EP0749790B1 - Process for casting a directionally solidified article and apparatus for carrying out this process - Google Patents

Process for casting a directionally solidified article and apparatus for carrying out this process Download PDF

Info

Publication number
EP0749790B1
EP0749790B1 EP96810192A EP96810192A EP0749790B1 EP 0749790 B1 EP0749790 B1 EP 0749790B1 EP 96810192 A EP96810192 A EP 96810192A EP 96810192 A EP96810192 A EP 96810192A EP 0749790 B1 EP0749790 B1 EP 0749790B1
Authority
EP
European Patent Office
Prior art keywords
gas
chamber
baffle
cooling chamber
casting mould
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96810192A
Other languages
German (de)
French (fr)
Other versions
EP0749790B2 (en
EP0749790A1 (en
Inventor
Edvard L. Prof. Dr. Kats
Maxim Dr. Konter
Joachim Dr. Rösler
Vladimir P. Dr. Lubenets
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
ABB Alstom Power Switzerland Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26016101&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0749790(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ABB Alstom Power Switzerland Ltd filed Critical ABB Alstom Power Switzerland Ltd
Publication of EP0749790A1 publication Critical patent/EP0749790A1/en
Publication of EP0749790B1 publication Critical patent/EP0749790B1/en
Application granted granted Critical
Publication of EP0749790B2 publication Critical patent/EP0749790B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/04Influencing the temperature of the metal, e.g. by heating or cooling the mould
    • B22D27/045Directionally solidified castings

Definitions

  • Using methods to produce a directionally solidified Casting body can be complicated and high components subject to thermal and mechanical loads, such as vanes or blades of gas turbines, getting produced.
  • the directionally solidified casting body as a single crystal formed or aligned in a preferred direction Stem crystals are formed. Is of particular importance that the directional solidification takes place under conditions, where between a chilled part of a molten starting material receiving mold and the still molten starting material a strong heat exchange takes place.
  • a zone can then be directed form solidified material with a solidification front, which with continuous removal of heat to form the directly solidified casting body wanders through the casting mold.
  • the production of a faultless casting body depends essentially on the size of the temperature gradient on the solidification front and the rate of solidification. With low temperature gradient and high solidification rate cannot be a directionally solidified casting getting produced. In contrast, with a large temperature gradient and with a slow solidification rate although a directionally solidified casting body is produced, however, such a casting has undesirable defects on how especially chained and coaxial aligned grains (freckles).
  • the invention is based on a method for Production of a directionally solidified casting body and a device for performing the method as it for example, in US-A-3,532,155.
  • the described method is used to manufacture the barrel and Guide blades of gas turbines and uses an evacuable Oven.
  • This oven has two by one water-cooled Wall separated and arranged one above the other Chambers, of which the upper chamber is heatable is and a swiveling crucible to accommodate pouring material, for example a nickel-based alloy, having.
  • the one with this heating chamber Opening in the water-cooled wall connected lower chamber is coolable and has walls through which water flows on.
  • One through the bottom of this cooling chamber and the opening drive rod guided in the water-cooled wall a water-cooled cooling plate, which the bottom of a the mold is located in the heating chamber.
  • the first step is in the crucible liquefied alloy in the in the heating chamber cast mold is poured.
  • This forms above the cooling plate forming the mold base from a narrow zone directed solidified alloy.
  • With one in the cooling chamber directed downward movement of the mold becomes this shape through the opening provided in the water-cooled wall guided.
  • a zone of directionally solidified alloy limiting solidification front migrates to form a directional solidified casting body from bottom to top the entire mold.
  • a is the Stefan-Boltzmann constant
  • a method for the production is also from the Japanese application JP 53-57127 known from directionally solidified castings.
  • the mold led down by a heating chamber and with a cooling ring, which with an inert gas is operated, cooled.
  • a disadvantage of this method is that that not the mold itself, but only the housing, which is around the mold is arranged, cooled, resulting in a much lower one Temperature gradients in the solidification front leads.
  • there is no baffle between Heating and cooling element available which also negatively affects the temperature gradient in the solidification front and thus affects grain growth.
  • the method according to the invention is characterized in that that it directionally froze and near vacancies Casting body provides low porosity, which itself complex design practically shatterproof are.
  • the process also enables fast throughput times and can also be used in prior art devices be carried out, which can be converted with little effort have been.
  • the single figure shows a schematic representation a preferred embodiment of a device for performing of the inventive method.
  • the device shown in the single figure has one Vacuum chamber 2 evacuable via a vacuum system 1.
  • the Vacuum chamber 2 takes two through a baffle (radiation shield) 3 separate chambers 4 arranged one above the other, 5 and a pivotable crucible 6 for receiving a Alloy, for example a nickel base super alloy, on.
  • the upper 4 of the two chambers is heatable.
  • the with the heating chamber 4 through an opening 7 in the baffle 3rd connected lower chamber 5 contains a device for Generating and guiding a gas flow.
  • This device contains a cavity with openings or nozzles 8, which point inwards to a mold 12 and a system for Generation of gas flows 9.
  • the from the openings or nozzles 8 emerging gas flows are mostly centripetal.
  • Drive rod 10 carries an optionally water-flowed Cooling plate 11, which forms the bottom of a mold 12.
  • This casting mold can be applied to the drive rod 10 acting drive from the heating chamber 4 through the opening 7 in the cooling chamber 5 are guided.
  • the mold 12 has above the cooling plate 11 thin-walled, for example 10 mm thick, part 13 Ceramic, which promotes the formation of crystals Can accommodate germs and / or a helix starter.
  • the cooling plate 11 can open or close the mold 12 become.
  • the mold 12 is open and can via a filling device led into the heating chamber 4 14 with melted alloy 15 from the crucible 6 be filled.
  • the mold 12 in the heating chamber 4 surrounding Electric heating elements 16 hold the one in the heating chamber Part of the mold 12 located alloy part above their liquidus temperature.
  • the cooling chamber is connected to the entrance of a vacuum system 17 Removing the inflowing gas from the vacuum chamber 2 and connected for cooling and cleaning the removed gas.
  • Casting mold 12 With a downward movement of the cooling chamber 5 Casting mold 12 becomes the ceramic part 13 of the casting mold 12 successively through the opening 7 provided in the baffle 3 guided. A zone of directionally solidified alloy limiting solidification front 19 migrates to form a directed solidified casting body 20 from bottom to top through the entire mold (figure).
  • the inert gas streams emerging from the openings or nozzles 8 strike the surface of the ceramic part 13 and are guided downwards along the surface. Here they withdraw heat q from the mold 12 and thus also from the already solidified part of the mold content q.
  • a particularly high heat extraction even with a complex trained mold is achieved when the baffle 3 is cooled and / or when its opening 7 of flexible, at the mold 21 adjacent fingers 21 is limited.
  • the inert gas blown into the cooling chamber 5 can by the Vacuum system 17 removed from the vacuum chamber 2, cooled filtered and - compressed to a few bar - pipes 18 are supplied with the openings or nozzles 8 in Active connection.
  • the furnace geometries, the heating temperatures and the pouring temperatures were identical in all processes.
  • the solidification front typically has one concave shape.
  • the solidification front on the other hand, is flat or even convex. With the method according to the invention, such a single-crystal Solidification of a turbine blade in the area of its inside and its outer end can be adjusted better.
  • the method according to the invention is evident at high speed through the furnace from that the cast body produced afterwards a special high single crystal breaking strength, low porosity and have no defects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Continuous Casting (AREA)

