EP0749551B1 - Process for the heat treatment of waste material - Google Patents

Process for the heat treatment of waste material Download PDF

Info

Publication number
EP0749551B1
EP0749551B1 EP96900074A EP96900074A EP0749551B1 EP 0749551 B1 EP0749551 B1 EP 0749551B1 EP 96900074 A EP96900074 A EP 96900074A EP 96900074 A EP96900074 A EP 96900074A EP 0749551 B1 EP0749551 B1 EP 0749551B1
Authority
EP
European Patent Office
Prior art keywords
fluidized bed
process according
solids
chamber
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96900074A
Other languages
German (de)
French (fr)
Other versions
EP0749551A1 (en
Inventor
Patrick Müller
Hans Rüegg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Innova AG
Original Assignee
Von Roll Umwelttechnik AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Von Roll Umwelttechnik AG filed Critical Von Roll Umwelttechnik AG
Publication of EP0749551A1 publication Critical patent/EP0749551A1/en
Application granted granted Critical
Publication of EP0749551B1 publication Critical patent/EP0749551B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/30Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage

Definitions

  • the invention relates to a method for the thermal treatment of waste material with the production of thermal energy according to the preamble of claim 1.
  • Degassing is known as a thermal process for generating energy from waste, also known as pyrolysis, smoldering or coking (see the specialist journal Müll und Abfall 12/1978 or Swiss Patent No. 688 871).
  • the waste is heated with the exclusion of oxygen by direct or indirect supply of heat.
  • the organic compounds in the waste become unstable; the volatiles escape and the non-volatiles are converted to coke.
  • the smoldering gases generated during degassing have a high calorific value. Direct combustion of these carbonization gases in the conventional combustion chambers with oxygen or oxygen-enriched air creates very high, difficult to control temperatures of over 2000 ° C.
  • the present invention has for its object to provide a method of the type mentioned, which allows control of the temperature profile during combustion.
  • the method according to the invention is pyrolysis of waste, in particular waste, in which, as already mentioned, very high temperatures arise when the carbonization gases are burned with oxygen;
  • the combustion according to the invention in a circulating fluidized bed creates optimal and uniform reaction conditions for the combustion, since a very homogeneous temperature distribution is achieved.
  • very efficient cooling of the hot smoldering gases is achieved.
  • the gas-solid flow in the fluidized bed results in a very good heat transfer, which leads to a reduction in the heat transfer surfaces and thus also in the volume of the boiler.
  • the reduction in the amount of flue gas achieved by combustion with oxygen also causes a reduction in the construction volume of the fluidized bed reactor and the downstream units, an increase in the Boiler efficiency, a reduction in effort for gas cleaning and a reduction in the risk of corrosion of the heat transfer surfaces.
  • the unreacted ammonia in the flue gas is called slip and represents an environmental impact. If the temperature is too high, some of the ammonia burns. In both cases, the amount of ammonia required is unnecessarily high.
  • the temperature of the flue gases decreases continuously along the flue gas path through the combustion chamber and boiler. The ammonia is introduced at the optimal smoke temperature.
  • the flue gas temperature profile depends on the operating state of the system and the waste material burned. This means that the location of the optimal discharge point also depends on the operating state of the furnace.
  • the design of the combustion chamber as a circulating fluidized bed enables a solution to the problem of choosing the ammonia inlet point for the development of flue gas.
  • the circulating fluidized bed is also characterized by good temperature control behavior. For example, the flow of solid matter diverted into the fluid bed cooler can be regulated. This allows regulation of the heat flow also discharged to the combustion chamber and thus precise regulation of the temperature in the combustion chamber regardless of the operating state of the furnace in the pyrolysis chamber. This means that a fixed ammonia inlet point can be selected, since the flue gas temperature profile in the combustion chamber and boiler no longer depends on the operating state of the furnace. This also enables the ammonia consumption to be minimized to reduce nitrogen oxide by choosing an optimal temperature in the combustion chamber, regardless of the operating state in the pyrolysis chamber.
  • waste materials are subjected to degassing in a pyrolysis chamber 2 in a manner known per se and not shown in detail.
  • the waste supply is indicated by an arrow 1.
  • the waste supply and the degassing can be carried out, for example, in the manner described in Swiss Patent No. 688 871.
  • Smoldering gases formed during the degassing enter a combustion chamber 4a (the transition from pyrolysis chamber 2 to combustion chamber 4a is indicated by an arrow 3), which according to the invention is designed as a fluidized bed reactor.
  • the carbonization gases used as fluidizing gases are burned with the supply of oxygen (indicated by arrow 5 in FIG. 1).
  • Lime, sand and other materials can be used as the fluidized bed solid;
  • the refuse coke obtained in the pyrolysis - freed from inert substances and finely ground - can be introduced into the fluidized bed in particle form and also burned there.
  • the walls of the combustion chamber 4a are designed as cooling or heat transfer surfaces; at most, further heat transfer surfaces can be arranged directly in the fluidized bed. These heat transfer surfaces are symbolically designated 6 in FIG. 1.
  • the fluidized bed reactor is operated at such a high gas velocity that at least some of the solid particles are discharged together with the flue gas stream from the combustion chamber 4a. Arrived via a line 7 in a dust separator 8, the solid is separated from the flue gas stream.
  • the dust separator 8 can be designed, for example, as a cyclone, a dust filter or as an electrostatic filter.
  • the secluded Solid is returned to the combustion chamber 4a via a line 9, so that a circulating fluidized bed is formed.
  • the flue gases freed from the solid and cooled flow through a line 10 to further flue gas cleaning or flue gas cooling devices, not shown, before they reach the atmosphere.
  • the circulating fluidized bed is expanded by an external fluid bed cooler 12.
  • Part of the solid separated in the dust separator 8 is diverted via line 13 into the fluidized bed cooler 12, where it is cooled in a stationary fluidized bed (fluidized bed) by direct or indirect heat transfer (corresponding heat transfer surfaces of the fluidized bed cooler 12 are symbolically designated 15) and then via one Line 14 reaches the combustion chamber 4b again.
  • this solid absorbs the heat from the hot carbonization gases and heats up to the mixing temperature prevailing in the combustion chamber 4b.
  • the additional cooling surfaces in the combustion chamber 4b can be dispensed with, since the recirculated part of the solid which is cooled in the fluidized bed cooler 12 takes over the cooling function.
  • a fluidizing gas required for the operation of the fluidized bed cooler 12 is fed to the fluidized bed cooler 12 via a line 16 and drawn off again above the fluidized bed for further use (line 17).
  • the entire solid separated from the flue gas flow in the dust separator 8 is passed through the fluidized bed cooler 12 and recirculated cooled into the fluidized bed of the combustion chamber 4c.
  • a large amount of cooled solid is introduced into the fluidized bed so that the combustion of the carbonization gases can be carried out at a low temperature level of approx. 900 ° C .; the average suspension density is at least 20-50 kg / Nm 3 .
  • the suspension density of the gas-solid mixture must be selected to be significantly higher, for example 50-100 kg / Nm 3 , in order to achieve sufficient heat transfer to the walls of the fluidized bed reactor designed as a boiler guarantee.
  • the temperature in the combustion chamber 4b or 4c can be precisely controlled independently of the operating state in the pyrolysis chamber 2 by regulating the entry of the solid cooled in the fluidized bed cooler 12.
  • This enables ammonia as a reducing agent for nitrogen oxide separation into the combustion chamber 4b or 4c or can be optimally introduced into the dust separator 8 or cyclone, and that the temperature is selected so that the nitrogen oxide separation can be carried out with minimal ammonia consumption.
  • the ammonia is preferably introduced into the cyclone inlet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Closures For Containers (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

