EP0750116B1 - Verfahren für die Regelung von Verdrängungstyp-Fluidmaschinen und Einrichtung hierfür - Google Patents

Verfahren für die Regelung von Verdrängungstyp-Fluidmaschinen und Einrichtung hierfür Download PDF

Info

Publication number
EP0750116B1
EP0750116B1 EP19960109849 EP96109849A EP0750116B1 EP 0750116 B1 EP0750116 B1 EP 0750116B1 EP 19960109849 EP19960109849 EP 19960109849 EP 96109849 A EP96109849 A EP 96109849A EP 0750116 B1 EP0750116 B1 EP 0750116B1
Authority
EP
European Patent Office
Prior art keywords
motor
displacement
fluid machine
type fluid
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19960109849
Other languages
English (en)
French (fr)
Other versions
EP0750116A1 (de
Inventor
Kyoji Kawaguchi
Akihiro Ushitora
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Publication of EP0750116A1 publication Critical patent/EP0750116A1/de
Application granted granted Critical
Publication of EP0750116B1 publication Critical patent/EP0750116B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/08Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/20Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by changing the driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0204Frequency of the electric current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/01Load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/07Electric current
    • F04C2270/075Controlled or regulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/09Electric current frequency
    • F04C2270/095Controlled or regulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/40Conditions across a pump or machine

