EP0737995B1 - Materialienzusammansetzung für integrierte Getter- und Quecksilbergebenden -Vorrichtungen und somit erhaltene Vorrichtungen - Google Patents

Materialienzusammansetzung für integrierte Getter- und Quecksilbergebenden -Vorrichtungen und somit erhaltene Vorrichtungen Download PDF

Info

Publication number
EP0737995B1
EP0737995B1 EP96830202A EP96830202A EP0737995B1 EP 0737995 B1 EP0737995 B1 EP 0737995B1 EP 96830202 A EP96830202 A EP 96830202A EP 96830202 A EP96830202 A EP 96830202A EP 0737995 B1 EP0737995 B1 EP 0737995B1
Authority
EP
European Patent Office
Prior art keywords
mercury
dispensing
materials
dispensing device
combination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96830202A
Other languages
English (en)
French (fr)
Other versions
EP0737995A3 (de
EP0737995A2 (de
Inventor
Antonio Schiabel
Stefano Giorgi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAES Getters SpA
Original Assignee
SAES Getters SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAES Getters SpA filed Critical SAES Getters SpA
Publication of EP0737995A2 publication Critical patent/EP0737995A2/de
Publication of EP0737995A3 publication Critical patent/EP0737995A3/de
Application granted granted Critical
Publication of EP0737995B1 publication Critical patent/EP0737995B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/24Means for obtaining or maintaining the desired pressure within the vessel
    • H01J61/26Means for absorbing or adsorbing gas, e.g. by gettering; Means for preventing blackening of the envelope
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J7/00Details not provided for in the preceding groups and common to two or more basic types of discharge tubes or lamps
    • H01J7/14Means for obtaining or maintaining the desired pressure within the vessel
    • H01J7/18Means for absorbing or adsorbing gas, e.g. by gettering
    • H01J7/183Composition or manufacture of getters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J7/00Details not provided for in the preceding groups and common to two or more basic types of discharge tubes or lamps
    • H01J7/14Means for obtaining or maintaining the desired pressure within the vessel
    • H01J7/20Means for producing, introducing, or replenishing gas or vapour during operation of the tube or lamp

Definitions

  • the present invention relates to a combination of materials for the production of devices combining the getter and mercury-dispensing functions, to the devices thus produced and to a process for the introduction of mercury inside electron tubes.
  • a precise dosage of mercury inside these devices is extremely important for the quality of the devices and most of all for ecological reasons.
  • the high toxicity of this element implies serious problems of environmental pollution upon end-life disposal of the devices containing it, or in case of accidental break-up of the devices.
  • These problems of ecological nature impose the use of amounts of mercury as small as possible, compatibly with the functionality of the tubes.
  • These considerations have been lately included also in the legislative sphere, and the trend of the recent international regulations is to establish top limits for the amount of mercury which can be introduced into the devices: for example, for standard fluorescent lamps the use of a total amount of Hg not greater than 10 mg per lamp has been suggested.
  • US patent no.4.808.136 and the European patent application EP-568.317 disclose the use of tablets or small spheres of porous material soaked with mercury which is then released by heating once the lamp is closed. However, also these methods require complicated operations for the loading of mercury into the tablets, and the released amount of mercury is difficult to be reproduced.
  • amalgams of mercury for example with indium, bismuth or zinc
  • these amalgams generally have the drawback of a low melting temperature and a high mercury vapor pressure already at temperatures not very high.
  • the zinc amalgams described in the commercial bulletins of the APL Engineered Materials Inc. have a vapor pressure at 43°C which is about 90% of that of liquid mercury. Consequently, these amalgams badly withstand the thermal treatments for the production of the lamps in which they are introduced.
  • These compounds have a temperature of mercury-release start variable according to the specific compound, however they are all stable up to about 500°C both in the atmosphere and in evacuated volumes, thus resulting compatible with the operations for the assembly of the electron tubes, during which the mercury-dispensing devices may reach temperatures of about 500°C.
  • the mercury is released from the above-cited compounds by an activation operation, which is usually carried out by heating the material between 750°C and 900°C for about 30 seconds. This heating may be accomplished by laser radiation, or by induction heating of the metallic support of the Hg-dispensing compound.
  • the processes for the production of mercury-containing electron tubes include a tube-closing operation performed by glass fusion (e.g. the sealing of fluorescent lamps) or by frit sealing, i.e. welding two pre-shaped glass members by means of a paste of low-melting glass.
  • the mercury-dispensing device may undergo an indirect heating up to about 600°C. In this step the device is exposed to gases and vapors emitted by the melted glass and, in almost all industrial processes, to air.
  • the mercury-dispensing material undergoes a surface oxidation, whose final result is a yield lower than about 40% of the total mercury content during the activation process.
  • the mercury-dispensing material undergoes an indirect heating up to about 500°C. In this case the mercury yield during the activation process drops as low as about 20% of the total mercury content of the device.
  • the mercury not released during the activation operation is then slowly released during the life of the electron tube.
  • patent application EP-A-091.297 suggests the addition of Ni or Cu powders to the Ti 3 Hg or Zr 3 Hg compounds.
  • the addition of Ni and Cu to the mercury-dispensing compounds causes the melting of the combination of materials thus obtained, favouring the release of almost all the mercury in few seconds.
  • the melting takes place at the eutectic temperatures of the systems Ni-Ti, Ni-Zr, Cu-Ti and Cu-Zr, ranging from about 880°C for the Cu 66% - Ti 34% composition to 1280°C for the Ni 81% - Ti 19% composition (atomic percent), though the document erroneously gives a melting temperature of 770°C for the Ni 4% - Ti 96% composition.
  • the object of the present invention is to provide an improved combination of materials for dispensing mercury in the electron tubes, which allows to overcomes one or more drawbacks of the prior art.
  • the object of the present invention is first of all to provide an improved combination of materials for dispensing mercury which is capable of releasing amounts of mercury higher than 60% during the activation step, even after partial oxidation, so as to be able to reduce the total amount of employed mercury.
  • Another object of the present invention is to provide a combination of materials whose residue, after the activation operation for releasing mercury, has a getter activity.
  • Another object of the present invention is to provide mercury-dispensing devices containing the combination of materials of the invention.
  • Still another object is to provide a process for introducing mercury by means of the devices of the invention into the electron tubes which require said element.
  • Component A of the combination of the present invention is an intermetallic compound corresponding to formula Ti x Zr y Hg z , as disclosed in the cited US patent no.3.657.589, to which reference is made for further details.
  • Zr 3 Hg and, particularly, Ti 3 Hg are preferred.
  • Component B of the combination of the present invention has the function of favouring the release of mercury from component A, and hereafter will also be defined promoter.
  • This component is a metallic alloy or an intermetallic compound including copper, tin and a metal selected among the rare earths or a mixture of rare earths.
  • the use of a mixture of rare earths is preferred over the use of single elements in that, since these metals have a similar chemistry, the separation of the single elements is a difficult and expensive operation; on the other hand, by using a mixture of rare earths it is possible to obtain, in this application, essentially the same results obtained with the single elements.
  • the mixtures of rare earths are known in the art by the name "misch metal"; this denomination, and its short form MM, will be used hereafter in the rest of the specification and in the claims.
  • the weight ratio between copper, tin and MM can vary within a wide range, but advantageous results have been obtained with compositions which, in a ternary diagram of percentage compositions on a weight basis (fig.4), fall within a polygon defined by points:
  • compositions which, in a ternary diagram of percentage compositions on a weight basis (fig.4), fall within a polygon defined by points:
  • a particularly preferred alloy has the percentage composition Cu 40% - Sn 30% - MM 30%, corresponding to point i) in the composition ternary diagram of fig.4.
  • the weight ratio between components A and B of the combination of the invention may vary within a wide range, but it is generally included between 20:1 and 1:20, and preferably between 10:1 and 1:5.
  • Components A and B of the combination of the invention may be employed in various physical forms, not necessarily the same for the two components.
  • component B may be present in the form of a coating of the metallic support, and component A as a powder adhered to component B by rolling.
  • both components are in the form of a fine powder, having a particle size lower than 250 ⁇ m and preferably between 10 and 125 ⁇ m.
  • the present invention in a second aspect thereof, relates to the mercury-dispensing devices which use the above-described combinations of A and B materials.
  • the mercury-dispensing devices of the present invention can be manufactured with the most different geometric shapes, and materials A and B of the combination can be employed without support or on a support, usually metallic.
  • Some classes of electron tubes for which the mercury dispensers are intended further require, for their correct operation, the presence of a getter material which removes traces of gases such as CO, CO 2 , H 2 , O 2 or water vapor: it is the case, for example, of fluorescent lamps.
  • a getter material which removes traces of gases such as CO, CO 2 , H 2 , O 2 or water vapor: it is the case, for example, of fluorescent lamps.
  • getter material C is lower than that required in prior art devices used in the same application.
  • getter materials include, among the others, metals such as titanium, zirconium, tantalum, niobium, vanadium and mixtures thereof, or alloys thereof with other metals such as nickel, iron, aluminum, like the alloy having a weight percentage composition Zr 84% - Al 16%, manufactured and sold by the Applicant under the name St101, or the intermetallic compounds Zr 2 Fe and Zr 2 Ni, manufactured and sold by the Applicant respectively under the name St198 and St199.
  • the getter material is activated during the same heat treatment by which mercury is released inside the tube.
  • the getter material C may be present in various physical forms, but it is preferably employed in the form of a fine powder, having a particle size lower than 250 ⁇ m and preferably between 10 and 125 ⁇ m.
  • the ratio between the overall weight of the A and B materials and that of the getter material C may generally range from about 10:1 to 1:10, and preferably between 5:1 and 1:2.
  • the devices of the invention can simply consist of a tablet 10 made up of compressed and unsupported powders of the A and B (and possibly C) materials, which for ease of production generally has a cylindrical or parallelepipedal shape; this latter possibility is shown in fig.1.
  • the device may have the shape of a ring 20 as shown in fig.2, which represents a top plan view of the device, and in fig.2a which represents a cross-section along II-II of device 20.
  • the device is made up of a support 21 having the shape of a toroidal channel containing the A and B (and possibly C) materials.
  • the support is generally metallic, and preferably of nickel-plated steel.
  • the device may be made in the shape of a strip 30 as shown in fig.3, which represents a top plan view of the device, and in figs.3a and 3b wherein a section along III-III of device 30 is depicted.
  • support 31 consists of a strip, preferably made of nickel-plated steel, onto which the A and B (and possibly C) materials are adhered by cold compression (rolling).
  • materials A, B and C may be mixed together and rolled on one or both faces of the strip (fig.3a), or materials A and B are rolled on one surface of the strip and material C on the opposite surface, as shown in fig.3b.
  • the invention in a further aspect thereof, relates to a method for introducing mercury into the electron tubes by using the above-described devices.
  • the method includes the step of introducing inside the tube the above-described mercury-dispensing combination of materials and preferably in one of the above-described devices 10, 20 or 30, and then the combination heating step to get mercury free.
  • the heating step may be carried out with any suitable means such as, for example, by radiation, by high-frequency induction heating or by having a current flow through the support when the latter is made of a material having a high electric resistivity.
  • the heating is effected at a temperature which causes the release of mercury from the mercury-dispensing combination, comprised between 600 and 900°C for a time of about 10 seconds to one minute.