Description

TECHNISCHES GEBIETTECHNICAL AREA

Mit Verfahren zur Herstellung eines gerichtet erstarrten Giesskörpers können kompliziert ausgebildete und hohen thermischen und mechanischen Belastungen aussetzbare Bauteile, wie etwa Leit- oder Laufschaufeln von Gasturbinen, hergestellt werden. Je nach den Verfahrensbedingungen kann hierbei der gerichtet erstarrte Giesskörper als Einkristall ausgebildet oder von in einer Vorzugsrichtung ausgerichteten Stengelkristallen gebildet sein. Von besonderer Bedeutung ist es, dass die gerichtete Erstarrung unter Bedingungen stattfindet, bei denen zwischen einem gekühlten Teil einer geschmolzenes Ausgangsmaterial aufnehmenden Giessform und dem noch geschmolzenen Ausgangsmaterial ein starker Wärmeaustausch stattfindet. Es kann sich dann eine Zone gerichtet erstarrten Materials mit einer Erstarrungsfront ausbilden, welche bei dauerndem Entzug von Wärme unter Bildung des direkt erstarrten Giesskörpers durch die Giessform wandert.Using methods to produce a directionally solidified Casting body can be complicated and high components subject to thermal and mechanical loads, such as vanes or blades of gas turbines, getting produced. Depending on the process conditions here the directionally solidified casting body as a single crystal formed or aligned in a preferred direction Stem crystals are formed. Is of particular importance that the directional solidification takes place under conditions, where between a chilled part of a molten starting material receiving mold and the still molten starting material a strong heat exchange takes place. A zone can then be directed form solidified material with a solidification front, which with continuous removal of heat to form the directly solidified casting body wanders through the casting mold.

Die Herstellung eines fehlerfreien Giesskörpers hängt wesentlich von der Grösse des Temperaturgradienten an der Erstarrungsfront und der Verfestigungsgeschwindigkeit ab. Mit geringem Temperaturgradienten und hoher Verfestigungsgeschwindigkeit kann kein gerichtet erstarrter Giesskörper hergestellt werden. Hingegen kann mit einem grossen Temperaturgradienten und mit geringer Verfestigungsgeschwindigkeit zwar ein gerichtet erstarrter Giesskörper hergestellt werden, jedoch weist ein solcher Giesskörper unerwünschte Fehlstellen auf, wie insbesondere in Ketten angeordnete und gleichachsig ausgerichtete Körner (freckles).The production of a faultless casting body depends essentially on the size of the temperature gradient on the solidification front and the rate of solidification. With low temperature gradient and high solidification rate cannot be a directionally solidified casting getting produced. In contrast, with a large temperature gradient and with a slow solidification rate although a directionally solidified casting body is produced, however, such a casting has undesirable defects on how especially chained and coaxial aligned grains (freckles).

STAND DER TECHNIKSTATE OF THE ART

Bei der Erfindung wird ausgegangen von einem Verfahren zur Herstellung eines gerichtet erstarrten Giesskörpers und von einer Vorrichtung zur Durchführung des Verfahrens wie es beispielsweise in US-A-3,532,155 beschrieben ist. Das beschriebene Verfahren dient der Herstellung der Lauf- und Leitschaufeln von Gasturbinen und verwendet einen evakuierbaren Ofen. Dieser Ofen weist zwei durch eine wassergekühlte Wand voneinander getrennte und übereinander angeordnete Kammern auf, von denen die obere Kammer heizbar ausgebildet ist und einen schwenkbaren Schmelztiegel zur Aufnahme von zu vergiessendem Material, beispielsweise eine Nickel-Basislegierung, aufweist. Die mit dieser Heizkammer durch eine Öffnung in der wassergekühlten Wand verbundene untere Kammer ist kühlbar ausgebildet und weist wasserdurchströmte Wände auf. Eine durch den Boden dieser Kühlkammer und die Öffnung in der wassergekühlten Wand geführte Antriebsstange trägt eine wasserdurchströmte Kühlplatte, welche den Boden einer in der Heizkammer befindlichen Giessform bildet.The invention is based on a method for Production of a directionally solidified casting body and a device for performing the method as it for example, in US-A-3,532,155. The described method is used to manufacture the barrel and Guide blades of gas turbines and uses an evacuable Oven. This oven has two by one water-cooled Wall separated and arranged one above the other Chambers, of which the upper chamber is heatable is and a swiveling crucible to accommodate pouring material, for example a nickel-based alloy, having. The one with this heating chamber Opening in the water-cooled wall connected lower chamber is coolable and has walls through which water flows on. One through the bottom of this cooling chamber and the opening drive rod guided in the water-cooled wall a water-cooled cooling plate, which the bottom of a the mold is located in the heating chamber.

Bei der Durchführung des Verfahrens wird zunächst die im Schmelztiegel verflüssigte Legierung in die in der Heizkammer befindliche Giessform gegossen. Hierbei bildet sich oberhalb der den Formboden bildenden Kühlplatte eine schmale Zone aus gerichtet erstarrter Legierung. Bei einer in die Kühlkammer gerichteten Abwärtsbewegung der Giessform wird diese Form durch die in der wassergekühlten Wand vorgesehene Öffnung geführt. Eine die Zone aus gerichtet erstarrter Legierung begrenzende Erstarrungsfront wandert unter Bildung eines gerichtet erstarrten Giesskörpers von unten nach oben durch die gesamte Giessform.When carrying out the process, the first step is in the crucible liquefied alloy in the in the heating chamber cast mold is poured. This forms above the cooling plate forming the mold base from a narrow zone directed solidified alloy. With one in the cooling chamber directed downward movement of the mold becomes this shape through the opening provided in the water-cooled wall guided. A zone of directionally solidified alloy limiting solidification front migrates to form a directional solidified casting body from bottom to top the entire mold.

