EP0753671B1 - Herstellungsverfahren für Elemente von schwimmenden, starren Mikrostrukturen und Vorrichtung, die mit solchen Elementen ausgerüstet ist - Google Patents

Herstellungsverfahren für Elemente von schwimmenden, starren Mikrostrukturen und Vorrichtung, die mit solchen Elementen ausgerüstet ist Download PDF

Info

Publication number
EP0753671B1
EP0753671B1 EP96401540A EP96401540A EP0753671B1 EP 0753671 B1 EP0753671 B1 EP 0753671B1 EP 96401540 A EP96401540 A EP 96401540A EP 96401540 A EP96401540 A EP 96401540A EP 0753671 B1 EP0753671 B1 EP 0753671B1
Authority
EP
European Patent Office
Prior art keywords
layer
etching
sacrificial material
floating
rigidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96401540A
Other languages
English (en)
French (fr)
Other versions
EP0753671A1 (de
Inventor
Michel Vilain
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0753671A1 publication Critical patent/EP0753671A1/de
Application granted granted Critical
Publication of EP0753671B1 publication Critical patent/EP0753671B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00642Manufacture or treatment of devices or systems in or on a substrate for improving the physical properties of a device
    • B81C1/0065Mechanical properties
    • B81C1/00658Treatments for improving the stiffness of a vibrating element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0064Constitution or structural means for improving or controlling the physical properties of a device
    • B81B3/0067Mechanical properties
    • B81B3/007For controlling stiffness, e.g. ribs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15CFLUID-CIRCUIT ELEMENTS PREDOMINANTLY USED FOR COMPUTING OR CONTROL PURPOSES
    • F15C5/00Manufacture of fluid circuit elements; Manufacture of assemblages of such elements integrated circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/20Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0118Cantilevers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0102Surface micromachining
    • B81C2201/0105Sacrificial layer
    • B81C2201/0109Sacrificial layers not provided for in B81C2201/0107 - B81C2201/0108
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/03Processes for manufacturing substrate-free structures
    • B81C2201/038Processes for manufacturing substrate-free structures not provided for in B81C2201/034 - B81C2201/036