PCT No. PCT/CH96/00007 Sec. 371 Date Oct. 24, 1996 Sec. 102(e) Date Oct. 24, 1996 PCT Filed Jan. 8, 1996 PCT Pub. No. WO96/21824 PCT Pub. Date Jul. 18, 1996The waste material is degasified under the action of heat in a pyrolysis chamber (2). The volatile degasifying products are subjected to afterburning with supply of oxygen in an afterburning chamber (4a or 4b or 4c) designed as a fluidized-bed reactor. The solids discharged from the afterburning chamber (4a or 4b or 4c) are separated off from the flue gas stream in a dust separator (8) and, preferably cooled in an external fluid-bed cooler, are recycled to the afterburning chamber (4a or 4b or 4c). The temperatures of above 2500 DEG C., which are produced in the afterburning of the carbonization gases having a high heating value (minimum 8000 kJ/m3 (S.T.P.), can be controlled.

Description

Die Erfindung betrifft ein Verfahren zur thermischen Behandlung von Abfallmaterial unter Gewinnung thermischer Energie gemäss dem Oberbegriff des Anspruches 1.The invention relates to a method for the thermal treatment of waste material with the production of thermal energy according to the preamble of claim 1.

Die Entgasung als ein thermisches Verfahren zur Energiegewinnung aus Abfall, auch Pyrolyse, Schwelung oder Verkokung genannt, ist bekannt (vgl.dazu Fachzeitschrift Müll und Abfall 12/1978 oder Schweizer Patent Nr. 688 871). Bei allen auf Entgasung basierenden Verfahren wird der Abfall unter Sauerstoffausschluss durch direkte oder auch indirekte Wärmezufuhr erhitzt. Dabei werden die organischen Verbindungen im Abfall instabil; die flüchtigen Bestandteile entweichen, und die nicht flüchtigen werden in Koks umgewandelt.Degassing is known as a thermal process for generating energy from waste, also known as pyrolysis, smoldering or coking (see the specialist journal Müll und Abfall 12/1978 or Swiss Patent No. 688 871). In all processes based on degassing, the waste is heated with the exclusion of oxygen by direct or indirect supply of heat. The organic compounds in the waste become unstable; the volatiles escape and the non-volatiles are converted to coke.

Die bei der Entgasung entstehenden Schwelgase haben eihen hohen Heizwert. Bei einer direkten Verbrennung dieser Schwelgase in den herkömmlichen Brennkammern mit Sauerstoff oder sauerstoffangereicherter Luft entstehen sehr hohe, schwer beherrschbare Temperaturen von über 2000°C.The smoldering gases generated during degassing have a high calorific value. Direct combustion of these carbonization gases in the conventional combustion chambers with oxygen or oxygen-enriched air creates very high, difficult to control temperatures of over 2000 ° C.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art zu schaffen, das eine Beherrschung des Temperaturprofils bei der Verbrennung ermöglicht.The present invention has for its object to provide a method of the type mentioned, which allows control of the temperature profile during combustion.