Zu Beginn des Erstarrungsprozesses werden ein grosser Temperaturgradient und eine hohe Verfestigungsgeschwindigkeit erreicht, da das in die Form gegossene Material zunächst unmittelbar auf die Kühlplatte auftrifft und die der Schmelze zu entziehende Wärme von der Erstarrungsfront durch eine vergleichsweise dünne Schicht erstarrten Materials mit einer Wärmeübergangszahl αcm zur Kühlplatte geleitet wird. Weist das Material eine relativ geringe spezifische Wärmeleitfähigkeit auf, so wird mit wachsendem Abstand zwischen Kühlplatte und Erstarrungsfront in zunehmendem Masse Wärme durch die Wände der Giessform mit einer Wärmeübergangszahl αcmd abgeleitet als auch von der Formoberfläche mit einer Wärmeübergangszahl αr in die kühlere Umgebung abgestrahlt. Gemäss dem Newtonschen Wärmeübergangsgesetz bestimmt sich dann die dem Giesskörper entzogene Wärme q wie folgt: q = α(T - To), wobei T die mittlere Temperatur des Giesskörpers und To die Umgebungstemperatur, wie sie etwa durch die wassergekühlten Wände der Kühlkammer bestimmt ist, bedeuten, und wobei 1/α = 1/αcm + 1/αcmd + 1/αr.At the beginning of the solidification process, a large temperature gradient and a high rate of solidification are achieved, since the material poured into the mold first hits the cooling plate and the heat to be removed from the melt from the solidification front through a comparatively thin layer of solidified material with a heat transfer coefficient α cm Cooling plate is passed. If the material has a relatively low specific thermal conductivity, with increasing distance between the cooling plate and the solidification front, heat is increasingly dissipated through the walls of the casting mold with a heat transfer coefficient α cmd and also radiated from the mold surface with a heat transfer coefficient α r into the cooler environment. According to Newton's law of heat transfer, the heat q extracted from the casting body is determined as follows: q = α (T - T O ), where T is the mean temperature of the casting body and T o is the ambient temperature, as determined, for example, by the water-cooled walls of the cooling chamber, and where 1 / α = 1 / α cm + 1 / α cmd + 1 / α r .

Für eine grosse Gasturbinenschaufel aus einer Nickel-Basissuperlegierung ergeben sich typischerweise folgende Werte der Wärmeübergangszahlen: αcm = lambdamm = 816 J/m2sK, αcmd = lambdamdmd = 200 J/m2sK, wobei lambdam bzw. lambdamd die spezifische Wärmeleitfähigkeit der Legierung bzw. der keramischen Giessform und δm bzw. δmd die Dicke der bereits erstarrten Metallschicht (angenommen als 30 mm) zwischen dem unter der wassergekühlten Wand gelegenen Teil der Formwand und der Erstarrungsfront bzw. die Dicke der Formwand (angenommen als 10 mm) bedeuten, und αr = σ(ε1T1 4 - ε2T0 4)/(T1 - T0) = 130 J/m2sK, wobei a die Stefan-Boltzmann-Konstante, ε1, T1 bzw. ε2, T0 die Emissionsfähigkeit und Temperatur der Giessformoberfläche bzw. die Absorptionsfähigkeit und Temperatur der Umgebung bedeuten (ε1 = ε2 = 0,5; T1 = 1500K; T0 = 400K).
Hieraus ergibt sich α = 72 J/m2sK.
The following values of the heat transfer coefficients typically result for a large gas turbine blade made of a nickel base super alloy: α cm = lambda m / δ m = 816 J / m 2nd sK, α cmd = lambda md / δ md = 200 J / m 2nd sK, where lambda m or lambda md the specific thermal conductivity of the alloy or ceramic casting mold and δ m or δ md the thickness of the already solidified metal layer (assumed as 30 mm) between the part of the mold wall located under the water - cooled wall and the solidification front or . mean the thickness of the mold wall (assumed as 10 mm), and α r = σ (ε 1 T 1 4 - ε 2 T 0 4 ) / (T 1 - T 0 ) = 130 J / m 2 sK, where a is the Stefan-Boltzmann constant, ε 1 , T 1 or ε 2 , T 0 mean the emissivity and temperature of the mold surface or the absorbency and temperature of the environment (ε 1 = ε 2 = 0.5; T 1 = 1500K; T 0 = 400K).
This results in α = 72 J / m 2 sK.

Ein weiteres Verfahren zur Herstellung eines gerichtet erstarrten Giesskörpers ist aus US-A-3,763,926 bekannt. Bei diesem Verfahren wird eine mit einer aufgeschmolzenen Legierung gefüllte Giessform allmählich und kontinuierlich in ein auf ca.260°C aufgeheiztes Zinnbad eingetaucht. Hierdurch wird eine besonders rasche Abfuhr von Wärme aus der Giessform erreicht. Der mit diesem Verfahren gebildete, gerichtet erstarrte Giesskörper zeichnet sich durch eine Mikrostruktur mit geringen Inhomogenitäten aus. Bei der Herstellung von vergleichbar ausgebildeten Gasturbinenschaufeln können mit diesem Verfahren nahezu doppelt so grosse α-Werte erreicht werden wie mit dem Verfahren nach US-A-3,532,155. Zur Vermeidung unerwünschter gasbildender Reaktionen, die die bei der Durchführung dieses Verfahrens eingesetzte Vorrichtung beschädigen können, benötigt dieses Verfahren jedoch eine besonders genaue Temperaturregelung. Zudem ist die Wandstärke der Giessform grösser als beim Verfahren nach der US-A-3,532,155 zu wählen.Another method of making a directed solidified casting is known from US-A-3,763,926. At this process is one with a melted Alloy filled mold gradually and continuously in immersed in a tin bath heated to approx. 260 ° C. Hereby becomes a particularly rapid removal of heat from the mold reached. The one formed with this method, directed solidified casting body is characterized by a microstructure with low inhomogeneities. In the manufacture of comparable trained gas turbine blades can with achieved almost twice as large α values in this process as with the method according to US-A-3,532,155. For Avoidance of undesirable gas-forming reactions that the device used to carry out this method this method, however, requires one particularly precise temperature control. In addition, the wall thickness the mold larger than in the process according to the US-A-3,532,155 to choose.

Auch aus der japanischen Anmeldung JP 53-57127 ist ein Verfahren zur Herstellung von gerichtet erstarrten Gusskörpern bekannt. Bei diesem Verfahren wird die Gussform von einer Heizkammer nach unten geführt und mit einem Kühlring, welcher mit einem inerten Gas betrieben wird, gekühlt. Nachteilig bei diesem Verfahren ist allerdings, dass nicht die Gussform selbst, sondern lediglich das Gehäuse, welches um die Giessform angeordnet ist, gekühlt wird, was zu einem wesentlich niedrigeren Temperaturgradienten in der Erstarrungsfront führt. Zudem ist kein Baffle zwischen Heiz- und Kühlelement vorhanden, was sich ebenfalls negativ auf den Temperaturgradienten in der Erstarrungsfront und damit auf das Kornwachstum auswirkt.A method for the production is also from the Japanese application JP 53-57127 known from directionally solidified castings. In this process, the mold led down by a heating chamber and with a cooling ring, which with an inert gas is operated, cooled. However, a disadvantage of this method is that that not the mold itself, but only the housing, which is around the mold is arranged, cooled, resulting in a much lower one Temperature gradients in the solidification front leads. In addition, there is no baffle between Heating and cooling element available, which also negatively affects the temperature gradient in the solidification front and thus affects grain growth.

