EP0756017A1 - Aluminium-copper-magnesium alloy with high creep resistance - Google Patents
Aluminium-copper-magnesium alloy with high creep resistance Download PDFInfo
- Publication number
- EP0756017A1 EP0756017A1 EP96420235A EP96420235A EP0756017A1 EP 0756017 A1 EP0756017 A1 EP 0756017A1 EP 96420235 A EP96420235 A EP 96420235A EP 96420235 A EP96420235 A EP 96420235A EP 0756017 A1 EP0756017 A1 EP 0756017A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- alloy
- alloys
- creep
- creep resistance
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- -1 Aluminium-copper-magnesium Chemical compound 0.000 title 1
- 229910000861 Mg alloy Inorganic materials 0.000 title 1
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 61
- 239000000956 alloy Substances 0.000 claims abstract description 61
- 239000000203 mixture Substances 0.000 claims description 8
- 229910000838 Al alloy Inorganic materials 0.000 claims description 5
- 238000005242 forging Methods 0.000 claims description 4
- 238000009987 spinning Methods 0.000 claims description 4
- 238000010791 quenching Methods 0.000 claims description 3
- 230000000171 quenching effect Effects 0.000 claims description 3
- 238000005096 rolling process Methods 0.000 claims description 3
- 238000005496 tempering Methods 0.000 claims description 3
- 238000004090 dissolution Methods 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 abstract description 13
- 229910052759 nickel Inorganic materials 0.000 abstract description 12
- 229910052742 iron Inorganic materials 0.000 abstract description 9
- 229910052748 manganese Inorganic materials 0.000 abstract description 9
- 229910052709 silver Inorganic materials 0.000 abstract description 7
- 229910052802 copper Inorganic materials 0.000 abstract description 3
- 229910052726 zirconium Inorganic materials 0.000 abstract description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 25
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 20
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 12
- 239000010703 silicon Substances 0.000 description 12
- 239000011572 manganese Substances 0.000 description 9
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 6
- 239000004332 silver Substances 0.000 description 6
- 230000006872 improvement Effects 0.000 description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910002555 FeNi Inorganic materials 0.000 description 1
- 229910019018 Mg 2 Si Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011265 semifinished product Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
- C22C21/08—Alloys based on aluminium with magnesium as the next major constituent with silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
- C22C21/16—Alloys based on aluminium with copper as the next major constituent with magnesium
Definitions
- the invention relates to aluminum alloys of the 2000 series according to the designation of the Aluminum Association of the United States, of the AlCuMg type, exhibiting, after transformation by spinning, rolling or forging, very low creep deformation and a time at high rupture for temperatures between 100 and 150 ° C., while retaining properties of use at least equivalent to those of alloys of this type usually used for applications of the same kind.
- alloys of the AlCuMgFeNi type have a higher creep resistance than AlCuMg alloys with the same Cu and Mg content.
- First used in the form of molded, stamped or forged parts, such alloys have been adapted to the manufacture of high-strength sheets and used in particular for the fuselage of the Concorde supersonic aircraft. They correspond to designation 2618 of the Aluminum Association with the following composition ranges (% by weight): Cu: 1.9 - 2.7 Mg: 1.3 - 1.8 Fe: 0.9 - 1.3 Ni: 0.9 - 1.2 Si: 0.10 - 0.25 Ti: 0.04 - 0.10
- a variant which may contain up to 0.25% Mn and 0.25% Zr + Ti, has also been registered under the designation 2618A.
- the 2618 alloy used now for more than 20 years, does indeed have a creep resistance compatible with the flight conditions of a supersonic aircraft, but its resistance to crack propagation is somewhat insufficient, which requires monitoring. increased fuselage.
- patent FR 2279852 by CEGEDUR PECHINEY proposes an alloy with reduced iron and nickel content of the following composition (% by weight): Cu: 1.8 - 3 Mg: 1.2 - 2.7 Si ⁇ 0.3 Fe: 0.1 - 0.4 Ni + Co: 0.1 - 0.4 (Ni + Co) / Fe: 0.9 - 1.3
- the alloy may also contain Zr, Mn, Cr, V or Mo at contents of less than 0.4%, and optionally Cd, In, Sn or Be of less than 0.2% each, Zn of less than 8% or Ag less than 1%.
- K 1c stress concentration factor
- the subject of the invention is therefore an AlCuMg alloy making it possible to obtain, on a product wrought by spinning, rolling or forging, a creep deformation after 1000 h, at 150 ° C. and under a stress of 250 MPa, of less than 0, 3% and a time to breakage of at least 2500 h, composition (% by weight): Cu: 2.0 - 3.0 Mg: 1.5 - 2.1 Mn: 0.3 - 0.7 Zr ⁇ 0.15 If: 0.3 - 0.6 Fe ⁇ 0.3 Ni ⁇ 0.3 Ti ⁇ 0.15 other elements ⁇ 0.05 each and 0.15 in total Al balance.
- the alloy can also contain silver with a content of less than 1% and, in this case, this element can partially replace silicon and the sum If + 0.4Ag must be between 0.3 and 0.6%.
- Cu is preferably between 2.5 and 2.75% and Mg between 1.55 and 1.8%.
- the alloy according to the invention differs from that described in patent FR 2279852 by an even lower content of iron and nickel and by a higher content of silicon.
- the Applicant has found that it is possible to substitute for silicon a quantity 2.5 times greater than silver, which, taking into account the cost of this metal, is not of great economic interest. It has also found, and surprisingly, that the simultaneous addition of silicon and silver at contents such as Si + 0.4Ag is greater than 0.6% has an unfavorable influence on the creep resistance, in especially on the break time.
- the alloy according to the invention has a manganese content of between 0.3 and 0.7%. Manganese contributes to increase the mechanical characteristics. Alloy 2618 did not contain manganese (H. MARTINOD mentions in its article a content of 0.014% for an example of industrial alloy) undoubtedly so as not to disturb the formation of intermetallic compounds with iron and nickel Al 9 FeNi. It is probably for the same reason as the patent FR 2279852, if it mentions the possibility of an addition of manganese of at most 0.4%, this element being only one of the 11 optional addition elements, does not give any example of a composition containing manganese. This addition, up to a content of 0.7% beyond which appear harmful precipitates, is made possible by the limitation of iron and nickel and it corresponds to that of the high-strength alloy 2024 used for fuselages of subsonic aircraft.
