EP0745807A1 - Dampferzeuger - Google Patents

Dampferzeuger Download PDF

Info

Publication number
EP0745807A1
EP0745807A1 EP95810358A EP95810358A EP0745807A1 EP 0745807 A1 EP0745807 A1 EP 0745807A1 EP 95810358 A EP95810358 A EP 95810358A EP 95810358 A EP95810358 A EP 95810358A EP 0745807 A1 EP0745807 A1 EP 0745807A1
Authority
EP
European Patent Office
Prior art keywords
economizer
catalytic converter
steam generator
flue gas
generator according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95810358A
Other languages
English (en)
French (fr)
Other versions
EP0745807B1 (de
Inventor
Georg Ziegler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Martin GmbH fuer Umwelt und Energietechnik
Original Assignee
ABB Management AG
ABB Asea Brown Boveri Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Management AG, ABB Asea Brown Boveri Ltd filed Critical ABB Management AG
Priority to DK95810358T priority Critical patent/DK0745807T3/da
Priority to ES95810358T priority patent/ES2136267T3/es
Priority to EP95810358A priority patent/EP0745807B1/de
Priority to AT95810358T priority patent/ATE182207T1/de
Priority to DE59506386T priority patent/DE59506386D1/de
Priority to US08/621,643 priority patent/US5775266A/en
Priority to PL96314258A priority patent/PL181254B1/pl
Priority to JP8128681A priority patent/JPH08327009A/ja
Priority to CZ961537A priority patent/CZ153796A3/cs
Priority to AU54593/96A priority patent/AU704982B2/en
Publication of EP0745807A1 publication Critical patent/EP0745807A1/de
Application granted granted Critical
Publication of EP0745807B1 publication Critical patent/EP0745807B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/008Adaptations for flue gas purification in steam generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/006Layout of treatment plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/10Nitrogen; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2217/00Intercepting solids
    • F23J2217/10Intercepting solids by filters
    • F23J2217/102Intercepting solids by filters electrostatic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/10Catalytic reduction devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/80Quenching

