EP0743891A1 - Verfahren und vorrichtung zur verbesserung der kegelform eines zylindrischen werkstückes - Google Patents
Verfahren und vorrichtung zur verbesserung der kegelform eines zylindrischen werkstückesInfo
- Publication number
- EP0743891A1 EP0743891A1 EP94910107A EP94910107A EP0743891A1 EP 0743891 A1 EP0743891 A1 EP 0743891A1 EP 94910107 A EP94910107 A EP 94910107A EP 94910107 A EP94910107 A EP 94910107A EP 0743891 A1 EP0743891 A1 EP 0743891A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- taper
- journal surfaces
- abrasive
- finishing
- arm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 33
- 238000012937 correction Methods 0.000 claims abstract description 26
- 239000012530 fluid Substances 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 14
- 230000003287 optical effect Effects 0.000 claims description 3
- 238000004891 communication Methods 0.000 claims description 2
- 230000001939 inductive effect Effects 0.000 claims description 2
- 230000000875 corresponding effect Effects 0.000 claims 4
- 238000004441 surface measurement Methods 0.000 claims 1
- 230000008569 process Effects 0.000 description 16
- 230000000712 assembly Effects 0.000 description 6
- 238000000429 assembly Methods 0.000 description 6
- 230000001276 controlling effect Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000004323 axial length Effects 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 241000517645 Abra Species 0.000 description 1
- 241000905957 Channa melasoma Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- ACXGJHCPFCFILV-UHFFFAOYSA-M sodium;2-(4-chloro-2-methylphenoxy)acetate;3,6-dichloro-2-methoxybenzoic acid Chemical compound [Na+].COC1=C(Cl)C=CC(Cl)=C1C(O)=O.CC1=CC(Cl)=CC=C1OCC([O-])=O ACXGJHCPFCFILV-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B5/00—Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor
- B24B5/36—Single-purpose machines or devices
- B24B5/42—Single-purpose machines or devices for grinding crankshafts or crankpins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B49/00—Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B49/00—Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
- B24B49/02—Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
- B24B49/04—Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent involving measurement of the workpiece at the place of grinding during grinding operation
Definitions
- This invention relates generally to a diamet ⁇ rical taper correction system, and specifically to a machine and machine arm assembly utilizing in-process gauging to correct diametrical taper on a workpiece journal surface.
- This invention relates to a method and appara ⁇ tus for correcting diametrical taper formed on workpiece journal surfaces, which were previously ground in a large scale manufacturing grinding machine.
- Taper as known in the art, is a condition in which the diameter of a bearing surface is not constant along the axial length of the surface. This condition occurs when grinding machines used to grind the workpieces are improperly maintained or when the various abrading means used to remove material from the workpiece are inadequately dressed during operation.
- in-process gauging is a method of controlling a grinding or finishing operation in a machine wherein engagement of the grinding or abrading means with the workpiece is controlled in real-time by a measurement signal generated from a gauge that is likewise in contact with the workpiece surface.
- the grinding process can then be varied and different results achieved by modifying various controls within the grinding process in relation to the gauging signals.
- in-process gauging was used to correct taper existing on a plurality of diameters on a workpiece by altering the grinding angle of the grinding wheel in relation to the workpiece during the grinding process.
- This method is disclosed in U.S. Reissue Patent No. 28,082 to Price, reissued July 23, 1974.
- the Price patent discloses a multiple or wide wheel grinding machine with a means provided to vary the relative grinding angle between the surfaces of a workpiece to be ground and the grinding wheel.
- a pair of electrical size gauges are disposed alongside the workpiece on separate axially spaced bearing surfaces. These size gauges generate electrical signals as the workpiece is being rotated about its longitudinal axis during the grinding cycle. The two signals are compared directly and a third signal is generated when the difference between the signals exceeds a predeter ⁇ mined value. The third signal actuates a means for deflecting the grinding wheel and varying the angle of the grinding contact point in response to the third signal, correcting the taper previously existing on the part while it is in the overall grinding process.
