EP0735153B1 - Stainless ferritic steel, particularly suitable as catalyst substrate - Google Patents

Stainless ferritic steel, particularly suitable as catalyst substrate Download PDF

Info

Publication number
EP0735153B1
EP0735153B1 EP96400630A EP96400630A EP0735153B1 EP 0735153 B1 EP0735153 B1 EP 0735153B1 EP 96400630 A EP96400630 A EP 96400630A EP 96400630 A EP96400630 A EP 96400630A EP 0735153 B1 EP0735153 B1 EP 0735153B1
Authority
EP
European Patent Office
Prior art keywords
niobium
zirconium
content
less
steel according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96400630A
Other languages
German (de)
French (fr)
Other versions
EP0735153A1 (en
Inventor
Jean-Marc Herbelin
Marc Mantel
Jean-Yves Cogne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ugine SA
Original Assignee
USINOR Sacilor SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by USINOR Sacilor SA filed Critical USINOR Sacilor SA
Publication of EP0735153A1 publication Critical patent/EP0735153A1/en
Application granted granted Critical
Publication of EP0735153B1 publication Critical patent/EP0735153B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum

Definitions

  • the present invention relates to a ferritic stainless steel, resistant to oxidation at high temperature, usable, especially for catalyst support structures, such as, for example, structures contained in motor vehicle exhausts.
  • the catalyst support structures made with strips of iron-chromium-aluminum steel are intended to resist oxidation and deformations at high temperature.
  • the steels used must be capable of being produced as part of a industrial production, for example, in continuous casting followed by transformations to obtain wide steel strips and low thickness for making strips.
  • German patent C 632 657 an alloy of iron, chromium, FeCrAl aluminum with up to 30% chromium, from 0.1 to 11.5% of aluminum, 0.05 to 2% of rare earths such as, for example, cerium, and may contain zirconium and titanium.
  • European patent EP 0429 793 is also known, which describes FeCrAl alloys containing rare earths, active elements, such as cerium, lanthanum, praseodymium and stabilizers, titanium or niobium.
  • active elements such as cerium, lanthanum, praseodymium and stabilizers, titanium or niobium.
  • the bill active elements at high contents is proposed.
  • a minimum content in phosphorus is recommended in order to improve the hot fragility of alloys with regard to the high contents of active elements.
  • the contents phosphorus levels thus specified are lower than those usually encountered during the development of stainless steels.
  • stabilizer such as titanium is carried out to improve the hot brittleness of alloys. Oxidation tests, which have been carried out, are carried out at a temperature of 1170 ° C.
  • US patent 4,414,023 also describes FeCrAl alloys containing the active elements cerium, lanthanum, praseodymium and stabilizers such as zirconium and / or niobium. Addition of active elements is carried out to prevent chipping of the oxide layer.
  • the range of zirconium contents is wide and does not allow not meet the dimensional stability conditions of the supports catalyst.
  • the Niobium contents do not allow a resistance optimum in oxidation.
  • Patent application EP 0 480 461 is also known. relating to a ferritic steel containing aluminum and having a good resistance to oxidation, patent application in which it is specified that the presence of niobium improves the creep resistance of the supports. This behavior is defined according to the nitrogen contents, which is not justified due to the presence of aluminum and / or zirconium, because it forms compounds of aluminum nitride and zirconium so preferable to niobium nitride.
  • the object of the invention is to present a ferritic stainless steel, usable in particular for support structures of catalysts subjected to a temperature variation cycle, and having improved behavior in oxidation and deformation in elongation at high temperature.
  • the active elements are chosen from cerium, lanthanum, neodymium, praseodymium, taken alone or in combination, and contained in a compound called "mischmetal".
  • the sum of the zirconium and niobium contents is less than 0.300%.
  • the sum of the carbon and nitrogen contents is less than 0.04%.
  • Silicon and manganese contents satisfy relationship If / min ⁇ 1.
  • the minimum aluminum content satisfies the following condition: 4% + 6 Zr% - 91 (C% / 12 + N% / 14).
  • the minimum aluminum content satisfies the following condition: 4% + 5 Nb% - 93 (C% / 12 + N% / 14).
  • the minimum aluminum content satisfies the following condition: 4% + 5 (Zr + Nb) - 92 (C% / 12 + N% / 14).
  • the content of active elements satisfies the following relationship: 0.03 - 0.2 (Zr% - 91 N% / 14) ⁇ (Ce + La + Nd + Pr + Y) ⁇ 0.08 - 0.2 (Zr% - 91 N% / 14)
  • the content of active elements satisfies the following relationship: 0.03 - 0.2 (Zr% - 91 N% / 14) - 0.025 (Nb%) ⁇ (Ce + La + Nd + Pr + Y) ⁇ 0.08 - 0.2 (Zr% - 91 N% / 14) - 0.025 (Nb%).