Definitions

  • the present invention relates to a control method and control apparatus for a displacement-type fluid machine to control the number of revolutions of a drive motor by means of an inverter or the like in operating a displacement-type fluid machine such as a Roots-type blower or a vane pump.
  • a displacement-type fluid machine for handling fluid such as a displacement-type pump is, for example, employed for lowering or decreasing pressure on an intake side of a displacement-type pump, increasing the pressure on a discharge side of the pump, or transporting liquid across the pump.
  • a displacement-type pump is normally used together with a sealable container such as a tank, and processing values such as pressure and liquid level within the tank, etc., are detected and controlled so as to be within a predetermined range, by actuating or stopping the displacement pump.
  • an inverter or the like is employed to adjust the number of revolutions of the motor, the frequency is gradually increased or decreased to avoid abrupt acceleration or deceleration upon driving or stopping, or the number of revolutions is selected according to fluctuations in process values.
  • a displacement-type pump is actuated when an allowable limit of a process value is detected and the pump is stopped when a predetermined process value is detected.
  • the pump may be actuated too frequently depending on the operating conditions, resulting in damage to the motor and related equipment and a decrease in the working life of the equipment.
  • a sealable container such as a tank must have sufficient capacity, which leads to increased facility costs.
  • abrupt changes in process values are unavoidable in the ON/OFF control method, great fluctuations in the pressure or liquid level on the intake side or discharge side of the pump are caused, preventing stable operation of the system.
  • the aforementioned control method greatly relies on detectors for detecting a pressure and liquid level, a proper operation of the apparatus is often prevented by the malfunctioning of these detectors.
  • the present invention has been made in the light of the aforementioned problems, and the object thereof is to provide a method and an apparatus for controlling a displacement-type fluid machine which enables to keep the process values within an allowable limit without effecting repeated actuation and stopping of the pump.
  • the method comprises: provision of an alternating current motor for driving the displacement-type fluid machine; and provision of a frequency converter which is capable of conducting frequency conversion up to a range higher than the power source frequency to adjust the number of revolutions of the aforementioned motor; wherein the number of revolutions is adjusted so that an input current to the motor is kept constant, regardless of any change in operating pressure of the displacement-type fluid machine.
  • an input current value to the motor is detected either within the frequency converter or at the primary or secondary side thereof, a current setting device is provided to set a constant current value according to the motor rating, and wherein input frequency to the motor is adjusted so that the input current value to the motor is maintained constant, based on an output signal from a comparator/adjuster device which compares the input current value with the set current value.
  • an upper limit is provided for the input frequency to the motor, whereby the number of revolutions of the motor and displacement-type fluid machine is maintained at a predetermined value or lower.
  • the motor and displacement-type fluid machine are stopped when the input frequency to the motor reaches a predetermined minimum value, and the reduction in pressure difference or liquid level difference between the upstream side and downstream side of the displacement-type fluid machine is measured, and the motor and displacement-type fluid machine are actuated when the reduction reaches a predetermined value.
  • the aforementioned apparatus comprises: an alternating current motor for driving the displacement-type fluid machine; a frequency converter which is capable of conducting frequency conversion up to a range higher than the power source frequency to adjust the number of revolutions of said motor; and control means for adjusting the number of revolutions of the motor so that input current to the motor is constant, regardless of any change in operating pressure of the displacement-type fluid machine.
  • an apparatus for controlling a displacement-type fluid machine further comprises: means for detecting the input current value to the motor either within said frequency converter or at the primary or secondary side thereof, a current setting device for setting a constant current value according to the motor rating; and a comparator/adjuster device which compares the input current value with the constant current value set at the current setting device; wherein the control means adjusts input frequency to the motor so that the input current value to the motor is maintained constant based on the output signal of the comparator/adjuster device.
  • means for providing an upper limit for the input frequency to the motor is provided, thereby maintaining the number of revolutions of the motor and displacement-type fluid machine at a predetermined value or lower.
  • an apparatus for controlling a displacement-type fluid machine further comprises: means for stopping the motor and displacement-type fluid machine when the input frequency to the motor reaches a predetermined minimum value, and means for measuring the reduction in pressure difference or liquid level difference between the upstream side and downstream side of the displacement-type fluid machine, and actuating the motor and displacement-type fluid machine when said reduction reaches a predetermined value.
