characterized in that in the area of the non-return valve (21), on the valve seat side, there is a coaxial stop (63) which extends in the axial direction, passes through the coaxial passage bore (39) in the valve seat (23) and, in the limit position of the piston (13), holds the shut-off valve (24) in its position in which it is lifted off the valve seat (23) until the end of the displacement operation.
    40. Device according to one of Claims 20 to 39, characterized in that the wall section (36) is provided with at least one passage opening (40).
    41. Device according to one of Claims 20 to 40, characterized in that the wall section (26) is formed by a closure cap (27) which can be releasably connected to the housing (2).
    42. Device according to one of Claims 20 to 41, characterized by an air admission valve (6), in particular a two/two-way valve, which is connected, on the one hand, to the pilot compressed-air feed line (35) and, on the other hand, to the inner chamber (9) of the air and life jacket (4) via a further line (36).
    43. Device according to one of Claims 20 to 42, characterized in that one of the outlets of the pilot discharge valve (5) is connected to the medium surrounding the air and life jacket (4) via a further line (41).
    44. Device according to one of Claims 20 to 43, characterized in that the pilot admission valve (6) and/or the pilot discharge valve (5) can be controlled by means of an electronic control unit provided in the area of the air and life jacket (4).
    45. Device for letting out air or gas from air and life jackets for divers, for carrying out the method according to Claim 2, characterized by at least one housing which is in active communication with the air and life jacket (48) and contains at least one valve (51, 49), by means of which a motively acting unit (53), which is connected to a rotary unit (54) acting as a pump, is driven, which rotary unit is in turn connected to the inner chamber (57) of the air and life jacket (48) via a line (56).
    46. Device according to Claim 45, characterized in that the valve (51) is a two/two proportional directional control valve which is in active communication with the inflater hose (47) via a pilot compressed-air feed line (52).
    47. Device according to one of Claims 45 or 46, characterized in that a non-return valve (59) is provided at the outlet of the rotary unit (54).
    48. Device according to one of Claims 45 to 47, characterized by a measuring device (60) for detecting the rotational speed of the motive or rotary unit (53, 54).
    49. Device according to one of Claims 45 to 48, characterized in that the measuring device (60) is connected to a computer unit (61).
    EP94926839A 1993-08-19 1994-08-16 Process and device for letting out air or gas from air or life jackets for divers Expired - Lifetime EP0762970B1 (en)

    Applications Claiming Priority (5)

    Application Number Priority Date Filing Date Title
    DE4327833 1993-08-19
    DE4327833 1993-08-19
    DE4425223A DE4425223A1 (en) 1993-08-19 1994-07-16 Process and device for releasing air or gas from diving life jackets and life jackets
    DE4425223 1994-07-16
    PCT/EP1994/002719 WO1995005306A1 (en) 1993-08-19 1994-08-16 Process and device for letting out air or gas from air or life jackets for divers

    Publications (2)

    Publication Number Publication Date
    EP0762970A1 EP0762970A1 (en) 1997-03-19
    EP0762970B1 true EP0762970B1 (en) 1999-11-10

    Family

    ID=25928744

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP94926839A Expired - Lifetime EP0762970B1 (en) 1993-08-19 1994-08-16 Process and device for letting out air or gas from air or life jackets for divers

    Country Status (6)

    Country Link
    US (1) US5749679A (en)
    EP (1) EP0762970B1 (en)
    AT (1) ATE186505T1 (en)
    AU (1) AU678855B2 (en)
    ES (1) ES2141838T3 (en)
    WO (1) WO1995005306A1 (en)

    Families Citing this family (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US5746543A (en) * 1996-08-20 1998-05-05 Leonard; Kenneth J. Volume control module for use in diving
    IT1314513B1 (en) * 2000-03-24 2002-12-18 Htm Sport Spa WATERPROOF WETSUIT WITH VARIABLE STRUCTURE.
    US20120128425A1 (en) * 2010-11-18 2012-05-24 Jeffrey Alan Walck Method and device for automatic buoyancy compensation for a scuba diver or underwater device while in any orientation
    US10085783B2 (en) 2013-03-14 2018-10-02 Izi Medical Products, Llc Devices and methods for treating bone tissue