  • Examples 1 to 3 concern the preparation of the mercury-dispensing and promoting materials
  • examples 4 to 9 concern the tests for the mercury release after the heat treatment simulating the sealing operation
  • Examples 10 to 14 concern the tests for the functionality as getter materials of the residues remaining after the mercury release. All the metals used for the preparation of alloys and compounds for the following tests have a minimum pureness of 99,5%. In the compositions of the examples all percentages are on a weight basis if not differently specified.
  • This example illustrates the synthesis of the mercury-dispensing material Ti 3 Hg.
  • 143,7 g of titanium are placed in a steel cradle and degassed by a furnace treatment at a temperature of about 700°C and a pressure of 10 -6 mbar for 30 minutes. After cooling the titanium powder in an inert atmosphere, 200,6 g of mercury are introduced in the cradle by means of a quartz tube. The cradle is then closed and heated at about 750°C for 3 hours. After cooling, the product is ground until a powder passing through a 120 ⁇ m mesh-size standard sieve is obtained.
  • the resulting material essentially consists of Ti 3 Hg, as confirmed by a diffractometric test carried out on the powder.
  • This example concerns the preparation of a promoting alloy which makes part of the combinations of the invention.
  • misch metal used contains about 50% by weight of cerium, 30% of lanthanum, 15% of neodymium and the rest are other rare earths.
  • the mixture is heated at a temperature of about 900°C, kept at that temperature for 5 minutes to encourage the homogeneity thereof, and finally cast into a steel ingot-mould.
  • Each ingot is ground in a blade mill and the powder is sieved like in example 1.
  • the composition of the obtained alloy is Cu 40% - Sn 30% - MM 30%, and corresponds to point i) in the diagram of fig.4.
  • This example concerns the preparation of a promoting alloy which makes part of the combinations of the invention.
  • the procedure of example 2 is repeated using 60 g of Cu, 30 g of Sn and 10 g of MM in powder form.
  • the composition of the obtained alloy is Cu 60% - Sn 30% - MM 10%, and corresponds to point I) in the diagram of fig.4.
  • Examples 4 to 9 concern the tests for the mercury release after a heat treatment in air which simulates the frit conditions to which the device is subjected during the tube closing (hereafter generally referred to as sealing).
  • Examples 4 to 7 are comparative examples which show the release after frit sealing respectively by the dispensing component alone (ex.4) and by the same mixed only with copper, tin and the above-cited getter alloy St101 (ex.5-7); a similar comparative test on a mixture of Ti 3 Hg and MM powders was not possible due to the excessive reactivity of this mixture.
  • Table 1 shows the mercury-dispensing compound A, the promoting material B (letters (i) or (I) in examples 8 and 9 refer to the composition of the Cu-Sn-MM alloy as shown in the diagram of fig.4), the weight ratio between components A and B and the mercury yield as a percentage of released mercury on the total content of the device.
  • EXAMPLE N A B A/B Hg yield (%) 4* Ti 3 Hg - - 35,2 5* Ti 3 Hg Cu 7/3 34,0 6* Ti 3 Hg Sn 5/1 25,0 7* Ti 3 Hg St 101 1/1 22,4 8 Ti 3 Hg Cu-Sn-MM (i) 2/1 80,0 9 Ti 3 Hg Cu-Sn-MM (I) 2/1 87,0
  • Examples 10 to 14 concern the tests for the functionality as getter materials of the residues remaining after the mercury release by the combinations of the invention and by some comparative combinations.
  • the mercury release tests have been carried out after simulation of the frit sealing on the samples.
  • the fritted samples have been introduced inside a vacuum chamber having a volume of 1 liter, and heated under vacuum at 850°C for 10 seconds and kept at said temperature for 20 seconds.
  • the capacity of the residue to work as a getter is measured after the activation; this measurement is performed by introducing in the chamber an amount of hydrogen such as to bring the pressure to 0.1 mbar at a temperature of 30°C, and by measuring the time required for the pressure in the chamber to decrease to 0.01 mbar.
  • the measure of the pressure is taken by means of a capacitive manometer.
  • Table 2 shows the composition of the sample and the hydrogen absorption velocity at 30°C.
  • the "SAMPLE COMPOSITION" column gives the weight percentages of the component materials. The comparative combinations are marked by a star. EXAMPLE N.
  • the residue remaining after the mercury release has a getter activity: in fact, while the residue remaining after the mercury release by the Ti 3 Hg compound alone has no getter activity, the sample of example 13 to which no getter has been added exhibits a significant hydrogen absorption velocity. Moreover, sample 12 has a hydrogen absorption velocity comparable to that of the sample of example 11, which is a combination of a mercury dispenser with a getter, widely used by lamp manufacturers.
  • the combinations with promoter of the present invention offer another important advantage, consisting in the possibility of carrying out the activation operation at temperatures or with times lower than those allowed by prior art materials.
  • Ti 3 Hg alone requires an activation temperature of about 900°C
  • the present combinations allow the reduction of the operation time and of the size of the lines for the production of the lamps; in both cases a double advantage is achieved of causing less pollution inside the tube due to the outgassing of all the materials present therein and of reducing the amount of energy required for the activation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Discharge Lamp (AREA)
  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Gas Separation By Absorption (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)

Claims (30)

  1. Eine Quecksilber freisetzende Zusammensetzung, bestehend aus
    einer Quecksilber freisetzenden intermetallischen Verbindung A, die Quecksilber und ein zweites Metall, ausgewählt aus Titan, Zirkon und deren Mischungen, enthält;
    eine aktivierende Legierung oder intermetallische Verbindung B, die Kupfer, Zinn und eines oder mehrere Metalle, ausgewählt aus den Seltenen Erden, enthält.
  2. Eine Quecksilber freisetzende Zusammensetzung nach Anspruch 1, worin die intermetallische Verbindung A Ti3Hg ist.
  3. Eine Quecksilber freisetzende Zusammensetzung nach Anspruch 1, worin die aktivierende Verbindung B eine Legierung mit einer derartigen Zusammensetzung ist, daß sie in einem Dreiphasendiagramm des Prozentanteils, bezogen auf das Gewicht, der Zusammensetzungen in einem Polygon liegt, das durch die Punkte
    a) Cu 63 % - Sn 36,5 % - MM 0,5 %
    b) Cu 63 % - Sn 10 % - MM 27 %
    c) Cu 30 % - Sn 10 % - MM 60 %
    d) Cu 3 % - Sn 37 % - MM 60 %
    e) Cu 3 % - Sn 96,5 % - MM 0,5 %
    definiert ist.
  4. Eine Quecksilber freisetzende Zusammensetzung nach Anspruch 3, worin die aktivierende Verbindung B eine Legierung einer derartigen Zusammensetzung, daß sie in einem Dreiphasendiagramm des Prozentanteils, bezogen auf das Gewicht, der Zusammensetzungen in einem Polygon liegt, das durch die Punkte
    a) Cu 63 % - Sn 36,5 % - MM 0,5 %
    b) Cu 63 % - Sn 10 % - MM 27 %
    c) Cu 50 % - Sn 10 % - MM 40 %
    d) Cu 30 % - Sn 30 % - MM 40 %
    e) Cu 30 % - Sn 69,5 % - MM 0,5 %
    definiert ist.
  5. Eine Quecksilber freisetzende Zusammensetzung nach Anspruch 4, worin die aktivierende Verbindung eine Legierung einer prozentualen Zusammensetzung von Cu 40 % - Sn 30 % - MM 30 % ist.
  6. Eine Quecksilber freisetzende Zusammensetzung nach Anspruch 4, worin die aktivierende Verbindung eine Legierung einer prozentualen Zusammensetzung von Cu 60 % - Sn 30 % - MM 10 % ist.
  7. Eine Quecksilber freisetzende Zusammensetzung nach Anspruch 1, worin das Gewichtsverhältnis der Komponenten A und B im Bereich von 20:1 zu 1:20 liegt.
  8. Eine Quecksilber freisetzende Zusammensetzung nach Anspruch 7, worin das Gewichtsverhältnis der Komponenten A und B im Bereich von 10:1 bis 1:5 liegt.
  9. Eine Quecksilber freisetzende Einrichtung, die eine Zusammensetzung der Materialien A und B nach Anspruch 1 enthält.
  10. Eine Quecksilber freisetzende Einrichtung nach Anspruch 9, worin die Materialien A und B pulverförmig sind.
  11. Eine Quecksilber freisetzende Einrichtung nach Anspruch 10, bestehend aus einer Tablette (10) eines verpressten Pulvers der Materialien A und B.
  12. Eine Quecksilber freisetzende Einrichtung nach Anspruch 10, worin die Materialien A und B in einem metallischen Träger (21) in Form einer ringförmigen Rinne enthalten sind.
  13. Eine Quecksilber freisetzende Einrichtung nach Anspruch 10, worin die Zusammensetzung der Materialien A und B auf der Oberfläche eines streifenförmigen Trägers (31) ausgerollt ist.
  14. Eine Quecksilber freisetzende Einrichtung nach Anspruch 9, die ferner ein Gettermaterial C enthält.
  15. Eine Quecksilber freisetzende Einrichtung nach Anspruch 14, worin das Gettermaterial C ausgewählt ist aus Titan, Zirkon, Tantal, Niob, Vanadium und deren Mischungen oder Legierungen dieser Materialien mit Nickel, Eisen oder Aluminium.
  16. Eine Quecksilber freisetzende Einrichtung nach Anspruch 15, worin das Gettermaterial C eine Legierung der Zusammensetzung Zr 84 % - Al 16 %, bezogen auf das Gewicht, ist.
  17. Eine Quecksilber freisetzende Einrichtung nach Anspruch 15, worin das Gettermaterial C Zr2Fe ist.
  18. Eine Quecksilber freisetzende Einrichtung nach Anspruch 15, worin das Gettermaterial C Zr2Ni ist.
  19. Eine Quecksilber freisetzende Einrichtung nach Anspruch 14, worin das Quecksilber freisetzende Material A, der Aktivator B und das Gettermaterial C pulverförmig sind.
  20. Eine Quecksilber freisetzende Einrichtung nach Anspruch 19, bestehend aus einer Tablette (10) aus verpressten Pulvern der Materialien A, B und C.
  21. Eine Quecksilber freisetzende Einrichtung nach Anspruch 19, worin die Materialien A, B und C in einen metallischen Träger in Form einer ringförmigen Rinne enthalten sind.
  22. Eine Quecksilber freisetzende Einrichtung nach Anspruch 19, worin die Zusammensetzung A und B auf der Oberfläche eines streifenförmigen Trägers (31) ausgerollt ist und Material C auf der gegenüberliegenden Oberfläche desselben Streifens (31) ausgerollt ist.
  23. Eine Quecksilber freisetzende Einrichtung nach Anspruch 19, worin die Zusammensetzung der Materialien A, B und C auf einer einzigen Oberfläche eines streifenförmigen Trägers (31) ausgerollt ist.
  24. Eine Quecksilber freisetzende Einrichtung nach Anspruch 14, worin das Verhältnis zwischen dem Gesamtgewicht der Materialien A und B und dem Gewicht des Gettermaterials C zwischen 10:1 und 1:10 ist.
  25. Eine Quecksilber freisetzende Einrichtung nach Anspruch 24, worin das Verhältnis zwischen dem Gesamtgewicht der Materialien A und B und dem Gewicht des Gettermaterials C zwischen 5:1 und 1:2 ist.
  26. Eine Quecksilber freisetzende Einrichtung nach Anspruch 19, worin das Quecksilber freisetzende Material, der Aktivator und der Getter in Form von Pulvern einer Teilchengröße unter 250 µm vorliegen.
  27. Eine Quecksilber freisetzende Einrichtung nach Anspruch 26, worin das Quecksilber freisetzende Material, der Aktivator und der Getter in Form eines Pulvers einer Teilchengröße zwischen 10 und 125 µm vorliegen.
  28. Ein Verfahren zum Einbringen von Quecksilber in das Innere von Elektronenröhren, bestehend in dem Einfügen einer der Einrichtungen der Ansprüche 9 bis 27 in die offene Röhre und Beheizen der Einrichtung, um Quecksilber bei einer Temperatur zwischen 600°C und 900°C über eine Zeitdauer zwischen 10 Sekunden und einer Minute nach dem Versiegeln der Röhre freizusetzen.
  29. Ein Verfahren nach Anspruch 28, worin die Elektronenröhre aus einer geraden Leuchtstoffröhre besteht.
  30. Ein Verfahren nach Anspruch 28, worin die Elektronenröhre aus einer kompakten ringförmigen Leuchtstoffröhre besteht.
EP96830202A 1995-04-10 1996-04-09 Materialienzusammansetzung für integrierte Getter- und Quecksilbergebenden -Vorrichtungen und somit erhaltene Vorrichtungen Expired - Lifetime EP0737995B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ITMI950734 1995-04-10
ITMI950734A IT1273531B (it) 1995-04-10 1995-04-10 Combinazioni di materiali per dispositivi integrati getter ed erogatori di mercurio e dispositivi cosi' ottenuti

Publications (3)

Publication Number Publication Date
EP0737995A2 EP0737995A2 (de) 1996-10-16
EP0737995A3 EP0737995A3 (de) 1998-07-01
EP0737995B1 true EP0737995B1 (de) 2000-06-28

Family

ID=11371284

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96830202A Expired - Lifetime EP0737995B1 (de) 1995-04-10 1996-04-09 Materialienzusammansetzung für integrierte Getter- und Quecksilbergebenden -Vorrichtungen und somit erhaltene Vorrichtungen

Country Status (9)

Country Link
EP (1) EP0737995B1 (de)
JP (1) JP2858646B2 (de)
KR (1) KR100239823B1 (de)
CN (1) CN1086504C (de)
CA (1) CA2172686A1 (de)
DE (1) DE69608996T2 (de)
HU (1) HU221281B1 (de)
IT (1) IT1273531B (de)
RU (1) RU2113031C1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8253331B2 (en) 2010-04-28 2012-08-28 General Electric Company Mercury dosing method for fluorescent lamps

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1291974B1 (it) 1997-05-22 1999-01-25 Getters Spa Dispositivo e metodo per l'introduzione di piccole quantita' di mercurio in lampade fluorescenti
IT1317117B1 (it) 2000-03-06 2003-05-27 Getters Spa Metodo per la preparazione di dispositivi dispensatori di mercurio dausare in lampade fluorescenti
DE10117365A1 (de) * 2001-04-06 2002-10-10 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Niederdruckentladungslampe
ITMI20041494A1 (it) 2004-07-23 2004-10-23 Getters Spa Composizioni per il rilascio di mercurio e processo per la loro produzione
KR100641301B1 (ko) * 2004-09-15 2006-11-02 주식회사 세종소재 겟터 겸용 수은 보충재
ITMI20050044A1 (it) * 2005-01-17 2006-07-18 Getters Spa Composizioni per il rilascio di mercurio
ITMI20050569A1 (it) * 2005-04-06 2006-10-07 Getters Spa Dispensatore di mercurio per lampade fluorescenti
ITMI20050570A1 (it) * 2005-04-06 2006-10-07 Getters Spa Dispensatore di mercurio per lampade fluorescenti
KR100870990B1 (ko) * 2007-11-13 2008-12-01 희성소재 (주) Blu용 형광램프에 수은을 도입시키기 위한 게터조성물및 그 장치
ITMI20072424A1 (it) 2007-12-21 2009-06-22 Getters Spa Dispositivi per il rilascio di mercurio a ridotta perdita di particelle
ITMI20082187A1 (it) * 2008-12-11 2010-06-12 Getters Spa Sistema dispensatore di mercurio per lampade a fluorescenza
KR100899601B1 (ko) * 2009-02-06 2009-05-27 희성소재 (주) 램프용 고효율 수은방출 게터 조성물
US8427051B2 (en) 2009-07-15 2013-04-23 Saes Getters S.P.A. Support for filiform elements containing an active material
ITMI20100285A1 (it) * 2010-02-23 2011-08-24 Getters Spa Metodo e sistema per l'erogazione controllata di mercurio e dispositivi prodotti con tale metodo
CN102664133A (zh) * 2012-05-10 2012-09-12 张文知 强化光合作用的无极灯灯管
ITMI20131658A1 (it) * 2013-10-08 2015-04-09 Getters Spa Combinazione di materiali per dispositivi di rilascio di mercurio e dispositivi contenenti detta combinazione di materiali

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3657589A (en) * 1969-10-20 1972-04-18 Getters Spa Mercury generation
JPS526071A (en) * 1975-07-04 1977-01-18 Japan Radio Co Ltd Mercury emission getter material
US4464133A (en) * 1982-04-05 1984-08-07 Gte Laboratories Incorporated Method of charging a vessel with mercury
IT1273338B (it) * 1994-02-24 1997-07-08 Getters Spa Combinazione di materiali per dispositivi erogatori di mercurio metodo di preparazione e dispositivi cosi' ottenuti

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8253331B2 (en) 2010-04-28 2012-08-28 General Electric Company Mercury dosing method for fluorescent lamps

Also Published As

Publication number Publication date
JP2858646B2 (ja) 1999-02-17
KR960039099A (ko) 1996-11-21
DE69608996D1 (de) 2000-08-03
CN1138209A (zh) 1996-12-18
DE69608996T2 (de) 2000-11-02
HU9600835D0 (en) 1996-05-28
EP0737995A3 (de) 1998-07-01
HUP9600835A2 (en) 1997-05-28
HU221281B1 (en) 2002-09-28
IT1273531B (it) 1997-07-08
HUP9600835A3 (en) 1999-09-28
CN1086504C (zh) 2002-06-19
JPH08287822A (ja) 1996-11-01
RU2113031C1 (ru) 1998-06-10
CA2172686A1 (en) 1996-10-11
ITMI950734A0 (it) 1995-04-10
ITMI950734A1 (it) 1996-10-10
EP0737995A2 (de) 1996-10-16
KR100239823B1 (ko) 2000-01-15

Similar Documents

Publication Publication Date Title
EP0669639B1 (de) Herstellungsverfahren und Zusammensetzung von Stoffen für Quecksilberfreisetzungsvorrichtung und damit hergestellte Vorrichtungen
EP0691670B1 (de) Herstellungsverfahren und Zusammensetzung von Stoffen für Quecksilberfreisetzungsvorrichtung und damit hergestellte Vorrichtungen
EP0737995B1 (de) Materialienzusammansetzung für integrierte Getter- und Quecksilbergebenden -Vorrichtungen und somit erhaltene Vorrichtungen
RU2147386C1 (ru) Композиция из веществ для низкотемпературного инициирования процесса активирования газопоглощающих веществ и содержащие ее газопоглощающие средства
US6099375A (en) Device for dispensing mercury, sorbing reactive gases, shielding electrodes in fluorescent lamps and a process for making such device
WO1998053479A1 (en) Device and method for introducing small amounts of mercury into fluorescent lamps
US5876205A (en) Combination of materials for integrated getter and mercury-dispensing devices and the devices so obtained
EP2895287B1 (de) Kombination aus materialien für quecksilberausgabevorrichtungen und vorrichtungen mit dieser kombination aus materialien
KR100918534B1 (ko) 수은 분배 조성물 및 상기 수은 분배 조성물을 이용하는 장치
WO2006106550A1 (en) Mercury dispenser for fluorescent lamps, which is mechanically mounted to cathode shield

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19980626

17Q First examination report despatched

Effective date: 19990412

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

REF Corresponds to:

Ref document number: 69608996

Country of ref document: DE

Date of ref document: 20000803

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20090415

Year of fee payment: 14

Ref country code: FR

Payment date: 20090414

Year of fee payment: 14

Ref country code: DE

Payment date: 20090422

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090421

Year of fee payment: 14

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20101101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100409

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430