Definitions

  • the invention relates to a steam generator with a radiation part downstream of the combustion chamber and an adjoining convective part, the latter consisting essentially of a contact heat exchanger, superheater and economizer connected in series on the flue gas side, which is used for direct selective catalytic reduction (SCR process) of nitrogen oxides (NOx) in the exhaust gas of waste incineration plants (KVA) is used, whereby the NOx catalytic converter is fed directly with the hot flue gases, i.e. it is arranged in the circuit in front of the scrubber.
  • SCR process direct selective catalytic reduction
  • KVA waste incineration plants
  • the NOx emissions from thermal waste incineration plants must not exceed legally prescribed values.
  • NOx emissions which are generally between 300 and 450 mg / m 3 .
  • the secondary measures are the SNCR process (selective non-catalytic reduction) and the SCR -Procedures (selective catalytic reduction) are available.
  • the NOx reduction takes place thermally by injecting the reducing agent (ammonia or urea) into the furnace or boiler part in a temperature range of around 900 to 1100 ° C.
  • the reducing agent ammonia or urea
  • the NOx catalyst is provided in front of the scrubber in newer circuits. It is then fed directly with the hot flue gases, so that the exhaust gas does not have to be reheated after washing.
  • the catalytic converters With prior dedusting ("direct low dust” switching) to residual dust contents below 10 mg / Nm 3 , the catalytic converters achieve a service life similar to that in the switching systems after exhaust gas scrubbing.
  • the electric filter (e-filter) for dedusting can also be arranged after the NOx catalyst ("direct high dust" circuit).
  • the gas temperature upstream of the NOx catalytic converter it is necessary to keep the gas temperature upstream of the NOx catalytic converter as constant as possible at a predetermined value, for example 350 ° C.
  • the optimal operating temperature the catalyst is at 320 to 350 ° C (KJ Thomé-Kozmiensky: Thermal waste treatment. EF-Verlag für Energy- undmaschinetechnik GmbH, 2nd edition, 1994, pp. 555-557). This range can be even larger depending on the catalyst used, for example a catalyst operating at an operating temperature of 280 ° C. is known in a waste incineration plant.
  • the gas temperature in a conventional KVA boiler has the following values in two different operating cases: Operating case Gas temperature in ° C after Superheater Evaporator Economizer Dirty at full load 461 343 237 Part load clean 370 290 190
  • the invention tries to avoid all these disadvantages. It is based on the task of developing a steam generator which can be used for SCR process circuits in which the NOx catalyst is fed directly with the hot flue gases upstream of the scrubber, with relatively little effort the gas temperature upstream of the catalytic converter can be kept at an approximately constant, predetermined value.
  • a steam generator according to the preamble of claim 1 in that the economizer is constructed in two parts and a NOx catalyst is arranged between the two parts, the economizer arranged in the flow direction of the gas upstream of the catalyst being divided into at least two sections, which are flowed through one after the other on the flue gas side and on the other hand through the working medium to be heated up, at least one section being permanently connected to the drum via a line and the other section (s) optionally being lockable from the water circuit via lines which can be shut off.
  • this is achieved in a method for operating the steam generator in that the temperature of the flue gases is measured immediately before they enter the NOx catalytic converter and a number of shut-off elements in the lines, which is dependent on the level of this temperature, is closed.
  • a number of shut-off elements in the lines which is dependent on the level of this temperature, is closed.
  • the advantages of the invention can be seen, inter alia, in the fact that the regulation of the gas temperature upstream of the NOx catalytic converter is relatively easy to handle and that the NOx catalytic converter works optimally and has a long service life by ensuring an approximately constant admission temperature.
  • the invention can be applied to both "direct-low dust" and "direct-high dust” circuits, ie the e-filter can be arranged either before or after the economizer.
  • the economizer in front of the catalytic converter is designed so large that in the "full load dirty" mode of operation the inlet temperature of the flue gas into the catalytic converter is less than / equal to the catalytic converter's operating temperature.
  • the components upstream of the economizer in front of the catalytic converter are designed so that, in the "partial load clean" operating mode, the inlet temperature of the flue gas into the economizer in front of the catalytic converter is greater than / equal to the operating temperature of the catalyst.
  • the system does not show, for example, the loading of the boiler, the combustion system and the wet washing system.
  • the direction of flow of the work equipment is indicated by arrows.
  • Part I shows a circuit in which the apparatus boiler 1 / economizer 2, e-filter 3, scrubber 4, NOx catalytic converter 5 and cooler 6 are arranged in the order in which they flow through, due to the low temperature of the flue gas after the scrubber 4 (eg 70 ° C) the gas must be heated again before entering the NOx catalyst 5 (eg to 350 ° C).
  • the method according to the invention becomes Solution, of which an embodiment variant is shown in FIGS. 2 and 3, applied.
  • the basis is that the steam generator 1 has a two-part economizer 2. This consists of a part 2a, which is arranged on the gas side in front of the NOx catalytic converter 5 and a part 2b, which is arranged after the NOx catalytic converter 5.
  • a filter 3 and then a scrubber 4 are then arranged in the order in which the gases flow.
  • the temperature upstream of the NOx catalytic converter is approximately constant for different operating states (350 ° C. in the exemplary embodiment shown), it can differ by +/- 10 ° C.
  • FIG. 3 shows a more detailed schematic illustration of the steam generator according to the invention as used in the high dust circuit according to FIG. 2.
  • a combustion chamber 7 two vertical empty trains 8 are arranged, which form the radiation part of the steam generator.
  • a superheater 9 and an economizer 2 which is divided into two main parts 2a and 2b, are arranged in the order in which they flow through, the NOx catalyst 5, which is used for the selective catalytic reduction, between the two parts 2a, 2b the nitrogen oxides is needed.
  • the economizer in front of the NOx catalytic converter 2a is divided into a plurality of separate sections 10 (here 4 sections), through which the gas flows in succession while the working medium flows through them, ie in parallel from bottom to top. These parallel connecting lines 11 finally open into a line 12 which is connected to the drum 13.
  • a shut-off device 14 for example a valve, is arranged after the individual sections 10 of the economizer in front of the NOx catalytic converter 2a, so that these sections are optionally closed off from the water cycle can be, while a section 10 of the economizer in front of the catalytic converter is connected to the drum 13 in any case, ie also when all other sections 10 are shut off.
  • the economizer in front of the catalytic converter 2a is designed so that partial evaporation can occur. It is designed so large that in the "full load dirty" operating case the inlet temperature of the flue gas into the catalytic converter 5 is less than / equal to the operating temperature of the catalytic converter 5.
  • the components upstream of the economizer in front of the catalytic converter 2a in the steam generator 1, such as superheaters 9, contact heat generators 18 (“protective bundles” which are first acted upon by the flue gas), idle trains 8, are designed such that the operating temperature of the flue gas is “partial load clean” in the economizer before the catalytic converter is greater than / equal to the operating temperature of the catalytic converter.
  • a temperature measuring element 15 is arranged after the last section 10 in the gas flow direction.
  • the second part of the economizer 2b which is located on the gas side after the catalytic converter 5, is essentially realized in a counterflow circuit.
  • a pump 16 pumps water via line 17 into part 2b of the economizer, which is arranged after the NOx catalytic converter 5.
  • the water cools the denitrified flue gases that emerge from the catalytic converter 5 before they are dedusted in the filter 3 (not shown here) and fed to the scrubber 4.
  • the water is then conducted past the catalyst 5 in parallel into the sections 10 which are flowed through from bottom to top, with a further heat exchange taking place with flue gas which is even hotter here.
  • the flue gas temperature is measured by means of the temperature measuring element 15.
  • the flue gas temperature can be influenced by closing or opening the respective one Shut-off devices 14 individual sections 10 of the economizer in front of the catalytic converter 2a are closed off or reconnected from the water cycle. This changes the active heating surface.
  • the SCR process itself then runs according to the known prior art.
  • the invention is not limited to the embodiment just described. It can also be implemented, for example, in a steam generator with a vertical convective train.
  • FIG. 4 schematically shows a steam generator according to the invention for the SCR low dust process.
  • an e-filter 3 is arranged here between the economizer in front of the catalytic converter 2a and the NOx catalytic converter 5.
  • this exemplary embodiment shows that the economizer after the catalyst 2b can also be designed with a vertical gas flow.
  • the economizer is also arranged after the catalyst 2b at a greater spatial distance from the NOx catalyst.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chimneys And Flues (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Detergent Compositions (AREA)

Abstract

Bei einem Dampferzeuger (1) mit einem dem Feuerraum (7) nachgeschalteten Strahlungsteil und einem sich daran anschliessenden konvektiven Teil, letzterer im wesentlichen bestehend aus rauchgasseitig hintereinandergeschalteten Berührungswärmetauscher (18), Überhitzer (9) und Economizer (2), wobei der Dampferzeuger (1) in einer Schaltung für die direkte selektive katalytische Reduktion (SCR-Verfahren) der Stickoxide im Rauchgas (19) eingesetzt wird, ist der Economizer (2) zweiteilig ausgeführt. Zwischen den beiden Teilen (2a, 2b) ist ein NOx-Katalysator (5) angeordnet, wobei der in Strömungsrichtung des Gases (19) vor dem Katalysator (5) angeordnete Economizer (2a) in mindestens zwei Sektionen (10a, 10b) unterteilt ist, welche einerseits rauchgasseitig nacheinander und andererseits vom aufzuheizenden Arbeitsmittel parallel von unten nach oben durchströmt sind und wobei mindestens eine Sektion (10a) über Leitungen (11a, 12) ständig mit der Trommel (13) in Verbindung steht und die andere(n) Sektion(en) (10b) über absperrbare Leitungen (11b) wahlweise vom Wasserkreislauf abschliessbar sind. <IMAGE>