Definitions

  • the present invention relates to a method for manufacturing floating microstructure elements and to a device equipped with such elements.
  • floating microstructure is meant a part of a micromechanical device which is suspended or free from a substrate.
  • the invention finds applications so general in the field of manufacturing micromechanical devices machined on substrates, such as micromotors, micromachines, sensors, and in particular microbolometers.
  • microstructures are usually produced by lithography and engraving techniques which allow to form a layer of material, or a stack of layers that makes up the body of the microstructure.
  • the manufacturing of microstructures and more generally micromechanical devices includes, in a first, achieving a stack in which the microstructure is machined.
  • This stacking has a first support layer on which deposits or grows a layer of material sacrificial, organic or mineral in nature.
  • Forming then on the sacrificial layer one or more layers, usually thin layers, in which is formed the body of the microstructure.
  • microstructure The shape of the microstructure is defined in these layers by lithography techniques and engraving already mentioned. Finally, total elimination or partial sacrificial material allows release total or partial, of the microstructure (s) carried out (s).
  • microstructure elements can be fully free, such as for example the rotors of micromotors, or more or less supported rigid by membranes or reservations provided at this effect.
  • FIG. 1 schematically illustrates the essential building blocks of such microbolometer.
  • This has a central area 10 provided with a radiation-sensitive material, suitable for generate an electrical signal in response to detection of radiation. This signal varies with temperature of the central zone 10, which is itself a function of the absorption of the illumination energy it receives by means of optical means not shown.
  • a radiation-sensitive material suitable for generate an electrical signal in response to detection of radiation. This signal varies with temperature of the central zone 10, which is itself a function of the absorption of the illumination energy it receives by means of optical means not shown.
  • the central zone 10 of the microbolometer is connected to rigid mechanical supports 12 by through suspension beams 14.
  • the mechanical supports 12 are integral with the substrate of support which is not represented in FIG. 1 in a concern for simplification.
  • Suspension beams usually have several functions.
  • a first mechanical function is to keep the central zone 10 suspended above of the support substrate to avoid contact direct mechanics between these parts, likely to cause loss of thermal energy.
  • the role of mechanical maintenance of the area central 10, provided by beams 14 is added that the precise positioning of the central zone 10 by relation to the substrate.
  • to improve the optical absorption efficiency of the central area of the bolometer check the spacing between this area and the surface of the underlying support substrate.
  • Another function of beams is to make electrical connections to transmit the electrical signal produced by active components from the central zone 10 to reading circuits and measurement devices, formed for example on the same support substrate (not shown).
  • suspension beams Another function or characteristic of suspension beams is to constitute insulators between the central zone 10 and the supports mechanical 12 integral with the substrate. Indeed, the beams 14 must have thermal resistance maximum between their ends 16 and 18 in contact respectively with zone 10 and supports 12 isotherms with the substrate.
  • Thermal insulation of the central zone 10 relative to the supports 12 is indeed essential to maximize its thermal excursion under the effect of lighting and prevent thermal energy from diffuses towards the substrate which constitutes a mass quasi-infinite thermal compared to the central zone 10.
  • the beams 14 have, in accordance with state of the art, simply rectangular sections or trapezoidal, of thickness e, of width l.
  • a cross section II-II of the beam 14 is shown on a larger scale in Figure 2, in specifying these dimensions.
  • the beams which can themselves be considered as floating microstructure elements comprise one or more stacked layers of material.
  • the lack of robustness translates, for the essential, by an increased sensitivity to various mechanical attack that the structure is susceptible to to undergo during or after the last stages of his manufacturing, and, in particular, after release floating parts by attack of the layer sacrificial.
  • the lack of robustness translates also by less resistance of structures to acceleration and vibration.
  • Robustness defects imply a decrease in manufacturing yield, and therefore a cost higher bolometer devices and a limitation of their performance, in terms of ratio signal to noise, and in terms of service life.
  • the flexural strength is characterized by the arrow at the end of the beam under the application of a force F at the free end of the beam, perpendicular to its length , the other end, integral with the substrate, being held rigidly.
  • Resistance to bending and breaking support beams therefore decrease extremely quickly when we try to maximize the thermal resistance, that is to say when trying to reduce the width and / or the thickness of the beams, and / or to increase their length.