DARSTELLUNG DER ERFINDUNGPRESENTATION OF THE INVENTION

Der Erfindung, wie sie in Patentanspruch 1 angegeben ist, liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art anzugeben, mit dem in einfacher Weise gerichtet erstarrte Giesskörper mit einer geringen Anzahl an Fehlstellen hergestellt werden können, und zugleich eine Vorrichtung zu schaffen, welche die Durchführung dieses Verfahrens in vorteilhafter Weise begünstigt. Diese Aufgabe wird durch die in den Ansprüchen 1 und 7 aufgeführten Merkmale gelöst. The invention as set out in claim 1 the task is based on a process of the beginning Specify the type mentioned, directed with in a simple manner solidified castings with a small number of Defects can be made, and at the same time one To create device, which the implementation of this Process favored in an advantageous manner. This object is achieved by the features listed in claims 1 and 7.

Das erfindungsgemässe Verfahren zeichnet sich dadurch aus, dass es gerichtet erstarrte und nahe fehlstellenfreie Giesskörper geringer Porosität liefert, welche selbst bei komplexer Ausgestaltung praktisch splitterfrei ausgebildet sind. Zudem ermöglicht das Verfahren rasche Durchlaufzeiten und kann auch in Vorrichtungen nach dem Stand der Technik durchgeführt werden, welche mit geringem Aufwand umgerüstet worden sind.The method according to the invention is characterized in that that it directionally froze and near vacancies Casting body provides low porosity, which itself complex design practically shatterproof are. The process also enables fast throughput times and can also be used in prior art devices be carried out, which can be converted with little effort have been.

WEG ZUR AUSFÜHRUNG DER ERFINDUNGWAY OF CARRYING OUT THE INVENTION

Die Erfindung wird nachfolgend anhand eines Ausführungsbeispiels näher beschrieben.The invention is described below using an exemplary embodiment described in more detail.

Hierbei zeigt die einzige Figur in schematischer Darstellung eine bevorzugte Ausführungsform einer Vorrichtung zur Durchführung des erfindungsgemässen Verfahrens.The single figure shows a schematic representation a preferred embodiment of a device for performing of the inventive method.

Die in der einzigen Figur dargestellte Vorrichtung weist eine über ein Vakuumsystem 1 evakuierbare Vakuumkammer 2 auf. Die Vakuumkammer 2 nimmt zwei durch ein Baffle (Strahlungsschild) 3 voneinander getrennte, übereinander angeordnete Kammern 4, 5 und einen schwenkbaren Schmelztiegel 6 zur Aufnahme einer Legierung, beispielsweise einer Nickel-Basissuperlegierung, auf. Die obere 4 der beiden Kammern ist heizbar ausgebildet. Die mit der Heizkammer 4 durch eine Öffnung 7 im Baffle 3 verbundene untere Kammer 5 enthält eine Vorrichtung zum Erzeugen und Führen einer Gasströmung. Diese Vorrichtung enthält einen Hohlraum mit Öffnungen bzw. Düsen 8, welche nach innen auf eine Giessform 12 weisen sowie ein System zum Erzeugen von Gasströmen 9. Die aus den Öffnungen bzw. Düsen 8 tretenden Gasströme sind überwiegend zentripetal geführt. Eine beispielsweise durch den Boden der Kühlkammer 5 geführte Antriebsstange 10 trägt eine gegebenenfalls wasserdurchströmte Kühlplatte 11, welche den Boden einer Giessform 12 bildet. The device shown in the single figure has one Vacuum chamber 2 evacuable via a vacuum system 1. The Vacuum chamber 2 takes two through a baffle (radiation shield) 3 separate chambers 4 arranged one above the other, 5 and a pivotable crucible 6 for receiving a Alloy, for example a nickel base super alloy, on. The upper 4 of the two chambers is heatable. The with the heating chamber 4 through an opening 7 in the baffle 3rd connected lower chamber 5 contains a device for Generating and guiding a gas flow. This device contains a cavity with openings or nozzles 8, which point inwards to a mold 12 and a system for Generation of gas flows 9. The from the openings or nozzles 8 emerging gas flows are mostly centripetal. For example, one led through the bottom of the cooling chamber 5 Drive rod 10 carries an optionally water-flowed Cooling plate 11, which forms the bottom of a mold 12.

Diese Giessform kann durch einen auf die Antriebsstange 10 wirkenden Antrieb von der Heizkammer 4 durch die Öffnung 7 in die Kühlkammer 5 geführt werden.This casting mold can be applied to the drive rod 10 acting drive from the heating chamber 4 through the opening 7 in the cooling chamber 5 are guided.

Die Giessform 12 weist oberhalb der Kühlplatte 11 ein dünnwandiges, beispielsweise 10 mm dickes, Teil 13 aus Keramik auf, welches die Bildung von Kristallen fördernde Keime und/oder einen Helixstarter aufnehmen kann. Durch Abheben von der Kühlplatte 11 bzw. durch Aufsetzen auf die Kühlplatte 11 kann die Giessform 12 geöffnet bzw. geschlossen werden. An ihrem oberen Ende ist die Giessform 12 offen und kann über eine in die Heizkammer 4 geführte Füllvorrichtung 14 mit aufgeschmolzener Legierung 15 aus dem Schmelztiegel 6 gefüllt werden. Die Giessform 12 in der Heizkammer 4 umgebende elektrische Heizelemente 16 halten den im heizkammerseitigen Teil der Giessform 12 befindlichen Legierungsteil oberhalb ihrer Liquidustemperatur.The mold 12 has above the cooling plate 11 thin-walled, for example 10 mm thick, part 13 Ceramic, which promotes the formation of crystals Can accommodate germs and / or a helix starter. By Lift off the cooling plate 11 or by placing it on the The cooling plate 11 can open or close the mold 12 become. At its upper end, the mold 12 is open and can via a filling device led into the heating chamber 4 14 with melted alloy 15 from the crucible 6 be filled. The mold 12 in the heating chamber 4 surrounding Electric heating elements 16 hold the one in the heating chamber Part of the mold 12 located alloy part above their liquidus temperature.

Die Kühlkammer ist mit dem Eingang eines Vakuumsystems 17 zum Entfernen des einströmenden Gases aus der Vakuumkammer 2 und zum Kühlen und Reinigen des entfernten Gases verbunden.The cooling chamber is connected to the entrance of a vacuum system 17 Removing the inflowing gas from the vacuum chamber 2 and connected for cooling and cleaning the removed gas.

Zur Herstellung eines gerichtet erstarrten Giesskörpers wird zunächst die Giessform 12 durch eine Aufwärtsbewegung der Antriebsstange 10 in die Heizkammer 4 gebracht (in der Figur gestrichelt angedeutet). Im Schmelztiegel 6 verflüssigte Legierung wird sodann über die Füllvorrichtung 14 in die Giessform 12 gegossen. Hierbei bildet sich oberhalb der den Formboden bildenden Kühlplatte 11 eine schmale Zone aus gerichtet erstarrter Legierung (in der Figur nicht dargestellt).To produce a directionally solidified casting first the mold 12 by an upward movement of the Drive rod 10 brought into the heating chamber 4 (in the figure indicated by dashed lines). Liquefied in the crucible 6 Alloy is then in the filler 14 in the Casting mold 12 cast. This forms above the Molded bottom forming cooling plate 11 from a narrow zone directionally solidified alloy (not in the figure shown).