- the tenacity of the alloys according to the invention is quite similar to that mentioned in patent FR 2279852, that is to say that it represents, for the stress concentration coefficient K 1c, a gain of 20 to 40%. compared to alloy 2618.
- the alloys according to the invention can be cast in the form of billets or plates by the conventional methods of casting alloys of the 2000 series, and transformed by spinning, hot and possibly cold rolling, stamping or forging, the semi-finished product thus obtained is usually heat treated by dissolution, quenching, optionally controlled traction to reduce residual stresses and tempering, to give it the mechanical characteristics required by the intended application.
- Alloy A contains manganese, unlike the alloys exemplified in the patent, which allows a better appreciation by comparison of the role of the other elements, in particular silicon.
- Alloys B, D and E contain silver.
- Alloy E is in accordance with the invention, but its Mg content is outside the preferred range.
- Alloy F is just below the lower limit for the sum Si + 0.4Ag and, moreover, outside the preferential zone for Mg.
- Alloy G is slightly above the upper limit for Si + 0.4Ag and alloy H is out of limits for Cu.
- the plates were then homogenized 24 h at 520 ° C, hot rolled, then cold rolled to the thickness of 1.6 mm, having a recrystallized metallurgical structure with fine grains after dissolving for 40 min at 530 ° C, traction controlled at 1.4% deformation, quenching and tempering from 19 h at 190 ° C.
- Creep tests were carried out according to ASTM E standard 139 and we measured, for a constraint of 250 MPa and a temperature of 150 ° C, the deformation after 1000 h, the minimum creep speed, that is to say the slope of the deformation curve in creep as a function time in the secondary creep zone, as well as the failure time, which is representative of the resistance to damage. The results are collated in Table 2.
- the alloys according to the invention all have a creep deformation at 1000 h less than 0.30%, a minimum creep speed less than 0.6 10 -9 per second and a failure time greater than 2500 h, while these values are respectively, both for 2618 and for the alloy according to FR 2279852 with the addition of manganese, of the order of 0.9 to 1%, 2.5 10 -9 s -1 and 1400 h.
- Alloys I and J have a manganese content close to the lower limit of the range, while that of alloy K is close to the upper limit.
- the plates were homogenized 24 h at 520 ° C, scalped and hot rolled to a thickness of 14 mm. Part of the sheets obtained was left at this thickness, and another part was cold rolled to 1.6 mm. The sheets were dissolved at 530 ° C. for 1 h for the 14 mm sheets and 40 min for the 1.6 mm sheets, then towed, soaked and returned 7 p.m. to 190 ° C.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Forging (AREA)
Abstract
Description
L'invention concerne des alliages d'aluminium de la série 2000 selon la désignation de l'Aluminum Association des Etats-Unis, du type AlCuMg, présentant, après transformation par filage, laminage ou forgeage, une très faible déformation au fluage et un temps à rupture élevé pour des températures comprises entre 100 et 150°C, tout en conservant des propriétés d'emploi au moins équivalentes à celles des alliages de ce type habituellement utilisés pour des applications de même nature.The invention relates to aluminum alloys of the 2000 series according to the designation of the Aluminum Association of the United States, of the AlCuMg type, exhibiting, after transformation by spinning, rolling or forging, very low creep deformation and a time at high rupture for temperatures between 100 and 150 ° C., while retaining properties of use at least equivalent to those of alloys of this type usually used for applications of the same kind.
On sait, depuis plusieurs dizaines d'années, que des alliages du type AlCuMgFeNi présentent une résistance au fluage plus élevée que les alliages AlCuMg à même teneur en Cu et Mg. D'abord utilisés sous forme de pièces moulées, matricées ou forgées, de tels alliages ont été adaptés à la fabrication de tôles à haute résistance et utilisés notamment pour le fuselage de l'avion supersonique Concorde. Ils correspondent à la désignation 2618 de l'Aluminum Association avec les fourchettes de composition suivantes (% en poids):
Cu: 1,9 - 2,7 Mg: 1,3 - 1,8 Fe: 0,9 - 1,3
Ni: 0,9 - 1,2 Si: 0,10 - 0,25 Ti: 0,04 - 0,10It has been known for several decades that alloys of the AlCuMgFeNi type have a higher creep resistance than AlCuMg alloys with the same Cu and Mg content. First used in the form of molded, stamped or forged parts, such alloys have been adapted to the manufacture of high-strength sheets and used in particular for the fuselage of the Concorde supersonic aircraft. They correspond to designation 2618 of the Aluminum Association with the following composition ranges (% by weight):
Cu: 1.9 - 2.7 Mg: 1.3 - 1.8 Fe: 0.9 - 1.3
Ni: 0.9 - 1.2 Si: 0.10 - 0.25 Ti: 0.04 - 0.10
Une variante, pouvant contenir jusqu'à 0,25% de Mn et 0,25% de Zr + Ti, a été également enregistrée sous la désignation 2618A.A variant, which may contain up to 0.25% Mn and 0.25% Zr + Ti, has also been registered under the designation 2618A.
L'alliage 2618, utilisé maintenant depuis plus de 20 ans, présente effectivement une résistance au fluage compatible avec les conditions de vol d'un avion supersonique, mais sa résistance à la propagation de fissures est un peu insuffisante, ce qui oblige à une surveillance accrue du fuselage.The 2618 alloy, used now for more than 20 years, does indeed have a creep resistance compatible with the flight conditions of a supersonic aircraft, but its resistance to crack propagation is somewhat insufficient, which requires monitoring. increased fuselage.