  • An object of the present invention is to provide a method of manufacturing microstructure elements floating and rigid without limitations mentioned above.
  • Another object is to propose a micromechanical device with a floating structure held by beams, the beams having improved rigidity characteristics. Yet another object is to propose beams for the suspension of the sensitive area of a microbolometer, which have good rigidity, good resistance to torsion, which are electrically conductive for transferring signals, and which have a thermal resistance R th high.
  • the microstructure element thus consists of the structural layer (s) and the lining of rigidity which increases its resistance to bending and twist.
  • the increased rigidity of the microstructure reduces the thickness and / or the width in particular of the layer (s) of structure and thus increase its resistance thermal.
  • the formation of a relief structure with sides side also has the engraving of the second structural layer and at least part of the second layer of sacrificial material, and the first structure layer is removed after the formation of the stiffness layer on the lateral flanks.
  • the method may further comprise between the steps a) and b) etching the second layer of structure and at least part of the second sacrificial layer according to the pattern correspond to the location of the beams and then eliminating the first layer of structure.
  • the present invention therefore provides the different cases where the engravings of the first layer of sacrificial material and that of the second layer of sacrificial material are isotropic or anisotropic.
  • a mask defining the etching pattern it is possible to form, prior to step a), method, a mask defining the etching pattern.
  • This mask can be removed, for example, before stiffness pad formation.
  • the present invention also relates to a micromechanical device comprising a substrate of support, a floating structure separate from the substrate and at least one suspension beam connecting the structure floating on the substrate, characterized in that the beam has side edges fitted with fittings rigidity extending along the edges of the beam and, beyond the edges, in directions substantially perpendicular to the axis of the beam.
  • the beam, fitted with fittings has thus a substantially U or H section which provides better rigidity.
  • the beam may include a alternating stack of at least one layer of material electrically conductive and at least one layer of electrically insulating material.
  • the floating structure of the device is the sensitive part of a microbolometer.
  • This floating structure can also be fitted on its side edges with fittings of rigidity, for example in the form of a frame of rigidity.
  • FIG. 3 to 7 A first example of implementation of the method of the invention is illustrated by Figures 3 to 7. Two very similar variants of implementation of the process are explained in the context of Example 1. They are distinguished by the figure numbers ending with A, respectively with B. The numbers of figures ending neither with A nor with B applying indifferently to the two variants.
  • Figure 3 shows the fabrication of a substrate for implementing the method of the invention according to a first mode.
  • a first layer of sacrificial material 102 then one or more layers of material that form a first layer 104, called "structural" in which are subsequently machined the microstructure (s).
  • the layer 104 may for example be a layer of silicon, silicon oxide, silicon nitride, metal or an overlay of layers of materials previously cited.
  • the support layer 100 can also be used substrate for manufacturing a circuit or elements of a microelectronics circuit, the function, measurement for example, is associated with the micromechanical structure produced in the layer 104. This measurement circuit is not shown on the figures for reasons of clarity.
  • the sacrificial layer 102 can be produced made of a material such as, for example, silicon or an organic material such as polyimide.
  • a next step in the process is the implementation shape of layer 104 according to an etching pattern.
  • This pattern can be, for example, conformed to the shape of the sensitive part of a microbolometer comprising beams called support arms, as shown in Figure 1.
  • the engraving pattern is defined by a mask. resin 106 deposited on layer 104. The parts of the layer 104 not protected by the mask 106 are then removed by etching.
  • the sacrificial material layer is also subjected to an engraving during which its parts not protected by the mask 106 or by the layer 104 remaining are partially eliminated. This step is illustrated in Figures 4A and 4B.
  • a relief structure 108 according to the engraving pattern, that is, according to the pattern of the element of microstructure that we want to achieve.
  • the structure in relief 108 has one or more lateral flanks 110a, 110b.
  • FIGS. 4A and 4B show the structure in relief 108 obtained respectively with an engraving anisotropic layer 102 of sacrificial material and with an isotropic etching of this layer.
  • the blanks 110a and 110b have recesses extending locally under layer 104.
  • an isotropic etching can be carried out by an attack with hydrofluoric acid FH in aqueous phase or in vapor phase.
  • An anisotropic etching can be a reactive ion etching of the RIE (Reactive Ion Etching) type with gaseous fluorocarbons of the CHF 3 , C 2 F 6 type , for example.