Bei einer in die Kühlkammer 5 gerichteten Abwärtsbewegung der Giessform 12 wird das Keramikteil 13 der Giessform 12 sukzessive durch die im Baffle 3 vorgesehene Öffnung 7 geführt. Eine die Zone aus gerichtet erstarrter Legierung begrenzende Erstarrungsfront 19 wandert unter Bildung eines gerichtet erstarrten Giesskörpers 20 von unten nach oben durch die gesamte Giessform (Figur).With a downward movement of the cooling chamber 5 Casting mold 12 becomes the ceramic part 13 of the casting mold 12 successively through the opening 7 provided in the baffle 3 guided. A zone of directionally solidified alloy limiting solidification front 19 migrates to form a directed solidified casting body 20 from bottom to top through the entire mold (figure).

Zu Beginn des Erstarrungsprozesses werden ein grosser Temperaturgradient und eine hohe Verfestigungsgeschwindigkeit erreicht, da das in die Form gegossene Material zunächst unmittelbar auf die Kühlplatte auftrifft und die der Schmelze zu entziehende Wärme von der Erstarrungsfront durch eine vergleichsweise dünne Schicht erstarrten Materials zur Kühlplatte 11 geführt wird. Wenn der von der Kühlplatte 11 gebildete Boden der Giessform 12, gemessen von der Unterseite des Baffle 3, einige Millimeter, beispielsweise 5 bis 40 mm, in die Kühlkammer 5 eingedrungen ist, wird aus den Öffnungen bzw. Düsen 8 inertes, mit dem erhitzten Material nicht reagierendes Druckgas, beispielsweise ein Edelgas, wie etwa Helium oder Argon, oder ein anderes inertes Fluid, zugeführt. Die aus den Öffnungen bzw. Düsen 8 austretenden Inertgasströme prallen auf die Oberfläche des Keramikteils 13 auf und werden längs der Oberfläche nach unten weggeleitet. Hierbei entziehen sie der Giessform 12 und damit auch dem bereits gerichtet erstarrten Teil des Giessforminhalts Wärme q. Entsprechend dem Stand der Technik nach US-A-3,532,155 errechnet sich die entzogene Wärme wie folgt: q = α(T - To), wobei T die Temperatur des Giesskörpers an der Erstarrungsfront und To die Umgebungstemperatur, wie sie durch die Wände der Kühlkammer 5 bzw. der Vakuumkammer 2 bestimmt ist, bedeuten, und wobei 1/α = 1/αcm + 1/αcmd + 1/αGCC, mit αGCC = αr (Wärmeübergang durch Strahlung) + αcvgas (Wärmeübergang durch Konvektion).At the beginning of the solidification process, a large temperature gradient and a high rate of solidification are achieved, since the material poured into the mold first hits the cooling plate directly and the heat to be removed from the melt is conducted from the solidification front through a comparatively thin layer of solidified material to the cooling plate 11. When the bottom of the casting mold 12 formed by the cooling plate 11, measured from the underside of the baffle 3, has penetrated into the cooling chamber 5 a few millimeters, for example 5 to 40 mm, the openings or nozzles 8 become inert with the heated material non-reacting compressed gas, for example a noble gas such as helium or argon, or another inert fluid. The inert gas streams emerging from the openings or nozzles 8 strike the surface of the ceramic part 13 and are guided downwards along the surface. Here they withdraw heat q from the mold 12 and thus also from the already solidified part of the mold content q. According to the state of the art according to US-A-3,532,155, the heat extracted is calculated as follows: q = α (T - T O ), where T is the temperature of the casting body on the solidification front and T o is the ambient temperature, as determined by the walls of the cooling chamber 5 or the vacuum chamber 2, and where 1 / α = 1 / α cm + 1 / α cmd + 1 / α GCC , with α GCC = α r (heat transfer by radiation) + α cvgas (heat transfer by convection).

Ein besonders hoher Wärmentzug auch bei einer komplex ausgebildeten Giessform wird erreicht, wenn das Baffle 3 gekühlt ist und/oder wenn seine Öffnung 7 von flexiblen, an der Giessform 12 anliegenden Fingern 21 begrenzt ist. A particularly high heat extraction even with a complex trained mold is achieved when the baffle 3 is cooled and / or when its opening 7 of flexible, at the mold 21 adjacent fingers 21 is limited.

Für eine grosse Gasturbinenschaufel aus einer Nickel-Basissuperlegierung ergeben sich typischerweise folgende Werte der Wärmeübergangszahlen: αcm = lambdamm = 816 J/m2sK, αcmd = lambdamdmd = 200 J/m2sK, wobei lambdam bzw. lambdamd die spezifische Wärmeleitfähigkeit der Legierung bzw. der keramischen Giessform 12 und δm bzw. δmd die Dicke der bereits erstarrten Metallschicht (angenommen als 30 mm) zwischen Formwand (unter dem Baffle 3 gelegen) und Erstarrungsfront bzw. die Dicke der Formwand (angenommen als 10 mm) bedeuten, und αGCC = 800 J/m2sK. Hieraus ergibt sich mit α = 134 J/m2sK ein Wärmeübergangswert, welcher demjenigen nach dem schwerer beherrschbaren Verfahren gemäss US-A-3,763,926 entspricht.The following values of the heat transfer coefficients typically result for a large gas turbine blade made of a nickel base super alloy: α cm = lambda m / δ m = 816 J / m 2nd sK, α cmd = lambda md / δ md = 200 J / m 2nd sK, where lambda m or lambda md the specific thermal conductivity of the alloy or ceramic casting mold 12 and δ m or δ md the thickness of the already solidified metal layer (assumed as 30 mm) between the mold wall (located under the baffle 3) and the solidification front or mean the thickness of the mold wall (assumed as 10 mm), and α GCC = 800 J / m 2 sK. With α = 134 J / m 2 sK, this results in a heat transfer value which corresponds to that according to the more difficult to control method according to US Pat. No. 3,763,926.

Das in die Kühlkammer 5 eingeblasene Inertgas kann durch das Vakuumsystem 17 aus der Vakuumkammer 2 entfernt, abgekühlt gefiltert und - auf einige bar komprimiert - Rohrleitungen 18 zugeführt werden, die mit den Öffnungen bzw. Düsen 8 in Wirkverbindung stehen.The inert gas blown into the cooling chamber 5 can by the Vacuum system 17 removed from the vacuum chamber 2, cooled filtered and - compressed to a few bar - pipes 18 are supplied with the openings or nozzles 8 in Active connection.

Das Befüllen einer nächsten Giessform mit geschmolzenem Metall kann nach Entfernen der Giessform 12 und Evakuieren der Vakuumkammer 2 ausgeführt werden.Filling a next mold with melted Metal can be removed after removal of the mold 12 and evacuation the vacuum chamber 2 are executed.