Dans le but de préparer un successeur à Concorde, on a cherché à modifier l'alliage 2618 pour améliorer sa résistance à la propagation de criques. Ainsi, le brevet FR 2279852 de CEGEDUR PECHINEY propose un alliage à teneur réduite en fer et nickel de composition suivante (% en poids):
Cu: 1,8 - 3 Mg: 1,2 - 2,7 Si < 0,3 Fe: 0,1 - 0,4
Ni + Co: 0,1 - 0,4 (Ni + Co)/Fe: 0,9 - 1,3In order to prepare a successor to Concorde, we sought to modify alloy 2618 to improve its resistance to the propagation of cracks. Thus, patent FR 2279852 by CEGEDUR PECHINEY proposes an alloy with reduced iron and nickel content of the following composition (% by weight):
Cu: 1.8 - 3 Mg: 1.2 - 2.7 Si <0.3 Fe: 0.1 - 0.4
Ni + Co: 0.1 - 0.4 (Ni + Co) / Fe: 0.9 - 1.3
L'alliage peut contenir également Zr, Mn, Cr, V ou Mo à des teneurs inférieures à 0,4%, et éventuellement Cd, In, Sn ou Be à moins de 0,2% chacun, Zn à moins de 8% ou Ag à moins de 1%. On obtient avec cet alliage une amélioration sensible du facteur de concentration de contraintes K1c représentatif de la résistance à la propagation de criques. Par contre, les résultats des essais de fluage aux températures de 100 et 175°C sont tout à fait comparables à ceux du 2618.The alloy may also contain Zr, Mn, Cr, V or Mo at contents of less than 0.4%, and optionally Cd, In, Sn or Be of less than 0.2% each, Zn of less than 8% or Ag less than 1%. With this alloy, a significant improvement is obtained in the stress concentration factor K 1c representative of the resistance to the propagation of cracks. On the other hand, the results of the creep tests at temperatures of 100 and 175 ° C are quite comparable to those of 2618.
Dans le cadre de l'étude d'un nouvel avion supersonique civil dont la vitesse et les conditions d'exploitation conduiront à une température de peau plus élevée pour le fuselage, mais aussi pour d'autres applications telles que des moules de plasturgie, des roues ou des structures de dégivrage d'avions ou des pièces de machines tournantes, il est apparu nécessaire de disposer d'un alliage présentant une résistance au fluage plus élevée que celle des alliages de l'art antérieur, c'est-à-dire une déformation totale sous contrainte très faible entre 100 et 150°C pour une durée supérieure à 60000 h, et une limitation de l'endommagement de fluage susceptible d'amorcer des fissurations de fatigue, se traduisant par un temps à rupture élevé, sans bien sûr détériorer les autres propriétés d'emploi telles que les caractéristiques mécaniques statiques ou la résistance à la corrosion.As part of the study of a new civilian supersonic aircraft whose speed and operating conditions will lead to a higher skin temperature for the fuselage, but also for other applications such as plastics molds, wheels or de-icing structures of aircraft or rotating machine parts, it appeared necessary to have an alloy having a higher creep resistance than that of the alloys of the prior art, that is to say total deformation under very low stress between 100 and 150 ° C for a period greater than 60,000 h, and a limitation of the creep damage liable to initiate fatigue cracks, resulting in a high failure time, without good sure to deteriorate the other properties of use such as static mechanical characteristics or resistance to corrosion.
L'invention a ainsi pour objet un alliage AlCuMg permettant d'obtenir sur un produit corroyé par filage, laminage ou forgeage, une déformation en fluage après 1000 h, à 150°C et sous une contrainte de 250 MPa, de moins de 0,3% et un temps à rupture d'au moins 2500 h, de composition (% en poids):
Cu: 2,0 - 3,0 Mg: 1,5 - 2,1 Mn: 0,3 - 0,7 Zr < 0,15
Si: 0,3 - 0,6 Fe < 0,3 Ni < 0,3 Ti < 0,15
autres éléments < 0,05 chacun et 0,15 au total balance Al. L'alliage peut comporter également de l'argent à une teneur inférieure à 1% et, dans ce cas, cet élément peut se substituer partiellement au silicium et la somme Si + 0,4Ag doit être comprise entre 0,3 et 0,6%.The subject of the invention is therefore an AlCuMg alloy making it possible to obtain, on a product wrought by spinning, rolling or forging, a creep deformation after 1000 h, at 150 ° C. and under a stress of 250 MPa, of less than 0, 3% and a time to breakage of at least 2500 h, composition (% by weight):
Cu: 2.0 - 3.0 Mg: 1.5 - 2.1 Mn: 0.3 - 0.7 Zr <0.15
If: 0.3 - 0.6 Fe <0.3 Ni <0.3 Ti <0.15
other elements <0.05 each and 0.15 in total Al balance. The alloy can also contain silver with a content of less than 1% and, in this case, this element can partially replace silicon and the sum If + 0.4Ag must be between 0.3 and 0.6%.
Cu est compris de préférence entre 2,5 et 2,75% et Mg entre 1,55 et 1,8%.Cu is preferably between 2.5 and 2.75% and Mg between 1.55 and 1.8%.
L'alliage selon l'invention se distingue de celui décrit dans le brevet FR 2279852 par une teneur encore plus réduite en fer et en nickel et par une teneur plus élevée en silicium.The alloy according to the invention differs from that described in patent FR 2279852 by an even lower content of iron and nickel and by a higher content of silicon.
Le fer et le nickel sont maintenus en dessous de 0,3% au lieu de 0,4% et il est même possible de supprimer totalement le nickel, ce qui présente un avantage certain pour le recyclage des déchets de fabrication en alliages courants de deuxième fusion. Cette réduction n'était pas suggérée par l'état de la technique. Ainsi, D. ADENIS et R. DEVELAY ont étudié l'influence du fer et du nickel sur la résistance au fluage dans l'article "Relation entre la résistance au fluage et la microstructure de l'AU2GN" paru dans les Mémoires scientifiques de la Revue de Métallurgie, n° 10, 1969 et ils ont montré que la résistance au fluage à 150°C d'un alliage sans Fe et Ni était plutôt moins bonne que celle d'un 2618. Le même article étudie également le rôle du silicium et montre que la résistance au fluage est optimale pour une teneur en silicium de 0,25%.Iron and nickel are kept below 0.3% instead of 0.4% and it is even possible to completely remove nickel, which is a definite advantage for the recycling of manufacturing waste into current second alloys fusion. This reduction was not suggested by the state of the art. Thus, D. ADENIS and R. DEVELAY studied the influence of iron and nickel on creep resistance in the article "Relation between creep resistance and microstructure of AU2GN" published in the Scientific Memoirs of the Revue de Métallurgie, n ° 10, 1969 and they showed that the creep resistance at 150 ° C of an alloy without Fe and Ni was rather worse than that of a 2618. The same article also studies the role of silicon and shows that the creep resistance is optimal for a silicon content of 0.25%.