  • an isotropic etching can be carried out using an oxygen plasma or by exposure of the layer to ozone.
  • An anisotropic etching can also be reactive etching of the RIE type with O 2 gases or an O 2 + SF 6 mixture. It may be noted that in the case of an isotropic or anisotropic etching of the layer of sacrificial material under the above conditions, the resin mask 106 is also eliminated, at least partially.
  • one (or several) layer (s) of material 112 which covers (s) in particular the sides 110a and 110b of the structure in relief.
  • Layer 112 covers all surfaces free in the most consistent and uniform way possible.
  • a diaper silicon nitride can also be formed by deposition chemical vapor phase at low pressure according to a LPCVD type technique (Low Pressure Chemical Vapor Deposition). Such a deposit is made at a higher temperature, from 600 to 750 ° C with mixtures ammonia and dichlorosilane.
  • the LPCVD technique can also be used to form a layer 112 in silicon oxide.
  • the deposit can be carried out at temperatures of 850 to 950 ° C with mixtures of dichlorosilane and nitrous oxide, or at temperatures from 600 to 750 ° C with precursors "TEOS” type (tetraethoxysilane). These materials also present, especially when trained by LPCVD, a good conformity of coverage of the relief structure.
  • TEOS tetraethoxysilane
  • the layer 112 which covers the structure in relief can also be a layer of silicon.
  • the silicon can be formed according to the so-called LPCVD technique, at a temperature of 250 to 500 ° C with a source of disilane or at a temperature of 550 to 700 ° C with a source of silane.
  • the silicon may or may not be doped, for example, whether or not diborane or phosphine during its formation.
  • layer 112 is amorphous; above 600 ° C layer 112 is polycrystalline.
  • layer 112 is preferably produced by undoped amorphous silicon.
  • Silicon oxide SiO and nitride of SiN silicon have good characteristics thermal insulation. Their conductance is around from 2 to 3 W / m.K.
  • layer 112 is made for example, in tungsten, titanium or titanium nitride by deposition LPCVD for example.
  • the layer 112 can be composed of a single material or be a combination of several sublayers of different materials, these materials being chosen according to mechanical characteristics or sought for the element of microstructure to be produced.
  • Layer 112 can include for example a dielectric oxide sublayer silicon and a silicon sublayer.
  • layer 112 is composed of a material that can be deposited on the resin. Its deposition temperature must then be less than 180 ° C.
  • a anisotropic etching without mask eliminates the part of layer 112 covering layer 104 and covering parts 114 of the sacrificial layer on either side of the relief structure.
  • the microstructure element is thus freed relative to substrate 100. It is composed of the layer 104 and the stiffness pad 116.
  • This implementation of the invention relates to the fabrication of a floating microstructure in a substrate with two structural layers and two layers of sacrificial material.
  • a layer of sacrificial material 122 designated by “second layer of sacrificial material”
  • a layer 124 of structural material designated by “second layer of structure” means a layer of material sacrificial 102, designated by “first layer of sacrificial material ", and a structural layer 104 designated by "first layer of structure”.
  • the layers sacrificial 102, 122 can be made of oxide silicon or polyimide for example.
  • the layers of structure 104, 124 are for example made of oxide of silicon.
  • an engraving mask 106 defining the shape of the microstructure to be produced, an anisotropic etching of the first layer of structure 104 and the first layer of sacrificial material 102 in regions not protected by the mask 106.
  • layer 104 is completely removed and layer 102 is removed either totally (figure 9B) or partially (figure 9A).
  • Anisotropic etching of the first layer sacrificial 102 can be completed, as shown FIG. 10A, by an isotropic etching of the layer 102. This has the effect of forming recesses extending along the sides 110a and 110b of the structure 108.
  • the structures 108 in relief thus obtained are covered with a layer 112, or a plurality of layers 112.
  • the formation of the layer 112, visible in FIGS. 11A and 11B conforms to the description given for example 1.
  • Anisotropic etching without mask eliminates the layer 112 above the first structural layer 104 and on the parts 114 of the sacrificial layer.
  • the layer 112 is only preserved on the sides 110a and 110b where it forms the stiffness lining 116.
  • the second structural layer 124 is also etched. This etching is not necessarily selective etching.
  • the layer 122 can also be slightly attacked. During this etching, the first layer 104 serves as engraving mask.
  • an engraving is carried out anisotropic which allows to simultaneously shape stiffness pads and etch layer 124.
  • This one comprises part of the layer 124, forming, by example, a suspension beam of the sensitive part of a microbolometer, and the stiffness linings 116.
  • a stiffness structure with a cross-section formed (Fig. 13A) or straight (Fig. 13B).
  • FIGS. 14 to 18 Another example of implementation of the invention is illustrated by FIGS. 14 to 18.
  • the basic substrate used in this example is, like shown in Figure 14, identical to the substrate used in the case of Example 2.