Diese Aufgabe wird erfindungsgemäss durch die im Kennzeichen des Anspruches 1 angegebenen Merkmale gelöst.This object is achieved according to the invention by the features specified in the characterizing part of claim 1.

Aus der DE-OS 33 07 848 ist es bekannt, brennbare Bestandteile enthaltende Prozessabgase aus der Metallurgie in einer zirkulierenden Wirbelschicht nachzuverbrennen und zu reinigen, wobei die Prozessabgase und sauerstoffhaltige Gase getrennt in den Wirbelschichtreaktor eingeleitet werden, und darin in Gegenwart von Gasreinigunsmittel enthaltendem Feststoff nachverbrannt und gleichzeitig gereinigt werden. Die eingesetzten Prozessabgase haben einen niedrigen Heizwert.From DE-OS 33 07 848 it is known to afterburn and clean process gases containing combustible constituents from the metallurgy in a circulating fluidized bed, the process gases and oxygen-containing gases being introduced separately into the fluidized bed reactor, and afterburning in the presence of solid containing gas cleaning agents and cleaned at the same time. The process exhaust gases used have a low calorific value.

Aus der WO-A-93/18341 ist es bekannt, homogene Brennstoffe wie Kohle, Öl oder Petroleumkoks in zwei getrennten Stufen zu verbrennen. Dabei erfolgt die Verbrennung in beiden Stufen unter Sauerstoffzufuhr. Um die in der ersten Stufe nicht verbrannten Feststoffe, d.h. Kohlenstoff und Gase, zu verbrennen, wird in der zweiten Stufe ein Sauerstoffüberschuss eingesetzt.From WO-A-93/18341 it is known to burn homogeneous fuels such as coal, oil or petroleum coke in two separate stages. The combustion takes place in both stages with the addition of oxygen. For the solids not burned in the first stage, i.e. To burn carbon and gases, an excess of oxygen is used in the second stage.

Beim erfindungsgemässen Verfahren handelt es sich um Pyrolyse von Abfall, insbesondere Müll, bei welcher wie bereits erwähnt bei der Verbrennung der Schwelgase mit Sauerstoff sehr hohe Temperaturen entstehen; durch die erfindungsgemässe Verbrennung in einer zirkulierenden Wirbelschicht werden optimale und einheitliche Reaktionsbedingungen für die Verbrennung geschaffen, da eine sehr homogene Temperaturverteilung erreicht wird. Gleichzeitig wird eine sehr effiziente Kühlung der heissen Schwelgase erzielt. Die in der Wirbelschicht vorhandene Gas-Feststoffströmung ergibt einen sehr guten Wärmeübergang, was zu einer Verkleinerung der Wärmeübertragungsflächen und damit auch des Kessel-Bauvolumens führt. Auch die durch die Verbrennung mit Sauerstoff erreichte Rauchgasmengenreduktion bewirkt eine Verkleinerung des Bauvolumens des Wirbelschichftreaktors und der nachgeschalteten Aggregate, eine Vergrösserung des Kesselwirkungsgrades, eine Aufwandreduktion für Gasreinigung und eine Herabsetzung der Korrosionsgefahr der Wärmeübertragungsflächen.The method according to the invention is pyrolysis of waste, in particular waste, in which, as already mentioned, very high temperatures arise when the carbonization gases are burned with oxygen; The combustion according to the invention in a circulating fluidized bed creates optimal and uniform reaction conditions for the combustion, since a very homogeneous temperature distribution is achieved. At the same time, very efficient cooling of the hot smoldering gases is achieved. The gas-solid flow in the fluidized bed results in a very good heat transfer, which leads to a reduction in the heat transfer surfaces and thus also in the volume of the boiler. The reduction in the amount of flue gas achieved by combustion with oxygen also causes a reduction in the construction volume of the fluidized bed reactor and the downstream units, an increase in the Boiler efficiency, a reduction in effort for gas cleaning and a reduction in the risk of corrosion of the heat transfer surfaces.

Ein Problem bei thermischer Behandlung von Abfall ist die Entstehung von Stickoxiden. Diese können aus Gründen des Umweltschutzes nicht frei an die Umgebung abgegeben werden. Es sind bereits mehrere Verfahren bekannt, so z.B. das SNCR-Verfahren (Selective Noncatalytic Reduction Process), siehe US-PS 3,970,739, bei welchem Stickoxide in Rauchgasen durch Einsprühen einer Ammoniaklösung oder anderer geeigneter Reduktionsmittel, in Gegenwart des ohnehin vorhandenen Sauerstoffs, zu Stickstoff reduziert werden. Das Ammoniak wird dazu üblicherweise an geeigneter Stelle in den Rauchgasstrom eingeleitet. Dabei spielt die Rauchgastemperatur an der Einleitstelle eine grosse Rolle. Sie muss zwischen 700° und 1100°C liegen. Bei zu niedriger Rauchgastemperatur wird ein grosser Ammoniaküberschuss benötigt. Das nichtreagierte Ammoniak im Rauchgas wird als Schlupf bezeichnet und stellt eine Umweltbelastung dar. Bei zu hoher Temperatur verbrennt ein Teil des Ammoniaks. In beiden Fällen ist die benötigte Ammoniakmenge unnötig hoch. Entlang des Rauchgasweges durch Brennkammer und Kessel nimmt die Temperatur der Rauchgase kontinuierlich ab. Das Ammoniak wird an der Stelle optimaler Rauchgastemperatur eingeleitet. Dabei stellt sich jedoch das Problem, dass das Rauchgastemperaturprofil vom Betriebszustand der Anlage und vom verbrannten Abfallmaterial abhängt. Das bedeutet, dass auch die Lage der optimalen Einleitstelle vom Betriebszustand der Feuerung abhängt.One problem with thermal treatment of waste is the formation of nitrogen oxides. For reasons of environmental protection, these cannot be freely released into the environment. Several methods are already known, e.g. the SNCR process (Selective Noncatalytic Reduction Process), see US Pat. No. 3,970,739, in which nitrogen oxides in flue gases are reduced to nitrogen by spraying in an ammonia solution or other suitable reducing agents, in the presence of the oxygen which is already present. The ammonia is usually introduced into the flue gas stream at a suitable point. The flue gas temperature at the inlet point plays a major role. It must be between 700 ° and 1100 ° C. If the flue gas temperature is too low, a large excess of ammonia is required. The unreacted ammonia in the flue gas is called slip and represents an environmental impact. If the temperature is too high, some of the ammonia burns. In both cases, the amount of ammonia required is unnecessarily high. The temperature of the flue gases decreases continuously along the flue gas path through the combustion chamber and boiler. The ammonia is introduced at the optimal smoke temperature. However, there is the problem that the flue gas temperature profile depends on the operating state of the system and the waste material burned. This means that the location of the optimal discharge point also depends on the operating state of the furnace.