De même, les études menées à l'ONERA par H. MARTINOD et J. CALVET sur l'alliage 2618 ("Sur la stabilité à chaud des alliages d'aluminium réfractaires du type AU2GN" Etude ONERA 1961) concluent qu'une teneur en silicium comprise entre 0,15 et 0,25% convient le mieux pour l'utilisation même très prolongée à 200°C, les teneurs supérieures en silicium jusqu'à 0,5% n'apportant aucune amélioration. D'autre part, le rôle métallurgique du silicium, présent dans la structure sous forme de solution solide ou de précipités Mg2Si, ne semble pas devoir être différent pour le 2618 et pour un alliage à bas fer et nickel. Ainsi, l'augmentation de la teneur en silicium vers des valeurs de l'ordre de 0,5% n'était pas du tout suggérée par la littérature sur le sujet ni par le raisonnement métallurgique.Similarly, the studies carried out at ONERA by H. MARTINOD and J. CALVET on alloy 2618 ("On the hot stability of refractory aluminum alloys of the AU2GN type" Study ONERA 1961) conclude that a content of silicon between 0.15 and 0.25% is best suited for even very prolonged use at 200 ° C, higher silicon contents up to 0.5% bringing no improvement. On the other hand, the metallurgical role of silicon, present in the structure in the form of a solid solution or of Mg 2 Si precipitates, does not seem to have to be different for 2618 and for an alloy with low iron and nickel. Thus, increasing the silicon content to values of the order of 0.5% was not at all suggested by the literature on the subject nor by metallurgical reasoning.
Le rôle favorable de l'argent dans la résistance au fluage des alliages AlCuMg est connu depuis de nombreuses années, en particulier pour les alliages de moulage, et il a fait l'objet d'études métallurgiques, par exemple les travaux de I.J. POLMEAR et M.J. COUPER "Design and development of an experimental wrought aluminum alloy for use at elevated temperatures" Metallurgical Transactions A, vol. 19A, avril 1988, pp. 1027-1035.The favorable role of silver in the creep resistance of AlCuMg alloys has been known for many years, in particular for casting alloys, and it has been the subject of metallurgical studies, for example the work of I.J. POLMEAR and M.J. COUPER "Design and development of an experimental wrought aluminum alloy for use at elevated temperatures" Metallurgical Transactions A, vol. 19A, April 1988, pp. 1027-1035.
La demanderesse a constaté qu'on pouvait substituer au silicium une quantité 2,5 fois supérieure d'argent, ce qui, compte-tenu du coût de ce métal, n'a pas grand intérêt économique. Elle a constaté par ailleurs, et de manière surprenante, que l'addition simultanée de silicium et d'argent à des teneurs telles que Si + 0,4Ag soit supérieur à 0,6% a une influence défavorable sur la résistance au fluage, en particulier sur le temps à rupture.The Applicant has found that it is possible to substitute for silicon a quantity 2.5 times greater than silver, which, taking into account the cost of this metal, is not of great economic interest. It has also found, and surprisingly, that the simultaneous addition of silicon and silver at contents such as Si + 0.4Ag is greater than 0.6% has an unfavorable influence on the creep resistance, in especially on the break time.
L'alliage selon l'invention a une teneur en manganèse comprise entre 0,3 et 0,7%. Le manganèse contribue à augmenter les caractéristiques mécaniques. L'alliage 2618 ne comportait pas de manganèse (H. MARTINOD mentionne dans son article une teneur de 0,014% pour un exemple d'alliage industriel) sans doute pour ne pas perturber la formation des composés intermétalliques au fer et au nickel Al9FeNi. C'est probablement pour la même raison que le brevet FR 2279852, s'il mentionne bien la possibilité d'une addition de manganèse d'au plus 0,4%, cet élément n'étant d'ailleurs que l'un des 11 éléments d'addition optionnels, ne donne aucun exemple de composition contenant du manganèse. Cette addition, jusqu'à une teneur de 0,7% au delà de laquelle apparaissent des précipités nuisibles, est rendue possible par la limitation du fer et du nickel et elle correspond à celle de l'alliage à haute résistance 2024 utilisé pour les fuselages d'avions subsoniques.The alloy according to the invention has a manganese content of between 0.3 and 0.7%. Manganese contributes to increase the mechanical characteristics. Alloy 2618 did not contain manganese (H. MARTINOD mentions in its article a content of 0.014% for an example of industrial alloy) undoubtedly so as not to disturb the formation of intermetallic compounds with iron and nickel Al 9 FeNi. It is probably for the same reason as the patent FR 2279852, if it mentions the possibility of an addition of manganese of at most 0.4%, this element being only one of the 11 optional addition elements, does not give any example of a composition containing manganese. This addition, up to a content of 0.7% beyond which appear harmful precipitates, is made possible by the limitation of iron and nickel and it corresponds to that of the high-strength alloy 2024 used for fuselages of subsonic aircraft.
