EP0735153A1 - Stainless ferritic steel, particularly suitable as catalyst substrate - Google Patents

Stainless ferritic steel, particularly suitable as catalyst substrate Download PDF

Info

Publication number
EP0735153A1
EP0735153A1 EP96400630A EP96400630A EP0735153A1 EP 0735153 A1 EP0735153 A1 EP 0735153A1 EP 96400630 A EP96400630 A EP 96400630A EP 96400630 A EP96400630 A EP 96400630A EP 0735153 A1 EP0735153 A1 EP 0735153A1
Authority
EP
European Patent Office
Prior art keywords
niobium
zirconium
less
content
steel according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96400630A
Other languages
German (de)
French (fr)
Other versions
EP0735153B1 (en
Inventor
Jean-Marc Herbelin
Marc Mantel
Jean-Yves Cogne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ugine SA
Original Assignee
USINOR Sacilor SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by USINOR Sacilor SA filed Critical USINOR Sacilor SA
Publication of EP0735153A1 publication Critical patent/EP0735153A1/en
Application granted granted Critical
Publication of EP0735153B1 publication Critical patent/EP0735153B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum

Definitions

  • the present invention relates to a ferritic stainless steel, resistant to oxidation at high temperature, usable, in particular for catalyst support structures, such as, for example, structures contained in the exhausts of motor vehicles.
  • the catalyst support structures produced with iron-chromium-aluminum steel strips are intended to resist oxidation and deformation at high temperature.
  • the steels used must be capable of being produced in the context of industrial production, for example, in continuous casting followed by transformations to obtain steel strips of large width and thin for the production of strips.
  • German patent C 632 657 an iron, chromium, aluminum alloy FeCrAl having up to 30% chromium, from 0.1 to 11.5% of aluminum, from 0.05 to 2% of rare earths , for example, cerium, and which may contain zirconium and titanium.
  • US patent 4,414,023 also describes FeCrAl alloys containing the active elements cerium, lanthanum, praseodymium and stabilizers such as zirconium and / or niobium. The addition of active elements is carried out to avoid flaking of the oxide layer.
  • zirconium as a stabilizer under the condition Zr ⁇ 91 (% C / 12 +% N / 14 + 0.03) is carried out to trap carbon and nitrogen in the form of carbides and nitrides.
  • the range of zirconium contents is wide and does not make it possible to satisfy the conditions of dimensional stability of the catalyst supports.
  • the Niobium contents do not allow optimum resistance to oxidation.
  • the zirconium and / or niobium contents satisfying the following conditions: for zirconium , 91 (C% / 12 + N% / 14) - 0.1 ⁇ Zr ⁇ 91 (C% / 12 + N% / 14) + 0.1 for niobium , 93 ⁇ 0.8. (C% / 12) - 0.1 ⁇ Nb ⁇ 93 ⁇ 0.8 (C% / 12) + 0.15 and Nb ⁇ 0.3%.
  • the active elements are chosen from cerium, lanthanum, neodymium, praseodymium, taken alone or in combination, and contained in a compound called "mischmetal".
  • the sum of the zirconium and niobium contents is less than 0.300%.
  • the sum of the carbon and nitrogen contents is less than 0.04%.
  • the silicon and manganese contents satisfy the Si / min relationship ⁇ 1.
  • the minimum aluminum content satisfies the following condition: 4% + 6 Zr% - 91 (C% / 12 + N% / 14).
  • the minimum aluminum content satisfies the following condition: 4% + 5 Nb% - 93 (C% / 12 + N% / 14).
  • the minimum aluminum content satisfies the following condition: 4% + 5 (Zr + Nb) - 92 (C% / 12 + N% / 14).
  • the content of active elements satisfies the following relationship: 0.03 - 0.2 (Zr% - 91 N% / 14) ⁇ (Ce + La + Nd + Pr + Y) ⁇ 0.08 - 0.2 (Zr% - 91 N% / 14)
  • the content of active elements satisfies the following relationship: 0.03 - 0.2 (Zr% - 91 N% / 14) - 0.025 (Nb%) ⁇ (Ce + La + Nd + Pr + Y) ⁇ 0.08 - 0.2 (Zr% - 91 N% / 14) - 0.025 (Nb%).
  • FIG. 1 groups resilience characteristics by measuring the transition temperature for steels having different contents of selected stabilizers.
  • FIG. 2 presents a series of characteristics of evolution of the oxidation kinetics constants as a function of the temperature for different stabilizers.
  • FIG. 3 presents a series of elongation curves as a function of the content of active elements.
  • FIG. 4 presents a series of elongation characteristics for different contents of zirconium and niobium in compositions having a defined content of active elements.
  • the ferritic stainless steel, according to the invention, resistant to oxidation at high temperature, has the following weight composition: Cr: (12-25)%; Al: (4-7)%; C ⁇ 0.03%; N ⁇ 0.02%; S ⁇ 0.002%; If ⁇ 0.6%; Mn ⁇ 0.4%; active elements chosen from cerium, lanthanum, praseodymium, neodymium, ytrium, taken alone or in combination at a content ⁇ 0.08%, stabilizers chosen from zirconium, niobium, taken alone or in combination , at a content ⁇ 0.300%.
  • the active elements are chosen from cerium, lanthanum, praseodymium, neodymium, taken alone or in combination, these elements being the constituents of the mixture called "mischmetal”.
  • the support structure must have good aptitude for hot and cold transformation and also satisfy the elongation deformation characteristics during oxidation.
  • specific conditions concerning the contents of stabilizing elements and active elements which must be respected for the production of steel in the form of rolled strips and for an improvement in resistance to oxidation and elongation of said steel. From the point of view of hot processing and transformation, the beneficial effect of the addition of stabilizers which allows the reduction of the ductile / brittle transition temperatures has been highlighted. However, the excess of stabilizer is harmful. According to the invention, it is highlighted that it is imperative to control the stabilizer contents so as to comply with the following conditions:
  • niobium 93 ⁇ 0.8. (C% / 12) - 0.1 ⁇ Nb ⁇ 93x0.8 (C% / 12) + 0.15 and Nb ⁇ 0.3%.
  • the coefficient 0.8 is a factor imposed by the analysis of the stochiometry of the niobium-based compounds precipitated in the matrix.
  • FIG. 1 groups the resilience characteristics measured by means of the transition temperatures of steels having different stabilizer contents chosen from zirconium and niobium.
  • the oxidation test consists in measuring a mass gain ⁇ M related to a surface unit S.
  • This figure also shows that the nature of the stabilizers modifies these kinetics and that, surprisingly, they can have a beneficial or harmful influence depending on the temperature of use.
  • titanium which has the best protective character against oxidation.
  • the addition of titanium exerts a detrimental influence compared to the addition of niobium or zirconium.
  • the extreme temperature of use of metallic catalyst support structures is generally below 1150 ° C. We see from this figure, and taking into account the temperatures of use of the catalyst support structures, that the best stabilizers are niobium and / or zirconium. The addition of titanium does not give good results in the envisaged temperature range.
  • Al% minimum 4% + 6 Zr% - 91 (C% / 12 + N% / 14).
  • Al% minimum 4% + 20 Ti% - 48 (C% / 12 + N% / 14).
  • the formation of the oxide layer during the oxidation treatment generates stresses. These constraints are not negligible and can deform the catalyst support structure.
  • the catalyst support structure follows variations in elongation as a function of time, at a given temperature. These variations are manifested by a strong elongation for a relatively short period of time, then by a stability of the elongation over time corresponding to a plateau and finally, by strong elongations for a relatively long period of time.
  • the strong elongations occurring over a long period are linked to the formation of chromium oxide diffusing in the alumina layer. This type of elongation has been identified, it is linked to the depletion of the aluminum content of the strip composition.
  • FIG. 3 shows elongations at the level depending on the content of active elements.
  • the elongation at the level depends, in this example, on the content of active elements Ce, La, Pr, Nd used in the composition of the "mischmetal” but also, and surprisingly, on the stabilizing element used.
  • the "mischmetal" content depends on the zirconium content, since this is an active element from the point of view of oxidation.
  • the best deformation behavior by elongation is obtained for "mischmetal" contents of between 0.02 and 0.04% for stabilization with zirconium and between 0.04 and 0.075% for steel stabilized with niobium.
  • the addition of these elements by trapping the sulfur, improves the oxidation resistance of the steels. These additions must be controlled in order to optimize the properties of the steel.
  • the simultaneous addition of Zr and Nb gives a possibility of increasing the range of the content of active elements, content between 0.02 and 0.075%.
  • FIG. 4 presents a diagram of behavior in deformation by elongation, at the level, for different contents of zirconium and niobium, the contents of zirconium and niobium being adjusted as a function of the contents of carbon and nitrogen.
  • the addition of zirconium has higher values.
  • the origin of this phenonene is linked to the reactivity of the oxygen stabilizers. The reactivity of these stabilizers is greatly limited when these are added in a controlled amount in relation to the proportions of carbon and nitrogen.
  • the carbon content must be less than 0.03%
  • the nitrogen content must be less than 0.02%
  • the carbon and nitrogen content must preferably be lower. at 0.04%.
  • the nitrogen contents it is preferable to limit the nitrogen contents to less than 0.01% so as to reduce the zirconium contents, in order to improve the characteristics of the steel in elongation.
  • Zirconium and / or nobium are voluntary addition elements intended to trap carbon and / or nitrogen and thus improve the hot ductility of the grade. These elements, called stabilizers, must be checked taking into account the production process envisaged in continuous casting. In fact, insufficient stabilization would lead to excessive embrittlement of the slabs, incompatible with industrial production. Significant stabilization would lead to degradation of the oxidation resistance of the steel in the form of strip.
  • niobium can allow the elimination of the solder tracks, for example based on nickel and a possible contamination due to the filler metal of the solder.
  • niobium can modify the kinetics of oxidation and must not be added in a proportion greater than 0.3%.
  • the product must withstand several hundred hours at very high temperature, that is, up to 1100 ° C.
  • the alloy must contain at least 4% aluminum. This content is necessary to form a protective oxide layer on the surface and to prevent premature depletion of the aluminum content in the strip.
  • the aluminum content must be less than 7% in order to avoid the problems of transformation of the shade following an excessive degradation of the ductility when hot.
  • aluminum nitrides are preferably formed rather than niobium nitrides.
  • Phosphorus and sulfur are inevitable impurities used in the manufacture of stainless steels.
  • Phosphorus is usually found in stainless steels at a content of about 0.02%. This element plays a neutral or slightly beneficial role on the resistance of the product to oxidation by trapping the excess cerium in the form of phosphides. Sulfur is also found in stainless steels at a content of about 0.005%. Sulfur exerts a detrimental influence on the oxidation behavior, it reduces the adhesion of the oxide to the strip and promotes the flaking of this layer. For this reason, sulfur must be kept at the lowest possible levels: less than 0.002%.
  • the chromium content of the steel must be sufficient, that is to say greater than 12%, to present the good properties with respect to corrosion and to favor the formation and the behavior of the oxide layer. at high temperature.
  • the chromium content should also not be too high, that is to say less than 25%, in order to avoid the problems of steel transformation.
  • the chromium content is between 14 and 22%, which corresponds to a chromium concentration range optimized with respect to corrosion and the transformation of steel.
  • the copper introduced into the composition is a residual element which is found in the products used at the base in the production of steel.
  • the product resulting from the invention is intended for the manufacture of metal support structures for calalyzers, from strips whose thickness is less than 200 ⁇ m, and more commonly equal to 50 ⁇ m +/- 10 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