Die Ausgestaltung der Brennkammer als zirkulierende Wirbelschicht ermöglicht eine Lösung des Problems der Wahl der Ammoniak-Einleitstelle für die Rauchgasentwicklung. Die zirkulierende Wirbelschicht zeichnet sich neben der Temperaturkonstanz auch durch ein gutes Temperaturregelverhalten aus. So kann z.B. der in den Fliessbettkühler umgeleitete Feststoffmengenstrom geregelt werden. Dies erlaubt eine Regelung des auch der Brennkammer abgeführten Wärmestroms und damit eine genaue Regelung der Temperatur in der Brennkammer unabhängig vom Betriebszustand der Feuerung in der Pyrolysekammer. Dadurch kann eine feste Ammoniak-Einleitstelle gewählt werden, da das Rauchgastemperaturprofil in Brennkammer und Kessel nicht mehr vom Betriebszustand der Feuerung abhängt. Dies ermöglicht zudem eine Minimierung des Ammoniakverbrauchs zur Stickoxidminderung durch Wahl einer optimalen Temperatur in der Brennkammer und dies unabhängig vom Betriebszustand in der Pyrolysekammer.The design of the combustion chamber as a circulating fluidized bed enables a solution to the problem of choosing the ammonia inlet point for the development of flue gas. In addition to constant temperature, the circulating fluidized bed is also characterized by good temperature control behavior. For example, the flow of solid matter diverted into the fluid bed cooler can be regulated. This allows regulation of the heat flow also discharged to the combustion chamber and thus precise regulation of the temperature in the combustion chamber regardless of the operating state of the furnace in the pyrolysis chamber. This means that a fixed ammonia inlet point can be selected, since the flue gas temperature profile in the combustion chamber and boiler no longer depends on the operating state of the furnace. This also enables the ammonia consumption to be minimized to reduce nitrogen oxide by choosing an optimal temperature in the combustion chamber, regardless of the operating state in the pyrolysis chamber.

Die Erfindung wird nun anhand der Zeichnung näher erläutert. Drei Varianten des erfindungsgemässen Verfahrens sind in der Zeichnung dargestellt und im folgenden näher beschrieben.The invention will now be explained in more detail with reference to the drawing. Three variants of the method according to the invention are shown in the drawing and described in more detail below.

Es zeigen:

Fig. 1
ein Fliessschema einer ersten Verfahrensvariante;
Fig.2
ein Fliessschema einer zweiten Verfahrensvariante;
Fig.3
ein Fliessschema einer dritten Verfahrensvariante.
Show it:
Fig. 1
a flow diagram of a first process variant;
Fig. 2
a flow diagram of a second process variant;
Fig. 3
a flow diagram of a third process variant.

Gemäss Fig. 1 werden Abfallstoffe in einer an sich bekannten und nicht näher dargestellten Weise in einer Pyrolysekammer 2 einer Entgasung unterzogen. Die Abfallzufuhr ist mit einem Pfeil 1 bezeichnet. Die Abfallzufuhr und die Entgasung kann beispielsweise in der im Schweizer Patent Nr. 688 871 beschriebenen Art und Weise erfolgen. Bei der Entgasung entstehende Schwelgase treten in eine Brennkammer 4a ein (der Übergang von Pyrolysekammer 2 zur Brennkammer 4a ist mit einem Pfeil 3 bezeichnet), die erfindungsgemäss als ein Wirbelschichtreaktor ausgebildet ist. In der Brennkammer 4a werden die als Fluidisierungsgase eingesetzten Schwelgase unter Sauerstoffzufuhr (in Fig.1 mit Pfeil 5 angedeutet) verbrannt. Als Wirbelschicht-Feststoff kann Kalk, Sand und andere Materialien verwendet werden; in einer bevorzugten Weise kann auch der bei der Pyrolyse anfallende Müllkoks - von Inertstoffen befreit und fein aufgemahlen - in Partikelform in die Wirbelschicht eingetragen und dort mitverbrannt werden.1, waste materials are subjected to degassing in a pyrolysis chamber 2 in a manner known per se and not shown in detail. The waste supply is indicated by an arrow 1. The waste supply and the degassing can be carried out, for example, in the manner described in Swiss Patent No. 688 871. Smoldering gases formed during the degassing enter a combustion chamber 4a (the transition from pyrolysis chamber 2 to combustion chamber 4a is indicated by an arrow 3), which according to the invention is designed as a fluidized bed reactor. In the combustion chamber 4a, the carbonization gases used as fluidizing gases are burned with the supply of oxygen (indicated by arrow 5 in FIG. 1). Lime, sand and other materials can be used as the fluidized bed solid; In a preferred manner, the refuse coke obtained in the pyrolysis - freed from inert substances and finely ground - can be introduced into the fluidized bed in particle form and also burned there.