    Family Cites Families (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US2945506A (en) * 1955-06-23 1960-07-19 Gasaccumulator Svenska Ab Control valve, particularly for air jackets
    US3695048A (en) * 1970-02-06 1972-10-03 Royal H Dimick Buoyance regulating apparatus for underwater swimming
    US4045835A (en) * 1976-08-30 1977-09-06 Under Sea Industries, Inc. Power deflator mechanism for scuba buoyancy vests
    US4379656A (en) * 1977-07-14 1983-04-12 Darling Phillip H Buoyancy control valve for scuba diving vests
    GB2101533B (en) * 1981-06-04 1985-07-03 Buoyco Controlling ascent of underwater buoyancy apparatus.
    US4437790A (en) * 1982-09-24 1984-03-20 Trop Timothy N Buoyancy compensator
    US4650151A (en) * 1983-01-10 1987-03-17 Fmc Corporation Subsea gate valve actuator with external manual override and drift adjustment
    US4601609A (en) * 1985-04-29 1986-07-22 Hyde Robert W Buoyancy device
    DE4200090A1 (en) * 1991-01-30 1992-08-13 Michael Tolksdorf TARING DEVICE FOR DIVERS

    Also Published As

    Publication number Publication date
    AU678855B2 (en) 1997-06-12
    EP0762970A1 (en) 1997-03-19
    WO1995005306A1 (en) 1995-02-23
    AU7653494A (en) 1995-03-14
    ATE186505T1 (en) 1999-11-15
    US5749679A (en) 1998-05-12
    ES2141838T3 (en) 2000-04-01

    Similar Documents

    Publication Publication Date Title
    DE2642642A1 (en) SUPPLY SYSTEM FOR SUPPLYING A SPRAY GUN WITH PAINT
    AT402542B (en) INTAKE CONTROL VALVE
    DE1628144B2 (en) Suction throttle control device
    WO2016102074A1 (en) High-pressure cleaning device
    DE1916224B2 (en) Hydrostatic transmission
    DE2653378A1 (en) DEVICE FOR THE AIRLESS SPRAYING OF LIQUIDS
    EP0762970B1 (en) Process and device for letting out air or gas from air or life jackets for divers
    EP3237124B1 (en) High-pressure cleaning device
    EP0402390A1 (en) Control arrangement for two-cylinder pumps for viscous liquids.
    DE3239596A1 (en) PRESSURE CONTROLLED TOOL
    DE3833484A1 (en) Drive device for an electrical switching apparatus
    DE2710561A1 (en) CRAFT MACHINE
    DE1253541B (en) Control spool with pressure-dependent reset
    DE4425223A1 (en) Process and device for releasing air or gas from diving life jackets and life jackets
    DE69420713T2 (en) DEVICE DRIVEN BY PRESSURE MEANS A LINEAR MOVEMENT
    DE4115488A1 (en) Hydraulic circuit to produce oscillations - has valve slide operated by fluid motor powered by pressure source
    DE2413531C3 (en) Pneumatically driven double-acting piston engine
    DE19652298A1 (en) Car body deep-drawing press pump with primary-loaded pistons
    DE859713C (en) Device for infinitely variable delivery rate control in piston pumps with constant speed
    DE3729898C2 (en)
    DE2908190C2 (en) Electromagnetic pump
    WO1995000251A1 (en) High pressure spraying device
    EP0078516A1 (en) Pumping device for simultaneously feeding at least two spray liquids in a choosable relationship to a spraying device
    DE654686C (en) Automatic control device for the propellant supply in piston-controlled compressed air motors of shaker slides depending on the load on the slide
    EP0494195B1 (en) Hydrostatic power steering device, especially for motor vehicles

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19960619

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: GFT GESELLSCHAFT FUER TAUCHTECHNIK MBH & CO. KG

    17Q First examination report despatched

    Effective date: 19971210

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

    Effective date: 19991110

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 19991110

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19991110

    REF Corresponds to:

    Ref document number: 186505

    Country of ref document: AT

    Date of ref document: 19991115

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 59408922

    Country of ref document: DE

    Date of ref document: 19991216

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    ITF It: translation for a ep patent filed

    Owner name: JACOBACCI & PERANI S.P.A.

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20000210

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20000210

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20000126

    ET Fr: translation filed
    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2141838

    Country of ref document: ES

    Kind code of ref document: T3

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000816

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IE

    Payment date: 20020717

    Year of fee payment: 9

    Ref country code: CH

    Payment date: 20020717

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20020729

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20020801

    Year of fee payment: 9

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030816

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030818

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030831

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030831

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030831

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20030905

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20030919

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20030922

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20030925

    Year of fee payment: 10

    BERE Be: lapsed

    Owner name: G.- FUR TAUCHTECHNIK M.B.H. & CO. K.G. *GFT

    Effective date: 20030831

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: MM4A

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040816

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040817

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050301

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20040816

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050429

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20050816

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20040817