A ferritic steel alloy, used as a catalyst support in a car exhaust filter, comprises 12-25% Cr, 4-7% Al, less than 0.08% in total of one or more of Ce, La, Nd, Pr and Y, pref. less than 0.3% in total of Zr and/or Nb and less than the following of other constituents 0.03% C, 0.02% N, 0.22% Ni, 0.002% S, 0.6% Si and 0.4% Mn. The actual amounts of Zr and/or Nb are defined mathematically in terms of the C and N levels.

Description

La présente invention concerne un acier inoxydable ferritique, résistant à l'oxydation à haute température, utilisable, notamment pour des structures supports de catalyseur, comme, par exemple, des structures contenues dans des échappements de véhicules automobiles.The present invention relates to a ferritic stainless steel, resistant to oxidation at high temperature, usable, in particular for catalyst support structures, such as, for example, structures contained in the exhausts of motor vehicles.

Les structures supports de catalyseur réalisées avec des feuillards en acier fer-chrome-aluminium sont destinées à résister à l'oxydation et aux déformations à haute température.The catalyst support structures produced with iron-chromium-aluminum steel strips are intended to resist oxidation and deformation at high temperature.

Les aciers utilisés doivent pouvoir être élaborés dans le cadre d'une production industrielle, par exemple, en coulée continue suivie de transformations pour obtenir des bandes d'acier de grande largeur et de faible épaisseur pour la réalisation de feuillards.The steels used must be capable of being produced in the context of industrial production, for example, in continuous casting followed by transformations to obtain steel strips of large width and thin for the production of strips.

Il est connu du brevet allemand C 632 657 un alliage fer, chrome, aluminium FeCrAl possédant jusqu'à 30 % de chrome, de 0,1 à 11,5 % d'aluminium, de 0,05 à 2 % de terres rares comme, par exemple, le cérium, et pouvant contenir du zirconium et du titane.It is known from German patent C 632 657 an iron, chromium, aluminum alloy FeCrAl having up to 30% chromium, from 0.1 to 11.5% of aluminum, from 0.05 to 2% of rare earths , for example, cerium, and which may contain zirconium and titanium.

Il est connu aussi le brevet européen EP 0429 793 qui décrit des alliages FeCrAl contenant des terres rares, éléments actifs, tels que cerium, lanthane, praséodyme et des stabilisants, le titane ou le niobium. L'addition d'éléments actifs à des teneurs élevées est proposée. Une teneur minimale en phosphore est recommandée afin d'améliorer la fragilité à chaud des alliages au regard des fortes teneurs en éléments actifs. Les teneurs minimales en phosphore ainsi précisées sont inférieures à celles rencontrées habituellement lors de l'élaboration des aciers inoxydables. L'addition de stabilisant comme le titane est effectuée pour améliorer la fragilité à chaud des alliages. Les tests d'oxydation, qui ont été effectués, sont réalisés à la température de 1170°C.It is also known from European patent EP 0429 793 which describes FeCrAl alloys containing rare earths, active elements, such as cerium, lanthanum, praseodymium and stabilizers, titanium or niobium. The addition of active elements at high contents is proposed. A minimum phosphorus content is recommended in order to improve the hot fragility of the alloys with regard to the high contents of active elements. The minimum phosphorus contents thus specified are lower than those usually encountered during the production of stainless steels. The addition of stabilizer such as titanium is carried out to improve the hot brittleness of the alloys. The oxidation tests, which have been carried out, are carried out at a temperature of 1170 ° C.

Le brevet US 4.414.023 décrit également des alliages FeCrAl contenant les éléments actifs cerium, lanthane, praséodyme et des stabilisants tels que zirconium et/ou niobium. L'addition d'éléments actifs est effectuée pour éviter l'écaillage de la couche d'oxyde.US patent 4,414,023 also describes FeCrAl alloys containing the active elements cerium, lanthanum, praseodymium and stabilizers such as zirconium and / or niobium. The addition of active elements is carried out to avoid flaking of the oxide layer.

L'addition de zirconium en tant que stabilisant sous la condition Zr ≤ 91 (% C/12 + % N/14 + 0,03) est effectuée pour piéger le carbone et l'azote sous forme de carbures et de nitrures.The addition of zirconium as a stabilizer under the condition Zr ≤ 91 (% C / 12 +% N / 14 + 0.03) is carried out to trap carbon and nitrogen in the form of carbides and nitrides.

L'addition de niobium sous la condition Nb ≤ 93 (% C12 + % N/14 + 0,0075) est effectuée pour améliorer la tenue au fluage.The addition of niobium under the condition Nb ≤ 93 (% C12 +% N / 14 + 0.0075) is carried out to improve the creep resistance.

Ce brevet mentionne des teneurs en stabilisants très importantes et revendique la stabilisation au Zr comme étant préférable pour la tenue à l'oxydation. Il indique également que l'addition de plusieurs stabilisants n'est pas conseillée car elle conduit à un comportement similaire à celui des alliages avec un seul stabilisant ayant la plus mauvaise tenue à l'oxydation.This patent mentions very high stabilizer contents and claims Zr stabilization as being preferable for resistance to oxidation. It also indicates that the addition of several stabilizers is not advised since it leads to behavior similar to that of alloys with a single stabilizer having the poorest resistance to oxidation.

De plus, le domaine des teneurs en zirconium est large et ne permet pas de satisfaire aux conditions de stabilité dimensionnelle des supports de catalyseur. De même, les teneurs en Niobium ne permettent pas une tenue optimum en oxydation.In addition, the range of zirconium contents is wide and does not make it possible to satisfy the conditions of dimensional stability of the catalyst supports. Similarly, the Niobium contents do not allow optimum resistance to oxidation.

Il est également connu la demande de brevet EP 0 480 461 concernant un acier ferritique contenant de l'aluminium et ayant une bonne résistance à l'oxydation, demande de brevet dans laquelle, il est précisé que la présence de niobium améliore la tenue au fluage des supports. Cette tenue est définie en fonction des teneurs en azote, ce qui ne se justifie pas du fait de la présence d'aluminium et/ou de zirconium, parce qu'il se forme des composés de nitrure d'aluminium et de zirconium de manière préférentielle au nitrure de niobium.It is also known patent application EP 0 480 461 concerning a ferritic steel containing aluminum and having a good resistance to oxidation, patent application in which, it is specified that the presence of niobium improves the creep resistance supports. This behavior is defined as a function of the nitrogen contents, which is not justified due to the presence of aluminum and / or zirconium, because aluminum nitride and zirconium compounds are preferably formed with niobium nitride.