- U.S. Patent No. 3,271,910 to Aisch discloses a method for correcting the size and angular relation between a workpiece to be ground and the grinding wheel.
- two size gauges are axially spaced from each other on two different bearing surfaces of a workpiece such as a automotive crankshaft.
- the two gauge signals measure the diameters at the extreme ends of the work ⁇ piece.
- a servo motor is engaged to displace the tail stock, thereby changing the angle that the grinding wheel contacts the workpiece surfaces being ground. This displacement continues until deviations from the master diameter are compensated for (i.e. until there is no longer differ- ences between the diameters measured and the master diameter) .
- journal surfaces on internal combustion engine components and related machine compo ⁇ nents will continue to be machined to closer and closer tolerances.
- Increased bearing loads, higher operating speeds and greater durability requirements in today' s internal combustion engine manufacturers also further the need for precision finishing of journal bearing surfaces. Included with the requirement for more precision finishing is the need to reduce diametrical taper existing on bearing surfaces. As disclosed in the prior art patents above, taper correction was generally utilized as part of the ongoing grinding process and not as an independent operation used to generate higher quality parts.
- Prior art methods utilized a modification in angular relation between the longitudinal axis of the workpiece being ground and the longitudinal axis of the grinding tool or wheel . Taper conditions were measured by taking individual diameter readings from two differ ⁇ ent bearing surfaces spaced axially apart. As disclosed in the prior art patents, the gauge points were general ⁇ ly spaced apart as far as possible by placing one gauge point on the bearing surface closest to one end of the workpiece and one gauge point on the bearing surface closest to the opposite end of the workpiece.
- the relative positioning of these gauges is useful in determining whether there is a difference in diameter between the two surfaces being gauged but fails to measure any of the bearing surface configurations spaced axially between the two gauged surfaces on the workpiece.
- there are numerous variables in the grinding process such as grinding means dress intervals, grinding means dress quality and the overall general maintenance of the grinding machine.
- utilizing in-process gauging to determine the diameters of the bearing surfaces at two axially spaced positions does not give an accurate indication of the diametrical taper conditions that may exist on bearing surfaces spaced between the two engaging positions.
- the Judge et al patent further discloses the use of an abrasive backed tape to remove material upon the journal surface upon rotation of the workpiece.
- a microfinishing shoe is used for pressing the abrasive coated film against a portion of a circumference of a journal surface.
- the microfinishing shoe disclosed is configured as a one-piece, solid, construction capable of applying only grinding forces transferred from the scissor type action of the grinding arm the shoe is affixed to.
- a taper correcting microfinishing arm assembly for reducing taper on selected journal surfaces of a workpiece.
- the assembly includes a means for applying a variable abrading pressure to a selected journal surface at predetermined locations.
- At least two diameter gauges are disposed along the surface during rotation of a workpiece and generate gauging signals representing the diameter of the surface at two axially spaced locations along the surface.
- a means for com- paring the gauging signals and generating a control signal for applying a variable abrading pressure to correct the taper is included.
- Another object of the present invention is to provide a taper correcting microfinishing arm that reduces taper on selected journal bearing surfaces of a workpiece by utilizing in-process gauging at selected bearing surfaces to be finished along the axial length of a workpiece.
- a more specific object of the present inven ⁇ tion is to provide a taper correcting microfinishing machine for reducing taper on a selected rotatable bearing journal surface of a workpiece including a means for rotating the surface of the workpiece past a pre ⁇ determined location and a means for applying a variable abrading pressure to the selected bearing journal surface at that predetermined location.
- the micro- finishing machine includes a means for gauging the selected surface at space points during rotation gener ⁇ ating gauging signals that represent a diameter of the selected bearing journal surface and a means for compar ⁇ ing the gauging signals to generate a controlling signal for applying variable pressure to correct taper.