  • the aforementioned displacement-type fluid machine may comprises two-lobe or three-lobe Roots-type vacuum pump or compressor, gear pump, rotary vane-type pump or compressor, water sealing vacuum pump or compressor, reciprocating liquid pump or compressor, or reciprocating vacuum pump.
  • the number of revolutions is adjusted so that the input current to the drive motor of the displacement-type pump is kept constant regardless of any change in operating pressure of the displacement-type pump
  • the number of revolutions is increased, and thus the intake flow rate increases proportionally.
  • the number of revolutions is decreased so as to maintain the input current to the motor at a constant level, and thus the intake flow rate decreases proportionally.
  • the maximum operating pressure and flow rate of the displacement-type pump driven by an alternating current motor is achieved at the rated number of revolutions at the power source frequency.
  • the operation stated above can be realized by means of a frequency converter which is capable of conducting frequency conversion up to a range higher than the power source frequency, to enable the motor speed to be increased when the operating pressure is decreased.
  • the displacement-type pump By selecting the capacity of the displacement-type pump around the average value with time for the fluctuating demand, the displacement-type pump is not actuated and stopped repeatedly, but is rather continuously driven in such a way that the number of revolutions is increased or decreased according to fluctuation on demand, resulting in a simple control mechanism and lower costs.
  • An apparatus including a displacement-type pump is actuated either manually or automatically upon detection of a value lower than the predetermined operating pressure difference or liquid level difference across the displacement-type pump.
  • the pressure or liquid level exerts little load on the displacement-type pump upon actuation, the number of revolutions of the motor and the flow rate are increased rapidly in the early operating stage, thereby providing a predetermined pressure and liquid level in a short time.
  • a comparator/adjuster device compares the input current value with a constant current value set at the current setting device, it is possible to maintain an input current value to the motor at the constant value based on the motor rating.
  • Fig. 1 is a block diagram illustrating the control apparatus of the displacement-type vaccum pump of the first embodiment of the present invention.
  • Fig. 2 is a graph illustrating the performance of the displacement-type vaccum pump according to the control method of the first embodiment of the present invention.
  • Fig. 3 is a block diagram illustrating the control apparatus of the displacement-type liquid pump of the second embodiment of the present invention.
  • Fig. 4 is a graph illustrating the performance of the displacement-type liquid pump according to the control method of the second embodiment of the present invention.
  • Fig. 5 is a block diagram illustrating the control apparatus of the displacement-type compressor of the third embodiment of the present invention.
  • Fig. 6 is a graph illustrating the performance of the displacement-type compressor according to the control method of the third embodiment of the present invention.
  • Fig. 1 illustrates a first embodiment of the present invention applied to a vacuum blower for a vacuum-type sewage collection system.
  • This system is provided with a vacuum tank 1 at a vacuum pumping station, and effects continuous collection of sewage via connected piping 2 by maintaining the tank under a vacuum state.
  • An alternating current motor 4 which drives the vacuum pump 3 is supplied with electrical power from an inverter (frequency converter) 5.
  • a current detector 6 is provided at the primary side of the inverter 5, and the detected current is input to a comparator/adjuster device 7.
  • a signal from a current setting device 8 which sets the current value according to the rating of the motor 4 is compared with the detected current value in the comparator/adjuster device 7, from which a frequency increase/decrease signal based on the deviation of the above comparison is input to the frequency setting portion of the inverter 5, thereby increasing or decreasing the number of revolutions of the motor 4, i.e., the vacuum pump 3.
  • the reference numeral 9 denotes a frequency detector for measuring the secondary side frequency of the inverter 5, which can be used for setting the upper limit of frequency.
  • Fig. 2 is a diagram describing the change in performance of the vacuum pump 3 shown in Fig. 1 in the event that the input current to the motor 4 is controlled so as to be a constant value.
  • This figure illustrates the theoretical performance of a displacement-type vaccum pump when it is operated at different numbers of revolutions. Namely, when the theoretical flow rate Q at each constant number of revolutions of the motor is represented by the ordinate in the upper half of Fig. 2, and the degree of vacuum P is represented by the abscissa, the flow rate of the displacement-type pump is proportional to the number of revolutions, and the flow rate at each of the number of revolutions is constant value as represented by horizontal lines Q 100%N, 120%N, ...
  • the required motive power changes according to the degree of vacuum P.
  • the required motive power is represented as being 100% when the rated flow under the rated number of revolutions is taken to be 100% and the rated degree of vacuum is taken to be P 0 at which the required motive power reaches a maximum.
  • the required theoretical motive power at each of the number of revolutions regarding the degree of vacuum P is represented by a group of curves; L 100%N, 120%N ...
  • the points of intersection a1, a2, a3 ... between these curves and the horizontal line L100% representing constant motive power indicate degrees of vacuum which provide a constant value of 100% theoretical motive power at each of the number of revolutions.