L'invention a pour but de présenter un acier inoxydable ferritique, utilisable notamment pour des structures supports de catalyseurs soumis à un cycle de variation en température, et ayant un comportement amélioré en oxydation et en déformation à l'allongement à haute température. L'invention a pour objet un acier inoxydable comprenant dans sa composition pondérale :

  • de 12 à 25 % de chrome
  • de 4 à 7 % d'aluminium
  • moins de 0,03 % de carbone
  • moins de 0,02 % d'azote
  • moins de 0,22 % de nickel
  • moins de 0,002 % de soufre
  • moins de 0,6 % de silicium
  • moins de 0,4 % de manganèse,
des éléments actifs choisis parmi le cerium, le lanthane, le néodyme, le praséodyme, l'ytrium, pris seuls ou en combinaison, à une teneur inférieure à 0,08 %, au moins un élément stabilisant choisi parmi le zirconium et/ou le niobium,The object of the invention is to present a ferritic stainless steel, usable in particular for support structures for catalysts subjected to a temperature variation cycle, and having an improved behavior in oxidation and in deformation during elongation at high temperature. The subject of the invention is a stainless steel comprising in its weight composition:
  • 12 to 25% chromium
  • 4 to 7% aluminum
  • less than 0.03% carbon
  • less than 0.02% nitrogen
  • less than 0.22% nickel
  • less than 0.002% sulfur
  • less than 0.6% silicon
  • less than 0.4% manganese,
active elements chosen from cerium, lanthanum, neodymium, praseodymium, ytrium, taken alone or in combination, at a content of less than 0.08%, at least one stabilizing element chosen from zirconium and / or niobium,

les teneurs en zirconium et/ou niobium satisfaisant aux conditions suivantes :
   pour le zirconium, 91 (C %/12 + N %/14) - 0,1 ≤ Zr ≤ 91 (C %/12 + N %/14) + 0,1

Figure imgb0001
   pour le niobium, 93×0,8. (C %/12 ) - 0,1 ≤ Nb ≤ 93×0,8 (C %/12) + 0,15
Figure imgb0002
et Nb < 0,3 %.
   pour le zirconium et le niobium, 91 (N %/14) - 0,05 ≤ Zr ≤ 91 (N %/14) + 0,05,
Figure imgb0003
et 93×0,8 (C %/12) - 0,05 ≤ Nb ≤ 93×0,8 (C %/12) + 0,10.
Figure imgb0004
the zirconium and / or niobium contents satisfying the following conditions:
for zirconium , 91 (C% / 12 + N% / 14) - 0.1 ≤ Zr ≤ 91 (C% / 12 + N% / 14) + 0.1
Figure imgb0001
for niobium , 93 × 0.8. (C% / 12) - 0.1 ≤ Nb ≤ 93 × 0.8 (C% / 12) + 0.15
Figure imgb0002
and Nb <0.3%.
for zirconium and niobium , 91 (N% / 14) - 0.05 ≤ Zr ≤ 91 (N% / 14) + 0.05,
Figure imgb0003
and 93 × 0.8 (C% / 12) - 0.05 ≤ Nb ≤ 93 × 0.8 (C% / 12) + 0.10.
Figure imgb0004

Les autres caractéristiques de l'invention sont :The other characteristics of the invention are:

les éléments actifs sont choisis parmi le cerium, le lanthane, le néodyme, le praséodyme, pris seuls ou en combinaison, et contenus dans un composé dit "mischmétal".the active elements are chosen from cerium, lanthanum, neodymium, praseodymium, taken alone or in combination, and contained in a compound called "mischmetal".

La somme des teneurs en zirconium et niobium est inférieure à 0,300 %.The sum of the zirconium and niobium contents is less than 0.300%.

La somme des teneurs en carbone et azote est inférieure à 0,04 %.The sum of the carbon and nitrogen contents is less than 0.04%.

Les teneurs en silicium et en manganèse satisfont à la relation Si/mn ≥1.The silicon and manganese contents satisfy the Si / min relationship ≥1.

Pour l'élément stabilisant zirconium, utilisé seul dans la composition, la teneur minimale en aluminium satisfait à la condition suivante : 4 % + 6 Zr % - 91 (C % /12 + N %/14).

Figure imgb0005
For the zirconium stabilizing element, used alone in the composition, the minimum aluminum content satisfies the following condition: 4% + 6 Zr% - 91 (C% / 12 + N% / 14).
Figure imgb0005

Pour l'élément stabilisant niobium, utilisé seul dans la composition, la teneur minimale en aluminium satisfait à la condition suivante : 4 % + 5 Nb % - 93 (C %/12 + N %/14).

Figure imgb0006
For the niobium stabilizing element, used alone in the composition, the minimum aluminum content satisfies the following condition: 4% + 5 Nb% - 93 (C% / 12 + N% / 14).
Figure imgb0006

Pour les éléments stabilisants zirconium et niobium combinés, la teneur minimale en aluminium satisfait à la condition suivante : 4 % + 5 (Zr + Nb) - 92 (C %/12 + N %/14).

Figure imgb0007
For combined zirconium and niobium stabilizers, the minimum aluminum content satisfies the following condition: 4% + 5 (Zr + Nb) - 92 (C% / 12 + N% / 14).
Figure imgb0007

Lorsque le zirconium est introduit seul dans la composition, la teneur en éléments actifs satisfait à la relation suivante : 0,03 - 0,2(Zr% - 91 N%/14) ≤ (Ce + La + Nd + Pr + Y) ≤ 0,08 - 0,2(Zr% - 91 N%/14)

Figure imgb0008
When zirconium is introduced alone into the composition, the content of active elements satisfies the following relationship: 0.03 - 0.2 (Zr% - 91 N% / 14) ≤ (Ce + La + Nd + Pr + Y) ≤ 0.08 - 0.2 (Zr% - 91 N% / 14)
Figure imgb0008

Lorsque le niobium est introduit seul dans la composition, la teneur en éléments actifs satisfait à la relation suivante : 0,03 - 0,025(Nb%) ≤ (Ce + La + Nd +Pr + Y) ≤ 0,08 - 0,025(Nb%)

Figure imgb0009
When niobium is introduced alone into the composition, the content of active elements satisfies the following relationship: 0.03 - 0.025 (Nb%) ≤ (Ce + La + Nd + Pr + Y) ≤ 0.08 - 0.025 (Nb%)
Figure imgb0009

Lorsque le zirconium et le niobium sont introduits dans la composition en combinaison, la teneur en éléments actifs satisfait à la relation suivante : 0,03 - 0,2(Zr% - 91 N%/14) - 0,025(Nb%) ≤ (Ce + La + Nd + Pr + Y) ≤ 0,08 - 0,2(Zr% - 91 N%/14) - 0,025(Nb%).

Figure imgb0010
When zirconium and niobium are introduced into the composition in combination, the content of active elements satisfies the following relationship: 0.03 - 0.2 (Zr% - 91 N% / 14) - 0.025 (Nb%) ≤ (Ce + La + Nd + Pr + Y) ≤ 0.08 - 0.2 (Zr% - 91 N% / 14) - 0.025 (Nb%).
Figure imgb0010

La description qui suit et les dessins annexés, le tout donné à titre d'exemple non limitatif, fera bien comprendre l'invention.The following description and the accompanying drawings, all given by way of non-limiting example, will make the invention clear.

La figure 1 groupe des caractéristiques de résilience par la mesure de la température de transition pour des aciers possédant différentes teneurs en stabilisants choisis.FIG. 1 groups resilience characteristics by measuring the transition temperature for steels having different contents of selected stabilizers.

La figure 2 présente une série de caractéristiques d'évolution des constantes de cinétique d'oxydation en fonction de la température pour différents stabilisants.FIG. 2 presents a series of characteristics of evolution of the oxidation kinetics constants as a function of the temperature for different stabilizers.

La figure 3 présente une série de courbes d'allongement en fonction de la teneur en éléments actifs.FIG. 3 presents a series of elongation curves as a function of the content of active elements.

La figure 4 présente une suite de caractéristiques en allongement pour différentes teneurs en zirconium et en niobium dans des compositions ayant une teneur en éléments actifs définie.FIG. 4 presents a series of elongation characteristics for different contents of zirconium and niobium in compositions having a defined content of active elements.

L'acier inoxydable ferritique, selon l'invention, résistant à l'oxydation à haute température, a la composition pondérale suivante :
Cr : (12-25) % ; Al : (4-7) %; C ≤ 0,03 % ; N ≤ 0,02 % ; S ≤ 0,002 % ; Si ≤ 0,6 % ; Mn ≤ 0,4 % ; des éléments actifs choisis parmi le cerium, le lanthane, le praséodyme, le néodyme, l'ytrium, pris seul ou en combinaison à une teneur ≤ 0,08 %, des stabilisants choisi parmi le zirconium , le niobium, pris seuls ou en combinaison, à une teneur ≤ 0,300 %.
The ferritic stainless steel, according to the invention, resistant to oxidation at high temperature, has the following weight composition:
Cr: (12-25)%; Al: (4-7)%; C ≤ 0.03%; N ≤ 0.02%; S ≤ 0.002%; If ≤ 0.6%; Mn ≤ 0.4%; active elements chosen from cerium, lanthanum, praseodymium, neodymium, ytrium, taken alone or in combination at a content ≤ 0.08%, stabilizers chosen from zirconium, niobium, taken alone or in combination , at a content ≤ 0.300%.

De préférence, les éléments actifs sont choisis parmi le cerium, le lanthane, le praséodyme, le néodyme, pris seuls ou en combinaison, ces éléments étant les constituants du mélange appelé "mischmétal".Preferably, the active elements are chosen from cerium, lanthanum, praseodymium, neodymium, taken alone or in combination, these elements being the constituents of the mixture called "mischmetal".

Le lanthane peut être remplacé par l'ytrium qui possède des propriétés chimiques proches.Lanthanum can be replaced by ytrium which has similar chemical properties.