Nachfolgend sind die Eigenschaften von als Gasturbinenschaufeln ausgebildeten Giesskörpern angegeben, welche nach den Verfahren gemäss US-A-3,532,155, gemäss US-A-3,763,926 und gemäss der Erfindung hergestellt worden sind. Diese Schaufeln wiesen jeweils gleiche geometrische Abmessungen auf (Länge jeweils 200 mm) und bestanden aus einer Nickel-Basissuperlegierung mit folgenden Hauptkomponenten in Gewichtsprozent:
Cr=6,5; Co=9,5; Mo=0.6; W= 6,5; Ta=6,5; Re=2,9; Al=5,6; Ti=1,0; Hf=0,1; Ni=Rest.
The properties of cast bodies designed as gas turbine blades, which have been produced by the processes according to US-A-3,532,155, according to US-A-3,763,926 and according to the invention, are given below. These blades each had the same geometric dimensions (length 200 mm each) and consisted of a nickel base super alloy with the following main components in percent by weight:
Cr = 6.5; Co = 9.5; Mo = 0.6; W = 6.5; Ta = 6.5; Re = 2.9; Al = 5.6; Ti = 1.0; Hf = 0.1; Ni = rest.

Bei allen Verfahren waren die Ofengeometrien, die Heiztemperaturen und die Abgiesstemperaturen identisch.

Figure 00100001
The furnace geometries, the heating temperatures and the pouring temperatures were identical in all processes.
Figure 00100001

Bei den Verfahren nach US-A-3,532,155 und insbesondere US-A-3,763,926 weist die Erstarrungsfront typischerweise eine konkave Form auf. Beim Verfahren nach der Erfindung ist die Erstarrungsfront hingegen eben oder sogar konvex ausgebildet. Mit dem Verfahren nach der Erfindung kann so eine einkristalline Erstarrung einer Turbinenschaufel im Bereich ihres innen und ihres aussen liegenden Endes besser eingestellt werden.In the processes according to US-A-3,532,155 and in particular US-A-3,763,926 the solidification front typically has one concave shape. In the method according to the invention The solidification front, on the other hand, is flat or even convex. With the method according to the invention, such a single-crystal Solidification of a turbine blade in the area of its inside and its outer end can be adjusted better.

Ersichtlich zeichnet sich das Verfahren nach der Erfindung bei hoher Durchlaufgeschwindigkeit durch den Ofen dadurch aus, dass die danach hergestellten Giesskörper eine besonders grosse Einkristallbruchfestigkeit, eine geringe Porosität und keine Fehlstellen aufweisen. Darüber hinaus werden bei der Durchführung des Verfahrens nach der Erfindung Giesskörper hergestellt, die nahezu frei von Freckles und slivers sind. The method according to the invention is evident at high speed through the furnace from that the cast body produced afterwards a special high single crystal breaking strength, low porosity and have no defects. In addition, at Implementation of the method according to the invention casting body manufactured that are almost free of freckles and slivers.

BezugszeichenlisteReference list

11
VakuumsystemVacuum system
22nd
VakuumkammerVacuum chamber
33rd
Baffle (Strahlungsschild)Baffle (radiation shield)
44th
HeizkammerHeating chamber
55
KühlkammerCooling chamber
66
SchmelztiegelMelting pot
77
Öffnungopening
88th
DüsenNozzles
99
InertgasströmeInert gas flows
1010th
AntriebsstangeDrive rod
1111
KühlplatteCooling plate
1212th
GiessformMold
1313
KeramikteilCeramic part
1414
FüllvorrichtungFilling device
1515
aufgeschmolzene Legierungmelted alloy
1616
HeizelementeHeating elements
1717th
VakuumsystemVacuum system
1818th
RohrleitungenPipelines
1919th
ErstarrungsfrontSolidification front
2020th
GiesskörperCasting body
2121
Fingerfinger

Claims (14)

  1. Process for producing a casting (20) in a vacuum chamber (2), in which a liquid alloy located in a casting mould (12) is guided from a heating chamber (4) into a cooling chamber (5) and is thereby directionally solidified, the heating chamber (4) being separated from the cooling chamber (5) by a baffle (3) provided with an opening (7), characterized in that the casting mould below the baffle (3) is additionally cooled externally with flowing gas, the gas being guided in the cooling chamber (5) in the direction of the surface of the casting mould (12).
  2. Process according to Claim 1, characterized in that the gas is an inert gas, such as in particular argon or helium.
  3. Process according to Claim 1 or 2, characterized in that the gas is guided into the cooling chamber (5) once the base of the casting mould (12) has entered.
  4. Process according to one of Claims 1 to 3, characterized in that the gas is subsequently removed from the vacuum chamber (2).
  5. Process according to Claim 4, characterized in that the gas is removed from the vacuum chamber (2) by being pumped out in the direction of guidance of the casting mould (12).
  6. Process according to one of Claims 4 or 5, characterized in that the gas flowing out is removed by suction, cooled, filtered and then fed back into the cooling chamber (5).
  7. Apparatus for carrying out the process according to Claim 1, comprising a casting mould (12) in a vacuum chamber (2) which has a heating chamber (4) and a cooling chamber (5), the two chambers being separated by a baffle (3) provided with an opening, and also a transporting apparatus (10) for the casting mould (12), characterized in that nozzles (8) for generating and guiding the stream of gas are arranged in the vicinity of the baffle on the side of the baffle (3) remote from the heating chamber (4).
  8. Apparatus according to Claim 7, characterized in that the orifices are the perforations of at least one perforated wall.
  9. The apparatus according to one of Claims 7 to 8, characterized in that the means for generating and guiding the stream of gas are arranged annularly around the opening (7) provided in the baffle (3) and have orifices or nozzles (8) directed predominantly radially inwards.
  10. Apparatus according to one of Claims 7 to 9, characterized in that the means for generating the stream of gas are water-cooled.
  11. Apparatus according to one of Claims 7 to 10, characterized in that an additional cooling device acting on the cooling chamber (5) and/or the baffle (3) is provided.
  12. Apparatus according to Claim 11, characterized in that the baffle (3) is cooled and/or is delimited by flexible fingers (21) which are guided into the opening (7) and rest against the casting mould (12).
  13. Apparatus according to one of Claims 7 to 12, characterized in that the cooling chamber (5) is connected to the inlet of a vacuum system (17) for removing the gas from the cooling chamber (5) and for cooling and purifying the gas removed, which vacuum system is part of a closed circuit feeding gas back to the cooling chamber (5).
  14. Apparatus according to Claim 13, characterized in that an outlet of the vacuum system (17) is connected to pipelines (18) leading to the nozzles or orifices (8).
EP96810192A 1995-06-20 1996-03-26 Apparatus for casting a directionally solidified article Expired - Lifetime EP0749790B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19522266 1995-06-20
DE19522266 1995-06-20
DE19539770A DE19539770A1 (en) 1995-06-20 1995-10-26 Process for producing a directionally solidified casting and device for carrying out this process
DE19539770 1995-10-26

Publications (3)

Publication Number Publication Date
EP0749790A1 EP0749790A1 (en) 1996-12-27
EP0749790B1 true EP0749790B1 (en) 2000-08-23
EP0749790B2 EP0749790B2 (en) 2004-11-03