- FIGURE 1 is a side view of the taper cor ⁇ recting microfinishing arm assembly of the present invention showing a journal diameter in cross-section;
- FIGURE 2 is a partial front view of the present invention showing the variable grinding appara ⁇ tus and a workpiece with an exaggerated taper and in ⁇ cluding the location of gauging points;
- FIGURE 3 is a schematic view of the general control system for the present invention.
- FIGURE 4 is a side view of a plurality of microfinishing arm assemblies according to the present invention shown in use with a crankshaft. Best Mode For Carrying Out The Invention
- Microfinishing arm assembly 10 in accordance with a first embodiment of the present invention is shown and generally designated by reference numeral 10.
- Microfinishing arm assembly 10 is shown in use adjacent a crankshaft 12 having a bearing journal surface 14 which requires taper correc ⁇ tion.
- Taper correction fixture 16 is attached to micro- finishing arm assembly 10 and is disposed directly adjacent bearing journal surface 14.
- Figure 2 shows an enlarged view of a bearing journal surface 14 in contact with taper correction fixture 16 and a greatly exaggerated depiction of dia ⁇ metrical taper existing on the bearing journal surface.
- Actual diametrical taper from the high side to the low side existing on various workpieces range anywhere from 1 (one) to 2 (two) thousandths of an inch.
- this diametrical taper is generally induced in the prior grinding processes due to numerous vari- ables including improperly dressed grinding materials, improperly maintained grinding machines, and material variations in different grinding processes.
- Microfinishing back-up shoes 18 and 20 are disposed immediately adjacent each other and mounted upon first finishing arm 22. It should be understood that back-up shoe 20 is identical to back-up shoe 18 and both operate in an identical manner with identical mechanical compo ⁇ nents. Backup shoe 20 is not shown in Figure 1. Backup shoe 18 is affixed to first finishing arm 22 by mounting members 38 and 40. Mounting members 38 and 40 have threaded portions 42 and 44 which fit into tapped mount ⁇ ing holes 46 and 48 within backup shoe 18.
- Mounting members 38 and 40 are also positioned within finishing arm mounting holes 50 and 52.
- Posi ⁇ tioning dowels 34 and 36 are permanently affixed to backup shoe 18 and are positioned in slip fit engagement to corresponding dowel pin holes within first finishing arm 22 as shown in Figure 1.
- backup shoe 18 is affixed to first finishing arm 22 and is capable of vertical movement subject to pre- established limits corresponding to mounting members 38 and 40.
- First finishing arm 22 has an elongated bore 26 and a corresponding reciprocating piston 28.
- Elong ⁇ ated bore 26 can be configured in various shapes and sizes depending upon the fluid compressor means util ⁇ ized.
- Reciprocating piston 28 is positioned inside elongated bore 26 and backup shoe engaging portion 56 is in direct contact with first backup shoe 18.
- O-rings 30 and 32 are disposed as shown in Figure 1 for bore sealing purposes.
- Fluid inlet 24 is in direct fluid communication with cylinder bore 26.
- Figure 1 shows abrasive inserts 58 used as an abrasive means for removing material from the bearing journal surface 14.
- Abrasive inserts 58 are affixed within backup shoe 18 such that compressive contact of the abrasive inserts 58 with rotating bearing surface 14 removes material from bearing surface 14.
- a second finishing arm 22 is shown in phantom in Figure 1 located below and opposite first finishing arm 22.
- Second finishing arm 21 includes an abrasive means (i.e. abrasive insert or abrasive coated tape) for finishing bearing surface 14 as discussed previously with respect to the abrasive means of finishing arm 22.
- the second finishing arm 21 is not necessary for the preferred embodiment of the present invention but may be utilized to aid in removing material from bearing surface 14.
- Electromechanical gauges 60 and 62 are partially shown and disposed diametrically opposite each other on bearing journal surface 14. A second set of electromechanical gauges are not shown but are spaced axially apart from the first set of electromechanical gauges. All four electromechanical gauges lie in a plane parallel to the central axis of rotation of said workpiece.