L'acier destiné, notamment à la fabrication de structure support de catalyseur réalisée avec un feuillard dont l'épaisseur est généralement inférieure à 200µm, doit posséder une tenue à l'oxydation à des températures généralement inférieures à 1 150°C pendant plusieurs centaines d'heures. La structure support doit avoir une bonne aptitude à la transformation à chaud et à froid et également satisfaire aux caractéristiques de déformation à l'allongement durant l'oxydation.
Selon l'invention, il a été mis en évidence des conditions précises concernant les teneurs en éléments stabilisants et en éléments actifs devant être respectées pour l'élaboration de l'acier sous forme de bandes laminées et pour une amélioration de la résistance à l'oxydation et à allongement dudit acier.
Du point de vue de l'élaboration et de la transformation à chaud, l'effet bénéfique de l'addition de stabilisants qui permet la diminution des températures de transition ductile/fragile a été mis en évidence. Cependant l'excès de stabilisant est néfaste. Selon l'invention, il est mis en évidence qu'il est impératif de contrôler les teneurs en stabilisants de manière à respecter les conditions suivantes :
The steel intended, in particular for the manufacture of a catalyst support structure produced with a strip whose thickness is generally less than 200 μm, must have an oxidation resistance at temperatures generally below 1150 ° C. for several hundred d 'hours. The support structure must have good aptitude for hot and cold transformation and also satisfy the elongation deformation characteristics during oxidation.
According to the invention, it has been demonstrated specific conditions concerning the contents of stabilizing elements and active elements which must be respected for the production of steel in the form of rolled strips and for an improvement in resistance to oxidation and elongation of said steel.
From the point of view of hot processing and transformation, the beneficial effect of the addition of stabilizers which allows the reduction of the ductile / brittle transition temperatures has been highlighted. However, the excess of stabilizer is harmful. According to the invention, it is highlighted that it is imperative to control the stabilizer contents so as to comply with the following conditions:

Pour un acier, selon l'invention, stabilisé avec le zirconium : 91 (C %/12 + N %/14) - 0,1 ≤ Zr ≤ 91 (C %/12 + N %/14) + 0,1

Figure imgb0011
For a steel, according to the invention, stabilized with zirconium: 91 (C% / 12 + N% / 14) - 0.1 ≤ Zr ≤ 91 (C% / 12 + N% / 14) + 0.1
Figure imgb0011

Pour un acier, selon l'invention, stabilisé avec le niobium : 93×0,8. (C %/12 ) - 0,1 ≤ Nb ≤ 93x0,8 (C %/12 ) + 0,15

Figure imgb0012
et Nb < 0,3 %. For a steel, according to the invention, stabilized with niobium: 93 × 0.8. (C% / 12) - 0.1 ≤ Nb ≤ 93x0.8 (C% / 12) + 0.15
Figure imgb0012
and Nb <0.3%.

Pour un acier, selon l'invention, stabilisé avec du zirconium et du niobium : 91 (N %/14) - 0,05 ≤ Zr ≤ 91 (N %/14) + 0,05,

Figure imgb0013
et 93×0,8 (C %/12) - 0,05 ≤ Nb ≤ 93×0,8 (C %/12) + 0,10.
Figure imgb0014
For a steel, according to the invention, stabilized with zirconium and niobium: 91 (N% / 14) - 0.05 ≤ Zr ≤ 91 (N% / 14) + 0.05,
Figure imgb0013
and 93 × 0.8 (C% / 12) - 0.05 ≤ Nb ≤ 93 × 0.8 (C% / 12) + 0.10.
Figure imgb0014

Le coefficient 0,8 est un facteur imposé par l'analyse de la stochiométrie des composés à base de niobium précipités dans la matrice.The coefficient 0.8 is a factor imposed by the analysis of the stochiometry of the niobium-based compounds precipitated in the matrix.

La figure 1 groupe des caractéristiques de résilience mesurées au moyen des températures de transition d'aciers possédant différentes teneurs en stabilisants choisis parmi le zirconium et le niobium.FIG. 1 groups the resilience characteristics measured by means of the transition temperatures of steels having different stabilizer contents chosen from zirconium and niobium.

Il est représenté en abscisse :

  • la teneur en zirconium libre ΔZr telle que ΔZr satisfait à la relation suivante: ΔZr % = Zr % - 91(C %/ 12 + N %/ 14),
    Figure imgb0015
  • la teneur en niobium libre ΔNb telle que ΔNb satisfait à la relation suivante : ΔNb % = Nb % - 93 × 0,8 (C % / 12 )
    Figure imgb0016
It is represented on the abscissa:
  • the free zirconium content ΔZr such that ΔZr satisfies the following relationship: ΔZr% = Zr% - 91 (C% / 12 + N% / 14),
    Figure imgb0015
  • the content of free niobium ΔNb such that ΔNb satisfies the following relationship: ΔNb% = Nb% - 93 × 0.8 (C% / 12)
    Figure imgb0016

On constate qu'un excès, comme un défaut de stabilisant dans la composition de l'acier, est néfaste.It is found that an excess, such as a lack of stabilizer in the composition of the steel, is harmful.

Il est donc nécessaire de contrôler les teneurs du zirconium et/ou du niobium de manière à conférer à l'acier des températures de transition ductile/fragile les plus basses possibles. Le contrôle des éléments stabilisants est important, compte tenu du procédé de production en coulée continue. Une stabilisation non contrôlée peut conduire à une fragilisation des brames, incompatible avec une production industrielle.It is therefore necessary to control the contents of zirconium and / or niobium so as to give the steel the lowest possible ductile / brittle transition temperatures. The control of stabilizing elements is important, given the production process in continuous casting. Uncontrolled stabilization can lead to embrittlement of the slabs, which is incompatible with industrial production.

Du point de vue du choix des stabilisants, des aciers contenant dans leur composition du zirconium ou du niobium ou du titane, ont été testés en oxydation à différentes températures choisies entre 900°C et 1 400°C.From the point of view of the choice of stabilizers, steels containing in their composition zirconium or niobium or titanium, have been tested in oxidation at different temperatures chosen between 900 ° C and 1400 ° C.

Le test d'oxydation consiste en la mesure d'un gain de masse ΔM rapporté à une unité de surface S.The oxidation test consists in measuring a mass gain ΔM related to a surface unit S.

Le gain de masse, correspondant à une oxydation, obéit à une loi du type (ΔM / S)2 = Kpt, Kp étant une constante dite de loi parabolique, de type exponentielle, fonction de la température et de l'énergie d'activation de la réaction d'oxydation et t étant la durée du test.The mass gain, corresponding to an oxidation, obeys a law of the type (ΔM / S) 2 = Kp t , Kp being a constant called parabolic law, of exponential type, function of the temperature and the energy of activation of the oxidation reaction and t being the duration of the test.

Sur la figure 2, sont tracés :

  • les variations de Kp (g2/m4/sec) en fonction de l'inverse de la température absolue 1/T, pour des aciers stabilisés au titane ou au zirconium ou au niobium. Les vitesses de réaction d'oxydation sont exprimées par les valeurs de la constante parabolique Kp. Lorsque ces valeurs sont faibles, les cinétiques sont plus lentes et l'oxydation moins importante. Le bon comportement à l'oxydation est obtenu pour les valeurs de Kp les plus faibles possibles. D'après cette figure, nous pouvons remarquer que quel que soit l'acier, les constantes paraboliques augmentent avec la température. Les cinétiques d'oxydation augmentent donc aussi logiquement avec la température.
In Figure 2, are plotted:
  • variations in Kp (g 2 / m 4 / sec) as a function of the inverse of the absolute temperature 1 / T, for steels stabilized with titanium or zirconium or niobium. The oxidation reaction rates are expressed by the values of the parabolic constant Kp. When these values are low, the kinetics are slower and the oxidation less important. The good oxidation behavior is obtained for the lowest possible Kp values. From this figure, we can notice that whatever the steel, the parabolic constants increase with temperature. The oxidation kinetics therefore also logically increase with temperature.

Cette figure montre également que la nature des stabilisants modifie ces cinétiques et que, d'une façon surprenante, ils peuvent avoir une influence bénéfique ou néfaste suivant la température d'utilisation. Ainsi, aux températures supérieures à 1 150 °C, c'est le titane qui possède le meilleur caractère protecteur vis-à-vis de l'oxydation. Aux températures inférieures à 1 150°C, en revanche, l'addition de titane exerce une influence néfaste par rapport à l'addition de niobium ou de zirconium. La température extrême d'utilisation des structures supports métalliques de catalyseur se situe généralement en dessous de 1 150°C. Nous voyons, d'après cette figure, et compte tenu des températures d'utilisation des structures supports de catalyseur, que les meilleurs stabilisants sont le niobium et/ou le zirconium. L'addition de titane ne donne pas de bons résultats dans le domaine de température envisagé. En outre l'addition combinée de zirconium et de niobium ne conduit pas, contrairement à ce qui est mentionné dans l'art antérieur, à une dégradation de la nuance dans les proportions définies selon l'invention. D'après la figure 2, nous pouvons remarquer que l'addition de stabilisants conduit à des écarts importants dans les cinétiques d'oxydation.
La quantité d'aluminium nécessaire pour résister à l'oxydation à une température et un temps donné dépend donc de la nature des stabilisants. Ainsi pour résister à 1 100°C pendant 400 heures, nous avons établi les quantités d'aluminium minimales nécessaires, en fonction des stabilisants et de la teneur en carbone et azote.
This figure also shows that the nature of the stabilizers modifies these kinetics and that, surprisingly, they can have a beneficial or harmful influence depending on the temperature of use. Thus, at temperatures above 1150 ° C, it is titanium which has the best protective character against oxidation. At temperatures below 1150 ° C, on the other hand, the addition of titanium exerts a detrimental influence compared to the addition of niobium or zirconium. The extreme temperature of use of metallic catalyst support structures is generally below 1150 ° C. We see from this figure, and taking into account the temperatures of use of the catalyst support structures, that the best stabilizers are niobium and / or zirconium. The addition of titanium does not give good results in the envisaged temperature range. In addition, the combined addition of zirconium and niobium does not, contrary to what is mentioned in the prior art, lead to degradation of the shade in the proportions defined according to the invention. From Figure 2, we can notice that the addition of stabilizers leads to significant differences in the kinetics of oxidation.
The amount of aluminum necessary to resist oxidation at a given temperature and time therefore depends on the nature of the stabilizers. So to withstand 1,100 ° C for 400 hours, we have established the minimum amounts of aluminum required, depending on stabilizers and carbon and nitrogen content.