La combinaison de ces différentes modifications, à savoir la limitation du fer et du nickel, l'augmentation de la teneur en silicium et la présence de manganèse, conduit à une augmentation inattendue de la résistance au fluage par rapport à l'alliage 2618 et par rapport à un alliage tel que décrit dans le brevet FR 2279852. Ainsi, lors d'essais sur tôles minces d'épaisseur 1,6 mm, d'une durée de 1000 h sous contrainte de 250 MPa à une température de 150°C, on obtient une déformation à 1000 h inférieure à 0,3% au lieu de 1%, une vitesse de fluage en régime secondaire inférieure à 10-9 s- 1 au lieu de 2,5 10-9 s-1 et un temps à rupture supérieur à 2500 h au lieu de moins de 1500 h. Or, la structure recristallisée à grains fins des tôles minces représente le cas le plus défavorable pour la tenue en fluage, en particulier pour la déformation sous contrainte, à cause de la déformation localisée aux joints de grains.The combination of these various modifications, namely the limitation of iron and nickel, the increase in the silicon content and the presence of manganese, leads to an unexpected increase in the creep resistance compared to alloy 2618 and by compared to an alloy as described in patent FR 2279852. Thus, during tests on thin sheets 1.6 mm thick, with a duration of 1000 h under stress of 250 MPa at a temperature of 150 ° C, a deformation at 1000 h is obtained of less than 0.3% instead of 1%, a creep rate in secondary regime less than 10 -9 s - 1 instead of 2.5 10 -9 s -1 and a time at failure greater than 2500 h instead of less than 1500 h. However, the fine-grain recrystallized structure of the thin sheets represents the most unfavorable case for the creep behavior, in particular for the deformation under stress, because of the localized deformation at the grain boundaries.
Ce dernier résultat est particulièrement intéressant, bien qu'il ait été rarement pris en compte dans les études antérieures sur le fluage des alliages d'aluminium. En effet, il est important, dans le cas d'une pièce de structure soumise à des contraintes cycliques, non seulement que la déformation au fluage soit faible, mais que la rupture soit la plus tardive possible. On retarde ainsi l'entrée de la courbe de fluage déformation-temps dans la phase dite "tertiaire", c'est-à-dire celle où la pente de la courbe se remet à augmenter et où s'amorce la rupture, avec l'apparition de fissures de fluage conduisant, à cette température, à une faible résistance en fatigue.This last result is particularly interesting, although it has rarely been taken into account in previous studies on the creep of aluminum alloys. Indeed, it is important, in the case of a structural part subjected to cyclic stresses, not only that the creep deformation is low, but that the rupture is as late as possible. We thus delay the entry of the strain-time creep curve in the so-called "tertiary" phase, that is to say the one where the slope of the curve starts to increase again and where the rupture begins, with l appearance of creep cracks leading, at this temperature, to a low resistance to fatigue.
La tenacité des alliages selon l'invention est tout à fait semblable à celle mentionnée dans le brevet FR 2279852, c'est-à-dire qu'elle représente, pour le coefficient de concentration de contrainte K1c un gain de 20 à 40% par rapport à l'alliage 2618.The tenacity of the alloys according to the invention is quite similar to that mentioned in patent FR 2279852, that is to say that it represents, for the stress concentration coefficient K 1c, a gain of 20 to 40%. compared to alloy 2618.
Les alliages selon l'invention peuvent être coulés sous forme de billettes ou de plaques par les procédés classiques de coulée des alliages de la série 2000, et transformés par filage, laminage à chaud et éventuellement à froid, matriçage ou forgeage, le demi-produit ainsi obtenu étant habituellement traité thermiquement par mise en solution, trempe, éventuellement traction contrôlée pour diminuer les contraintes résiduelles et revenu, pour lui conférer les caractéristiques mécaniques requises par l'application envisagée.The alloys according to the invention can be cast in the form of billets or plates by the conventional methods of casting alloys of the 2000 series, and transformed by spinning, hot and possibly cold rolling, stamping or forging, the semi-finished product thus obtained is usually heat treated by dissolution, quenching, optionally controlled traction to reduce residual stresses and tempering, to give it the mechanical characteristics required by the intended application.
On a coulé des plaques en alliage 2618, en alliage A selon le brevet FR 2279852, en 4 alliages B, C, D et E selon l'invention et 3 alliages F, G et H hors invention. Les compositions chimiques des alliages sont indiquées au tableau 1. L'alliage A contient du manganèse contrairement aux alliages exemplifiés dans le brevet, ce qui permet de mieux apprécier par comparaison le rôle des autres éléments, en particulier le silicium. Les alliages B, D et E contiennent de l'argent. L'alliage E est conforme à l'invention, mais sa teneur en Mg est en dehors du domaine préférentiel. L'alliage F est juste en dessous de la limite inférieure pour la somme Si + 0,4Ag et, de plus, en dehors de la zone préférentielle pour Mg. L'alliage G est un peu au dessus de la limite supérieure pour Si + 0,4Ag et l'alliage H est hors limites pour Cu.Plates of alloy 2618, of alloy A according to patent FR 2279852, were cast in 4 alloys B, C, D and E according to the invention and 3 alloys F, G and H outside the invention. The chemical compositions of the alloys are indicated in Table 1. Alloy A contains manganese, unlike the alloys exemplified in the patent, which allows a better appreciation by comparison of the role of the other elements, in particular silicon. Alloys B, D and E contain silver. Alloy E is in accordance with the invention, but its Mg content is outside the preferred range. Alloy F is just below the lower limit for the sum Si + 0.4Ag and, moreover, outside the preferential zone for Mg. Alloy G is slightly above the upper limit for Si + 0.4Ag and alloy H is out of limits for Cu.
Les plaques ont été ensuite homogénéisées 24 h à 520°C, laminées à chaud, puis à froid jusqu'à l'épaisseur de 1,6 mm, présentant une structure métallurgique recristallisée à grains fins après mise en solution de 40 mn à 530°C, traction contrôlée à 1,4% de déformation, trempe et revenu de 19 h à 190°C.The plates were then homogenized 24 h at 520 ° C, hot rolled, then cold rolled to the thickness of 1.6 mm, having a recrystallized metallurgical structure with fine grains after dissolving for 40 min at 530 ° C, traction controlled at 1.4% deformation, quenching and tempering from 19 h at 190 ° C.