Die Wände der Brennkammer 4a sind als Kühl- bzw. Wärmeübertragungsflächen ausgestaltet; allenfalls können weitere Wärmeübertragungsflächen direkt in der Wirbelschicht angeordnet werden. Diese Wärmeübertragungsflächen sind in Fig. 1 symbolisch mit 6 bezeichnet.The walls of the combustion chamber 4a are designed as cooling or heat transfer surfaces; at most, further heat transfer surfaces can be arranged directly in the fluidized bed. These heat transfer surfaces are symbolically designated 6 in FIG. 1.

Der Wirbelschichtreaktor wird mit einer derart grossen Gasgeschwindigkeit betrieben, dass zumindest ein Teil der Feststoffpartikel zusammen mit dem Rauchgasstrom aus der Brennkammer 4a ausgetragen wird. Über eine Leitung 7 in einem Staubabscheider 8 angelangt wird der Feststoff vom Rauchgasstrom getrennt. Der Staubabscheider 8 kann z.B. als ein Zyklon, ein Staubfilter oder als ein Elektrofilter ausgebildet werden. Der abgeschiedene Feststoff wird über eine Leitung 9 in die Brennkammer 4a zurückgeführt, so dass eine zirkulierende Wirbelschicht entsteht. Die vom Feststoff befreiten und gekühlten Rauchgase strömen über eine Leitung 10 zu weiteren, nicht dargestellten Rauchgasreinigungs- bzw. Rauchgaskühlungseinrichtungen, bevor sie in die Atmosphäre gelangen.The fluidized bed reactor is operated at such a high gas velocity that at least some of the solid particles are discharged together with the flue gas stream from the combustion chamber 4a. Arrived via a line 7 in a dust separator 8, the solid is separated from the flue gas stream. The dust separator 8 can be designed, for example, as a cyclone, a dust filter or as an electrostatic filter. The secluded Solid is returned to the combustion chamber 4a via a line 9, so that a circulating fluidized bed is formed. The flue gases freed from the solid and cooled flow through a line 10 to further flue gas cleaning or flue gas cooling devices, not shown, before they reach the atmosphere.

Gemäss Fig. 2, in der die aus Fig. 1 bekannten und gleichbleibenden Teile des Fliessschemas mit den gleichen Bezugsziffern bezeichnet sind, ist die zirkulierende Wirbelschicht um einen externen Fliessbettkühler 12 erweitert. Dieser erlaubt, einen Teil der Wärmeabfuhr aus der Brennkammer 4b auszulagern. Ein Teil des im Staubabscheider 8 abgesonderten Feststoffes wird über Leitung 13 in den Fliessbettkühler 12 umgeleitet, wo er in einer stationären Wirbelschicht (Fliessbett) durch direkten oder indirekten Wärmeübergang abgekühlt wird (entsprechende Wärmeübertragungsflächen des Fliessbettkühlers 12 sind mit 15 symbolisch bezeichnet) und danach über eine Leitung 14 erneut in die Brennkammer 4b gelangt. In der Brennkammer 4b nimmt dieser Feststoff die Wärme aus den heissen Schwelgasen auf und erwärmt sich auf die in der Brennkammer 4b herrschende Mischtemperatur. Bei dieser Variante kann auf die zusätzlichen Kühlungsflächen in der Brennkammer 4b verzichtet werden, da der rezirkulierte, im Fliessbettkühler 12 gekühlte Teil des Feststoffes die Kühlungsfunktion übernimmt.According to FIG. 2, in which the parts of the flow diagram known and constant from FIG. 1 are designated with the same reference numbers, the circulating fluidized bed is expanded by an external fluid bed cooler 12. This allows part of the heat dissipation to be removed from the combustion chamber 4b. Part of the solid separated in the dust separator 8 is diverted via line 13 into the fluidized bed cooler 12, where it is cooled in a stationary fluidized bed (fluidized bed) by direct or indirect heat transfer (corresponding heat transfer surfaces of the fluidized bed cooler 12 are symbolically designated 15) and then via one Line 14 reaches the combustion chamber 4b again. In the combustion chamber 4b, this solid absorbs the heat from the hot carbonization gases and heats up to the mixing temperature prevailing in the combustion chamber 4b. In this variant, the additional cooling surfaces in the combustion chamber 4b can be dispensed with, since the recirculated part of the solid which is cooled in the fluidized bed cooler 12 takes over the cooling function.

Ein für den Betrieb des Fliessbettkühlers 12 benötigtes Fluidisierungsgas wird dem Fliessbettkühler 12 über eine Leitung 16 zugeführt und oberhalb des Fliessbettes zu einer weiteren Verwendung wieder abgezogen (Leitung 17).A fluidizing gas required for the operation of the fluidized bed cooler 12 is fed to the fluidized bed cooler 12 via a line 16 and drawn off again above the fluidized bed for further use (line 17).