  • a mask 106 which defines the shape of the microstructure element that wish to carry out one or more attacks in order to engrave, outside the region protected by the mask, the first and second structural layers 104, 124, the first layer of sacrificial material 102 and at least part of the second layer of sacrificial material 122 so as to create a step.
  • a (or several) layer (s) 112 which cover (s) the structure in relief ( Figure 16).
  • the layer 112 undergoes anisotropic etching without mask for shaping on the sides of the relief structure of the stiffness linings 116, shown in Figure 17.
  • the central bar of the H section is formed by the second layer of structure 124 and the bars perpendicular to the central bar by the fittings stiffness 116.
  • Figures 19-23 show another example for implementing the process from a substrate similar to that of Figures 8 or 14.
  • Figure 19 corresponds to Figure 10A of example 2 in which the first layer of structure 104 and the first layer of material sacrificial 102 are shaped according to a pattern corresponding to the microstructure element that one wish to achieve.
  • the etching of the material layer sacrificial is an isotropic engraving.
  • a relief structure 108 is continues as shown in Figure 20 by engraving anisotropic second layer of structure 124 and at least part of the second layer sacrificial 122 according to the engraving pattern. During this engraving the first layer of structure serves as mask.
  • the fabrication of the microstructure element continues by the formation of a layer 112 (FIG. 21), the setting in the shape of this layer to get toppings of stiffness 116 on the sides of the relief structure ( Figure 22) and the elimination of the first layer of structure and then sacrificial material remaining layers 102 and 122.
  • microstructure element with a section substantially in H, illustrated in the figure 23.
  • the sides are, as shown in Figure 25, subjected to isotropic etching to indent parts 102 and 122 of the layers of material sacrificial under the layers of structure.
  • Figures 26 and 27 respectively show the anisotropic etching of layer 112 to form the stiffness fittings 116 (FIG. 26), and the elimination of the first layer of structure 104 and of the material remaining from the sacrificial layers 102 and 122 ( Figure 27).
  • Figures 26 and 27 respectively show the anisotropic etching of layer 112 to form the stiffness fittings 116 (FIG. 26), and the elimination of the first layer of structure 104 and of the material remaining from the sacrificial layers 102 and 122 ( Figure 27).
  • the resin layer forming the mask is not actually part of the relief structure as it is used for the production of stiffness fittings.
  • the mask is removed before the layer 112 is formed.
  • the resin mask is on the contrary leveraged.
  • a substrate by successively depositing on a layer of support 100 a layer of sacrificial material 102, a structural layer 104 and a resin layer 105.
  • a layer of sacrificial material 102 for the choice of materials for layers 100, 102 and 104, reference may be made to example 1.
  • the layer of resin used to make an etching mask already described.
  • Figure 29 shows the formatting of a relief structure 108 by etching the layer of structure 104 and the partial etching of the layer of sacrificial material 102, according to the pattern of a mask etching 106 produced in the resin layer 105.
  • the the etching of the layer 102 is of the isotropic type. After this etching the mask 106 is maintained; he does part of the relief structure 108.
  • a layer of covering is formed around the structure in relief 108. Then, this layer is etched to form the stiffness linings 116 visible in FIG. 31. During this etching, the resin forming the mask 106 is laid bare.
  • the element of microstructure can be for example part of a micromechanical device such as for example a central zone 10 and the suspension beams 14 of a microbolometer as shown in Figure 1.
  • microstructure element produced according to the invention may be only a part of such a device.
  • the suspension beams produced according to the invention that is to say with stiffness pads extending along their side edges have good rigidity and do not not spin.
  • the lateral edges of the beams are marked with the reference 130 on the figure 1.
  • These beams have a U-shaped or H with straight side trim or possibly ribbed. Different sections possible are shown in FIGS. 7A, 7B, 13A, 13B, 18, 27 and 32.
  • the central part (see reference 10 in Figure 1) is a membrane and it is interesting to equip it also of stiffness side linings forming its periphery a frame.
  • Such a framework makes it possible to limit deformations, and in particular warping, of the central part.
  • the structural layer may include, for example one or more layers of conductive material electric which acts as an electrode for transmit electrical signals from the party central of a bolometer to measurement circuits peripheral devices.
  • the central part of the beam (structural layer) consists of two layers of electrically conductive materials separated by a insulating
  • electrical leakage may occur between the two conductive materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Fluid Mechanics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Micromachines (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)
  • Drying Of Semiconductors (AREA)