Description

    Technisches Gebiet
  • Die Erfindung betrifft einen Dampferzeuger mit einem dem Feuerraum nachgeschalteten Strahlungsteil und einem sich daran anschliessenden konvektiven Teil, letzterer im wesentlichen bestehend aus rauchgasseitig hintereinandergeschalteten Berührungswärmetauscher, Überhitzer und Economizer, welcher zur direkten selektiven katalytischen Reduktion (SCR-Verfahren) von Stickoxiden (NOx) im Abgas von Kehrrichtverbrennungsanlagen (KVA) eingesetzt wird, wobei der NOx-Katalysator direkt mit den heissen Rauchgasen beschickt wird, also in der Schaltung vor dem Wäscher angeordnet ist.
  • Stand der Technik
  • Die NOx-Emissionen aus thermischen Abfallverbrennungsanlagen dürfen gesetzlich vorgegebene Werte nicht überschreiten. Zur Minderung der NOx-Emissionen, die im allgemeinen zwischen 300 und 450 mg/m3 liegen, werden bekanntermassen feuerungstechnische Primärmassnahmen und/oder effektiver wirkende abgasseitige Sekundärmassnahmen eingesetzt, wobei als Sekundärmassnahmen das SNCR-Verfahren (selective non-catalytic reduction) und das SCR-Verfahren (selective catalytic reduction) zur Verfügung stehen.
  • Beim SNCR-Verfahren erfolgt die NOx-Reduktion thermisch, indem das Reduktionsmittel (Ammoniak bzw. Harnstoff) in einem Temperaturbereich von etwa 900 bis 1100°C in den Feuerungs- oder Kesselteil eingedüst wird.
  • Beim SCR-Verfahren werden dagegen bei wesentlich niedrigeren Temperaturen die Stickoxide unter Zugabe von Ammoniakwasser an einem Katalysator zu Stickstoff und Wasserdampf umgesetzt. Nach dem derzeitigen Stand der Technik ist es nur mit einem katalytischen Verfahren möglich, die NOx-Emissionen auf Werte < 100 mg/m3 zu senken.
  • Für die Schaltung der Katalysatorstufe bestehen nach dem bekannten Stand der Technik verschiedene Möglichkeiten. So werden z.B. Kessel für Kehrrichtverbrennungsanlagen mit NOx-Katalysatoren ausgerüstet, die üblicherweise nach dem Wäscher eingesetzt werden. Dies hat zwar einerseits den Vorteil, dass die Gefahr einer Katalysatorvergiftung oder Blockierung durch Staub und Schwefeldioxid reduziert ist, andererseits aber den Nachteil, dass die Rauchgase vor Eintritt in den Katalysator wieder aufgeheizt werden müssen.
  • Deshalb ist bei neueren Schaltungen der NOx-Katalysator vor dem Wäscher vorgesehen. Er wird dann direkt mit den heissen Rauchgasen beschickt, so dass die Wiedererwärmung des Abgases nach der Wäsche entfällt. Bei vorheriger Entstaubung ("direkt-low dust"-Schaltung) auf Reststaubgehalte unter 10 mg/Nm3 erreichen die Katalysatoren ähnliche Standzeiten wie in den Schaltungen nach der Abgaswäsche. Der Elektro-Filter (E-Filter) zur Entstaubung kann aber auch nach dem NOx-Katalysator angeordnet sein ("direkt-high dust"-Schaltung).
  • Für ein optimales Arbeiten des Katalysators und eine möglichst lange Lebensdauer ist es notwendig, die Gastemperatur vor dem NOx-Katalysator möglichst konstant auf einem vorgegebenen Wert, beispielsweise 350°C, zu halten. Die optimale Betriebstemperatur des Katalysators liegt bei 320 bis 350°C (K.J. Thomé-Kozmiensky: Thermische Abfallbehandlung. EF-Verlag für Energie- und Umwelttechnik GmbH, 2.Auflage, 1994, S. 555-557). Diese Bandbreite kann in Abhängigkeit vom eingesetzten Katalysator noch grösser sein, z.B. ist ein bei einer Betriebstemperatur von 280°C arbeitender Katalysator in einer Kehrrichtverbrennungsanlage bekannt.
  • Mit dem bisher bekannten Stand der Technik ist aber eine annähernd konstante Gastemperatur bei den verschiedenen Betriebszuständen nicht möglich. So hat beispielsweise die Gastemperatur in einem konventionellen KVA-Kessel bei zwei unterschiedlichen Betriebsfällen folgende Werte:
    Betriebsfall Gastemperatur in °C nach
    Überhitzer Verdampfer Economizer
    Vollast verschmutzt 461 343 237
    Teillast sauber 370 290 190
  • Es ergeben sich also beträchtliche Unterschiede in der Höhe der Rauchgastemperatur (hier ca. 50°C nach dem Economizer), was sich bei einer direkten Beschickung des NOx-Katalysators mit den heissen Rauchgasen ungünstig auswirkt.
  • Darstellung der Erfindung
  • Die Erfindung versucht, all diese Nachteile zu vermeiden. Ihr liegt die Aufgabe zugrunde, einen Dampferzeuger zu entwickeln, der für SCR-Verfahrensschaltungen, bei denen der NOx-Katalysator vor dem Wäscher direkt mit den heissen Rauchgasen beschickt wird, einsetzbar ist, wobei mit relativ wenig Aufwand die Gastemperatur vor dem Katalysator auf einem annähernd konstanten, vorgegebenen Wert gehalten werden kann.
  • Erfindungsgemäss wird dies bei einem Dampferzeuger gemäss Oberbegriff des Patentanspruches 1 dadurch erreicht, dass der Economizer zweiteilig ausgeführt ist und zwischen den beiden Teilen ein NOx-Katalysator angeordnet ist, wobei der in Strömungsrichtung des Gases vor dem Katalysator angeordnete Economizer in mindestens zwei Sektionen unterteilt ist, welche einerseits rauchgasseitig nacheinander und andererseits vom aufzuheizenden Arbeitsmittel parallel durchströmt sind, wobei mindestens eine Sektion über eine Leitung ständig mit der Trommel in Verbindung steht und die andere(n) Sektion(en) über absperrbare Leitungen wahlweise vom Wasserkreislauf abschliessbar sind.