Pour le zirconium : Al % minimum = 4 % + 6 Zr % - 91 (C %/12 + N %/14).

Figure imgb0017
For zirconium: Al% minimum = 4% + 6 Zr% - 91 (C% / 12 + N% / 14).
Figure imgb0017

Pour le niobium : Al % minimum = 4 % + 5 Nb % - 93×0,8 ( C % / 12).

Figure imgb0018
For niobium: Al% minimum = 4% + 5 Nb% - 93 × 0.8 (C% / 12).
Figure imgb0018

Nous remarquons que la quantité d'aluminium nécessaire pour la stabilisation avec le titane répond à la relation suivante : Al % minimum = 4 % + 20 Ti % - 48 (C %/12 + N %/14).

Figure imgb0019
We note that the quantity of aluminum necessary for stabilization with titanium corresponds to the following relationship: Al% minimum = 4% + 20 Ti% - 48 (C% / 12 + N% / 14).
Figure imgb0019

Pour l'addition combinée de zirconium et de niobium, nous avons : Al % minimum = 4 % + 6 Zr% + 5 Nb % - 91 (N% / 14 ) - 93×0,8 (C % / 12 ).

Figure imgb0020
For the combined addition of zirconium and niobium, we have: Al% minimum = 4% + 6 Zr% + 5 Nb% - 91 (N% / 14) - 93 × 0.8 (C% / 12).
Figure imgb0020

L'addition de titane conduit à des valeurs minimales en aluminium élevées qui ne sont pas compatibles avec une production industrielle.The addition of titanium leads to high minimum aluminum values which are not compatible with industrial production.

La formation de la couche d'oxyde lors du traitement d'oxydation génère des contraintes. Ces contraintes ne sont pas négligeables et peuvent déformer la structure support de catalyseur. La structure support de catalyseur suit des variations d'allongement en fonction du temps, à une température donnée. Ces variations se manifestent par un fort allongement pendant une période de temps relativement courte, puis, par une stabilité de l'allongement dans le temps correspondant à un palier et enfin, par de forts allongements pendant une période de temps relativement longue. Les forts allongements se manifestant pendant une période longue, sont liés à la formation d'oxyde de chrome diffusant dans la couche d'alumine. Ce type d'allongement a été identifié, il est lié à l'appauvrissement de la teneur en aluminium de la composition du feuillard.The formation of the oxide layer during the oxidation treatment generates stresses. These constraints are not negligible and can deform the catalyst support structure. The catalyst support structure follows variations in elongation as a function of time, at a given temperature. These variations are manifested by a strong elongation for a relatively short period of time, then by a stability of the elongation over time corresponding to a plateau and finally, by strong elongations for a relatively long period of time. The strong elongations occurring over a long period are linked to the formation of chromium oxide diffusing in the alumina layer. This type of elongation has been identified, it is linked to the depletion of the aluminum content of the strip composition.

La figure 3 présente des allongements au palier en fonction de la teneur en éléments actifs. L'allongement au palier dépend, dans cet exemple, de la teneur en éléments actifs Ce, La, Pr, Nd entrant dans la composition du "mischmetal" mais aussi, et d'une façon étonnante, de l'élément stabilisant utilisé. Par exemple, la teneur en "mischmétal" dépend de la teneur en zirconium, car celui-ci est un élément actif du point de vue de l'oxydation. Ainsi, les meilleurs comportements en déformation par allongement sont obtenus pour des teneurs en "mischmétal" comprises entre 0,02 et 0,04 % pour une stabilisation au zirconium et entre 0,04 et 0,075 % pour l'acier stabilisé au niobium. L'addition de ces éléments, en piégeant le soufre, améliore la tenue à l'oxydation des aciers. Ces additions doivent être contrôlées de manière à optimiser les propriétés de l'acier. L'addition simultanée de Zr et de Nb donne une possibilité d'augmenter l'intervalle de la teneur en éléments actifs, teneur comprise entre 0,02 et 0,075 %.FIG. 3 shows elongations at the level depending on the content of active elements. The elongation at the level depends, in this example, on the content of active elements Ce, La, Pr, Nd used in the composition of the "mischmetal" but also, and surprisingly, on the stabilizing element used. For example, the "mischmetal" content depends on the zirconium content, since this is an active element from the point of view of oxidation. Thus, the best deformation behavior by elongation is obtained for "mischmetal" contents of between 0.02 and 0.04% for stabilization with zirconium and between 0.04 and 0.075% for steel stabilized with niobium. The addition of these elements, by trapping the sulfur, improves the oxidation resistance of the steels. These additions must be controlled in order to optimize the properties of the steel. The simultaneous addition of Zr and Nb gives a possibility of increasing the range of the content of active elements, content between 0.02 and 0.075%.

La figure 4 présente un diagramme de comportement à la déformation par l'allongement, au palier, pour différentes teneurs en zirconium et en niobium, les teneurs en zirconium et niobium étant réglées en fonction des teneurs en carbone et en azote.
En ce qui concerne les valeurs d'allongement au palier, les meilleurs résultats sont obtenus avec l'addition de niobium. L'addition de zirconium présente des valeurs plus élevées. L'origine de ce phénonène est liée à la réactivité des stabilisants pour l'oxygène. La réactivité de ces stabilisants est fortement limitée lorsque ceux-ci sont ajoutés en quantité contrôlée en rapport avec les proportions de carbone et d'azote.
Le tableau l, ci-dessous, donne les différentes compositions des alliages A, B1, B2, B3, C1, C2, représentées sur la figure. A B1 B2 B3 C1 C2 C 0.019 0.009 0.018 0.037 0.014 0.017 Si 0.296 0.319 0.386 0.560 0.350 0.340 Mn 0.285 0.299 0.428 0.295 0.288 0.290 Ni 0.195 0.215 0.150 0.196 0.216 0.214 Cr 20.10 20.19 20.18 22.10 20.03 20.11 Mo 0.033 0.033 0.041 0.018 0.031 0.028 Cu 0.036 0.039 0.035 0.012 0.035 0.043 S < 5 ppm 2 ppm 9 ppm 4 ppm < 10 ppm < 10 ppm P 0.020 0.020 0.020 0.011 0.018 0.021 Al 5.03 4.7 5.18 4.6 5.2 5.4 N 0.007 0.004 0.008 0.012 0.006 0.006 Ce 0.0351 0.0133 0.0177 0.0111 0.0339 0.023 La 0.0151 0.0064 0.0082 0.0050 0.0155 0.010 Zr - 0.083 0.191 0.284 0.006 - Nb - - - - 0.205 0.285 Cette figure montre que l'allongement au palier augmente d'une façon linéaire avec la teneur en stabilisant. Afin d'obtenir les meilleurs comportements à l'allongement, les teneurs en stabilisants, et par voie de conséquence, les teneurs en carbone et en azote doivent être limitées à des teneurs très faibles : (C + N) ≤ 0,04 %   Zr et/ou Nb ≤ 0,300 %.

Figure imgb0021
FIG. 4 presents a diagram of behavior in deformation by elongation, at the level, for different contents of zirconium and niobium, the contents of zirconium and niobium being adjusted as a function of the contents of carbon and nitrogen.
With regard to the elongation values at the plateau, the best results are obtained with the addition of niobium. The addition of zirconium has higher values. The origin of this phenonene is linked to the reactivity of the oxygen stabilizers. The reactivity of these stabilizers is greatly limited when these are added in a controlled amount in relation to the proportions of carbon and nitrogen.
Table 1, below, gives the different compositions of the alloys A, B1, B2, B3, C1, C2, shown in the figure. AT B1 B2 B3 C1 C2 VS 0.019 0.009 0.018 0.037 0.014 0.017 Yes 0.296 0.319 0.386 0.560 0.350 0.340 Mn 0.285 0.299 0.428 0.295 0.288 0.290 Or 0.195 0.215 0.150 0.196 0.216 0.214 Cr 20.10 20.19 20.18 22.10 20.03 20.11 Mo 0.033 0.033 0.041 0.018 0.031 0.028 Cu 0.036 0.039 0.035 0.012 0.035 0.043 S <5 ppm 2 ppm 9 ppm 4 ppm <10 ppm <10 ppm P 0.020 0.020 0.020 0.011 0.018 0.021 Al 5.03 4.7 5.18 4.6 5.2 5.4 NOT 0.007 0.004 0.008 0.012 0.006 0.006 This 0.0351 0.0133 0.0177 0.0111 0.0339 0.023 The 0.0151 0.0064 0.0082 0.0050 0.0155 0.010 Zr - 0.083 0.191 0.284 0.006 - Nb - - - - 0.205 0.285 This figure shows that the elongation at the plateau increases linearly with the stabilizer content. In order to obtain the best stretching behavior, the stabilizer contents, and by Consequently, the carbon and nitrogen contents must be limited to very low contents: (C + N) ≤ 0.04% Zr and / or Nb ≤ 0.300%.
Figure imgb0021

L'addition simultanée de Zr et Nb piège le carbone et l'azote pour former essentiellement des composés du type ZrN et NbC. Ce choix réduit considérablement la quantité de stabilisants libres disponibles pour l'oxydation du fait de la stabilité thermodynamique des nitrures ZrN. La formation de NbC se développe pendant le cycle thermique du fait de la plus faible affinité chimique du niobium pour l'oxygène.The simultaneous addition of Zr and Nb traps carbon and nitrogen to essentially form compounds of the ZrN and NbC type. This choice considerably reduces the amount of free stabilizers available for oxidation due to the thermodynamic stability of the ZrN nitrides. The formation of NbC develops during the thermal cycle due to the lower chemical affinity of niobium for oxygen.

Le carbone et l'azote sont des éléments inévitables entrant dans la composition des aciers. Ces éléments occasionnent de très fortes diminutions de la ductilité à chaud et entraînent des problèmes de transformation de l'acier.Carbon and nitrogen are inevitable elements used in the composition of steels. These elements cause very large reductions in hot ductility and cause problems with steel transformation.

La présence de stabilisants zirconium et/ou niobium, en piégeant le carbone et ou l'azote, améliorent la ductilité à chaud de l'alliage. Cependant des teneurs en carbone et azote élevées aboutissent en contrepartie à des teneurs en stabilisants également très importantes. La précipitation importante de carbures et de nitrures dans l'alliage diminuent la tenue à l'oxydation du produit en fragilisant la couche d'oxyde.The presence of zirconium and / or niobium stabilizers, by trapping carbon and / or nitrogen, improves the hot ductility of the alloy. However, high levels of carbon and nitrogen lead in return to very high stabilizer contents. The significant precipitation of carbides and nitrides in the alloy reduces the resistance to oxidation of the product by weakening the oxide layer.

Ainsi, afin de limiter la présence de trop nombreux précipités, la teneur en carbone doit être inférieure à 0,03 %, la teneur en azote doit être inférieure à 0,02 % et la teneur en carbone et en azote doit être de préférence inférieure à 0,04 %.Thus, in order to limit the presence of too many precipitates, the carbon content must be less than 0.03%, the nitrogen content must be less than 0.02% and the carbon and nitrogen content must preferably be lower. at 0.04%.

Selon l'invention, il est préférable de limiter les teneurs en azote à moins de 0,01% de façon à réduire les teneurs en zirconium, pour améliorer les caractéristiques de l'acier en allongement.According to the invention, it is preferable to limit the nitrogen contents to less than 0.01% so as to reduce the zirconium contents, in order to improve the characteristics of the steel in elongation.

Le zirconium et/ou le nobium sont des éléments d'addition volontaires prévus pour piéger le carbone et/ou l'azote et améliorer ainsi la ductilité à chaud de la nuance. Ces éléments, dits stabilisants, doivent être contrôlés compte tenu du procédé de production envisagé en coulée continue. En effet, une stabilisation insuffisante conduirait à une fragilisation excessive des brames, incompatible avec la production industrielle. Une stabilisation importante conduirait à une dégradation de la tenue à l'oxydation de l'acier sous forme de feuillard.Zirconium and / or nobium are voluntary addition elements intended to trap carbon and / or nitrogen and thus improve the hot ductility of the grade. These elements, called stabilizers, must be checked taking into account the production process envisaged in continuous casting. In fact, insufficient stabilization would lead to excessive embrittlement of the slabs, incompatible with industrial production. Significant stabilization would lead to degradation of the oxidation resistance of the steel in the form of strip.

L'addition combinée des éléments stabilisants zirconium et niobium permet à la fois une bonne tenue à l'oxydation et une bonne cohésion des supports. En effet, outre les propriétés du niobium en tant que stabilisant, il permet un collage entre les feuilles enroulées en spirale des supports. Ainsi, le niobium peut permettre la suppression des pistes de brasure, par exemple à base de nickel et une éventuelle contamination due au métal d'apport de la brasure.The combined addition of zirconium and niobium stabilizing elements allows both good resistance to oxidation and good cohesion of the supports. Indeed, in addition to the properties of niobium as a stabilizer, it allows bonding between the spirally wound sheets of the supports. Thus, niobium can allow the elimination of the solder tracks, for example based on nickel and a possible contamination due to the filler metal of the solder.

Toutefois, le niobium peut modifier les cinétiques d'oxydation et ne doit pas être additionné dans une proportion supérieure à 0,3%.
Le produit doit résister plusieurs centaines d'heures à très haute température, c'est-à-dire, jusqu'à 1 100°C. Pour satisfaire à cette condition, l'alliage doit contenir au moins 4 % d'aluminium. Cette teneur est nécessaire pour former une couche d'oxyde protectrice en surface et éviter l'appauvrissement prématuré de la teneur en aluminium dans le feuillard. La teneur en aluminium doit être inférieure à 7 % afin d'éviter les problèmes de transformation de la nuance suite à une dégradation trop importante de la ductilité à chaud.
Pour des alliages contenant ces teneurs en aluminium, il se forme préférentiellement des nitrures d'aluminium plutôt que des nitrures de niobium.
However, niobium can modify the kinetics of oxidation and must not be added in a proportion greater than 0.3%.
The product must withstand several hundred hours at very high temperature, that is, up to 1100 ° C. To meet this condition, the alloy must contain at least 4% aluminum. This content is necessary to form a protective oxide layer on the surface and to prevent premature depletion of the aluminum content in the strip. The aluminum content must be less than 7% in order to avoid the problems of transformation of the shade following an excessive degradation of the ductility when hot.
For alloys containing these aluminum contents, aluminum nitrides are preferably formed rather than niobium nitrides.

Le silicium et le manganèse sont des éléments très oxydables et jouent également un rôle non négligeable sur le comportement à l'allongement. Ces deux éléments, sous l'influence d'un traitement à température élevée, ont tendance à migrer à la surface du métal. Il existe alors deux possibilités :

  • ces éléments restent à la surface et éventuellement s'oxydent si l'activité chimique de l'élément est suffisante, c'est, plus particulièrement, le cas du silicium. Dans le cas d'aciers contenant beaucoup d'aluminium, l'oxydation du silicium est impossible. Cet élément reste en surface et participe efficacement à la protection en exerçant le rôle de barrière à la diffusion d'autres éléments.
  • ces éléments migrent vers la surface et se subliment. C'est, plus particulièrement, le cas du manganèse, qui se trouve en grande quantité sur les parois des fours lors des traitements sous vide. Ce phénomène est néfaste du point de vue déformation à l'allongement car l'évaporation du manganèse libère la surface du métal et provoque l'oxydation des éléments ayant une grande affinité chimique pour l'oxygène.
Pour ces deux raisons, il est important pour conserver de bonnes propriétés en résistance à l'oxydation de maintenir le rapport Si/Mn
Figure imgb0022
1.Silicon and manganese are highly oxidizable elements and also play a non-negligible role in elongation behavior. These two elements, under the influence of a treatment at high temperature, tend to migrate to the surface of the metal. There are then two possibilities:
  • these elements remain on the surface and possibly oxidize if the chemical activity of the element is sufficient, this is, more particularly, the case of silicon. In the case of steels containing a lot of aluminum, oxidation of silicon is impossible. This element remains on the surface and participates effectively in protection by exercising the role of barrier to the diffusion of other elements.
  • these elements migrate to the surface and sublimate. This is, more particularly, the case of manganese, which is found in large quantities on the walls of ovens during vacuum treatments. This phenomenon is harmful from the point of view of elongation deformation because the evaporation of manganese frees the surface of the metal and causes the oxidation of the elements having a great chemical affinity for oxygen.
For these two reasons, it is important to maintain good oxidation resistance properties to maintain the Si / Mn ratio
Figure imgb0022
1.

Concernant les autres éléments contenus dans la composition de l'acier selon l'invention :Concerning the other elements contained in the composition of the steel according to the invention:

Le phosphore et le soufre sont des impuretés inévitables entrant dans la fabrication des aciers inoxydables.Phosphorus and sulfur are inevitable impurities used in the manufacture of stainless steels.

Le phosphore est habituellement rencontré dans les aciers inoxydables à une teneur d'environ 0,02 %. Cet élément joue un rôle neutre ou légèrement bénéfique sur la tenue du produit à l'oxydation en piégeant le cerium en excès sous forme de phosphures. Le soufre est également rencontré dans les aciers inoxydables à une teneur d'environ 0,005 %. Le soufre exerce une influence néfaste sur le comportement à l'oxydation, il diminue l'adhérence de l'oxyde sur le feuillard et favorise l'écaillage de cette couche. Pour cette raison, le soufre doit être maintenu à des teneurs les plus faibles possibles : inférieures à 0,002 %.Phosphorus is usually found in stainless steels at a content of about 0.02%. This element plays a neutral or slightly beneficial role on the resistance of the product to oxidation by trapping the excess cerium in the form of phosphides. Sulfur is also found in stainless steels at a content of about 0.005%. Sulfur exerts a detrimental influence on the oxidation behavior, it reduces the adhesion of the oxide to the strip and promotes the flaking of this layer. For this reason, sulfur must be kept at the lowest possible levels: less than 0.002%.

La teneur en chrome de l'acier doit être suffisante, c'est-à-dire supérieure à 12 %, pour présenter les bonnes propriétés vis-à-vis de la corrosion et favoriser la formation et la tenue de la couche d'oxyde à haute température. La teneur en chrome ne doit pas être également trop élevée, c'est-à-dire inférieure à 25 %, afin d'éviter les problèmes de transformation de l'acier.The chromium content of the steel must be sufficient, that is to say greater than 12%, to present the good properties with respect to corrosion and to favor the formation and the behavior of the oxide layer. at high temperature. The chromium content should also not be too high, that is to say less than 25%, in order to avoid the problems of steel transformation.

Selon l'invention, de préférence, la teneur en chrome est comprise entre 14 et 22%, ce qui correspond à un intervalle en concentration en chrome optimisé vis-à-vis de la corrosion et de la transformation de l'acier.According to the invention, preferably, the chromium content is between 14 and 22%, which corresponds to a chromium concentration range optimized with respect to corrosion and the transformation of steel.

Le cuivre introduit dans la composition est un élément résiduel que l'on retrouve dans les produits utilisés à la base dans l'élaboration de l'acier.The copper introduced into the composition is a residual element which is found in the products used at the base in the production of steel.

Le produit issu de l'invention est destiné à la fabrication de structures supports métalliques de calalyseurs, à partir de feuillards dont l'épaisseur est inférieure à 200 µm, et, plus communément égale à 50 µm +/-10 µm.The product resulting from the invention is intended for the manufacture of metal support structures for calalyzers, from strips whose thickness is less than 200 μm, and more commonly equal to 50 μm +/- 10 μm.

Claims (12)

Acier inoxydable ferritique résistant à l'oxydation à haute température, utilisable, notamment pour support de catalyseur, comprenant dans sa composition pondérale : de 12 à 25 % de chrome de 4 à 7 % d'aluminium moins de 0,03 % de carbone moins de 0,02 % d'azote moins de 0,22 % de nickel moins de 0,002 % de soufre moins de 0,6 % de silicium moins de 0,4 % de manganèse, des éléments actifs choisis parmi le cerium, le lanthane, le néodyme, le praséodyme, l'ytrium, pris seuls ou en combinaison, à une teneur inférieure à 0,08 %, au moins un élément stabilisant choisi parmi le zirconium et/ou le niobium,
   Les teneurs en zirconium et/ou niobium satisfaisant aux conditions suivantes :
   pour le zirconium, 91 (C %/12 + N %/14) - 0,1 ≤ Zr ≤ 91 (C %/12 + N %/14) + 0,1
Figure imgb0023

   pour le niobium, 93×0,8. (C %/12 ) - 0,1 ≤ Nb ≤ 93×0,8 (C %/12 ) + 0, 15
Figure imgb0024
et Nb < 0,3 %.
   pour le zirconium et niobium, 91 (N %/14) - 0,05 ≤ Zr ≤ 91 (N %/14) + 0,05,
Figure imgb0025
et 93×0,8 (C %/12)-0,05 ≤ Nb ≤ 93×0,8 (C %/12) + 0,1.
Figure imgb0026
Ferritic stainless steel resistant to oxidation at high temperature, usable, in particular for catalyst support, comprising in its weight composition: 12 to 25% chromium 4 to 7% aluminum less than 0.03% carbon less than 0.02% nitrogen less than 0.22% nickel less than 0.002% sulfur less than 0.6% silicon less than 0.4% manganese, active elements chosen from cerium, lanthanum, neodymium, praseodymium, ytrium, taken alone or in combination, at a content of less than 0.08%, at least one stabilizing element chosen from zirconium and / or niobium,
Zirconium and / or niobium contents satisfying the following conditions:
for zirconium , 91 (C% / 12 + N% / 14) - 0.1 ≤ Zr ≤ 91 (C% / 12 + N% / 14) + 0.1
Figure imgb0023

for niobium , 93 × 0.8. (C% / 12) - 0.1 ≤ Nb ≤ 93 × 0.8 (C% / 12) + 0.15
Figure imgb0024
and Nb <0.3%.
for zirconium and niobium , 91 (N% / 14) - 0.05 ≤ Zr ≤ 91 (N% / 14) + 0.05,
Figure imgb0025
and 93 × 0.8 (C% / 12) -0.05 ≤ Nb ≤ 93 × 0.8 (C% / 12) + 0.1.
Figure imgb0026
Acier selon la revendication 1, caractérisé en ce que les éléments actifs sont choisis parmi le cerium, le lanthane, la néodyme, le praséodyme, pris seuls ou en combinaison, et contenus dans un composé dit "mischmétal".Steel according to claim 1, characterized in that the active elements are chosen from cerium, lanthanum, neodymium, praseodymium, taken alone or in combination, and contained in a compound called "mischmetal". Acier selon la revendication 1, caractérisé en ce que la somme des teneurs en zirconium et niobium est inférieure à 0,300 %.Steel according to claim 1, characterized in that the sum of the zirconium and niobium contents is less than 0.300%. Acier, selon la revendication 1, caractérisé en ce que la somme des teneurs en carbone et azote est inférieure à 0,04 %.Steel according to claim 1, characterized in that the sum of the carbon and nitrogen contents is less than 0.04%. Acier, selon la revendication 1, caractérisé en ce que les teneurs en silicium et en manganèse satisfont à la relation Si/Mn ≥ 1.Steel according to claim 1, characterized in that the contents of silicon and manganese satisfy the Si / Mn relationship ≥ 1. Acier, selon la revendication 1, caractérisé en ce que pour l'élément stabilisant zirconium utilisé seul dans la composition, la teneur minimale en aluminium satisfait à la condition suivante : 4 % + 6 Zr % - 91 (C %/12 + N %/14).
Figure imgb0027
Steel according to claim 1, characterized in that for the stabilizing element zirconium used alone in the composition, the content aluminum minimum meets the following condition: 4% + 6 Zr% - 91 (C% / 12 + N% / 14).
Figure imgb0027
Acier, selon la revendication 1, caractérisé en ce que, pour l'élément stabilisant niobium utilisé seul dans la composition, la teneur minimale en aluminium satisfait à la condition suivante : 4 % + 5 Nb % - 93 (C %/12 + N %/14).
Figure imgb0028
Steel according to claim 1, characterized in that, for the niobium stabilizing element used alone in the composition, the minimum aluminum content satisfies the following condition: 4% + 5 Nb% - 93 (C% / 12 + N% / 14).
Figure imgb0028
Acier, selon la revendication 1, caractérisé en ce que, pour les éléments stabilisants zirconium et niobium combinés, la teneur minimale en aluminium satisfait à la condition suivante : 4 % + 5 (Zr + Nb) - 92 (C %/12 + N %/14).
Figure imgb0029
Steel according to claim 1, characterized in that, for the combined zirconium and niobium stabilizing elements, the minimum aluminum content satisfies the following condition: 4% + 5 (Zr + Nb) - 92 (C% / 12 + N% / 14).
Figure imgb0029
Acier, selon les revendications 1 et 6, caractérisé en ce que la teneur en éléments actifs satisfait à la relation suivante : 0,03 - 0,2(Zr% - 91 N%/14) ≤ (Ce + La + Nd + Pr + Y) ≤ 0,08 - 0,2(Zr% - 91 N%/14)
Figure imgb0030
Steel according to claims 1 and 6, characterized in that the content of active elements satisfies the following relationship: 0.03 - 0.2 (Zr% - 91 N% / 14) ≤ (Ce + La + Nd + Pr + Y) ≤ 0.08 - 0.2 (Zr% - 91 N% / 14)
Figure imgb0030
Acier, selon les revendications 1 et 7, caractérisé en ce que la teneur en éléments actifs satisfait à la relation suivante : 0,03 - 0,025(Nb%) ≤ (Ce + La + Nd +Pr + Y) ≤ 0,08 - 0,025(Nb%)
Figure imgb0031
Steel according to claims 1 and 7, characterized in that the content of active elements satisfies the following relationship: 0.03 - 0.025 (Nb%) ≤ (Ce + La + Nd + Pr + Y) ≤ 0.08 - 0.025 (Nb%)
Figure imgb0031
Acier, selon les revendications 1 et 8, caractérisé en ce que la teneur en éléments actifs satisfait la relation suivante : 0,03 - 0,2(Zr% - 91 N%/14) - 0,025(Nb%) ≤ (Ce + La + Nd + Pr + Y) ≤ 0,08 - 0,2(Zr% - 91 N%/14) - 0,025(Nb%).
Figure imgb0032
Steel according to claims 1 and 8, characterized in that the content of active elements satisfies the following relationship: 0.03 - 0.2 (Zr% - 91 N% / 14) - 0.025 (Nb%) ≤ (Ce + La + Nd + Pr + Y) ≤ 0.08 - 0.2 (Zr% - 91 N% / 14) - 0.025 (Nb%).
Figure imgb0032
Acier, selon les revendications 1 à 11, caractérisé en ce qu'il comporte en outre dans sa composition moins de 0,5% de cuivre.Steel, according to claims 1 to 11, characterized in that it further comprises in its composition less than 0.5% copper.
EP96400630A 1995-03-29 1996-03-25 Stainless ferritic steel, particularly suitable as catalyst substrate Expired - Lifetime EP0735153B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9503641A FR2732360B1 (en) 1995-03-29 1995-03-29 FERRITIC STAINLESS STEEL FOR USE, IN PARTICULAR FOR CATALYST SUPPORTS
FR9503641 1995-03-29

Publications (2)

Publication Number Publication Date
EP0735153A1 true EP0735153A1 (en) 1996-10-02
EP0735153B1 EP0735153B1 (en) 1999-10-27

Family

ID=9477508

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96400630A Expired - Lifetime EP0735153B1 (en) 1995-03-29 1996-03-25 Stainless ferritic steel, particularly suitable as catalyst substrate

Country Status (10)