Family

ID=26016101

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96810192A Expired - Lifetime EP0749790B2 (en) 1995-06-20 1996-03-26 Apparatus for casting a directionally solidified article

Country Status (5)

Country Link
US (1) US5921310A (en)
EP (1) EP0749790B2 (en)
JP (1) JP3919256B2 (en)
DE (2) DE19539770A1 (en)
EA (1) EA000040B1 (en)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2117550C1 (en) * 1997-09-12 1998-08-20 Всероссийский научно-исследовательский институт авиационных материалов Apparatus for making castings with directed and monocrystalline structure
US6715534B1 (en) * 1997-09-12 2004-04-06 All-Russian Scientific Research Institute Of Aviation Materials Method and apparatus for producing directionally solidified castings
DE19845805C1 (en) * 1998-09-30 2000-04-27 Tacr Turbine Airfoil Coating A Method and treatment device for cooling highly heated metal components
US6192969B1 (en) * 1999-03-22 2001-02-27 Asarco Incorporated Casting of high purity oxygen free copper
DE59909337D1 (en) * 1999-06-03 2004-06-03 Alstom Technology Ltd Baden Process for the production or repair of cooling channels in single-crystalline components of gas turbines
RU2146185C1 (en) * 1999-07-27 2000-03-10 Спиридонов Евгений Васильевич Method for making monocrystalline structure part by directional crystallization and apparatus for performing the same
EP1076119A1 (en) 1999-08-11 2001-02-14 ABB Alstom Power (Schweiz) AG Apparatus and method for manufacture a directionally solidified columnar grained article
US6311760B1 (en) * 1999-08-13 2001-11-06 Asea Brown Boveri Ag Method and apparatus for casting directionally solidified article
RU2157296C1 (en) * 1999-10-12 2000-10-10 Спиридонов Евгений Васильевич Method of manufacture of part of monocrystalline structure by oriented crystallization and device for realization of this method
EP1162016B1 (en) * 2000-05-13 2004-07-21 ALSTOM Technology Ltd Apparatus for casting a directionally solidified article
DE10024302A1 (en) 2000-05-17 2001-11-22 Alstom Power Nv Process for producing a thermally stressed casting
DE10038453A1 (en) 2000-08-07 2002-02-21 Alstom Power Nv Production of a cooled cast part of a thermal turbo machine comprises applying a wax seal to an offset between a wax model a core before producing the casting mold, the offset being located above the step to the side of the core.
RU2167739C1 (en) * 2000-10-09 2001-05-27 Цацулина Ирина Евгеньевна Method of manufacturing part with single-crystal structure by oriented crystallization and device for method embodiment
DE10060141A1 (en) 2000-12-04 2002-06-06 Alstom Switzerland Ltd Process for making a casting, model shape and ceramic insert for use in this process
JP2003191067A (en) * 2001-12-21 2003-07-08 Mitsubishi Heavy Ind Ltd Grain-oriented solidification casting apparatus and grain-oriented solidification casting method
EP1340583A1 (en) 2002-02-20 2003-09-03 ALSTOM (Switzerland) Ltd Method of controlled remelting of or laser metal forming on the surface of an article
EP1340567A1 (en) 2002-02-27 2003-09-03 ALSTOM (Switzerland) Ltd Method of removing casting defects
US20030234092A1 (en) * 2002-06-20 2003-12-25 Brinegar John R. Directional solidification method and apparatus
DE10232324B4 (en) * 2002-07-17 2006-01-26 Ald Vacuum Technologies Ag Method for producing a directionally solidified casting and casting device for this purpose
EP1396556A1 (en) 2002-09-06 2004-03-10 ALSTOM (Switzerland) Ltd Method for controlling the microstructure of a laser metal formed hard layer
EP1424158B1 (en) 2002-11-29 2007-06-27 Alstom Technology Ltd A method for fabricating, modifying or repairing of single crystal or directionally solidified articles
US6896030B2 (en) * 2003-07-30 2005-05-24 Howmet Corporation Directional solidification method and apparatus
DE60311658T2 (en) 2003-11-06 2007-11-22 Alstom Technology Ltd. Method for casting a directionally solidified casting body
AT503391B1 (en) * 2006-04-04 2008-10-15 O St Feingussgesellschaft M B METHOD FOR MEASURING METALLIC SHAPES AND DEVICE THEREFOR
DE102007014744A1 (en) * 2007-03-28 2008-10-02 Rwth Aachen Mold and method for the casting production of a cast piece
US20100071812A1 (en) * 2008-09-25 2010-03-25 General Electric Company Unidirectionally-solidification process and castings formed thereby
RU2444415C1 (en) * 2010-07-27 2012-03-10 Государственное Образовательное Учреждение Высшего Профессионального Образования "Московский Государственный Технический Университет Имени Н.Э. Баумана" Method of gravity casting of shaped casts
US8186418B2 (en) * 2010-09-30 2012-05-29 General Electric Company Unidirectional solidification process and apparatus therefor
EP2460606A1 (en) * 2010-12-01 2012-06-06 Siemens Aktiengesellschaft Method for reducing porosity when casting cast components with globular grains and device
US10082032B2 (en) 2012-11-06 2018-09-25 Howmet Corporation Casting method, apparatus, and product
WO2015130371A2 (en) * 2013-12-30 2015-09-03 United Technologies Corporation Directional solidification apparatus and related methods
PL222793B1 (en) * 2014-03-13 2016-09-30 Seco/Warwick Europe Spółka Z Ograniczoną Odpowiedzialnością Method for the oriented crystallization of gas turbine blades and the device for producing castings of the gas turbine blades with oriented and monocrystalline structure
CN105618689A (en) * 2016-01-25 2016-06-01 江苏大学 Device for manufacturing turbine blade through rapid vacuum melting
JP6554052B2 (en) 2016-03-11 2019-07-31 三菱重工業株式会社 Casting equipment
CN106424681B (en) * 2016-11-11 2018-03-06 郭光� A kind of vacuum casting apparatus
CN106734999B (en) * 2016-12-29 2018-12-28 宁波泛德压铸有限公司 A kind of vacuum casting device of intermetallic Ni-Al compound ingot
CN108607973A (en) * 2018-04-24 2018-10-02 山东省科学院新材料研究所 A kind of method for casting aluminium alloy generating elongate column crystal solidification tissue
AT522892A1 (en) * 2019-08-26 2021-03-15 Lkr Leichtmetallkompetenzzentrum Ranshofen Gmbh Device and method for producing a casting, preferably as a starting material
CN111215605B (en) * 2020-01-13 2022-04-08 成都航宇超合金技术有限公司 Directional solidification device for improving single crystal blade sediment and technological method thereof
CN112935186B (en) * 2021-01-26 2022-06-10 燕山大学 Precision casting device of heavy-calibre thick-walled pipe
RU2763865C1 (en) * 2021-02-04 2022-01-11 Вячеслав Моисеевич Грузман Method for manufacturing castings
CN113458381B (en) * 2021-06-30 2022-11-22 中国航发动力股份有限公司 Material receiving disc for directional solidification crystallization furnace and manufacturing method thereof
CN113894266B (en) * 2021-09-16 2024-01-19 沈阳铸造研究所有限公司 Multichamber semicontinuous vacuum casting furnace
US11998976B2 (en) 2022-09-07 2024-06-04 Ge Infrastructure Technology Llc Systems and methods for enhanced cooling during directional solidification of a casting component
US11833581B1 (en) 2022-09-07 2023-12-05 General Electric Company Heat extraction or retention during directional solidification of a casting component