  • Erfindungsgemäss wird dies bei einem Verfahren zum Betrieb des Dampferzeugers dadurch erreicht, dass die Temperatur der Rauchgase unmittelbar vor ihrem Eintritt in den NOx-Katalysator gemessen wird und eine von der Höhe dieser Temperatur abhängige Anzahl der Absperrorgane in den Leitungen geschlossen wird. Dadurch werden eine bzw. mehrere Sektionen des Economizers vor dem Katalysator vom Wasserkreislauf abgeschlossen und ein Teil der Heizfläche wird inaktiv.
  • Die Vorteile der Erfindung sind unter anderem darin zu sehen, dass die Regelung der Gastemperatur vor dem NOx-Katalysator relativ einfach zu handhaben ist und durch die Gewährleistung einer annähernd konstanten Beaufschlagungstemperatur der NOx-Katalysator optimal arbeitet und eine lange Lebensdauer aufweist. Die Erfindung kann sowohl bei "direkt-low dust"- als auch "direkt-high dust"-Schaltungen angewendet werden, d.h. der E-Filter kann entweder vor oder nach dem Economizer angeordnet sein.
  • Es ist besonders zweckmässig, wenn der Economizer vor dem Katalysator so gross ausgelegt ist, dass im Betriebsfall "Volllast verschmutzt" die Eintrittstemperatur des Rauchgases in den Katalysator kleiner/gleich der Betriebstemperatur des Katalysators ist.
  • Ferner ist es vorteilhaft, wenn die im Kessel dem Economizer vor dem Katalysator vorgelagerten Bauteile, wie Überhitzer, Schutzbündel, Leerzüge, so ausgelegt sind, dass im Betriebsfall "Teillast sauber" die Eintrittstemperatur des Rauchgases in den Economizer vor dem Katalysator grösser/gleich der Betriebstemperatur des Katalysators ist.
  • Kurze Beschreibung der Zeichnung
  • In der Zeichnung sind Ausführungsbeispiele der Erfindung anhand eines Kessels für eine Kehrrichtverbrennungsanlage dargestellt.
  • Es zeigen:
  • Fig. 1
    drei Schaltungssschemata von Kehrrichtverbrennungsanlagen mit SRC-Verfahren nach dem Stand der Technik
    • I: konventionell
    • II: direkt-low dust
    • III: direkt-high dust;
    Fig. 2
    das erfindungsgemässe Schaltungsschema einer Kehrrichtverbrennungsanlage mit SCR-Verfahren (direkt-high dust);
    Fig. 3
    eine detailliertere Darstellung eines Teils von Fig. 2 im Bereich des Kessels, des NOx-Katalysators und des Economizers;
    Fig. 4
    eine schematische Darstellung der Erfindung im Bereich des Kessels, des E-Filters, des NOx-Katalysators und des Economizers (direkt-low dust-SCR-Verfahren).
  • Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt. Nicht dargestellt sind von der Anlage beispielsweise die Beschickung des Kessels, die Feuerungsanlage und die Nasswäscheanlage. Die Strömungsrichtung der Arbeitsmittel ist mit Pfeilen bezeichnet.
  • Weg zur Ausführung der Erfindung
  • Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen und der Figuren 1 bis 4 näher erläutert.
  • Zum besseren Verständnis der Erfindung sind zunächst in Fig. 1 drei aus dem Stand der Technik bekannte SCR-Schaltungen mit dem nach den einzelnen Behandlungsschritten jeweils erreichbaren Temperaturniveau des Gases dargestellt. Teil I zeigt eine Schaltung, in der die Apparate Kessel 1/Economizer 2, E-Filter 3, Wäscher 4, NOx-Katalysator 5 und Abkühler 6 in der Reihenfolge ihrer Durchströmung angeordnet sind, wobei wegen der geringen Temperatur des Rauchgases nach dem Wäscher 4 (z.B. 70°C) das Gas vor Eintritt in den NOx-Katalysator 5 nochmals aufgeheizt werden muss (z.B. auf 350°C). Diese Aufheizung entfällt bei der in Teil II dargestellten "low dust"-Schaltung, bei der die Aggregate in der Reihenfolge Kessel 1, Elektro-Filter 3, NOx-Katalysator 5, Economizer 2 und Wäscher 4 angeordnet sind, ebenso wie bei der in Teil III gezeigten "high dust"-Schaltung mit einer Anordnung in der Reihenfolge Kessel 1, NOx-Katalysator 5, Economizer 2, E-Filter 3 und Wäscher 4.
  • Da in den beiden zuletzt genannten Fällen für unterschiedliche Betriebszustände keine konstante Gastemperatur vor dem NOx-Katalysator 5 gewährleistet werden kann, wird die erfindungsgemässe Lösung, von der eine Ausführungsvariante in Fig. 2 und 3 dargestellt ist, angewendet. Grundlage ist, dass der Dampferzeuger 1 einen zweiteiligen Economizer 2 aufweist. Dieser besteht aus einem Teil 2a, welcher gasseitig vor dem NOx-Katalysator 5 angeordnet ist und einem Teil 2b, welcher nach dem NOx-Katalysator 5 angeordnet ist. Gemäss Schaltungsanordnung nach Fig. 2 sind danach in der Reihenfolge der Durchströmung der Gase ein Filter 3 und anschliessend ein Wäscher 4 angeordnet. Die Temperatur vor dem NOx-Katalysator ist für verschiedene Betriebszustände annähernd konstant (im gezeigten Ausführungsbeispiel 350°C), sie kann um +/-10°C differieren.