Bei der in Fig. 3 dargestellten Variante wird der gesamte, vom Rauchgasstrom im Staubabscheider 8 abgesonderte Feststoff durch den Fliessbettkühler 12 geleitet und gekühlt in die Wirbelschicht der Brennkammer 4c rezirkuliert.In the variant shown in FIG. 3, the entire solid separated from the flue gas flow in the dust separator 8 is passed through the fluidized bed cooler 12 and recirculated cooled into the fluidized bed of the combustion chamber 4c.

Durch die Verlagerung der ansonsten am stärksten von Korrosionserscheinungen betroffenen Wärmeübertragungsflächen in den Fliessbettkühler 12 (Fig. 2 und 3) wird eine starke Verminderung der Kesselkorrosion erreicht. Im Fliessbettkühler 12 werden die Wärmeübertragungsflächen 15 weniger der Korrosion ausgesetzt, da hier die stark korrosiv wirkenden Rauchgase gar nicht zum Einsatz kommen.By relocating the heat transfer surfaces, which are otherwise most affected by corrosion, into the fluidized bed cooler 12 (FIGS. 2 and 3), a strong reduction in boiler corrosion is achieved. In the fluidized bed cooler 12, the heat transfer surfaces 15 are less exposed to corrosion, since the highly corrosive smoke gases are not used here.

Bei den in Fig. 2 und 3 dargestellten Verfahrungsvarianten wird eine grosse Menge gekühlten Feststoffes in die Wirbelschicht eingetragen, damit die Verbrennung der Schwelgase auf niedrigem Temperaturniveau von ca. 900°C durchgeführt werden kann; die mittlere Suspensionsdichte liegt mindestens bei 20-50 kg/Nm3. Wird auf den Fliessbettkühler 12 verzichtet (Variante nach Fig. 1), so muss die Suspensionsdichte der Gas-Feststoffmischung noch wesentlich höher gewählt werden, z.B. 50-100 kg/Nm3, um einen genügenden Wärmeübergang an die als Kessel ausgestalteten Wände des Wirbelschichtreaktors zu gewährleisten.In the process variants shown in FIGS. 2 and 3, a large amount of cooled solid is introduced into the fluidized bed so that the combustion of the carbonization gases can be carried out at a low temperature level of approx. 900 ° C .; the average suspension density is at least 20-50 kg / Nm 3 . If the fluidized bed cooler 12 is dispensed with (variant according to FIG. 1), the suspension density of the gas-solid mixture must be selected to be significantly higher, for example 50-100 kg / Nm 3 , in order to achieve sufficient heat transfer to the walls of the fluidized bed reactor designed as a boiler guarantee.

Bei den in Fig. 2 und 3 dargestellten Verfahrensvarianten kann die Temperatur in der Brennkammer 4b bzw. 4c unabhängig vom Betriebszustand in der Pyrolysekammer 2 genau geregelt werden, indem der Eintrag des im Fliessbettkühler 12 gekühlten Feststoffes geregelt wird. Dies ermöglicht, dass Ammoniak als Reduktionsmittel zur Stickoxidabscheidung in die Brennkammar 4b bzw. 4c oder in den Staubabscheider 8 bzw. Zyklon optimal eingeleitet werden kann, und dass die Temperatur so gewählt wird, dass die Stickoxidabscheidung mit minimalem Ammoniakverbrauch durchgeführt werden kann. Vorzugsweise wird der Ammoniak in den Zykloneinlauf eingeleitet.In the process variants shown in FIGS. 2 and 3, the temperature in the combustion chamber 4b or 4c can be precisely controlled independently of the operating state in the pyrolysis chamber 2 by regulating the entry of the solid cooled in the fluidized bed cooler 12. This enables ammonia as a reducing agent for nitrogen oxide separation into the combustion chamber 4b or 4c or can be optimally introduced into the dust separator 8 or cyclone, and that the temperature is selected so that the nitrogen oxide separation can be carried out with minimal ammonia consumption. The ammonia is preferably introduced into the cyclone inlet.

Claims (10)

  1. Process for the thermal treatment of waste material with production of thermal energy, the waste material being degasified under the action of heat, and combustible coke being produced as solid degasifying product and combustible gases being produced as volatile degasifying product, which are then subjected to burning for heat production, characterized in that the combustible gases are subjected to burning in a circulating fluidized bed with supply of oxygen, the solids discharged from the fluidized bed, separated off (8) from the flue gas, being recycled to the burner (4a or 4b or 4c).
  2. Process according to Claim 1, characterized in that at least some of the solids discharged from the burner (5) are cooled in an external fluid-bed cooler (12) with heat recovery and are returned to the burner.
  3. Process according to Claim 1, characterized in that the average suspension density of the gas/solids mixture in the fluidized bed is at least 50-100 kg/m3 (S.T.P.).
  4. Process according to Claim 2, characterized in that the average suspension density of the gas/solids mixture in the fluidized bed is at least 20-50 kg/m3 (S.T.P.).
  5. Process according to one of Claims 1 to 4, characterized in that refuse coke as degasifying product is freed of inert substances and, finely ground, is burnt in conjunction in the fluidized bed.
  6. Process according to one of Claims 1 to 5, characterized in that reducing agents, preferably ammonia, are introduced into the burner (4a or 4b or 4c) for nitrogen oxide elimination.
  7. Process according to one of Claims 1 to 5, characterized in that reducing agents, preferably ammonia, are introduced for nitrogen oxide elimination downstream of the burner at the elimination of the solids (8).
  8. Apparatus for carrying out the process according to Claim 1, having a pyrolysis chamber (2) and a burning chamber (4a or 4b or 4c) connected to the pyrolysis chamber (2), characterized in that the burning chamber (4a or 4b or 4c) is designed as a fluidized-bed reactor, downstream of which a dust separator (8) is connected, a reconnection (9) of the dust separator (8) with the burning chamber (4a or 4b or 4c) being present for recirculating the solids removed in the dust separator (8).
  9. Apparatus according to Claim 8, characterized in that the walls of the fluidized-bed reactor are designed as heat-transfer surfaces (6).
  10. Apparatus according to one of Claims 8 to 9, characterized in that a reconnection (13, 14) is present which leads to the burning chamber (4b or 4c) via an external fluid-bed cooler (12) for recirculating the solids removed in the dust separator (8).
EP96900074A 1995-01-10 1996-01-08 Process for the heat treatment of waste material Expired - Lifetime EP0749551B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CH5395 1995-01-10
CH53/95 1995-01-10
CH00053/95A CH690790A5 (en) 1995-01-10 1995-01-10 A process for the thermal treatment of waste material.
PCT/CH1996/000007 WO1996021824A1 (en) 1995-01-10 1996-01-08 Process for the heat treatment of waste material

Publications (2)

Publication Number Publication Date
EP0749551A1 EP0749551A1 (en) 1996-12-27
EP0749551B1 true EP0749551B1 (en) 2000-04-05

Family

ID=4178248

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96900074A Expired - Lifetime EP0749551B1 (en) 1995-01-10 1996-01-08 Process for the heat treatment of waste material

Country Status (13)

Country Link
US (1) US5915311A (en)
EP (1) EP0749551B1 (en)
JP (1) JPH09506424A (en)
AT (1) ATE191551T1 (en)
CA (1) CA2184102A1 (en)
CH (1) CH690790A5 (en)
CZ (1) CZ285991B6 (en)
DE (1) DE59604863D1 (en)
FI (1) FI963526A (en)
NO (1) NO963773L (en)
NZ (1) NZ300141A (en)
PL (1) PL316148A1 (en)
WO (1) WO1996021824A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6276306B1 (en) * 2000-08-03 2001-08-21 Michael L. Murphy Apparatus for recovering hydrocarbons from granular solids
EP3252128B1 (en) 2006-04-03 2019-01-02 Pharmatherm Chemicals Inc. Thermal extraction method for producing a taxane extract
US7905990B2 (en) * 2007-11-20 2011-03-15 Ensyn Renewables, Inc. Rapid thermal conversion of biomass
US20090151609A1 (en) * 2007-12-15 2009-06-18 Hoskinson Gordon H Incinerator with pivoting grating system
US20110284359A1 (en) 2010-05-20 2011-11-24 Uop Llc Processes for controlling afterburn in a reheater and for controlling loss of entrained solid particles in combustion product flue gas
US8499702B2 (en) 2010-07-15 2013-08-06 Ensyn Renewables, Inc. Char-handling processes in a pyrolysis system
US9441887B2 (en) 2011-02-22 2016-09-13 Ensyn Renewables, Inc. Heat removal and recovery in biomass pyrolysis
US9347005B2 (en) 2011-09-13 2016-05-24 Ensyn Renewables, Inc. Methods and apparatuses for rapid thermal processing of carbonaceous material
US10400175B2 (en) 2011-09-22 2019-09-03 Ensyn Renewables, Inc. Apparatuses and methods for controlling heat for rapid thermal processing of carbonaceous material
US9109177B2 (en) 2011-12-12 2015-08-18 Ensyn Renewables, Inc. Systems and methods for renewable fuel
US9670413B2 (en) 2012-06-28 2017-06-06 Ensyn Renewables, Inc. Methods and apparatuses for thermally converting biomass
WO2014210150A1 (en) 2013-06-26 2014-12-31 Ensyn Renewables, Inc. Systems and methods for renewable fuel
US10337726B2 (en) 2015-08-21 2019-07-02 Ensyn Renewables, Inc. Liquid biomass heating system
MY193949A (en) 2016-12-29 2022-11-02 Ensyn Renewables Inc Demetallization Of Liquid Biomass
CN113531538B (en) * 2021-06-08 2024-06-25 湖南省欣洁环保科技有限公司 Household garbage treatment method and treatment system