  • the flow rate corresponding to these degrees of vacuum at each number of revolutions can be obtained from the points of intersection b1, b2, b3 ... between these degrees of vacuum and the horizontal lines of the flow Q100%, 120% ... corresponding to each number of revolutions.
  • the pump by controlling the number of revolutions of the motor so that the primary current to the motor or the input motive power to the motor is made constant under a constant power source voltage, the pump exhibits flow rate to vacuum degree properties as indicated by the curved line Q-P (L const) in the figure.
  • the vacuum pump is operated at a constant speed, and when the degree of vacuum drops to an intermediate degree of vacuum such as P 1 , the pump is actuated, and when the degree of vacuum reaches the maximum P 0 , the pump is stopped, thereby repeating this actuation and stopping.
  • the vacuum tank pressure is normally operated at a value between the maximum degree of vacuum P 0 , and an intermediate degree of vacuum P 1 .
  • the vacuum pump by setting the vacuum pump capacity to a predetermined air capacity which is most frequently used, and by controlling the number of a revolutions so that the required motive power is kept at constant value, the vacuum pump is not needed to be turned on and turned off during this process, but can be continuously operated at a number of revolutions corresponding to the degree of vacuum. Further, a conventional vacuum tank having a great capacity to avoid the frequent actuation of the vacuum pump is not needed.
  • the vacuum pump Since the degree of vacuum of the vacuum tank is low when starting up the facilities, the vacuum pump operates at a high speed, thereby obtaining the predetermined degree of vacuum in a short time. Subsequently, continuous operation is maintained while the number of revolutions is automatically adjusted according to demand.
  • the vacuum pump may be arranged in such a way that the minimum value of the number of revolutions, i.e. minimum frequency, is detected by the frequency detector 9, then the pump is shut down when the facilities are inoperative, such as at night.
  • the pump is actuated by detecting the intermediate degree of vacuum P 1 upon start-up of the facilities.
  • the vacuum pump In order to prevent an excessive increase in speed of the vacuum pump when the degree of vacuum in the vacuum tank is low, by detecting the frequency at the secondary side of the inverter 5, and by setting an upper limit in the frequency detector 9, the vacuum pump can be operated at all times at a number of revolutions which is within an allowable limit.
  • the ratio between a secondary voltage and secondary frequency is constant, but at frequencies higher than the power source frequency, the secondary voltage is limited by the power source voltage and consequently is the same value. Therefore, by controlling the primary current to be constant, the motor current becomes approximately constant around the rated value, thereby avoiding problems such as an increase in the temperature of the motor and excessive load, etc.
  • Fig. 3 illustrates an apparatus which pressurizes fluid and accumulates the pressurized fluid in a pressure tank 12 by means of a displacement-type liquid pump 11, for applying the pressurized fluid to various processing.
  • Automatic ON/OFF operation of the pressure-oil pump 11 is generally conducted to maintain the pressure or liquid level in the pressure tank within a predetermined range.
  • Fig. 4 illustrates a theoretical performance of the displacement-type liquid pump when it is controlled in the apparatus shown in Fig. 3.
  • the flow rate Q is constant against the operating pressure P and is represented by a horizontal line Q (100%N).
  • the required motive power L p at rated speed operation increases proportionally to the pressure P and is represented by a straight line L p 100%N.
  • the displacement-type pump 11 Upon starting up the apparatus, the displacement-type pump 11 is actuated after having detected pressure of P 1 or lower. Since the flow rate after actuation of the pump is great, the pressure or liquid level of the predetermined level can be attained in a short period. Further, by appropriately selecting the capacity of the displacement-type pump, the pump is operated continuously between pressures P 1 and P 0 so that the frequency of actuation can be reduced. Thus, a pressure tank having a great capacity, which was needed to cope with the frequent activation of the pump in the conventional ON/OFF operation under the fixed motor speed, becomes unnecessary.
  • the displacement-type pump is stopped upon detection of lower limit value Nmin of the number of revolutions, i.e., minimum frequency. This Nmin is set so that the secondary side current of the frequency converter 5, i.e., motor current, does not exceed the allowable value.
  • Fig. 5 illustrates an apparatus which pressurizes gas and accumulates pressure in a pressure tank 14 by means of a displacement-type compressor 13, for applying the pressurized gas to various processing.
  • the intake flow rate Q 1 is constant regarding the operating compression ratio P 2 /P 1 , and is represented by a horizontal line Q 1 100%N.
  • the required motion power Lad increases with the compression ratio P 2 /P 1 , and is represented by a curve Lad 100%N.
  • the relation between the intake flow rate and the compression ratio is represented by a curve Q 1 (Lad const), so that the intake flow rate is remarkably increased with a decrease of the compression ratio.
  • An upper limit Nmax of the number of revolutions is set in the frequency detector 9, which detects the frequency of the secondary side of the frequency converter apparatus, and limits the speed of the motor.
  • the compressor can be operated in continuous basis between (P 2 /P 1 ) 0 ⁇ (P 2 /P 1 ) 1 during operation of the apparatus.
  • Nmin the minimum number of revolutions Nmin
  • the motor is stopped, thereby preventing an excessive load on the motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)

Claims (7)

  1. Verfahren zur Steuerung einer Strömungsmittelmaschine vom Verdrängungstyp (3), die Strömungsmittel einschließlich von Gas und/oder Flüssigkeit handhabt, und zwar zur Erhöhung oder Erniedrigung des Drucks des Strömungsmittels oder für den Transport des Strömungsmittels, wobei das Verfahren Folgendes aufweist: Vorsehen eines Wechselstrommotors (4) für den Antireb der Verdrängungstyp-Strömungsmittelmaschine (3); und Vorsehen eines Frequenzwandlers (5), der eine Frequenzwandlung bis zu einem Bereich höher als die Frequenz der Leistungsquelle zum Einstellen einer Umdrehungszahl des Motors (4) durchführen kann;
    wobei die Umdrehungszahl bzw. Drehzahl derart eingestellt wird, dass ein Eingangsstrom des Motors (4) konstant gehalten wird, und zwar ohne Rücksicht auf irgend eine Änderung des Betriebsdrucks der Verdrängungstyp-Strömungsmittelmaschine,
    wobei der Motor (4) und die Verdrängungstyp-Strömungsmittelmaschine (3) angehalten werden, wenn die Eingabefrequenz in den Motor (4) einen vorbestimmten Minimalwert erreicht, und wobei die Reduktion des Druckunterschiedes oder des Flüssigkeitspegelunterschieds zwischen der Stromaufwärts- und der Stromabwärtsseite der Verdrängungstyp-Strömungsmittelmaschine (3) gemessen wird und der Motor (4) und die Verdrängungstyp-Strömungsmittelmaschine (3) betätigt wird, wenn die Reduktion einen vorbestimmten Wert erreicht.
  2. Verfahren zur Steuerung einer Strömungsmittelmaschine vom Verdrängungstyp (3) nach Anspruch 1, wobei der Eingabestromwert des Motors (4) entweder im Frequenzwandler (5) oder an einer Primär- oder einer Sekundärseite desselben detektiert wird, wobei eine Stromeinstellvorrichtung (8) vorgesehen ist, so dass ein konstanter Stromwert gemäß der Motorleistung eingestellt wird, und wobei die Eingabefrequenz in den Motor (4) eingestellt wird, so dass der Eingabewert in den Motor (4) konstant gehalten wird, und zwar basierend auf den Ausgang einer Vergleicher/Einsteller-Vorrichtung (7), die den Eingabestromwert und den Einstellstromwert vergleicht.
  3. Verfahren zur Steuerung einer Strömungsmittelmaschine vom Verdrängungstyp (3) gemäß Anspruch 1 oder 2, wobei eine obere Grenze vorgesehen ist für die Eingabefrequenz in den Motor (4), wodurch die Drehzahl des Motors (4) und der Verdrängungstyp-Strömungsmittelmaschine (3) auf einem vorbestimmten Wert oder weniger gehalten wird.
  4. Vorrichtung zur Steuerung einer Strömungsmittelmaschine vom Verdrängungstyp (3), die ein Strömungsmittel einschließlich Gas und/oder Flüssigkeit handhabt für eine Erhöhung oder Erniedrigung des Drucks des Strömungsmittels oder für den Transport des Strömungsmittels, wobei die Vorrichtung Folgendes aufweist: Einen Wechselstrommotor (4) für den Antrieb des Verdrängunstyp-Strömungsmittelmaschine; einen Frequenzwandler (5), der eine Frequenzwandlung bis zu einem Bereich durchführen kann, der höher ist als die Leistungsquellenfrequenz zum Einstellen der Drehzahl bzw. Anzahl der Umdrehungen des Motors (4); und Steuermittel (7, 8) für das Einstellen der Drehzahl, so dass der Eingabestrom in den Motor (4) konstant ist, und zwar ohne Betracht des Betriebsdrucks der Verdrängungstyp-Strömungsmittelmaschine (3), und die ferner Mittel für das Anhalten des Motors (4) und der Verdrängungstyp-Strömungsmittelmaschine (3) aufweist, wenn die Eingabefrequenz in den Motor (4) einen vorbestimmten Minimalwert erreicht, und Mittel für das Messen der Reduktion des Druckunterschiedes oder des Flüssigkeitspegelunterschieds zwischen der Stromaufwärts- und der Stromabwärtsseite der Verdrängungstyp-Strömungsmittelmaschine (3) und zum Betätigen des Motors (4) und der Verdrängungstyp-Strömungsmittelmaschine (3), wenn die Reduktion einen vorbestimmten Wert erreicht.
  5. Vorrichtung zur Steuerung einer Strömungsmittelmaschine vom Verdrängungstyp (3) nach Anspruch 4, die weiter Folgendes aufweist:
       Mittel (6) für das Detektieren des Eingabestromwertes in den Motor (4) entweder innerhalb des Frequenzwandlers (5) oder an einer Primär- oder Sekundärseite davon, eine Stromeinstellvorrichtung (8) für das Einstellen eines konstanten Stromwertes gemäß der Motorleistung und eine Vergleicher/Einsteller (7) -Vorrichtung, die den Eingabestromwert mit dem konstanten Stromwert vergleicht, der durch die Stromeinstellvorrichtung eingestellt wird; wobei die Steuermittel (7, 8) die Eingabefrequenz in den Motor (4) derart steuert, dass der Eingabewert in den Motor (4) konstant gehalten wird basierend auf dem Ausgangssignal der Vergleicher/Einsteller-Vorrichtung.
  6. Vorrichtung zur Steuerung einer Strömungsmittelmaschine vom Verdrängungstyp (3) nach Anspruch 4 oder 5, wobei Mittel zum Vorsehen einer oberen Grenze für die Eingabefrequenz in den Motor (4) vorgesehen sind, um dadurch die Drehzahl des Motors (4) und der Verdrängungstyp-Strömungsmittelmaschine (3) auf einem vorbestimmten Wert oder geringer zu halten.
  7. Vorrichtung zur Steuerung einer Strömungsmittelmaschine vom Verdrängungstyp (3) gemäß einem der Ansprüche 4 bis 6, wobei die Verdrängungstyp-Strömungsmittelmaschine (3) eine Roots-Typ- bzw. eine Wälzkolbenvakuumpumpe oder Kompressor mit zwei oder drei Wälzkolben, eine Zahnradpumpe, eine Pumpe oder einen Kompressor vom Drehschaufeltyp, eine Wasserring-Vakuumpumpe oder Kompressor, eine sich hin und her bewegende bzw. eine Kolbenflüssigkeitspumpe oder Kompressor oder eine Kolbenvakuumpumpe aufweist.
EP19960109849 1995-06-19 1996-06-19 Verfahren für die Regelung von Verdrängungstyp-Fluidmaschinen und Einrichtung hierfür Expired - Lifetime EP0750116B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP17542995 1995-06-19
JP175429/95 1995-06-19
JP17542995A JPH094591A (ja) 1995-06-19 1995-06-19 容積形流体機械の制御方法及び装置

Publications (2)

Publication Number Publication Date
EP0750116A1 EP0750116A1 (de) 1996-12-27
EP0750116B1 true EP0750116B1 (de) 2001-05-23

Family

ID=15995954

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19960109849 Expired - Lifetime EP0750116B1 (de) 1995-06-19 1996-06-19 Verfahren für die Regelung von Verdrängungstyp-Fluidmaschinen und Einrichtung hierfür

Country Status (3)

Country Link
EP (1) EP0750116B1 (de)
JP (1) JPH094591A (de)
DE (1) DE69612911T2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107013443A (zh) * 2016-01-28 2017-08-04 Abb技术有限公司 用于压缩机系统的加载/卸载控制方法及设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001079697A2 (en) * 2000-04-14 2001-10-25 Actuant Corporation Variable speed hydraulic pump
JP4101225B2 (ja) 2004-10-19 2008-06-18 キヤノン株式会社 電子機器及び情報処理装置及びそれらの制御方法、並びにコンピュータプログラム及びコンピュータ可読記憶媒体
CN103671054B (zh) * 2013-12-06 2016-09-28 杭州哲达科技股份有限公司 用于流体输配系统的无传感恒流变频方法及装置
CN106050634A (zh) * 2016-08-11 2016-10-26 福建景丰科技有限公司 一种空压机群控系统及其控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3226150A1 (de) * 1982-07-13 1984-01-19 ARID-Patent AG, 6300 Zug Vorrichtung und verfahren zum steuern der drehzahl eines eine pumpe antreibenden drehstrommotors
CH651111A5 (fr) * 1982-07-28 1985-08-30 Cerac Inst Sa Installation de pompage et procede de mise en action de celle-ci.
DE3931178A1 (de) * 1989-09-19 1991-03-28 Telefunken Electronic Gmbh Verfahren zum regeln der foerderhoehe einer pumpe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107013443A (zh) * 2016-01-28 2017-08-04 Abb技术有限公司 用于压缩机系统的加载/卸载控制方法及设备
CN107013443B (zh) * 2016-01-28 2019-03-22 Abb技术有限公司 用于压缩机系统的加载/卸载控制方法及设备

Also Published As

Publication number Publication date
JPH094591A (ja) 1997-01-07
DE69612911D1 (de) 2001-06-28
DE69612911T2 (de) 2002-03-28
EP0750116A1 (de) 1996-12-27

Similar Documents

Publication Publication Date Title
RU2421632C2 (ru) Способ работы насосной системы
EP1851438B1 (de) System und verfahren zur steuerung eines kompressors mit variabler drehzahl während des stoppvorgangs
EP0398436B1 (de) Verdichterregelsystem zur Verbesserung der Mindestfördermenge und zur Verminderung des Pumpens
US6474950B1 (en) Oil free dry screw compressor including variable speed drive
EP0770782B1 (de) Kreiselverdichter
US6461112B1 (en) Screw compression apparatus and operation control method thereof
JP4786443B2 (ja) 圧縮空気製造設備
AU2008290428B2 (en) Improvements in compressors control
US6881040B2 (en) Multi-stage screw compressor unit accommodating high suction pressure and pressure fluctuations and method of operation thereof
WO2013014808A1 (ja) 圧縮機台数制御システム
EP1844236B1 (de) System und verfahren zur steuerung der leistung eines schraubenverdichters
EP0750116B1 (de) Verfahren für die Regelung von Verdrängungstyp-Fluidmaschinen und Einrichtung hierfür
US20050053469A1 (en) Multiple-compressor system having base and trim compressors
US5634772A (en) System for controlling operation of turbo type fluid machinery
US6053703A (en) Control method for displacement-type fluid machine, and apparatus thereof
JPH1082391A (ja) 2段スクリュー圧縮機の制御装置
EP2145113B1 (de) Verfahren zur steuerung eines turbokomressors
US7621721B2 (en) Vacuum pumping device with electronic control of the motor
US9334864B2 (en) Method of operating a pumping system
JPH11343986A (ja) 圧縮機制御装置
CN2766063Y (zh) 空压机的转速控制装置
JP4742862B2 (ja) インバータ駆動容積形圧縮機の容量制御装置及び方法
JPH08159079A (ja) 圧力変動抑制機能付回転数制御給水システム
JP2005016464A (ja) 圧縮装置
JP3406514B2 (ja) 圧縮機の容量調節方法およびその装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19970625

17Q First examination report despatched

Effective date: 19990315

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 69612911

Country of ref document: DE

Date of ref document: 20010628

ET Fr: translation filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070614

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070613

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070608

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080619

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630