Des essais de fluage ont été réalisés selon la norme ASTM E 139 et on a mesuré, pour une contrainte de 250 MPa et une température de 150°C, la déformation après 1000 h, la vitesse de fluage minimum, c'est-à-dire la pente de la courbe de déformation en fluage en fonction du temps dans la zone secondaire de fluage, ainsi que le temps à rupture, qui est représentatif de la résistance à l'endommagement. Les résultats sont rassemblés dans le tableau 2.Creep tests were carried out according to ASTM E standard 139 and we measured, for a constraint of 250 MPa and a temperature of 150 ° C, the deformation after 1000 h, the minimum creep speed, that is to say the slope of the deformation curve in creep as a function time in the secondary creep zone, as well as the failure time, which is representative of the resistance to damage. The results are collated in Table 2.
On constate que les alliages selon l'invention présentent tous une déformation au fluage à 1000 h inférieure à 0,30%, une vitesse minimum de fluage inférieure à 0,6 10-9 par seconde et un temps à rupture supérieur à 2500 h, alors que ces valeurs sont respectivement, aussi bien pour le 2618 que pour l'alliage selon FR 2279852 avec addition de manganèse, de l'ordre de 0,9 à 1%, 2,5 10-9 s-1 et 1400 h.It is found that the alloys according to the invention all have a creep deformation at 1000 h less than 0.30%, a minimum creep speed less than 0.6 10 -9 per second and a failure time greater than 2500 h, while these values are respectively, both for 2618 and for the alloy according to FR 2279852 with the addition of manganese, of the order of 0.9 to 1%, 2.5 10 -9 s -1 and 1400 h.
On constate également le caractère critique des limites de la somme Si + 0,4Ag, la déformation et le temps à rupture étant très dégradés en dessous de la limite inférieure et le temps à rupture étant également dégradé au dessus de la limite supérieure de 0,6%. On voit enfin l'intérêt des fourchettes préférentielles de composition pour Cu et Mg.We also note the critical nature of the limits of the sum Si + 0.4Ag, the deformation and the break time being very degraded below the lower limit and the break time being also degraded above the upper limit of 0, 6%. We finally see the interest of the preferential ranges of composition for Cu and Mg.
On a coulé des plaques en alliage 2618, en alliage A de l'exemple précédent et en 3 autres alliages selon l'invention I, J et K dont la composition chimique est donnée au tableau 3. Ces alliages ne contiennent pas d'argent et l'alliage J ne contient pas du tout de nickel. Les alliages I et J ont une teneur en manganèse proche de la limite basse de la fourchette, alors que celle de l'alliage K est proche de la limite haute.Plates were cast of alloy 2618, of alloy A of the previous example and of 3 other alloys according to the invention I, J and K, the chemical composition of which is given in Table 3. These alloys do not contain silver and alloy J does not contain nickel at all. Alloys I and J have a manganese content close to the lower limit of the range, while that of alloy K is close to the upper limit.
Les plaques ont été homogénéisées 24 h à 520°C, scalpées et laminées à chaud jusqu'à une épaisseur de 14 mm. Une partie des tôles obtenues a été laissée à cette épaisseur, et une autre partie a été laminée à froid jusqu'à 1,6 mm. Les tôles ont été mises en solution à 530°C pendant 1 h pour les tôles de 14 mm et 40 mn pour les tôles de 1,6 mm, puis tractionnées, trempées et revenues 19 h à 190°C.The plates were homogenized 24 h at 520 ° C, scalped and hot rolled to a thickness of 14 mm. Part of the sheets obtained was left at this thickness, and another part was cold rolled to 1.6 mm. The sheets were dissolved at 530 ° C. for 1 h for the 14 mm sheets and 40 min for the 1.6 mm sheets, then towed, soaked and returned 7 p.m. to 190 ° C.
On a mesuré sur ces tôles la limite d'élasticité à 0,2% R0,2, la charge de rupture Rm et l'allongement à la rupture A. Ces résultats sont indiqués au tableau 4. Ils montrent que la limite d'élasticité et la charge de rupture sont pratiquement les mêmes pour les 5 alliages, et que l'allongement des tôles en alliages selon l'invention est légèrement supérieur à celui des tôles en 2618 ou en alliage A.The elastic limit at 0.2% R 0.2 , the breaking load Rm and the elongation at break A were measured on these sheets. These results are shown in Table 4. They show that the limit of elasticity and breaking load are practically the same for the 5 alloys, and that the elongation of the sheets of alloys according to the invention is slightly greater than that of the sheets of 2618 or of alloy A.
On a ensuite mesuré la vitesse de fluage minimum à 150°C (pour les tôles de 1,6 mm seulement) et à 175°C sous 250 MPa, comme dans l'exemple précédent. Les résultats sont reportés au tableau 5, qui montre une amélioration très sensible de la résistance au fluage des alliages selon l'invention par rapport à ceux de l'art antérieur, et particulièrement à 175°C. Enfin, la tenacité des tôles en alliages selon l'invention (environ 125 MPavm pour l'épaisseur 1,6 mm) est tout à fait comparable à celle de l'alliage A.