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50133995A (en) * 1974-04-11 1975-10-23
US4325327A (en) * 1981-02-23 1982-04-20 Combustion Engineering, Inc. Hybrid fluidized bed combuster
DE3113993A1 (en) * 1981-04-07 1982-11-11 Metallgesellschaft Ag, 6000 Frankfurt METHOD FOR THE SIMULTANEOUS PRODUCTION OF COMBUSTION GAS AND PROCESS HEAT FROM CARBON-MATERIAL MATERIALS
DE3307848A1 (en) * 1983-03-05 1984-09-06 Metallgesellschaft Ag, 6000 Frankfurt METHOD FOR REBURNING AND PURIFYING PROCESS EXHAUST GAS
DE3310534A1 (en) * 1983-03-23 1984-10-04 C. Deilmann AG, 4444 Bad Bentheim DEVICE FOR RECOVERING ENERGY FROM PYROLIZABLE, CARBONATED WASTE MATERIALS, ALTERNATING COMPOSITION
US4602573A (en) * 1985-02-22 1986-07-29 Combustion Engineering, Inc. Integrated process for gasifying and combusting a carbonaceous fuel
JPH0341729A (en) * 1989-07-07 1991-02-22 Tokyo Electron Ltd Substrate cleaning
DE4112593C2 (en) * 1991-04-17 1995-03-23 Pka Umwelttech Gmbh & Co Kg Process and plant for the thermal treatment of metal scrap contaminated with organic components
US5347953A (en) * 1991-06-03 1994-09-20 Foster Wheeler Energy Corporation Fluidized bed combustion method utilizing fine and coarse sorbent feed
AU1449992A (en) * 1992-03-05 1993-10-05 Technische Universiteit Delft Method and apparatus for combusting a carbonaceous material
CZ289723B6 (en) * 1992-06-28 2002-03-13 Ormat Industries Ltd. Process for preparing combustible gases from solid fuel and apparatus for making the same
US5379705A (en) * 1992-11-11 1995-01-10 Kawasaki Jukogyo Kabushiki Kaisha Fluidized-bed incinerator
FR2701087B1 (en) * 1993-02-04 1999-08-06 Tiru Process for the incineration of solid fuels, in particular urban residues, with solid and gaseous discharges which are substantially neutral vis-à-vis the environment.
FI933961A (en) * 1993-06-24 1994-12-25 Ahlstroem Oy Method for treating solids at high temperature
DE4327953A1 (en) * 1993-08-19 1995-02-23 Siemens Ag Plant for thermal waste disposal and method for operating such a plant

Also Published As

Publication number Publication date
JPH09506424A (en) 1997-06-24
PL316148A1 (en) 1996-12-23
ATE191551T1 (en) 2000-04-15
DE59604863D1 (en) 2000-05-11
FI963526A0 (en) 1996-09-09
US5915311A (en) 1999-06-29
CA2184102A1 (en) 1996-07-18
CH690790A5 (en) 2001-01-15
NO963773D0 (en) 1996-09-09
EP0749551A1 (en) 1996-12-27
FI963526A (en) 1996-09-09
NO963773L (en) 1996-11-11
WO1996021824A1 (en) 1996-07-18
NZ300141A (en) 1997-10-24
CZ285991B6 (en) 1999-12-15
CZ259296A3 (en) 1997-02-12

Similar Documents

Publication Publication Date Title
EP1192234B1 (en) Method and device for pyrolyzing and gasifying organic substances or substance mixtures
EP0749551B1 (en) Process for the heat treatment of waste material
DE2624302C2 (en) Methods for carrying out exothermic processes
EP1226222B1 (en) Method for gasifying organic materials and mixtures of materials
EP0118931B1 (en) Afterburning and cleaning proces of off-gases
DE4109136C2 (en) Method and device for processing contaminated waste
WO1981000112A1 (en) Process and plant for the gazification of solid fuels
WO1999031197A1 (en) Method for gasifying organic substances and substance mixtures
EP3081622A1 (en) Method and plant for improving the preparation of pyrolysis tar
EP1187891B1 (en) Method and device for disposing of waste products
EP1201731A1 (en) Process for fluidized bed gasifying carbon containing solids and gasifier therefor
EP0862019B1 (en) Method and device for thermal treatment of fly ash from grate incinerators
DD141056A5 (en) METHOD AND DEVICE FOR THE PREPARATION AND COMBUSTION OF COAL
DE2508707A1 (en) PROCESS FOR DEFLATING BITUMINOESE OR OILY MATERIAL
DE4226015C1 (en) Process for the disposal of solid and liquid waste in the gasification process in fixed bed pressure gasification
EP0215210B1 (en) Process and installation for preparing binder-free hot-briquets
CH689312A5 (en) Method for the combustion of waste material with production of thermal energy.
DE4425117C2 (en) Process for the combustion of sewage sludge in a fluidized bed boiler
DD252617A5 (en) METHOD FOR USING THE IRON CONTENT OF IRON ORES, OXYGENIC SUBSTANCES, AND BY-PRODUCTS AND WASTE IRON AND STEEL INDUSTRY WASTE
DE2637427B2 (en) Process for heating fine-grained carbonaceous material
EP0504502A1 (en) Process and apparatus for the treatment of waste containing noxious substances
WO2008095984A2 (en) Method and device for the combustion of solid fuels
DE3439070A1 (en) Process and equipment for the continuous production of crude iron and energy-bearing hot gas from fine-grained iron ores and carbon carriers
DE975732C (en) Process for degassing dusty or fine-grain fuels
DE102020123594A1 (en) Process and arrangement for removing heavy metals from sewage sludge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960816

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19981013

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000405

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20000405

REF Corresponds to:

Ref document number: 191551

Country of ref document: AT

Date of ref document: 20000415

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL & PARTNER AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59604863

Country of ref document: DE

Date of ref document: 20000511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000705

ET Fr: translation filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20000405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010108

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010131

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: VON ROLL UMWELTTECHNIK A.G.

Effective date: 20010131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20050110

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20050111

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060112

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060113

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20060119

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060131

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060801

EUG Se: european patent has lapsed
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20060801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070801

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070108