Claims (20)

  1. Herstellungsverfahren mindestens eines starren "schwimmenden" bzw. frei beweglichen Mikrostrukturelements (104, 116), das in einem Substrat gefertigt wird, welches einen Stapel bzw. eine Schichtung einer Trägerschicht (100), mindestens einer Opfermaterialschicht (102) und mindestens einer sogenannten Strukturschicht (104) aufweist, dadurch gekennzeichnet, daß es folgende Schritte umfaßt:
    a) Ausbilden mindestens einer Reliefstruktur (108) mit seitlichen Flanken (110a, 110b) durch Ätzen der Strukturschicht (104) und durch Ätzen mindestens eines Teils der Opfermaterialschicht (102) gemäß einem Ätzmuster, das dem frei beweglichen Mikrostrukturelement entspricht,
    b) Ausbilden einer sog. Versteifungsmanschette oder starren Umfassung (garniture de rigidité) (116) an den seitlichen Flanken (110a, 110b).
    c) Entfernen des Opfermaterials von jeder Reliefstruktur (108), um die frei bewegliche Mikrostruktur, welche die Strukturschicht (104) und die Versteifungsmanschette (116) umfaßt, freizulegen.
  2. Herstellungsverfahren einer frei beweglichen Mikrostruktur nach Anspruch 1 in einem Substrat, das ferner eine zweite Opfermaterialschicht (122) und eine zweite Strukturschicht (124) aufweist, die in dieser Reihenfolge zwischen die Trägerschicht (100) und die erste Opfermaterialschicht geschichtet sind, wobei das Ausbilden einer Reliefstruktur (108) mit seitlichen Flanken (110a, 110b) außerdem das Ätzen der zweiten Strukturschicht und mindestens eines Teils der zweiten Opfermaterialschicht (122) umfaßt, und wobei die erste Strukturschicht (104) nach dem Ausbilden der Versteifungsmanschette (116) an den seitlichen Flanken (110a, 110b) entfernt wird.
  3. Verfahren zur Herstellung einer frei beweglichen Mikrostruktur nach Anspruch 1 in einem Substrat, das ferner eine zweite Strukturschicht (124) und eine zweite Opfermaterialschicht (122) aufweist, die in dieser Reihenfolge zwischen die Trägerschicht (100) und die erste Opfermaterialschicht (102) geschichtet sind, wobei das Verfahren ferner zwischen den Schritten a) und b) das Ätzen der zweiten Strukturschicht (124) und das Ätzen mindestens eines Teils der zweiten Opfermaterialschicht (122) gemäß dem Muster, das dem frei beweglichen Mikrostrukturelement entspricht, gefolgt von dem Entfernen der ersten Schicht (104) der Struktur, umfaßt.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Ätzen der Opfermaterialschicht (102) ein anisotroper Ätzvorgang ist.
  5. Verfahren nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß das Ätzen der zweiten Opfermaterialschicht (124) ein anisotroper Ätzvorgang ist.
  6. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Ätzen der Opfermaterialschicht (102) ein isotroper Ätzvorgang ist.
  7. Verfahren nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß das Ätzen der zweiten Opfermaterialschicht ein isotroper Ätzvorgang ist.
  8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß vor dem Schritt a) auf der Strukturschicht (104) eine das Ätzmuster festlegende Maske (106) ausgebildet wird.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß die Maske (106) vor der Bildung der Versteifungsmanschette (116) entfernt wird.
  10. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß die Maske (106) nach der Bildung der Versteifungsmanschette (116) entfernt wird, wobei die Maske einen Teil der Reliefstruktur (108) mit seitlichen Flanken (110a, 110b) bildet.
  11. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Bildung der Versteifungsmanschette (116) das Aufbringen mindestens einer Materialschicht (112), welche jede Reliefstruktur (108) bedeckt, und das anisotrope Ätzen ohne Maskierung dieser Schicht (112) umfaßt.
  12. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß für die Bildung der Versteifungsmanschette (116) mindestens eines von folgenden Materialien gewählt wird: Siliziumnitrid, Siliziumoxid und Silizium oder ein Metall.
  13. Verfahren zur Herstellung von Hängeträgern eines aufgehängten Abschnitts einer mikromechanischen Vorrichtung, dadurch gekennzeichnet, daß die Hängeträger gemäß dem Verfahren des Anspruchs 1 gefertigt werden.
  14. Mikromechanische Vorrichtung mit einem tragenden Substrat (100), einer "schwimmenden" bzw. frei beweglichen Struktur, die vom Substrat getrennt ist, und mindestens einem Hängeträger, der die frei bewegliche Struktur mit dem Substrat verbindet, dadurch gekennzeichnet, daß der Träger Seitenränder (130) aufweist, die mit Versteifungsmanschetten (116) versehen sind, welche sich entlang der Ränder des Trägers und über die Ränder hinaus in Richtungen erstrecken, die im wesentlichen senkrecht zur Achse des Trägers sind.
  15. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, daß die frei bewegliche Struktur auch mit Versteifungsmanschetten versehene Seitenränder aufweist, wobei die Versteifungsmanschetten einen Rahmen bilden.
  16. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, daß der Träger mindestens eine Materialschicht umfaßt, die aus den folgenden Materialien ausgewählt ist: Silizium, Siliziumoxid, Siliziumnitrid und Metall.
  17. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, daß der Träger eine alternierende Schichtung aus mindestens einer Schicht aus elektrisch leitendem Material und mindestens einer Schicht aus elektrisch isolierendem Material umfaßt.
  18. Vorrichtung nach Anspruch 17, dadurch gekennzeichnet, daß die Versteifungsmanschetten Abschnitte aus elektrisch isolierenden Material mindestens in den Zonen, die mit der Schicht aus elektrisch leitendem Material der Schichtung in Kontakt stehen, aufweisen.
  19. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, daß die Manschetten bzw. Umfassungen aus einem Material gefertigt sind, das aus Siliziumoxid, Siliziumnitrid, Silizium und den Metallen gewählt ist.
  20. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, daß die "schwimmende" bzw. frei bewegliche Struktur der sensible Teil eines Mikro-Bolometers ist.
EP96401540A 1995-07-13 1996-07-11 Herstellungsverfahren für Elemente von schwimmenden, starren Mikrostrukturen und Vorrichtung, die mit solchen Elementen ausgerüstet ist Expired - Lifetime EP0753671B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9508525A FR2736654B1 (fr) 1995-07-13 1995-07-13 Procede de fabrication d'elements de microstructures flottants rigides et dispositif equipe de tels elements
FR9508525 1995-07-13