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3532155A (en) 1967-12-05 1970-10-06 Martin Metals Co Process for producing directionally solidified castings
US3690367A (en) 1968-07-05 1972-09-12 Anadite Inc Apparatus for the restructuring of metals
US3763926A (en) 1971-09-15 1973-10-09 United Aircraft Corp Apparatus for casting of directionally solidified articles
JPS5214845B2 (en) * 1972-06-06 1977-04-25
US3897815A (en) * 1973-11-01 1975-08-05 Gen Electric Apparatus and method for directional solidification
CH577864A5 (en) 1974-05-29 1976-07-30 Sulzer Ag
JPS5357127A (en) * 1976-11-02 1978-05-24 Ishikawajima Harima Heavy Ind Method of making cast piece of constant structure orientation
US4108236A (en) * 1977-04-21 1978-08-22 United Technologies Corporation Floating heat insulating baffle for directional solidification apparatus utilizing liquid coolant bath
JPS5695464A (en) 1979-12-14 1981-08-01 Secr Defence Brit Directional coagulating method
DE3220744A1 (en) * 1982-06-02 1983-12-08 Leybold-Heraeus GmbH, 5000 Köln Melting and casting plant for vacuum or protective gas operation with at least two chambers
US4817701A (en) 1982-07-26 1989-04-04 Steel Casting Engineering, Ltd. Method and apparatus for horizontal continuous casting
DE3231316A1 (en) * 1982-08-23 1984-04-12 Leybold-Heraeus GmbH, 5000 Köln METHOD AND DEVICE FOR CONTROLLING THE POURING OF A MEL FROM A MELT CONTAINER WITH A BOTTOM OPENING
US4781565A (en) * 1982-12-27 1988-11-01 Sri International Apparatus for obtaining silicon from fluosilicic acid
DE3603310A1 (en) * 1986-02-04 1987-08-06 Leybold Heraeus Gmbh & Co Kg Method and apparatus for the casting of mouldings with subsequent isostatic compression
US4763716A (en) * 1987-02-11 1988-08-16 Pcc Airfoils, Inc. Apparatus and method for use in casting articles
GB8712743D0 (en) * 1987-05-30 1987-07-01 Ae Plc Casting method
US4969501A (en) * 1989-11-09 1990-11-13 Pcc Airfoils, Inc. Method and apparatus for use during casting
DE4321640C2 (en) * 1993-06-30 1998-08-06 Siemens Ag Process for the directional solidification of a molten metal and casting device for carrying it out

Also Published As

Publication number Publication date
EA199600020A2 (en) 1996-12-30
US5921310A (en) 1999-07-13
DE19539770A1 (en) 1997-01-02
EP0749790B2 (en) 2004-11-03
EA000040B1 (en) 1998-02-26
DE59605783D1 (en) 2000-09-28
EA199600020A3 (en) 1997-03-31
JP3919256B2 (en) 2007-05-23
JPH0910919A (en) 1997-01-14
EP0749790A1 (en) 1996-12-27

Similar Documents

Publication Publication Date Title
EP0749790B1 (en) Process for casting a directionally solidified article and apparatus for carrying out this process
DE69932760T2 (en) Method and apparatus for producing a silicon rod having a structure produced by directional solidification
DE2949446C2 (en)
Zhou et al. As-spray-deposited structure of an Al-20Si-5Fe Osprey preform and its development during subsequent processing
DE2242111A1 (en) METHOD AND DEVICE FOR CASTING OBJECTS WITH DIRECTLY SOLIDIZED JOINT
DE60311658T2 (en) Method for casting a directionally solidified casting body
EP1020245B1 (en) Method for producing a gas turbine blade by means of directional solidification of a melt
DE102012112982A1 (en) Method for producing articles with a fine equiaxed grain structure
DE2609949C3 (en) Method and device for producing a casting from a metal alloy solidified in one direction
DE60036646T2 (en) CASTING SYSTEMS AND METHOD WITH AUXILIARY COOLING OF THE LIQUID SURFACE OF THE CASTORS
NO154909B (en) PROCEDURE FOR DIRECTIVE STRENGTHENING OF A METAL MELT.
Liu et al. Effect of annealing treatment on microstructure and tensile properties of Ti-48Al-2Cr-5Nb alloy fabricated by laser additive manufacturing
EP0894558A1 (en) Turbine blade and method of fabrication of a turbine blade
DE2053062A1 (en) Method and device for the manufacture of castings solidified in one direction
CN105088329B (en) A kind of preparation method of the quasi- seed crystal of TiAl alloy
EP1000225B1 (en) Turbine blade and a method for the production thereof
DE3720110A1 (en) METHOD FOR MELTING AND FORMING BETA TITANIUM ALLOYS
DE1118172B (en) Process for treating silicon
US4709461A (en) Method of forming dense ingots having a fine equiaxed grain structure
DE19919869B4 (en) Casting furnace for the production of directionally monocrystalline and polycrystalline solidified casting bodies
Suriñach et al. A new temperature versus heating rate transformation (T-HR-T) diagram: Application to study the crystallization behaviour of Fe67. 5Co15Nb1. 5B16 metallic glass
LU84517A1 (en) METHOD FOR PRODUCING POLYCRYSTALLINE, SUITABLE FOR FOLLOWING ZONE MELTING
DE3220338A1 (en) Process for producing polycrystalline silicon rods suitable for subsequent zone melting
DE3627764A1 (en) Process for producing solidified alloy bodies
DE742328C (en) Method for lining bearing shells

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19970509

17Q First examination report despatched

Effective date: 19980921

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ABB ALSTOM POWER (SCHWEIZ) AG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 59605783

Country of ref document: DE

Date of ref document: 20000928

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20001031

ET Fr: translation filed
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ALSTOM POWER (SCHWEIZ) AG

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: SIEMENS AG

Effective date: 20010523

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ALSTOM (SCHWEIZ) AG

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ALSTOM TECHNOLOGY LTD

RTI2 Title (correction)

Free format text: APPARATUS FOR CASTING A DIRECTIONALLY SOLIDIFIED ARTICLE

RTI2 Title (correction)

Free format text: APPARATUS FOR CASTING A DIRECTIONALLY SOLIDIFIED ARTICLE

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20041103

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): DE FR GB IT

GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)
ET3 Fr: translation filed ** decision concerning opposition
REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150327

Year of fee payment: 20

Ref country code: DE

Payment date: 20150320

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150319

Year of fee payment: 20

Ref country code: GB

Payment date: 20150319

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59605783

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20160325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20160325

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59605783

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59605783

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH