EP0743811B1 - Gleichspannungslichtbogenplasmabrenner, insbesonders bestimmt zur Erzeugung eines chemischen Stoffes durch Zersetzung eines Plasmagases - Google Patents

Gleichspannungslichtbogenplasmabrenner, insbesonders bestimmt zur Erzeugung eines chemischen Stoffes durch Zersetzung eines Plasmagases Download PDF

Info

Publication number
EP0743811B1
EP0743811B1 EP96400770A EP96400770A EP0743811B1 EP 0743811 B1 EP0743811 B1 EP 0743811B1 EP 96400770 A EP96400770 A EP 96400770A EP 96400770 A EP96400770 A EP 96400770A EP 0743811 B1 EP0743811 B1 EP 0743811B1
Authority
EP
European Patent Office
Prior art keywords
plasma
electrode
gas
tubular
plasma torch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96400770A
Other languages
English (en)
French (fr)
Other versions
EP0743811A1 (de
Inventor
Martine Cadre
Maxime Labrot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Group SAS
Original Assignee
Airbus Group SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Group SAS filed Critical Airbus Group SAS
Publication of EP0743811A1 publication Critical patent/EP0743811A1/de
Application granted granted Critical
Publication of EP0743811B1 publication Critical patent/EP0743811B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/341Arrangements for providing coaxial protecting fluids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3468Vortex generators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3431Coaxial cylindrical electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/40Details, e.g. electrodes, nozzles using applied magnetic fields, e.g. for focusing or rotating the arc

Definitions

  • the present invention relates to a plasma arc torch direct current, particularly intended for obtaining of a chemical body by decomposition of a plasma gas.
  • a DC arc plasma torch comprising two coaxial tubular electrodes arranged in extension of each other, on either side of a chamber, into which a stream of plasma gas is injected, for example air.
  • Each of said electrodes is open on the side of said injection chamber, while one of which is further open at its far end of said injection chamber.
  • the arc between said electrodes crosses said injection chamber and ionizes the plasma gas introduced in this one.
  • Said arch hangs by its end feet respectively to the internal face of said electrodes and ionized gas plasma, high pressure (pressure atmospheric at around 5 bar) and at very high temperature (several thousand ° C), crosses the open electrode at both ends and flows out of said torch at through the opening of this last electrode away from said injection chamber.
  • the flow of plasma coming out of said torch comprises ions of the elements composing said gas, as a result of the action of the electric arc on said gas plasmagen.
  • the plasma gas is hydrogen sulfurous
  • the plasma flow contains ions hydrogen and sulfur ions. Therefore, if we submit said plasma flow at thermal quenching it is possible to collect the elements of the plasma gas.
  • sulfurous hydrogen as plasma gas, then quenching the plasma, allow therefore to collect sulfur, on the one hand, and hydrogen, on the other hand.
  • a torch of the type described above can serve as a reactor for the decomposition of gaseous compounds plasmagenics.
  • the object of the present invention is to remedy these drawbacks. It relates to a plasma arc torch of long service life, particularly suitable to be used as a thermochemical decomposition reactor, operating with good energy efficiency and allowing obtaining high purity decomposition products.
  • the plasma leaving the torch conforms to the present invention is particularly pure.
  • said fluid barrier forms a sheath protecting the internal surface of the first electrode against the action erosion of plasma ions. We therefore also improve the lifetime of this electrode.
  • said first tubular part is integral of the first electrode, and it can even form one single piece with the latter, so as to appear as an elongated portion of said electrode.
  • said first tubular part plays no role electric role vis-à-vis the arc in established regime, it can be dimensioned in volume, in diameter and length so that aerothermal conditions (pressure, temperature) optimize the chemical yield and, therefore, energy yield.
  • aerothermal conditions pressure, temperature
  • said first means for forming said fluid barrier are constituted by first means of blowing causing, on the internal wall of said first electrode, a first tubular flow of a gas to pressure at least approximately equal to that of plasma and at a temperature much lower than that of said plasma, said first fluid tubular flow surrounding said flow of plasma and flowing in the same direction as it.
  • a flow of central plasma containing gas decomposition ions plasma and an annular flow formed by the gas blowing and surrounding said central flow of the plasma is at very high temperature (several thousands of ° C) and at high pressure (atmospheric pressure at around 5 bars).
  • the flow blowing ring can be at low temperature (by room temperature) and at a pressure of the order of that of plasma.
  • the central flow and the annular flow have very viscosities different, prohibiting their mixing. The particles of electrodes, torn off by the arc, cannot therefore pass from the annular flow of the blowing gas at the flow of central plasma, surrounded by this annular flow.
  • the blown gas may, for example, be hydrogen.
  • said first electrode has a larger diameter that said first tubular part and that said first blowing means are arranged between said first tubular part and said first electrode.
  • This blowing gas can be blown on the internal wall of said first electrode, parallel to the axis of this last.
  • the gas from said first tubular flow can be blown inside said first electrode, tangentially to the inner wall of the latter, similar to what is generally practiced for the so-called vortex injection of plasma gas into the injection chamber.
  • Such tangential blowing means may have an inner crown and a crown coaxial outer, providing a room between them annular supplied with blowing gas through said outer crown, while the central opening of said inner crown forms at least approximately an extension of the internal surface of said first electrode and that said central crown opening inner is connected to said annular chamber by at at least one orifice tangential to said central opening.
  • said second electrode and its elements partners may have the same features as those mentioned above about the first electrode.
  • the plasma torch according to the present invention includes means for moving the feet arcs, such as those described above.
  • means for moving the feet arcs such as those described above.
  • such means do not have to act on the first and second tubular parts, but only on the electrodes.
  • means are provided, which can be, known manner, of the type with electric discharge produced between both electrodes or short-circuit type, thanks, by example, when using an auxiliary electrode start-up.
  • said arc electric between the parts of said neighboring electrodes of said injection chamber (said first and second tubular parts), then to extend said arc under the effect of the vortex injection of plasma gas, until that the feet of said arc are hooked to the surface internal of said end portions of the electrodes, remote of said injection chamber (electrodes properly say).
  • said means for injecting the plasma gas in said chamber allow to inject it in vortices in planes perpendicular to the common axis electrodes.
  • These means of injection may include (see US-A-5,262,616 mentioned above) a piece of coaxial revolution to said electrodes and defining with these and their supports said injection chamber. Of transverse holes are provided in the room to allow injection of plasma gas from a supply circuit, in the bedroom.
  • the temperatures plasma damage to the torch outlets may exceed 5000 ° C. Also, it is essential to plan cooling circuits for the electrodes, such as this is moreover usual for plasma torches.
  • FIG. 1 shows, in very schematic longitudinal section, a first example of a plasma torch in accordance with this invention, to illustrate the inventive principle of this one.
  • Figure 2 illustrates the section, along line II-II of the Figure 1, the fluid flow at the outlet of the torch to plasma.
  • Figure 3 shows, also in very longitudinal section schematic, a second example of a plasma torch conforming to the present invention.
  • Figure 4 is a simplified longitudinal section of a mode of practical realization of the plasma torch of the figure 1.
  • Figure 5 is a cross section along the line V-V in Figure 4.
  • Figure 6 is a simplified longitudinal section of a mode of practical realization of the plasma torch of the figure 3.
  • the exemplary embodiment I of the plasma torch in accordance with the present invention and shown very schematically in FIG. 1, has an anode 1 and a part cathodic 2, tubular and coaxial, arranged in extension from each other along an X-X axis, on both sides other of a chamber 3 into which is injected, any in known manner, a plasma gas (arrows P).
  • Anode 1 and the cathode part are cooled in any suitable way and known, but not shown.
  • the anode 1 is elongated along the axis X-X and comprises, at its end arranged opposite the injection chamber 3, an opening 4 connecting the interior of said anode 1 with said injection chamber 3. On the other hand, at its end opposite to the injection chamber 3, the anode 1 is closed by a bottom 5.
  • the cathode part 2 comprises, at its end remote from the injection chamber 3, a cathode 2A open towards the outside by an opening 6.
  • the cathode 2A is extended, in the direction of the injection chamber 3, by a part tubular 2B forming an integral part of said cathode 2A.
  • the cathode 2A has a diameter D greater than the diameter d of the tubular part 2B and a shoulder 7 connects the cathode 2A and the tubular part 2B.
  • orifices 8 are provided, distributed around the axis XX and with an axis at least substantially parallel thereto.
  • the tubular part 2B has an opening 9 putting the interior of the cathode part 2 into communication with said injection chamber 3.
  • an electric arc 10 crosses the chamber injection 3 and the tubular part 2B and hooks, by its end legs 10a and 10c, respectively on the internal surface of anode 1 (near bottom 5 opposite to the injection chamber 3) and to that of the cathode 2A.
  • Electromagnetic coils 11 and 12 intended for the rotation of the feet 10a and 10c of the arc 10 around the axis X-X, respectively surround the anode 1 (in the vicinity of the bottom 5) and cathode 2A.
  • the stream of plasma gas P entering the tubular part 2B is transformed, in the latter and under the action of the arc 10, in a plasma flow 13, leaving through opening 6 after passing through the cathode 2A.
  • the tubular part 2B therefore forms a reaction chamber in which the plasma gas is transformed into a plasma, at high pressure and at very high temperature, comprising ions of the components of said plasma gas. It's obvious that the tubular part 2B can be dimensioned to optimize energy efficiency.
  • a gas G for example hydrogen
  • a gas G for example hydrogen
  • the particles of matter from the cathode 2A which are torn off from the inner surface thereof by the arc foot 10c, not only can not mix to the plasma flow 13 but still are evacuated by the annular gas stream 14. They cannot therefore pollute plasma flow 13.
  • particles of material from anode 1, which are torn off at this by the arc foot 10a remain in the anode 1 (this which is obtained from the fact that the anode 1 is long and that the arch 10a is in the vicinity of the bottom 5), the flow plasma 13, comprising ions of the gas components is particularly pure.
  • a quenching device (not shown, but of any type known) allows the annular gas stream 14 to be separated from the plasma flow 13 and then extract the components chemicals contained in the form of ions in said flow plasma 13.
  • the anode part 1 ′ comprises, at its end remote from the injection chamber 3, an anode 1'A open towards the outside by an opening 15.
  • the anode 1'A is extended, in the direction of the injection chamber 3, by a tubular piece 1'B forming an integral part of said anode.
  • the anode 1'A has a diameter D greater than the diameter d of the tubular piece 1'B and a shoulder 16 connects the anode 1'A and the tubular piece 1'B.
  • orifices 17 are provided, distributed around the axis XX and with an axis at least substantially parallel thereto.
  • the tubular part 1'B has an opening 18 putting the interior of the anode part 1 'into communication with the injection chamber 3.
  • the electric arc 10 crosses the chamber injection 3 and the tubular parts 1'B and 2B and hooks, by its feet 10a and 10c, respectively on the surface internal of anode 1'A and cathode 2A.
  • the plasma gas injected into chamber 3 divides in two streams, one of which enters the tubular part 1'B and the other in the tubular part 2B.
  • said plasma gas streams transform into two opposite plasma flows 13 and 19, leaving through openings 6 and 15, after crossing cathode 2A and anode 1'A respectively.
  • Rooms 1'B AND 2B tubular therefore form reaction chambers in which the plasma gas is transformed into plasma.
  • FIG 4 there is shown an embodiment practice of Example I in Figure 1.
  • the tubular body 30 of the plasma torch, surrounding the anode 1 and the cathode part 2 is constituted (at simplicity of construction) of a plurality of sections 30A, 30B, 30C ... coaxial with each other and with said electrodes and tightly assembled one at the end of the other.
  • connection means 31 are provided for sealingly open open end 6, remote from the injection chamber 3, from the cathode 2A to a device quenching (not shown).
  • Conduits 32 and 33 are respectively provided around the anode 1 and the workpiece cathodic 2 for the circulation of a cooling fluid of these.
  • the means 34 for injecting the plasma gas into the chamber 3 are of the vortex injection type, such than those described in US-A-5,262,616. They are made up by a part of revolution, coaxial with the X-X axis and include an annular groove 35, supplied with plasma gas (arrows P) and connected to the injection chamber 3 by transverse holes 36.
  • a short-circuit ignition device 37 is provided, known type with auxiliary starting electrode 38.
  • the arc 10 can be struck between the parts of the anode 1 and of tubular part 2B, adjacent to the injection chamber 3, then stretched out under the effect of the vortex injection plasma gas, until feet 10a and 10b of said arc are attached to the internal surface of anode 1 near the bottom 5 and that of the cathode 2A, in the field coils 11 and 12.
  • the torch of Figure 4 (see also Figure 5) has a section 30E constituting the device S for tangential blowing of the fluid tubular flow 14, surrounding the flow of plasma 13.
  • the blowing device S comprises an inner ring 39 (crossed by the cooling conduits 33) and an outer ring 40 coaxial with the axis XX , forming between them an annular chamber 41, supplied with blowing gas (see arrows G) through said outer ring 40.
  • the central opening 42 of the inner ring 39 has the diameter D and forms at least approximately an extension of the internal surface of cathode 2A. This central opening 42 therefore forms the transition between the internal surface of the tubular part 2B of diameter d and the internal surface of the cathode 2A of diameter D. It is connected to the annular chamber 41 by orifices 43, tangential to its internal surface .
  • Example II of the plasma torch in the practical embodiment of Example II of the plasma torch, according to the present invention and shown in section in Figure 6, we have, compared to the mode of practical embodiment of Figures 4 and 5, replaced the anode 1 by the anode part 1 ', similar (but opposite along from the X-X axis) to the cathode part 2.
  • the part anode 1 ′ comprises the anode 1'A and the tubular part 1'B, connected by a tangential blowing device S '.
  • the anode 1'A, the tubular part 1'B and the device blowing S ′ are respectively identical to cathode 2A, to the tubular part 2B and to the blowing device S.
  • Des connection means 44 are provided for connecting so seals the open end 15 away from the chamber injection 3, from the 1'A anode to a quenching device (not represented).

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Discharge Heating (AREA)

Claims (20)

  1. Gleichspannungslichtbogenplasmabrenner, insbesondere zur Erzeugung eines chemischen Stoffes aus einem Plasmagas (P), das diesen Stoff enthält, wobei der Brenner umfaßt:
    eine erste Elektrode und eine zweite Elektrode, wobei die Elektroden röhrenförmig und koaxial sind und hintereinander beiderseits einer Kammer (3) zur Injektion des Plasmagases angeordnet sind und die Elektroden an ihren der Injektionskammer gegenüberliegenden Enden offen sind, und
    Mittel (34) zur Injektion eines Plasmagasstroms in die Injektionskammer,
    der Lichtbogen (10) zwischen den Elektroden durch die Injektionskammer verläuft und mit Füßen (10c, 10a) jeweils an der Innenfläche der Elektroden haftet, während die erste Elektrode (2) an ihrem der Injektionskammer abgewandten Ende offen ist, damit das vom Lichtbogen erzeugte Plasma (13) aus dem Brenner strömen kann, dadurch gekennzeichnet, daß:
    die erste Elektrode (2A) mit der Injektionskammer (3) über ein erstes röhrenförmiges Teil (2B) in Verbindung steht, durch das der Lichtbogen (10) verläuft und das eine erste Reaktionskammer darstellt, in der unter der Einwirkung des Lichtbogens (10) aus dem Plasmagas (P) das Plasma (13) entsteht, und
    erste Mittel (7, 8, S) vorgesehen sind, die die Bildung einer fluiden Barriere (14) zwischen der ersten Elektrode (2A) und dem Plasma (13) ermöglichen.
  2. Plasmabrenner nach Anspruch 1,
    dadurch gekennzeichnet, daß das erste röhrenförmige Teil (2B) mit der ersten Elektrode (2A) fest verbunden ist.
  3. Plasmabrenner nach Anspruch 2,
    dadurch gekennzeichnet, daß das erste röhrenförmige Teil (2B) und die erste Elektrode (2A) ein einziges Teil (2) bilden.
  4. Plasmabrenner nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, daß die ersten Mittel zur Bildung der fluiden Barriere aus ersten Blasmitteln (7, 8, S) bestehen, die an der Innenwand der ersten Elektrode (2A) eine erste röhrenförmige Strömung (14) eines Gases erzeugen, dessen Druck mindestens annähernd gleich dem des Plasmas und dessen Temperatur wesentlich niedriger als die des Plasmas (13) ist, wobei die erste röhrenförmige fluide Strömung (14) die Plasmaströmung (13) umgibt und in der gleichen Richtung wie diese verläuft.
  5. Plasmabrenner nach Anspruch 4,
    dadurch gekennzeichnet, daß das Gas (G) der ersten röhrenförmigen Strömung Wasserstoff ist.
  6. Plasmabrenner nach einem der Ansprüche 4 oder 5,
    dadurch gekennzeichnet, daß die erste Elektrode (2A) einen größeren Durchmesser (D) als das erste röhrenförmige Teil (2B) hat, und dadurch, daß die ersten Blasmittel (7, 8, S) zwischen dem ersten röhrenförmigen Teil und der ersten Elektrode angeordnet sind.
  7. Plasmabrenner nach einem der Ansprüche 4 bis 6,
    dadurch gekennzeichnet, daß das Gas der ersten röhrenförmigen Strömung an die Innenwand der ersten Elektrode parallel zu ihrer Achse geblasen wird.
  8. Plasmabrenner nach einem der Ansprüche 4 bis 6,
    dadurch gekennzeichnet, daß das Gas der ersten röhrenförmigen Strömung in die erste Elektrode tangential zu deren Innenwand geblasen wird.
  9. Plasmabrenner nach Anspruch 8,
    dadurch gekennzeichnet, daß die ersten tangentialen Blasmittel (S) einen koaxialen Innenkranz (39) und Außenkranz (40) haben, zwischen denen eine Ringkammer (41) ausgespart ist, die über den Außenkranz (40) mit Blasgas (G) versorgt wird, während die mittlere Öffnung (42) des Innenkranzes (39) mindestens annähernd eine Verlängerung der Innenfläche der ersten Elektrode (2A) darstellt und die mittlere Öffnung (42) des Innenkranzes mit der Ringkammer durch mindestens eine Öffnung (43) tangential zur mittleren Öffnung verbunden ist.
  10. Plasmabrenner nach einem der Ansprüche 1 bis 9,
    dadurch gekennzeichnet, daß:
    die zweite Elektrode (1'A) an ihrem der Injektionskammer (3) abgewandten Ende ebenfalls offen ist, so daß sich eine doppelte Plasmaströmung (13, 19) ergibt, die durch jede der Elektroden verläuft;
    die zweite Elektrode (1'A) über ein zweites röhrenförmiges Teil (1'B), durch das der Lichtbogen (10) verläuft und das eine zweite Reaktionskammer darstellt, in der unter der Einwirkung des Lichtbogens aus dem Plasmagas (P) das Plasma entsteht, ebenfalls mit der Injektionskammer (3) verbunden ist;
    zweite Mittel (16, 17, S') vorgesehen sind, durch die zwischen der zweiten Elektrode (1'A) und dem Plasma (19) eine fluide Barriere (20) gebildet werden kann.
  11. Plasmabrenner nach Anspruch 10,
    dadurch gekennzeichnet, daß das zweite röhrenförmige Teil (1'B) mit der zweiten Elektrode (1'A) fest verbunden ist.
  12. Plasmabrenner nach Anspruch 11,
    dadurch gekennzeichnet, daß das zweite röhrenförmige Teil (1'B) und die zweite Elektrode (1'A) ein einziges Teil (1') bilden.
  13. Plasmabrenner nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, daß die zweiten Mittel zur Bildung der fluiden Barriere aus zweiten Blasmitteln (16, 17, S') bestehen, die an der Innenwand der zweiten Elektrode (1'A) eine zweite röhrenförmige Strömung (20) eines Gases erzeugen, dessen Druck mindestens annähernd gleich dem des Plasmas und dessen Temperatur wesentlich niedriger als die des Plasmas (13) ist, wobei die zweite röhrenförmige fluide Strömung (20) die Plasmaströmung (19) umgibt und in der gleichen Richtung wie diese verläuft.
  14. Plasmabrenner nach Anspruch 13,
    dadurch gekennzeichnet, daß das Gas der zweiten röhrenförmigen Strömung Wasserstoff ist.
  15. Plasmabrenner nach einem der Ansprüche 13 oder 14, dadurch gekennzeichnet, daß die zweite Elektrode (1'A) einen größeren Durchmesser (D) als das zweite röhrenförmige Teil (1'B) hat, und dadurch, daß die zweiten Blasmittel zwischen dem zweiten röhrenförmigen Teil und der zweiten Elektrode angeordnet sind.
  16. Plasmabrenner nach einem der Ansprüche 13 bis 15,
    dadurch gekennzeichnet, daß das Gas der zweiten röhrenförmigen Strömung parallel zur Achse der zweiten Elektrode an deren Innenwand geblasen wird.
  17. Plasmabrenner nach einem der Ansprüche 13 bis 15,
    dadurch gekennzeichnet, daß das Gas der zweiten röhrenförmigen Strömung in die zweite Elektrode tangential zu deren Innenwand geblasen wird.
  18. Plasmabrenner nach Anspruch 17,
    dadurch gekennzeichnet, daß die zweiten tangentialen Blasmittel (S') einen koaxialen Innenkranz (39) und Außenkranz (40) haben, zwischen denen eine Ringkammer (41) ausgespart ist, die über den Außenkranz (40) mit Blasgas (G) gespeist wird, während die mittlere Öffnung (42) des Innenkranzes (39) mindestens annähernd eine Verlängerung der Innenfläche der zweiten Elektrode (1'A) bildet und die mittlere Öffnung (42) des Innenkranzes mit der Ringkammer durch mindestens eine Öffnung (43) tangential zur mittleren Öffnung verbunden ist.
  19. Plasmabrenner nach einem der Ansprüche 1 bis 18,
    dadurch gekennzeichnet, daß er aus einer Vielzahl von zueinander und zu den Elektroden koaxialen Abschnitten (30A, 30B, ...) besteht, die miteinander dichtabschließend verbunden sind.
  20. Plasmabrenner nach einem der Ansprüche 1 bis 19,
    dadurch gekennzeichnet, daß er Mittel (31, 44) hat, um das der Injektionskammer (3) abgewandte offene Ende einer Elektrode mit einer Vorrichtung zum Abschrecken des Plasmas zu verbinden.
EP96400770A 1995-05-19 1996-04-10 Gleichspannungslichtbogenplasmabrenner, insbesonders bestimmt zur Erzeugung eines chemischen Stoffes durch Zersetzung eines Plasmagases Expired - Lifetime EP0743811B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9505972A FR2734445B1 (fr) 1995-05-19 1995-05-19 Torche a plasma d'arc a courant continu, particulierement destinee a l'obtention d'un corps chimique par decomposition d'un gaz plasmagene
FR9505972 1995-05-19

Publications (2)

Publication Number Publication Date
EP0743811A1 EP0743811A1 (de) 1996-11-20
EP0743811B1 true EP0743811B1 (de) 1998-11-04

Family

ID=9479173

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96400770A Expired - Lifetime EP0743811B1 (de) 1995-05-19 1996-04-10 Gleichspannungslichtbogenplasmabrenner, insbesonders bestimmt zur Erzeugung eines chemischen Stoffes durch Zersetzung eines Plasmagases

Country Status (7)

Country Link
US (1) US5688417A (de)
EP (1) EP0743811B1 (de)
JP (1) JPH08339893A (de)
CA (1) CA2174571A1 (de)
DE (1) DE69600904T2 (de)
FR (1) FR2734445B1 (de)
ZA (1) ZA962967B (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH690408A5 (de) * 1996-02-23 2000-08-31 Mgc Plasma Ag Plasmabrenner für übertragenen Lichtbogen.
US5905000A (en) * 1996-09-03 1999-05-18 Nanomaterials Research Corporation Nanostructured ion conducting solid electrolytes
US6933331B2 (en) 1998-05-22 2005-08-23 Nanoproducts Corporation Nanotechnology for drug delivery, contrast agents and biomedical implants
FR2763466B1 (fr) * 1997-05-14 1999-08-06 Aerospatiale Systeme de regulation et de pilotage d'une torche a plasma
KR100276674B1 (ko) * 1998-06-03 2001-01-15 정기형 플라즈마 토치
FR2798247B1 (fr) * 1999-09-03 2001-11-09 Soudure Autogene Francaise Torche a plasma avec systeme d'electrode a longue duree de vie
US6600127B1 (en) * 1999-09-15 2003-07-29 Nanotechnologies, Inc. Method and apparatus for direct electrothermal-physical conversion of ceramic into nanopowder
US6472632B1 (en) 1999-09-15 2002-10-29 Nanoscale Engineering And Technology Corporation Method and apparatus for direct electrothermal-physical conversion of ceramic into nanopowder
US7708974B2 (en) 2002-12-10 2010-05-04 Ppg Industries Ohio, Inc. Tungsten comprising nanomaterials and related nanotechnology
US7232975B2 (en) * 2003-12-02 2007-06-19 Battelle Energy Alliance, Llc Plasma generators, reactor systems and related methods
US7741577B2 (en) * 2006-03-28 2010-06-22 Battelle Energy Alliance, Llc Modular hybrid plasma reactor and related systems and methods
US8536481B2 (en) 2008-01-28 2013-09-17 Battelle Energy Alliance, Llc Electrode assemblies, plasma apparatuses and systems including electrode assemblies, and methods for generating plasma
JP2009189948A (ja) * 2008-02-14 2009-08-27 Gyoseiin Genshino Iinkai Kakuno Kenkyusho バイモデル仕事のプラズマ反応器装置
CN102598286A (zh) * 2009-09-06 2012-07-18 张晗钟 管状光伏器件和制造方法
WO2011073170A1 (en) * 2009-12-15 2011-06-23 Danmarks Tekniske Universitet An apparatus and a method and a system for treating a surface with at least one gliding arc source
KR101249457B1 (ko) * 2012-05-07 2013-04-03 지에스플라텍 주식회사 비이송식 공동형 플라즈마 토치
JP2014170743A (ja) * 2013-03-04 2014-09-18 Gs Platech Co Ltd 非移送式中空型プラズマトーチ
WO2016042595A1 (ja) * 2014-09-16 2016-03-24 富士機械製造株式会社 プラズマガス照射装置
GB2532195B (en) * 2014-11-04 2016-12-28 Fourth State Medicine Ltd Plasma generation

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3139509A (en) * 1962-05-07 1964-06-30 Thermal Dynamics Corp Electric arc torch
US3400070A (en) * 1965-06-14 1968-09-03 Hercules Inc High efficiency plasma processing head including a diffuser having an expanding diameter
GB1360659A (en) * 1971-12-09 1974-07-17 British Titan Ltd Heating device
FR2207961A1 (en) * 1972-11-27 1974-06-21 G N Carbon prodn by pyrolysis - in a plasma using hydrocarbon gas
CA1248185A (fr) * 1985-06-07 1989-01-03 Michel G. Drouet Methode et systeme de controle de l'erosion des electrodes d'une torche a plasma
CA1323670C (en) * 1988-05-17 1993-10-26 Subramania Ramakrishnan Electric arc reactor
FR2654293B1 (fr) * 1989-11-08 1996-05-24 Aerospatiale Torche a plasma a injection non refroidie de gaz plasmagene.
US5262616A (en) * 1989-11-08 1993-11-16 Societe Nationale Industrielle Et Aerospatiale Plasma torch for noncooled injection of plasmagene gas
US5012065A (en) * 1989-11-20 1991-04-30 New Mexico State University Technology Transfer Corporation Inductively coupled plasma torch with laminar flow cooling
JPH03224625A (ja) * 1990-01-29 1991-10-03 Babcock Hitachi Kk 超微粉合成装置
US5147998A (en) * 1991-05-29 1992-09-15 Noranda Inc. High enthalpy plasma torch
US5374802A (en) * 1992-12-31 1994-12-20 Osram Sylvania Inc. Vortex arc generator and method of controlling the length of the arc

Also Published As

Publication number Publication date
EP0743811A1 (de) 1996-11-20
FR2734445A1 (fr) 1996-11-22
DE69600904T2 (de) 1999-04-01
FR2734445B1 (fr) 1997-07-18
CA2174571A1 (fr) 1996-11-20
US5688417A (en) 1997-11-18
DE69600904D1 (de) 1998-12-10
ZA962967B (en) 1996-10-22
JPH08339893A (ja) 1996-12-24

Similar Documents

Publication Publication Date Title
EP0743811B1 (de) Gleichspannungslichtbogenplasmabrenner, insbesonders bestimmt zur Erzeugung eines chemischen Stoffes durch Zersetzung eines Plasmagases
EP0575260B1 (de) Vorrichtung zur Bildung von angeregten oder instabilen gasförmigen Molekülen und Benutzung dieser Vorrichtung
EP1169890B1 (de) Kopf für plasmabrenner und damit ausrüstbarer plasmabrenner
FR2484158A1 (fr) Ensemble de cathode pour laser a vapeur metallique
EP1169889B1 (de) Kopf für plasmabrenner und damit ausrüstbarer plasmabrenner
EP0250308B1 (de) Plasmaspritzbrenner
EP1933607A1 (de) Plasma-Schneidbrenner mit Kühlkreislauf und adaptativem Steigrohr
EP0815936A2 (de) Vorrichtung zur Gasanregung
EP1147692B1 (de) Aus kupfer-legierung hergestelltes verschleissteil für lichtbogenbrenner
EP1014761B1 (de) Kanalelement für Gasbehandlungsvorrichtung und Vorrichtung die ein solches Kanalelement enthält
EP3835455B1 (de) Klemmplatte mit heizelement und elektrochemische vorrichtung mit dieser klemmplatte
FR2682676A1 (fr) Procede de conversion thermique du methane et reacteur pour la mise en óoeuvre du procede.
FR2520563A1 (fr) Laser a impulsions
CA1291555C (fr) Laser a decharge dans un ecoulement transversal turbulent
EP0427590B1 (de) Plasmabrenner mit elektromagnetischer Spule zur Rotierung des Lichtbogens
EP0427591B1 (de) Plasmabrenner mit nicht gekühlter Plasmagasinjektion
EP0783192A1 (de) Metalldampflaservorrichtung
EP2613614A1 (de) Vorrichtung zur Erzeugung eines Plasmaflusses
FR2615331A1 (fr) Laser
EP3174373A1 (de) Lichtbogenplasmabrenner mit wolfram-elektrode
FR2554982A1 (fr) Cathode creuse pour laser a vapeur metallique et laser en faisant application
FR2554983A1 (fr) Cathode creuse pour laser a gaz et laser en faisant application
FR3101383A1 (fr) Propulseur électrothermique à double-flux
FR2528634A1 (fr) Laser ionique a gaz
FR2561458A2 (fr) Generateur laser a flux gazeux

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE GB IT NL SE

17P Request for examination filed

Effective date: 19961205

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19980122

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE GB IT NL SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19981104

REF Corresponds to:

Ref document number: 69600904

Country of ref document: DE

Date of ref document: 19981210

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990330

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19990331

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19990503

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000430

BERE Be: lapsed

Owner name: AEROSPATIALE SOC. NATIONALE INDUSTRIELLE

Effective date: 20000430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000410

EUG Se: european patent has lapsed

Ref document number: 96400770.2

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20001101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050410