- FIG. 3 is a schematic representation of the principle features and method of using the present invention.
- Bearing journal surface 14 is rotated about a longitudinal axis "C" while a first set of gauge points 64 and 66 are disposed diametrically opposite each other adjacent the bearing journal surface 14.
- a second set of gauge points 68 and 70 are disposed dia ⁇ metrically opposite each other along bearing journal surface 14 and are also spaced apart and adjacent the first set of gauge points.
- gauge points represent either electromechanical gauges, optical gauges, or air jet gauges.
- the type of gauge chosen will depend upon the number of workpieces the manu ⁇ facturer intends to pass through the machine and the maintenance schedule the manufacturer intends to apply to the machine.
- air jet gauges possess characteristics more conducive to heavy- finishing or grinding operations because they require fewer cleaning intervals than other gauges. This characteristic is inherent in air gauges because of the constant flux of clean air which the gauge utilizes in operation.
- electromechanical gauges and optical gauges can also be utilized in this invention depending upon the various uses the assembly is subject to.
- gauges located at gauge points 64, 66, 68 and 70 comprise a measuring means for gauging the bearing journal surface at spaced points upon the surface. These gauges gener ⁇ ate a plurality of gauging signals which are transferred to a processor for calculating the diameters according to the gauging signals.
- This processor or means for calculating diameter is designated as reference numeral 72 in Figure 3.
- Commercial processors are available to process the gauging signals to generate signals repre ⁇ senting a diameter of the bearing journal surface at two planes on the bearing journal surface shown in Figure 3 as diameters D x and D 2 .
- the processor then transfers these signals representing diameters to a comparator 74.
- the output diameter signals are compared and used to establish whether a diametrical taper exists between the two diameter locations.
- Comparator 74 is programmed with instructions for determining if a taper exists on the journal surface as shown in Figure 3.
- Output signals received from the processor represent diameters D x and D 2 . If the differ ⁇ ence between D x and D 2 reaches a predetermined value V o; a correctable taper is determined to be present on the part and the comparator sends a signal to the taper correction fixture for reducing taper.
- Predetermined constant V 0 is determined by the user and is programmable into the comparator. This predetermined constant can be as low as .0002 of an inch.
- Processing apparatus for comparing the diameters is commercially available and known in the prior art as a programmable controller system capable of producing a series of control signals.
- the comparator sends control signals to a taper correction means that applies a variable pressure to a fluid compressor 54.
- the backup shoes 18 and 20 are aligned above and adja ⁇ cent the bearing journal surface 14.
- the control of the reciprocating piston thus controls the finishing pres ⁇ sure applied to the backup shoes.
- the pressure applied to the backup shoes is in turn transferred to the abra ⁇ sive means located between the backup shoes and the bearing journal surface.
- the backup shoes 18 and 20 are identical and have surface configurations corresponding to the shape of the bearing journal surface.
- the fluid compressor reacts correspondingly to signals sent by the comparator and can apply pressures as small as 10 (ten) pounds to the backup shoes.
- Fluid compressor 54 induces fluid either air or liquid, into elongated bore 26 through fluid inlet 24.
- the variable pressure that can be induced by the fluid compressor reciprocates piston 28 vertically inside cylinder 26.
- Piston 28 has an engaging portion 56 which is located directly above backup shoe 18 as shown in Figure 1.
- This abrading means can be an abrasive coated tape 60 as shown in Figure 3 or a hard abrasive insert 58 as shown in Figure 1.
- the conventional abrasive coated tape is disposed between shoes 18 and 20 and bearing surface 14.
- any conventional abrasive coated tape feed device may be affixed to fixture 16 to feed abrasive tape between the shoes 18 and 20 and the bearing surface 14.
- Hard abrasive inserts can be found in various compositions such as diamond honing stones, garnet honing stones or other like materials. Different compo ⁇ sitions remove material at different rates and produce different surface finishes.