  • Fig. 3 zeigt eine detailliertere schematische Darstellung des erfindungsgemässen Dampferzeugers, wie er in der high dust-Schaltung nach Fig. 2 eingesetzt wird. Oberhalb eines Feuerraumes 7 sind zwei vertikale Leerzüge 8 angeordnet, die den Strahlungsteil des Dampferzeugers bilden. Im sich daran anschliessenden horizontalen Teil des Dampferzeugers sind in der Reihenfolge ihrer Durchströmung ein Überhitzer 9 und ein in zwei Hauptteile 2a und 2b unterteilter Economizer 2 angeordnet, wobei zwischen den beiden Teilen 2a, 2b der NOx-Katalysator 5, der für die selektive katalytische Reduktion der Stickoxide benötigt wird, untergebracht ist.
  • Der Economizer vor dem NOx-Katalysator 2a ist in mehrere getrennte Sektionen 10 (hier 4 Sektionen) unterteilt, die gasseitig nacheinander durchströmt werden, während sie vom Arbeitsmittel, d.h. wassermässig parallel von unten nach oben durchströmt werden. Diese parallelen Verbindungsleitungen 11 münden schliesslich in eine Leitung 12, die mit der Trommel 13 in Verbindung steht. Mit einer Ausnahme ist in allen parallel geschalteten Leitungen 11 ein Absperrorgan 14, beispielsweise ein Ventil, nach den einzelnen Sektionen 10 des Economizers vor dem NOx-Katalysators 2a angeordnet, so dass diese Sektionen wahlweise vom Wasserkreislauf abgeschlossen werden können, während eine Sektion 10 des Economizers vor dem Katalysator in jedem Falle, d.h. auch beim Absperren aller anderen Sektionen 10, mit der Trommel 13 verbunden ist.
  • Der Economizer vor dem Katalysator 2a ist so ausgelegt, dass Teilverdampfung auftreten kann. Er ist so gross ausgelegt, dass im Betriebsfall "Vollast verschmutzt" die Eintrittstemperatur des Rauchgases in den Katalysator 5 kleiner/gleich der Betriebstemperatur des Katalysators 5 ist.
  • Die im Dampferzeuger 1 dem Economizer vor dem Katalysator 2a vorgelagerten Bauteile, wie Überhitzer 9, Berührungswärmeerzeuger 18 ("Schutzbündel", die zuerst vom Rauchgas beaufschlagt werden), Leerzüge 8, so ausgelegt sind, dass im Betriebsfall "Teillast sauber" die Eintrittstemperatur des Rauchgases in den Economizer vor dem Katalysator grösser/gleich der Betriebstemperatur des Katalysators ist.
  • Nach der in Gasströmungsrichtung letzten Sektion 10 ist ein Temperaturmessorgan 15 angeordnet. Der sich gasseitig nach dem Katalysator 5 befindende zweite Teil des Economizers 2b ist im wesentlichen in Gegenstromschaltung realisiert. Eine Pumpe 16 pumpt über die Leitung 17 Wasser in den Teil 2b des Economizers, der nach dem NOx-Katalysator 5 angeordnet ist. Das Wasser kühlt die entstickten Rauchgase, die aus dem Katalysator 5 austreten weiter ab, bevor diese im hier nicht dargestellten Filter 3 entstaubt und dem Wäscher 4 zugeführt werden. Das Wasser wird dann am Katalysator 5 vorbei parallel in die Sektionen 10 geleitet, die von unten nach oben durchströmt werden, wobei ein weiterer Wärmeaustausch mit hier noch heisseren Rauchgas stattfindet. Um eine annähernd konstante Eintrittstemperatur der Rauchgase in den NOx-Katalysator zu gewährleisten, wird mittels des Temperaturmessorgans 15 die Rauchgastemperatur gemessen. In Abhängigkeit von der Höhe dieser Temperatur kann die Rauchgastemperatur beeinflusst werden, indem durch Schliessen oder Öffnen der jeweiligen Absperrorgane 14 einzelne Sektionen 10 des Economizers vor dem Katalysator 2a vom Wasserkreislauf abgeschlossen bzw. wieder angeschlossen werden. Dies bewirkt eine Veränderung der aktiven Heizfläche. Das SCR-Verfahren selbst läuft dann nach dem bekannten Stand der Technik ab.
  • Selbstverständlich ist die Erfindung nicht auf das eben beschriebene Ausführungsbeispiel beschränkt. Sie kann beispielsweise auch in einem Dampferzeuger mit einem vertikalen konvektiven Zug realisiert werden.
  • In Fig. 4 ist schematisch ein erfindungsgemässer Dampferzeuger für das SCR-low dust-Verfahren dargestellt. Im Unterschied zu Fig. 3 ist hier zwischen dem Economizer vor dem Katalysator 2a und dem NOx-Katalysator 5 ein E-Filter 3 angeordnet. Ausserdem zeigt dieses Ausführungsbeispiel, dass der Economizer nach dem Katalysator 2b auch mit senkrechtem Gasfluss ausgeführt sein kann. In einer weiteren nicht dargestellten Variante ist der Economizer nach dem Katalysator 2b auch in einer grösseren räumlichen Entfernung vom NOx-Katalysator angeordnet.
  • Bezugszeichenliste
  • 1
    Kessel
    2
    Economizer
    2a
    Teil des Economizers vor dem NOx-Katalysator
    2b
    Teil des Economizers nach dem NOx-Katalysator
    3
    E-Filter
    4
    Wäscher
    5
    NOx-Katalysator
    6
    Abkühler
    7
    Feuerraum
    8
    Leerzug
    9
    Überhitzer
    10
    Sektionen von Pos. 2a
    10a
    nicht vom Wasserkreislauf abschliessbare Sektion
    10b
    vom Wasserkreislauf abschliessbare Sektion
    11
    parallele Verbindungsleitungen
    11a
    Verbindungsleitung ohne Absperrorgan
    11b
    Verbindungsleitung mit Absperrorgan
    12
    Leitung
    13
    Trommel
    14
    Absperrorgan
    15
    Temperaturmessorgan
    16
    Pumpe
    17
    Leitung
    18
    Berührungswärmeerzeuger