Publications (2)

Publication Number Publication Date
EP0753671A1 EP0753671A1 (de) 1997-01-15
EP0753671B1 true EP0753671B1 (de) 2002-03-20

Family

ID=9480986

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96401540A Expired - Lifetime EP0753671B1 (de) 1995-07-13 1996-07-11 Herstellungsverfahren für Elemente von schwimmenden, starren Mikrostrukturen und Vorrichtung, die mit solchen Elementen ausgerüstet ist

Country Status (5)

Country Link
US (2) US5930594A (de)
EP (1) EP0753671B1 (de)
JP (1) JPH0943061A (de)
DE (1) DE69619899T2 (de)
FR (1) FR2736654B1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1136440A1 (de) * 2000-03-24 2001-09-26 Interuniversitair Micro-Elektronica Centrum Vzw Verfahren zur Verbesserung der mechanischen Festigkeit von mikro-elektro-mechanischen Systemen und so hergestellte Anordnungen
US6707121B2 (en) * 1997-03-28 2004-03-16 Interuniversitair Microelektronica Centrum (Imec Vzw) Micro electro mechanical systems and devices
US6287885B1 (en) * 1998-05-08 2001-09-11 Denso Corporation Method for manufacturing semiconductor dynamic quantity sensor
US6309801B1 (en) * 1998-11-18 2001-10-30 U.S. Philips Corporation Method of manufacturing an electronic device comprising two layers of organic-containing material
US6171880B1 (en) * 1999-06-14 2001-01-09 The United States Of America As Represented By The Secretary Of Commerce Method of manufacture of convective accelerometers
JP2001230233A (ja) * 2000-02-16 2001-08-24 Mitsubishi Electric Corp 半導体装置の製造方法
EP1251099A3 (de) * 2000-03-24 2004-07-21 Interuniversitair Microelektronica Centrum Vzw Verfahren zur Verbesserung der mechanischen Festigkeit von mikroelektromechanischen Systemen und so hergestellte Anordnungen
FI111457B (fi) * 2000-10-02 2003-07-31 Nokia Corp Mikromekaaninen rakenne
US6621083B2 (en) 2000-12-29 2003-09-16 Honeywell International Inc. High-absorption wide-band pixel for bolometer arrays
JP2004005923A (ja) * 2002-03-29 2004-01-08 Fujitsu Ltd 磁気ヘッドの製造方法および磁気ヘッド、パターン形成方法
US6770569B2 (en) * 2002-08-01 2004-08-03 Freescale Semiconductor, Inc. Low temperature plasma Si or SiGe for MEMS applications
US6891161B2 (en) * 2003-01-17 2005-05-10 Drs Sensors & Targeting Systems, Inc. Pixel structure and an associated method of fabricating the same
US8043950B2 (en) 2005-10-26 2011-10-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
FR2906029B1 (fr) 2006-09-18 2010-09-24 Ulis Dispositif electronique de detection et detecteur comprenant un tel dispositif
GB201216529D0 (en) * 2012-09-17 2012-10-31 Univ St Andrews Torsional stiffness measurement

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3638481A (en) * 1969-03-04 1972-02-01 Becton Dickinson Co Pressure sensor
DE2653865A1 (de) * 1975-11-26 1977-06-08 Jacques Leblanc Bolometer
JPS59110967A (ja) * 1982-12-16 1984-06-27 Nec Corp 弁素子の製造方法
US5021663B1 (en) * 1988-08-12 1997-07-01 Texas Instruments Inc Infrared detector
US5177661A (en) * 1989-01-13 1993-01-05 Kopin Corporation SOI diaphgram sensor
US5072288A (en) * 1989-02-21 1991-12-10 Cornell Research Foundation, Inc. Microdynamic release structure
CA2081306C (en) * 1990-04-26 2000-07-18 Kevin Charles Liddiard Semiconductor film bolometer thermal infrared detector
CN1018844B (zh) * 1990-06-02 1992-10-28 中国科学院兰州化学物理研究所 防锈干膜润滑剂
US5288649A (en) * 1991-09-30 1994-02-22 Texas Instruments Incorporated Method for forming uncooled infrared detector
US5397904A (en) * 1992-07-02 1995-03-14 Cornell Research Foundation, Inc. Transistor microstructure
GB2282261A (en) * 1992-09-17 1995-03-29 Mitsubishi Electric Corp Infrared detector array and production method therefor
JP3333560B2 (ja) * 1992-10-23 2002-10-15 リコーエレメックス株式会社 シリコン基板のエッチング方法
FR2697536B1 (fr) * 1992-11-04 1995-01-06 Suisse Electronique Microtech Procédé de fabrication d'un élément de microstructure mécanique.
FR2700065B1 (fr) * 1992-12-28 1995-02-10 Commissariat Energie Atomique Procédé de fabrication d'accéléromètres utilisant la technologie silicium sur isolant.
US5536988A (en) * 1993-06-01 1996-07-16 Cornell Research Foundation, Inc. Compound stage MEM actuator suspended for multidimensional motion
US5451371A (en) * 1994-06-09 1995-09-19 Ford Motor Company High-sensitivity, silicon-based, microcalorimetric gas sensor
US5573679A (en) * 1995-06-19 1996-11-12 Alberta Microelectronic Centre Fabrication of a surface micromachined capacitive microphone using a dry-etch process
JPH0983029A (ja) * 1995-09-11 1997-03-28 Mitsubishi Electric Corp 薄膜圧電素子の製造方法
US5824565A (en) * 1996-02-29 1998-10-20 Motorola, Inc. Method of fabricating a sensor