- the exaggerated taper shown in Fig. 2 is reduced by the following procedure.
- the control signals received from comparator 74 are sent to fluid compressor 54 which activates and brings either backup shoe 18 or 20 or both down into compressive contact with journal bearing surface 14 depending upon the amount and direction of taper existing on the work- piece.
- Figure 2 shows an exaggerated taper existing on the bearing journal surface with the high side of the taper below backup shoe 18 and the low side below backup shoe 20. If a taper exists on the journal bearing surface as shown in Fig. 2, backup shoe 18 and 20 are brought down simultaneously at pressures corresponding to signals received from the comparator. These signals will force backup shoes 18 and 20 down into compressive contact with an abrading means for removing material on the bearing journal surface. This variable pressure will continue until the amount of material removed from the surface brings the differences between diameters O and D 2 below predetermined constant V 0 .
- Figure 4 shows seven taper correction micro- finishing arm assemblies used in conjunction with a means for rotating a workpiece about a longitudinal axis.
- the means for rotating, head stock 76 and tail stock 78 is shown in Figure 4.
- the microfinishing machine of the present invention can be configured to accommodate as many microfinishing arm assemblies as needed for each individual journal bearing surface included on a workpiece.
- Figure 4 shows a crankshaft having seven journal surfaces and seven corresponding taper cor- rection arm assemblies.
- Four taper correction micro- finishing arm assemblies 82, 84, 86, 88 are disposed adjacent four main bearing journal surfaces 90, 92, 94, 96.
- Three taper correction microfinishing arm assem ⁇ blies 98, 100, 102 are disposed adjacent three pin bearing journal surfaces 104, 106, 108.
- Machine base 80 is used to mount head stock 76, tail stock 78 and micro- finishing arm assemblies according to the present inven ⁇ tion.
- the workpiece, in this example a crankshaft can be rotated by various methods such as power roller or between centers as shown in Figure 4.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
- Grinding Of Cylindrical And Plane Surfaces (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US1994/001454 WO1995021728A1 (en) | 1992-05-20 | 1994-02-09 | Method and apparatus for correcting diametrical taper on a workpiece |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0743891A1 true EP0743891A1 (de) | 1996-11-27 |
EP0743891A4 EP0743891A4 (de) | 1997-10-29 |
EP0743891B1 EP0743891B1 (de) | 1999-11-17 |
Family
ID=22242263
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94910107A Expired - Lifetime EP0743891B1 (de) | 1994-02-09 | 1994-02-09 | Verfahren und vorrichtung zur verbesserung der kegelform eines zylindrischen werkstückes |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0743891B1 (de) |
CA (1) | CA2182953C (de) |
DE (1) | DE69421722T2 (de) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10220562B4 (de) * | 2002-05-03 | 2005-11-10 | Nagel Maschinen- Und Werkzeugfabrik Gmbh | Verfahren zur Ausrichtung eines in einer Honspindel einspannbaren Honwerkzeugs und einer Bohrung eines Werkstücks zueinander sowie Honmaschine |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4637144A (en) * | 1984-07-03 | 1987-01-20 | Schaudt Maschinenbau Gmbh | Apparatus for monitoring the diameters of crankpins during treatment in grinding machines |
EP0219301A2 (de) * | 1985-10-08 | 1987-04-22 | Industrial Metal Products Corporation | Feinstbearbeitungsvorrichtung und Verfahren |
US4979335A (en) * | 1988-04-21 | 1990-12-25 | Ford Motor Company | Apparatus for precision machining crank pins of crankshafts |