Claims (9)

  1. Dampferzeuger (1) mit einem dem Feuerraum (7) nachgeschalteten Strahlungsteil und einem sich daran anschliessenden konvektiven Teil, letzterer im wesentlichen bestehend aus rauchgasseitig hintereinandergeschalteten Berührungswärmetauscher (18), Überhitzer (9) und Economizer (2), wobei der Dampferzeuger (1) in einer Schaltung für die direkte selektive katalytische Reduktion (SCR-Verfahren) der Stickoxide im Rauchgas (19) eingesetzt wird, dadurch gekennzeichnet, dass der Economizer (2) zweiteilig ausgeführt ist und zwischen den beiden Teilen (2a, 2b) ein NOx-Katalysator (5) angeordnet ist, wobei der in Strömungsrichtung des Gases (19) vor dem Katalysator (5) angeordnete Economizer (2a) in mindestens zwei Sektionen (10a, 10b) unterteilt ist, welche einerseits rauchgasseitig nacheinander und andererseits vom aufzuheizenden Arbeitsmittel parallel durchströmt sind, wobei mindestens eine Sektion (10a) über eine Leitung (11a, 12) ständig mit der Trommel (13) in Verbindung steht und die andere(n) Sektion(en) (10b) über absperrbare Leitungen (11b) wahlweise vom Wasserkreislauf abschliessbar sind.
  2. Dampferzeuger nach Anspruch 1, dadurch gekennzeichnet, dass in den Leitungen (11b), welche von den Sektionen (10b) des Economizers vor dem Katalysator (2a), die vom Wasserkreislauf abschliessbar sind, in die Leitung (12) zur Trommel führen, jeweils ein Absperrorgan (14) angeordnet ist.
  3. Dampferzeuger nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Economizer vor dem Katalysator (2b) so gross ausgelegt ist, dass im Betriebsfall "Vollast verschmutzt" die Eintrittstemperatur des Rauchgases (19) in den Katalysator (5) kleiner/gleich der Betriebstemperatur des Katalysators (5) ist.
  4. Dampferzeuger nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die im Dampferzeuger (1) dem Economizer vor dem Katalysator (2a) vorgelagerten Bauteile, wie Überhitzer (9), Berührungswärmeerzeuger (18), Leerzüge (8), so ausgelegt sind, dass im Betriebsfall "Teillast sauber" die Eintrittstemperatur des Rauchgases (19) in den Economizer vor dem Katalysator (2a) grösser/gleich der Betriebstemperatur des Katalysators (5) ist.
  5. Dampferzeuger nach Anspruch 1, dadurch gekennzeichnet, dass zwischen dem Economizer vor dem Katalysator (2a) und dem NOx-Katalysator (5) ein E-Filter (3) angeordnet ist.
  6. Dampferzeuger nach Anspruch 1, dadurch gekennzeichnet, dass der Economizer nach dem Katalysator (2b) im wesentlichen in Gegenstromschaltung durchströmt ist.
  7. Dampferzeuger nach Anspruch 1, dadurch gekennzeichnet, dass der Economizer nach dem Katalysator (2b) vertikal vom Rauchgas (19) durchströmt ist.
  8. Dampferzeuger nach Anspruch 1, 6 oder 7, dadurch gekennzeichnet, dass der Economizer nach dem NOx-Katalysator (2b) räumlich entfernt vom NOx-Katalysator (5) angeordnet ist.
  9. Verfahren zum Betrieb eines Dampferzeugers nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Temperatur der Rauchgase (19) unmittelbar vor ihrem Eintritt in den NOx-Katalysator (5) gemessen wird und eine von der Höhe dieser Temperatur abhängige Anzahl der Absperrorgane (14) in den Leitungen (11b) geschlossen wird.
EP95810358A 1995-05-31 1995-05-31 Dampferzeuger Expired - Lifetime EP0745807B1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
DK95810358T DK0745807T3 (da) 1995-05-31 1995-05-31 Dampgenerator
ES95810358T ES2136267T3 (es) 1995-05-31 1995-05-31 Generador de vapor.
EP95810358A EP0745807B1 (de) 1995-05-31 1995-05-31 Dampferzeuger
AT95810358T ATE182207T1 (de) 1995-05-31 1995-05-31 Dampferzeuger
DE59506386T DE59506386D1 (de) 1995-05-31 1995-05-31 Dampferzeuger
US08/621,643 US5775266A (en) 1995-05-31 1996-03-26 Steam generator
PL96314258A PL181254B1 (pl) 1995-05-31 1996-05-15 Wytwornica pary oraz sposób regulacji temperatury gazu spalania w wytwornicy pary
JP8128681A JPH08327009A (ja) 1995-05-31 1996-05-23 蒸気発生器
CZ961537A CZ153796A3 (en) 1995-05-31 1996-05-28 Steam producer and method of operation thereof
AU54593/96A AU704982B2 (en) 1995-05-31 1996-05-29 Steam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP95810358A EP0745807B1 (de) 1995-05-31 1995-05-31 Dampferzeuger

Publications (2)

Publication Number Publication Date
EP0745807A1 true EP0745807A1 (de) 1996-12-04
EP0745807B1 EP0745807B1 (de) 1999-07-14

Family

ID=8221748

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95810358A Expired - Lifetime EP0745807B1 (de) 1995-05-31 1995-05-31 Dampferzeuger

Country Status (10)