Country Link
US (1) US5866065A (en)
EP (1) EP0735153B1 (en)
CN (1) CN1051582C (en)
AT (1) ATE186078T1 (en)
CA (1) CA2172921C (en)
DE (1) DE69604852T2 (en)
DK (1) DK0735153T3 (en)
ES (1) ES2140043T3 (en)
FR (1) FR2732360B1 (en)
GR (1) GR3032240T3 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19743720C1 (en) * 1997-10-02 1998-12-24 Krupp Vdm Gmbh Cost effective production of iron alloy foil with high resistance to high temperature oxidation
FR2806940B1 (en) * 2000-03-29 2002-08-16 Usinor STAINLESS STEEL FERRITIC STRIP ALUMINUM-CONTAINING, ESPECIALLY USEFUL FOR A MOTOR VEHICLE EXHAUST CATALYST SUPPORT AND METHOD FOR MANUFACTURING SAID STRIP
SE520027C2 (en) * 2000-05-22 2003-05-13 Sandvik Ab Austenitic alloy
MD2816C2 (en) * 2001-06-21 2006-02-28 Владислав ФАТЕЕВ Welding on material
MD2819C2 (en) * 2001-06-26 2006-03-31 Илие ЦУРКАН Electrode material
SE527177C2 (en) * 2001-09-25 2006-01-17 Sandvik Intellectual Property Use of an austenitic stainless steel
SE520617C2 (en) 2001-10-02 2003-07-29 Sandvik Ab Ferritic stainless steel, foil made of steel, use of steel and foil, and method of making steel
SE525252C2 (en) * 2001-11-22 2005-01-11 Sandvik Ab Super austenitic stainless steel and the use of this steel
US7842434B2 (en) * 2005-06-15 2010-11-30 Ati Properties, Inc. Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells
US7981561B2 (en) * 2005-06-15 2011-07-19 Ati Properties, Inc. Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells
US8158057B2 (en) * 2005-06-15 2012-04-17 Ati Properties, Inc. Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells
US20080069717A1 (en) * 2002-11-20 2008-03-20 Nippon Steel Corporation High A1 stainless steel sheet and double layered sheet, process for their fabrication, honeycomb bodies employing them and process for their production
SE527176C2 (en) * 2003-04-02 2006-01-17 Sandvik Intellectual Property Stainless steel for use in high temperature applications
DE102014226282A1 (en) * 2014-12-17 2016-06-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Reactor for the dehydrogenation of liquid hydrogen carrier materials
EP3851550B1 (en) 2018-09-13 2023-05-03 JFE Steel Corporation Ferritic stainless steel sheet, method for producing same and al plated stainless steel sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3852063A (en) * 1971-10-04 1974-12-03 Toyota Motor Co Ltd Heat resistant, anti-corrosive alloys for high temperature service
EP0091526A2 (en) * 1982-04-12 1983-10-19 Allegheny Ludlum Corporation Iron-chromium-aluminium alloy and article and method therefor
DE3706415A1 (en) * 1987-02-27 1988-09-08 Thyssen Edelstahlwerke Ag SEMI-FINISHED FERRITIC STEEL PRODUCT AND ITS USE
EP0387670A1 (en) * 1989-03-16 1990-09-19 Krupp VDM GmbH Ferritic-steel alloy
EP0480461A1 (en) * 1990-10-11 1992-04-15 Nisshin Steel Co., Ltd. Aluminum-containing ferritic stainless steel having excellent high temperature oxidation resistance and toughness

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3221087A1 (en) * 1982-06-04 1983-12-08 Thyssen Edelstahlwerke AG, 4000 Düsseldorf METHOD FOR PRODUCING AND PROCESSING HIGH ALLOY NON-RUSTIC FERRITIC CHROME-MOLYBDAEN-NICKEL STEELS
US5045404A (en) * 1989-03-27 1991-09-03 Nippon Steel Corporation Heat-resistant stainless steel foil for catalyst-carrier of combustion exhaust gas purifiers
EP0516097B1 (en) * 1991-05-29 1996-08-28 Kawasaki Steel Corporation Iron-chromium-aluminium alloy, catalytic substrate comprising the same and method of preparation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3852063A (en) * 1971-10-04 1974-12-03 Toyota Motor Co Ltd Heat resistant, anti-corrosive alloys for high temperature service
EP0091526A2 (en) * 1982-04-12 1983-10-19 Allegheny Ludlum Corporation Iron-chromium-aluminium alloy and article and method therefor
US4414023A (en) * 1982-04-12 1983-11-08 Allegheny Ludlum Steel Corporation Iron-chromium-aluminum alloy and article and method therefor
DE3706415A1 (en) * 1987-02-27 1988-09-08 Thyssen Edelstahlwerke Ag SEMI-FINISHED FERRITIC STEEL PRODUCT AND ITS USE
EP0387670A1 (en) * 1989-03-16 1990-09-19 Krupp VDM GmbH Ferritic-steel alloy
EP0480461A1 (en) * 1990-10-11 1992-04-15 Nisshin Steel Co., Ltd. Aluminum-containing ferritic stainless steel having excellent high temperature oxidation resistance and toughness

Also Published As

Publication number Publication date
EP0735153B1 (en) 1999-10-27
CA2172921C (en) 2002-03-26
ATE186078T1 (en) 1999-11-15
DE69604852D1 (en) 1999-12-02
FR2732360B1 (en) 1998-03-20
FR2732360A1 (en) 1996-10-04
DE69604852T2 (en) 2000-05-25
US5866065A (en) 1999-02-02
CA2172921A1 (en) 1996-09-30
ES2140043T3 (en) 2000-02-16
DK0735153T3 (en) 2000-04-25
CN1051582C (en) 2000-04-19
GR3032240T3 (en) 2000-04-27
CN1147562A (en) 1997-04-16

Similar Documents

Publication Publication Date Title
EP0735153B1 (en) Stainless ferritic steel, particularly suitable as catalyst substrate
CA2584449C (en) Hot-dip coating method in a zinc bath for strips of iron/carbon/manganese steel
EP2893049B1 (en) Ferritic stainless steel sheet, method for the production thereof, and use of same, especially in exhaust lines
EP0889145B1 (en) Stainless austenoferritic steel with very low nickel content and showing high elongation under tensile load
EP1819461B1 (en) Method of producing austentic iron/carbon/manganese steel sheets having very high strength and elongation characteristics and excellent homogeneity
EP1649069B1 (en) Method of producing austenitic iron/carbon/manganese steel sheets having a high strength and excellent toughness and being suitable for cold forming, and sheets thus produced
CA2342744C (en) Clad ferritic stainless steel for use in motor vehicle exhausts
EP1818422B2 (en) Ferritic stainless steel with 19% of chromium stabilised with niobium
WO2006042931A1 (en) Method for production of sheets of austenitic iron/carbon/manganese steel and sheets produced thus
JPH08507107A (en) High manganese steel having excellent hot workability, and method for producing high manganese hot rolled steel sheet without causing cracks
WO2008145872A1 (en) Low density steel with good stamping capability
EP0861916A1 (en) Process for making a stainless steel strip rich in aluminium especially suitable for a catalytic converter support for a motor vehicle
FR2550226A1 (en) MARTENSITIC STAINLESS STEEL CAPABLE OF STRUCTURAL CURING
EP1601804B1 (en) Use of an iron-chromium-aluminum alloy
US5045404A (en) Heat-resistant stainless steel foil for catalyst-carrier of combustion exhaust gas purifiers
FR2798394A1 (en) FERRITIC STEEL HAVING 14% CHROME STABILIZED WITH NIOBIUM AND USE THEREOF IN THE FIELD OF AUTOMOBILE
EP1319726A1 (en) Method of manufacturing cold rolled dual-phase microalloyed steel sheets with high strength
US5476554A (en) FE-CR-AL alloy foil having high oxidation resistance for a substrate of a catalytic converter and method of manufacturing same
EP0745697B1 (en) Iron-cobalt-nickel alloy and its use for the manufacture of a shadow mask
EP1138796A1 (en) High strength hot rolled steel with high yield strength for use in the car industry
JP3491334B2 (en) Fe-Cr-Al alloy for catalytic converter carrier excellent in oxidation resistance and method for producing alloy foil using the same
EP1354070A2 (en) High-strength isotropic steel, method for making steel plates and resulting plates
EP0748877B1 (en) Process for manufacturing a hot rolled steel sheet with very high elastic limit and steel sheet produced accordingly
JP2006009119A (en) STAINLESS STEEL SHEET SUPERIOR IN POTASSIUM-CORROSION RESISTANCE, MANUFACTURING METHOD THEREFOR, AND CARRIER FOR NOx-OCCLUDING CATALYST
FR2617190A1 (en) NOVEL PALLADIUM ALLOYS CONTAINING TIN, ESPECIALLY USED IN THE GLASS INDUSTRY AND THE USE OF SAID ALLOYS IN THE GLASS INDUSTRY

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

17P Request for examination filed

Effective date: 19960809

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19990319

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

REF Corresponds to:

Ref document number: 186078

Country of ref document: AT

Date of ref document: 19991115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: UGINE S.A.

REF Corresponds to:

Ref document number: 69604852

Country of ref document: DE

Date of ref document: 19991202

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: UGINE S.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000113

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2140043

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19991220

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020218

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20030217

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20030218

Year of fee payment: 8

Ref country code: CH

Payment date: 20030218

Year of fee payment: 8

Ref country code: AT

Payment date: 20030218

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030219

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20030220

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20030221

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20030304

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20030306

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030312

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030313

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20030314

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030318

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030328

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040325

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040325

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040325

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040325

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040326

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

BERE Be: lapsed

Owner name: S.A. *USINOR SACILOR

Effective date: 20040331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041001

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041015

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20040930

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20041001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050325

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040326