US5148636A (en) * | 1989-02-07 | 1992-09-22 | Industrial Metal Products Corporation | Size control shoe for microfinishing machine |
-
1994
- 1994-02-09 CA CA002182953A patent/CA2182953C/en not_active Expired - Fee Related
- 1994-02-09 EP EP94910107A patent/EP0743891B1/de not_active Expired - Lifetime
- 1994-02-09 DE DE69421722T patent/DE69421722T2/de not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4637144A (en) * | 1984-07-03 | 1987-01-20 | Schaudt Maschinenbau Gmbh | Apparatus for monitoring the diameters of crankpins during treatment in grinding machines |
EP0219301A2 (de) * | 1985-10-08 | 1987-04-22 | Industrial Metal Products Corporation | Feinstbearbeitungsvorrichtung und Verfahren |
US4979335A (en) * | 1988-04-21 | 1990-12-25 | Ford Motor Company | Apparatus for precision machining crank pins of crankshafts |
US5148636A (en) * | 1989-02-07 | 1992-09-22 | Industrial Metal Products Corporation | Size control shoe for microfinishing machine |
Non-Patent Citations (1)
Title |
---|
See also references of WO9521728A1 * |
Also Published As
Publication number | Publication date |
---|---|
DE69421722T2 (de) | 2000-07-06 |
EP0743891A4 (de) | 1997-10-29 |
DE69421722D1 (de) | 1999-12-23 |
EP0743891B1 (de) | 1999-11-17 |
CA2182953A1 (en) | 1995-08-17 |
CA2182953C (en) | 2000-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2768524B2 (ja) | マイクロ仕上げ機械 | |
US5951377A (en) | Microfinishing machine | |
EP1193028B1 (de) | Messverfahren für Werkstückteil und Bearbeitungsverfahren | |
EP1088621B2 (de) | Verfahren und Vorrichtung zum Bearbeiten eines Werkstücks mit mehreren Werkzeugköpfen | |
US5531631A (en) | Microfinishing tool with axially variable machining effect | |
EP1385669B1 (de) | Vorrichtung zur prüfung des durchmessers der exzentrischen teile von werkstücken beim schleifen | |
JP6689275B2 (ja) | ワーク中心領域の支持および測定用の定寸・振れ止め装置、このような定寸・振れ止め装置を備えた研削盤、ならびにワーク中心領域の支持および測定方法 | |
US5311704A (en) | Method and apparatus for correcting diametrical taper on a workpiece | |
WO1995021728A1 (en) | Method and apparatus for correcting diametrical taper on a workpiece | |
EP0800439B1 (de) | Kontrollvorrichtung für eine feinstbearbeitungsmaschine | |
CN112935949A (zh) | 气门精锥面磨床 | |
EP0743891B1 (de) | Verfahren und vorrichtung zur verbesserung der kegelform eines zylindrischen werkstückes | |
EP1297926B1 (de) | Verfahren und Vorrichtung zum Schleifen von Werkstückoberflächen in feinstbearbeitete Oberflächen mit Mikro-Öltaschen | |
JP4427750B2 (ja) | 微細凹部加工装置及び微細凹部加工方法 | |
JP2748569B2 (ja) | 研削加工方法 | |
JPS5822659A (ja) | 円筒研削盤の定寸方法 | |
EP1175282A1 (de) | Verfahren und vorrichtung zum steuern einer werkstücksupportvorrichtung | |
JPH0448578B2 (de) | ||
JPH08192365A (ja) | 芯出し機構付砥石 | |
US20020146968A1 (en) | Thrustwall polishing assembly | |
King et al. | Centerless Grinding | |
JPH04105870A (ja) | 加工寸法の間接検測装置 | |
JPS6031622B2 (ja) | クランク軸加工における偏心量設定方法 | |
JPS63109970A (ja) | 数値制御カム研削盤 | |
JPH01164555A (ja) | Nc工具研削盤の工具位置変位の検出補正装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19960906 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 19970908 |
|
AK | Designated contracting states |
Kind code of ref document: A4 Designated state(s): DE FR GB IT |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 19990312 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REF | Corresponds to: |
Ref document number: 69421722 Country of ref document: DE Date of ref document: 19991223 |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20010202 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20010226 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20010228 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020903 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20020209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021031 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050209 |