Country Link
US (1) US5775266A (de)
EP (1) EP0745807B1 (de)
JP (1) JPH08327009A (de)
AT (1) ATE182207T1 (de)
AU (1) AU704982B2 (de)
CZ (1) CZ153796A3 (de)
DE (1) DE59506386D1 (de)
DK (1) DK0745807T3 (de)
ES (1) ES2136267T3 (de)
PL (1) PL181254B1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001001040A1 (de) * 1999-06-24 2001-01-04 Siemens Aktiengesellschaft Fossilbeheizter dampferzeuger mit einer entstickungseinrichtung für heizgas
EP2541144A1 (de) * 2011-07-01 2013-01-02 Tecnoborgo S.p.A. Verbrennungsofen, insbesondere für Müllverbrennungsanlagen zur Energieerzeugung

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19651678A1 (de) * 1996-12-12 1998-06-25 Siemens Ag Dampferzeuger
US6092490A (en) * 1998-04-03 2000-07-25 Combustion Engineering, Inc. Heat recovery steam generator
DE19959342A1 (de) * 1999-12-09 2001-06-13 Abb Alstom Power Ch Ag Abhitzedampferzeuger
DE10001997A1 (de) * 2000-01-19 2001-07-26 Alstom Power Schweiz Ag Baden Verbund-Kraftwerk sowie Verfahren zum Betrieb eines solchen Verbund-Kraftwerkes
DE10004187C5 (de) * 2000-02-01 2013-06-06 Siemens Aktiengesellschaft Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage sowie danach arbeitende Anlage
US7504260B1 (en) * 2000-05-16 2009-03-17 Lang Fred D Method and apparatus for controlling gas temperatures associated with pollution reduction processes
WO2002097243A1 (en) 2001-05-29 2002-12-05 Andritz Oy Method and arrangement for producing electrical energy at a pulp mill
FI114737B (fi) * 2002-04-24 2004-12-15 Tom Blomberg Menetelmä biomassaa polttavien höyrykattiloiden höyrytulistimien asettelemiseksi ja höyrykattila
US7021248B2 (en) 2002-09-06 2006-04-04 The Babcock & Wilcox Company Passive system for optimal NOx reduction via selective catalytic reduction with variable boiler load
US7118721B2 (en) * 2002-11-26 2006-10-10 Alstom Technology Ltd Method for treating emissions
US7056478B1 (en) 2002-11-26 2006-06-06 Alstom Technology Ltd Emission treatment system
EP1820560A1 (de) * 2006-02-16 2007-08-22 Siemens Aktiengesellschaft Dampferzeuger mit katalytischer Beschichtung von Wärmetauscheroberflächen zur Abgasreinigung
US7578265B2 (en) * 2006-05-09 2009-08-25 Babcock & Wilcox Power Generation Group, Inc. Multiple pass economizer and method for SCR temperature control
US7637233B2 (en) 2006-05-09 2009-12-29 Babcock & Wilcox Power Generation Group, Inc. Multiple pass economizer and method for SCR temperature control
US8042497B2 (en) * 2007-04-12 2011-10-25 Babcock & Wilcox Power Generation Group, Inc. Steam generator arrangement
EP2161525B8 (de) * 2008-09-08 2016-06-08 Balcke-Dürr GmbH Wärmetauscher in Modulbauweise
DE102009012320A1 (de) * 2009-03-09 2010-09-16 Siemens Aktiengesellschaft Durchlaufverdampfer
US7914747B1 (en) * 2010-04-23 2011-03-29 General Electric Company System and method for controlling and reducing NOx emissions
CN102062395B (zh) * 2010-12-05 2012-09-05 王森 循环流化床锅炉气固分离器及含有该气固分离器的锅炉
US20140311125A1 (en) * 2011-07-01 2014-10-23 Sigan Peng Method, apparatus, and system used for purifying and silencing exhaust of internal combustion engine
DE102012112645B4 (de) 2012-12-19 2018-05-09 Erk Eckrohrkessel Gmbh Kesselanlage und Verfahren zur Erwärmung eines Wärmeübertragungsfluides
US9388978B1 (en) 2012-12-21 2016-07-12 Mitsubishi Hitachi Power Systems Americas, Inc. Methods and systems for controlling gas temperatures
US9739478B2 (en) 2013-02-05 2017-08-22 General Electric Company System and method for heat recovery steam generators
US9097418B2 (en) * 2013-02-05 2015-08-04 General Electric Company System and method for heat recovery steam generators
CN103900072A (zh) * 2014-03-05 2014-07-02 东南大学 一种提高scr系统入口烟气温度的省煤器
US9657943B2 (en) * 2014-12-16 2017-05-23 Great River Energy Method and system for reheating flue gas using waste heat to maintain dry chimney stack operation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4160009A (en) * 1976-07-27 1979-07-03 Hitachi Shipbuilding & Engineering Co., Ltd. Boiler apparatus containing denitrator
GB2012927A (en) * 1978-01-18 1979-08-01 Hitachi Ltd Waste heat recovery boiler
DE3344712C1 (de) * 1983-12-10 1985-04-18 Balcke-Dürr AG, 4030 Ratingen Dampferzeuger
DE4218016A1 (de) * 1992-06-01 1993-12-02 Siemens Ag Verfahren und Vorrichtung zur Regelung der Rauchgastemperatur am Austritt eines Dampferzeugers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4160009A (en) * 1976-07-27 1979-07-03 Hitachi Shipbuilding & Engineering Co., Ltd. Boiler apparatus containing denitrator
GB2012927A (en) * 1978-01-18 1979-08-01 Hitachi Ltd Waste heat recovery boiler
DE3344712C1 (de) * 1983-12-10 1985-04-18 Balcke-Dürr AG, 4030 Ratingen Dampferzeuger
DE4218016A1 (de) * 1992-06-01 1993-12-02 Siemens Ag Verfahren und Vorrichtung zur Regelung der Rauchgastemperatur am Austritt eines Dampferzeugers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001001040A1 (de) * 1999-06-24 2001-01-04 Siemens Aktiengesellschaft Fossilbeheizter dampferzeuger mit einer entstickungseinrichtung für heizgas
US6536380B1 (en) 1999-06-24 2003-03-25 Siemens Aktiengesellschaft Fossil-fuel heated steam generator, comprising dentrification device for heating gas
EP2541144A1 (de) * 2011-07-01 2013-01-02 Tecnoborgo S.p.A. Verbrennungsofen, insbesondere für Müllverbrennungsanlagen zur Energieerzeugung