Also Published As

Publication number Publication date
US5930594A (en) 1999-07-27
JPH0943061A (ja) 1997-02-14
DE69619899T2 (de) 2002-11-14
FR2736654A1 (fr) 1997-01-17
US5949119A (en) 1999-09-07
DE69619899D1 (de) 2002-04-25
FR2736654B1 (fr) 1997-08-22
EP0753671A1 (de) 1997-01-15

Similar Documents

Publication Publication Date Title
EP0753671B1 (de) Herstellungsverfahren für Elemente von schwimmenden, starren Mikrostrukturen und Vorrichtung, die mit solchen Elementen ausgerüstet ist
EP0596456B1 (de) Methode zur Herstellung eines integrierten kapazitiven Transduktors
EP0605302B1 (de) Herstellungsverfahren für Druckwandler mittels der Silicium auf Isolation Technologie sowie derart hergestellte Wandler
EP0754953B1 (de) Verfahren zur Herstellung einer Struktur mit einer mittels Anschlägen auf Abstand von einem Substrat gehaltenen Nutzschicht, sowie Verfahren zur Loslösung einer solchen Schicht
EP2144369B1 (de) Volumenwellenresonator
EP0798548B1 (de) Wandler mit piezoresistivem Dehnungsmessstreifen und Herstellungsverfahren dazu
WO2002065187A2 (fr) Procede de fabrication d'un micro-miroir optique et micro-miroir ou matrice de micro-miroirs obtenus par ce procede
EP2267893B1 (de) Volumenwellenresonator mit teilweise gefüllten Kavitäten
EP2823273B1 (de) Verfahren zur herstellung eines drucksensors
EP0721588B1 (de) Integrierter elektronischer sensor für physikalische grössen und herstellungsverfahren dafür
EP0610806B1 (de) Kapazitiver Absolutdrucksensor und Verfahren zur Herstellung einer Vielzahl solcher Sensoren
EP2138455B1 (de) Verfahren zum Herstellen einer MEMS-Struktur mit einem beweglichen Element durch die Anwendung einer heterogenen Opferschicht
EP3728108B1 (de) Verwendung einer entkopplungsstruktur zur montage eines bauteils mit einem gehäuse
EP3828943A1 (de) Mechanisches mikrosystem und entsprechendes herstellungsverfahren
FR3014240A1 (fr) Procede de realisation d'un substrat comportant un materiau getter dispose sur des parois d'un ou plusieurs trous borgnes formes dans le substrat
FR2738705A1 (fr) Dispositif capteur electromecanique et procede de fabrication d'un tel dispositif
EP0596455A1 (de) Herstellungsverfahren für mikromechanisches Element
EP3503142B1 (de) Herstellung eines kollektors mit mikroelektronischer vorrichtung
FR3119888A1 (fr) Dispositif pyroelectrique comprenant un substrat a couche superficielle pyroelectrique et procede de realisation
FR3087005A1 (fr) Installation d’interféromètre et son procédé de fabrication
WO2022023658A1 (fr) Procede de realisation d'un micro-bolometre d'imagerie infrarouge et micro-bolometre associe
EP4269331A1 (de) Verfahren zur herstellung einer mems-vorrichtung
FR2871790A1 (fr) Microressort de grande amplitude
FR3058409A1 (fr) Dispositif microelectromecanique et/ou nanoelectromecanique articule a deplacement hors-plan
FR3087007A1 (fr) Dispositif de detection pyroelectrique a membrane rigide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT SE

17P Request for examination filed

Effective date: 19970626

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010516

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT SE

REF Corresponds to:

Ref document number: 69619899

Country of ref document: DE

Date of ref document: 20020425

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020620

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20021223

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090724

Year of fee payment: 14

Ref country code: DE

Payment date: 20090812

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090718

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69619899

Country of ref document: DE

Effective date: 20110201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100711