Claims (6)
Cu: 2,0 - 3,0 Mg: 1,5 - 2,1 Mn: 0,3 - 0,7
Fe < 0,3 Ni < 0,3 Ag < 1,0 Zr < 0,15 Ti 0,15
avec Si tel que: 0,3 < Si + 0,4Ag < 0,6
autres éléments < 0,05 chacun et < 0,15 au total.Aluminum alloy with high creep resistance presenting in the wrought state and treated by dissolution, quenching and tempering, a creep deformation at 1000 h at 150 ° C under 250 MPa of less than 0.3% and a time breakage of at least 2500 h of composition (% by weight):
Cu: 2.0 - 3.0 Mg: 1.5 - 2.1 Mn: 0.3 - 0.7
Fe <0.3 Ni <0.3 Ag <1.0 Zr <0.15 Ti 0.15
with Si such that: 0.3 <Si + 0.4Ag <0.6
other items <0.05 each and <0.15 in total.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9509443A FR2737225B1 (en) | 1995-07-28 | 1995-07-28 | AL-CU-MG ALLOY WITH HIGH FLUID RESISTANCE |
FR9509443 | 1995-07-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0756017A1 true EP0756017A1 (en) | 1997-01-29 |
EP0756017B1 EP0756017B1 (en) | 2001-08-29 |
Family
ID=9481669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96420235A Expired - Lifetime EP0756017B1 (en) | 1995-07-28 | 1996-07-10 | Aluminium-copper-magnesium alloy with high creep resistance |
Country Status (5)
Country | Link |
---|---|
US (1) | US5738735A (en) |
EP (1) | EP0756017B1 (en) |
JP (1) | JPH09165640A (en) |
DE (1) | DE69614788T2 (en) |
FR (1) | FR2737225B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0989195A1 (en) * | 1998-09-25 | 2000-03-29 | Alusuisse Technology & Management AG | Heat resisting aluminium alloy of the type AlCuMg |
WO2012140337A1 (en) | 2011-04-15 | 2012-10-18 | Constellium France | Aluminium-copper-magnesium alloys that perform well at high temperature |
CN113322400A (en) * | 2020-02-28 | 2021-08-31 | 株式会社神户制钢所 | Aluminum alloy forged material and method for producing same |
WO2021245345A1 (en) | 2020-06-04 | 2021-12-09 | Constellium Issoire | Use of products made from aluminium copper magnesium alloy that perform well at high temperature |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6368427B1 (en) | 1999-09-10 | 2002-04-09 | Geoffrey K. Sigworth | Method for grain refinement of high strength aluminum casting alloys |
US6645321B2 (en) | 1999-09-10 | 2003-11-11 | Geoffrey K. Sigworth | Method for grain refinement of high strength aluminum casting alloys |
US20030026725A1 (en) * | 2001-07-30 | 2003-02-06 | Sawtell Ralph R. | Alloy composition for making blister-free aluminum forgings and parts made therefrom |
DE10163039C1 (en) * | 2001-12-21 | 2003-07-24 | Daimler Chrysler Ag | Hot and cold formable component made of an aluminum alloy and process for its production |
US20050034794A1 (en) * | 2003-04-10 | 2005-02-17 | Rinze Benedictus | High strength Al-Zn alloy and method for producing such an alloy product |
DE112004000603B4 (en) | 2003-04-10 | 2022-11-17 | Novelis Koblenz Gmbh | Al-Zn-Mg-Cu alloy |
US7883591B2 (en) * | 2004-10-05 | 2011-02-08 | Aleris Aluminum Koblenz Gmbh | High-strength, high toughness Al-Zn alloy product and method for producing such product |
US20070151636A1 (en) * | 2005-07-21 | 2007-07-05 | Corus Aluminium Walzprodukte Gmbh | Wrought aluminium AA7000-series alloy product and method of producing said product |
US20070204937A1 (en) * | 2005-07-21 | 2007-09-06 | Aleris Koblenz Aluminum Gmbh | Wrought aluminium aa7000-series alloy product and method of producing said product |
FR2907796B1 (en) * | 2006-07-07 | 2011-06-10 | Aleris Aluminum Koblenz Gmbh | ALUMINUM ALLOY PRODUCTS OF THE AA7000 SERIES AND METHOD FOR MANUFACTURING THE SAME |
US8088234B2 (en) * | 2006-07-07 | 2012-01-03 | Aleris Aluminum Koblenz Gmbh | AA2000-series aluminum alloy products and a method of manufacturing thereof |
EP2149618B1 (en) * | 2008-07-30 | 2011-10-26 | Olab S.r.l. | Hot pressing process, particularly for providing metal unions for pneumatic, hydraulic and fluid-operated circuits, and metal union obtained thereby |
US9347558B2 (en) | 2010-08-25 | 2016-05-24 | Spirit Aerosystems, Inc. | Wrought and cast aluminum alloy with improved resistance to mechanical property degradation |
JP5879181B2 (en) * | 2011-06-10 | 2016-03-08 | 株式会社神戸製鋼所 | Aluminum alloy with excellent high temperature characteristics |
US10266933B2 (en) | 2012-08-27 | 2019-04-23 | Spirit Aerosystems, Inc. | Aluminum-copper alloys with improved strength |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE735314C (en) * | 1937-06-29 | 1943-05-12 | Ernst Heinkel Flugzeugwerke G | Use of aluminum alloys as a material for rivets |
FR2087439A5 (en) * | 1970-05-20 | 1971-12-31 | British Aluminium Co Ltd | Aluminium alloys suitable for eloxation - for decorative applications |
FR2279852A1 (en) * | 1974-07-23 | 1976-02-20 | Cegedur | ALUMINUM ALLOY WITH GOOD CREEP RESISTANCE AND IMPROVED CRICK PROPAGATION RESISTANCE |
US4000007A (en) * | 1973-02-13 | 1976-12-28 | Cegedur Societe De Transformation De L'aluminium Pechiney | Method of making drawn and hemmed aluminum sheet metal and articles made thereby |
US4062704A (en) * | 1976-07-09 | 1977-12-13 | Swiss Aluminium Ltd. | Aluminum alloys possessing improved resistance weldability |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5376192A (en) * | 1992-08-28 | 1994-12-27 | Reynolds Metals Company | High strength, high toughness aluminum-copper-magnesium-type aluminum alloy |
-
1995
- 1995-07-28 FR FR9509443A patent/FR2737225B1/en not_active Expired - Fee Related
-
1996
- 1996-07-10 DE DE69614788T patent/DE69614788T2/en not_active Expired - Lifetime
- 1996-07-10 EP EP96420235A patent/EP0756017B1/en not_active Expired - Lifetime
- 1996-07-25 US US08/686,031 patent/US5738735A/en not_active Expired - Lifetime
- 1996-07-29 JP JP8214972A patent/JPH09165640A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE735314C (en) * | 1937-06-29 | 1943-05-12 | Ernst Heinkel Flugzeugwerke G | Use of aluminum alloys as a material for rivets |
FR2087439A5 (en) * | 1970-05-20 | 1971-12-31 | British Aluminium Co Ltd | Aluminium alloys suitable for eloxation - for decorative applications |