Also Published As

Publication number Publication date
PL314258A1 (en) 1996-12-09
ES2136267T3 (es) 1999-11-16
PL181254B1 (pl) 2001-06-29
US5775266A (en) 1998-07-07
ATE182207T1 (de) 1999-07-15
AU5459396A (en) 1996-12-12
JPH08327009A (ja) 1996-12-10
CZ153796A3 (en) 1996-12-11
DE59506386D1 (de) 1999-08-19
AU704982B2 (en) 1999-05-13
DK0745807T3 (da) 2000-02-21
EP0745807B1 (de) 1999-07-14

Similar Documents

Publication Publication Date Title
EP0745807B1 (de) Dampferzeuger
DE3348099C2 (de) Vorrichtung zum Vorwärmen eines Verbrennungsluftstromes
DE3532281C2 (de) Verfahren und anlage zur beeinflussung der abgase eines wirbelbettkessels
DE2733408B2 (de) Rauchgaszug einer Kesselanlage
DE3614385A1 (de) Verfahren und vorrichtung zum reinigen von abgasen
DE2922179C2 (de) Einrichtung zum Temperieren der durch eine Horde beim Hordendarren landwirtschaftlicher Güter hindurchgeführten Trockungsluft
EP0668982B1 (de) Feuerungslanlage
DE2512233A1 (de) Verfahren und vorrichtung zur waermerueckgewinnung aus rauchgasen
EP0148741B1 (de) Verfahren und Vorrichtung zur thermischen Behandlung von Rauchgasen aus einem Kesselsystem
DE2725045A1 (de) Verfahren zur reinigung eines waermetauschers
EP0314929B1 (de) Abhitzekessel zur Kühlung von Partialoxidationsrohgas
EP0629274B1 (de) Anordnung eines dampferzeugers in einer tragkonstruktion
DE3335917A1 (de) Vorrichtung nach art eines luftvorwaermers zur vorwaermung der verbrennungsluft fuer einen verbrennungsprozess mit gleichzeitiger verminderung des in den rauchgasen enthaltenen no(pfeil abwaerts)x(pfeil abwaerts)&#34;
DD218661A5 (de) Verfahren und vorrichtung zum wiederaufheizen entschwefelter rauchgase
DE2832359A1 (de) Verfahren bzw. anlage zum abtreiben von geloesten, korrosiven gasbestandteilen aus waessrigen loesungen
EP0080742B1 (de) Wärmeaustauscher mit mehreren Rohrbündeln
DE3804228C2 (de)
DE3126321C2 (de) Durchlaufdampferzeuger mit Economiser und Absperrorganen
DE4218016A1 (de) Verfahren und Vorrichtung zur Regelung der Rauchgastemperatur am Austritt eines Dampferzeugers
AT386273B (de) Vorrichtung zur wiederaufheizung von rauchgasen
DE3313571C2 (de) Korrosionsbeständiger Mehrzug-Luftvorwärmer
EP0197023A2 (de) Verfahren und Vorrichtung zur Reinigung von Gas/Gas-Wärmetauschern
DE932067C (de) Waermeaustauscher
EP0183891A1 (de) Vorrichtung zur Wiederaufheizung von Rauchgasen
DE3932540A1 (de) Verfahren und anlage zur rauchgasreinigung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASEA BROWN BOVERI AG

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL PT SE

17P Request for examination filed

Effective date: 19970506

17Q First examination report despatched

Effective date: 19980115

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL PT SE

REF Corresponds to:

Ref document number: 182207

Country of ref document: AT

Date of ref document: 19990715

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59506386

Country of ref document: DE

Date of ref document: 19990819

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ABB BUSINESS SERVICES LTD INTELLECTUAL PROPERTY (S

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990920

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2136267

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19991011

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

NLS Nl: assignments of ep-patents

Owner name: ALSTOM

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: ASEA BROWN BOVERI AG TRANSFER- ALSTOM

Ref country code: CH

Ref legal event code: NV

Representative=s name: GIACOMO BOLIS C/O ALSTOM (SWITZERLAND) LTD

REG Reference to a national code

Ref country code: PT

Ref legal event code: PC4A

Free format text: ALSTOM FR

Effective date: 20011109

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

BECH Be: change of holder

Free format text: 20020130 *ALSTOM

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: MARTIN GMBH FUER UMWELT- UND ENERGIETECHNIK

Free format text: ALSTOM#25, AVENUE KLEBER#75116 PARIS (FR) -TRANSFER TO- MARTIN GMBH FUER UMWELT- UND ENERGIETECHNIK#LEOPOLDSTRASSE 248#80807 MUENCHEN (DE)

Ref country code: CH

Ref legal event code: NV

Representative=s name: ZIMMERLI, WAGNER & PARTNER AG

NLS Nl: assignments of ep-patents

Owner name: MARTIN GMBH FUER UMWELT- UND ENERGIETECHNIK

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: PT

Ref legal event code: PC4A

Free format text: MARTIN GMBH FUR UMWELT- UND ENERGIETECHNIK DE

Effective date: 20031104

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20070426

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20070514

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20070515

Year of fee payment: 13

Ref country code: DK

Payment date: 20070515

Year of fee payment: 13

Ref country code: CH

Payment date: 20070515

Year of fee payment: 13

Ref country code: AT

Payment date: 20070515

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070522

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20070529

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20070531

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070522

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070514

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070516

Year of fee payment: 13

BERE Be: lapsed

Owner name: *MARTIN G.M.B.H. FUER UMWELT-UND ENERGIETECHNIK

Effective date: 20080531

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20081202

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081202

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081201

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080602

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20080602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080601