US4000007A (en) * | 1973-02-13 | 1976-12-28 | Cegedur Societe De Transformation De L'aluminium Pechiney | Method of making drawn and hemmed aluminum sheet metal and articles made thereby |
FR2279852A1 (en) * | 1974-07-23 | 1976-02-20 | Cegedur | ALUMINUM ALLOY WITH GOOD CREEP RESISTANCE AND IMPROVED CRICK PROPAGATION RESISTANCE |
US4062704A (en) * | 1976-07-09 | 1977-12-13 | Swiss Aluminium Ltd. | Aluminum alloys possessing improved resistance weldability |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0989195A1 (en) * | 1998-09-25 | 2000-03-29 | Alusuisse Technology & Management AG | Heat resisting aluminium alloy of the type AlCuMg |
WO2012140337A1 (en) | 2011-04-15 | 2012-10-18 | Constellium France | Aluminium-copper-magnesium alloys that perform well at high temperature |
US9869008B2 (en) | 2011-04-15 | 2018-01-16 | Constellium Issoire | High-temperature efficient aluminum copper magnesium alloys |
CN113322400A (en) * | 2020-02-28 | 2021-08-31 | 株式会社神户制钢所 | Aluminum alloy forged material and method for producing same |
WO2021245345A1 (en) | 2020-06-04 | 2021-12-09 | Constellium Issoire | Use of products made from aluminium copper magnesium alloy that perform well at high temperature |
FR3111143A1 (en) | 2020-06-04 | 2021-12-10 | Constellium Issoire | High temperature performance aluminum copper magnesium alloy products |
Also Published As
Publication number | Publication date |
---|---|
DE69614788T2 (en) | 2002-05-23 |
FR2737225A1 (en) | 1997-01-31 |
DE69614788D1 (en) | 2001-10-04 |
JPH09165640A (en) | 1997-06-24 |
EP0756017B1 (en) | 2001-08-29 |
US5738735A (en) | 1998-04-14 |
FR2737225B1 (en) | 1997-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0756017B1 (en) | Aluminium-copper-magnesium alloy with high creep resistance | |
EP2449142B1 (en) | Aluminium-copper-lithium alloy with improved mechanical resistance and toughness | |
EP0787217B1 (en) | METHOD FOR MAKING AlSiMgCu ALLOY PRODUCTS HAVING ENHANCED INTERCRYSTALLINE CORROSION RESISTANCE | |
FR2826979A1 (en) | Weldable rolled product of high strength aluminum alloy for structural aircraft components contains silicon, copper, manganese, magnesium, iron, zirconium, chromium, zinc, titanium, vanadium and aluminum | |
FR2827614A1 (en) | Welded weldable products of high resistance aluminum alloy used in aircraft contain cerium preferably added as a mischmetal | |
EP3384061B1 (en) | Aluminium-copper-lithium alloy having improved mechanical strength and improved toughness | |
EP3384060B1 (en) | Highly rigid thin sheet metal for car body | |
EP0292411B1 (en) | Aluminium alloy for thin sheets suitable for making lids and bodies of cans, and process for producing said sheets | |
EP0259232B1 (en) | Easily workable and weldable aluminium alloy, and process for its manufacture | |
CA2470221A1 (en) | Pressure-cast component made of highly ductile and resilient aluminium ally | |
EP3411508B1 (en) | Thick al - cu - li - alloy sheets having improved fatigue properties | |
WO2020074818A1 (en) | Metal sheet made of high-strength 2xxx alloy for an aircraft fuselage | |
FR2859484A1 (en) | Cast aluminum alloy component with high flow resistance for use in turbo-charged petrol and diesel engines, e.g. pistons for internal combustion engines | |
JPH083675A (en) | Aluminum alloy for forging | |
JP2743709B2 (en) | Aluminum alloy for extrusion and forging | |
FR2875817A1 (en) | Extruded rod used in the production of a forged piston in combustion engines is made from an aluminum alloy containing alloying additions of silicon, copper, magnesium, chromium, nickel and titanium | |
WO2023187301A1 (en) | Recycled 6xxx alloy sheet and manufacturing process | |
JPH01268839A (en) | Aluminum alloy for working | |
JPH0543778B2 (en) | ||
FR2857377A1 (en) | Aluminium alloy for rolled products with a high capacity of absorption of kinetic energy by plastic deformation, notably for motor vehicle components | |
JPH042740A (en) | Aluminum alloy for forging | |
JPH07216486A (en) | Aluminum alloy for squeeze casting | |
FR3132306A1 (en) | Aluminum-Copper-Lithium Alloy Enhanced Thin Sheet | |
CH229887A (en) | Aluminum alloy. | |
JPH07103455B2 (en) | Method for manufacturing aluminum-based bearing alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
17P | Request for examination filed |
Effective date: 19970707 |
|
17Q | First examination report despatched |
Effective date: 19990426 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REF | Corresponds to: |
Ref document number: 69614788 Country of ref document: DE Date of ref document: 20011004 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20011117 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Owner name: CONSTELLIUM FRANCE, FR Effective date: 20111123 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 69614788 Country of ref document: DE Representative=s name: BEETZ & PARTNER PATENT- UND RECHTSANWAELTE, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 69614788 Country of ref document: DE Representative=s name: BEETZ & PARTNER PATENT- UND RECHTSANWAELTE, DE Effective date: 20120622 Ref country code: DE Ref legal event code: R081 Ref document number: 69614788 Country of ref document: DE Owner name: CONSTELLIUM FRANCE, FR Free format text: FORMER OWNER: PECHINEY RHENALU, COURBEVOIE, FR Effective date: 20120622 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20120727 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 69614788 Country of ref document: DE Effective date: 20140201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140201 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Owner name: CONSTELLIUM ISSOIRE, FR Effective date: 20150915 Ref country code: FR Ref legal event code: CA Effective date: 20150915 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20150727 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20150717 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20160709 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20160709 |