  • Figure 1 group of resilience characteristics by measuring the transition temperature for steels with different grades in selected stabilizers.
  • Figure 2 presents a series of evolution characteristics of oxidation kinetics constants as a function of temperature for different stabilizers.
  • Figure 3 shows a series of elongation curves as a function the content of active elements.
  • Figure 4 shows a series of features in elongation for different zirconium and niobium contents in compositions having a defined content of active elements.
  • the ferritic stainless steel, according to the invention, resistant to oxidation at high temperature, has the following weight composition: Cr: (12-25)%; Al: (4-7)%; C ⁇ 0.03% N ⁇ 0.02%; S ⁇ 0.002%; If ⁇ 0.6%; Mn ⁇ 0.4%; active elements chosen from cerium, lanthanum, praseodymium, neodymium, ytrium, taken alone or in combination at a content ⁇ 0.08%, stabilizers chosen from zirconium, niobium, taken alone or in combination , at a content ⁇ 0.300%.
  • the active elements are chosen from cerium, lanthanum, praseodymium, neodymium, taken alone or in combination, these elements being the constituents of the mixture called "mischmetal”.
  • the support structure must have good aptitude for hot and cold transformation and also satisfy the elongation deformation characteristics during oxidation.
  • it has been demonstrated precise conditions concerning the contents of stabilizing elements and active elements which must be respected for the production of steel in the form of rolled strips and for an improvement of the resistance to oxidation and elongation of said steel. From the point of view of hot processing and transformation, the beneficial effect of the addition of stabilizers which allows the reduction of the ductile / brittle transition temperatures has been highlighted. However, the excess of stabilizer is harmful. According to the invention, it is highlighted that it is imperative to control the stabilizer contents so as to comply with the following conditions:
  • niobium 93 ⁇ 0.8. (C% / 12) - 0.1 ⁇ Nb ⁇ 93 ⁇ 0.8 (C% / 12) + 0.15 and Nb ⁇ 0.3%.
  • the coefficient 0.8 is a factor imposed by the analysis of the stochiometry of the niobium-based compounds precipitated in the matrix.
  • Figure 1 group of resilience characteristics measured at average transition temperatures of steels with different contents of stabilizers chosen from zirconium and niobium.
  • the oxidation test consists in measuring a mass gain ⁇ M reported to an area unit S.
  • This figure also shows that the nature of the stabilizers modifies these kinetics and that, surprisingly, they can have a beneficial or harmful influence depending on the temperature of use.
  • titanium which has the best protective character against oxidation.
  • the addition of titanium exerts a detrimental influence compared to the addition of niobium or zirconium.
  • the extreme temperature of use of metallic catalyst support structures is generally below 1150 ° C. We see from this figure, and taking into account the temperatures of use of the catalyst support structures, that the best stabilizers are niobium and / or zirconium. The addition of titanium does not give good results in the envisaged temperature range.
  • Al% minimum 4% + 20 Ti% - 48 (C% / 12 + N% / 14).
  • the formation of the oxide layer during the oxidation treatment generates constraints. These constraints are not negligible and can deform the catalyst support structure.
  • the support structure of catalyst follows variations in elongation as a function of time, at a given temperature. These variations are manifested by a strong lengthening for a relatively short period of time and then, by stability of the elongation over time corresponding to a plateau and finally, by strong elongations for a period of time relatively long.
  • the strong elongations occurring during a long period are linked to the formation of chromium oxide diffusing in the alumina layer. This type of elongation has been identified, it is linked to the depletion of the aluminum content of the strip composition.
  • FIG. 3 shows elongations at the bearing as a function of the content of active elements.
  • the elongation at the bearing depends, in this example, the content of active elements Ce, La, Pr, Nd entering the composition of "mischmetal” but also, and surprisingly, of the stabilizing element used.
  • the "mischmetal” content depends the zirconium content, because it is an active element from the point of view from oxidation. So the best deformation behaviors by elongation are obtained for "mischmetal" contents included between 0.02 and 0.04% for zirconium stabilization and between 0.04 and 0.075% for niobium stabilized steel.
  • the addition of these elements, in trapping sulfur, improves the resistance to oxidation of steels. These additions must be controlled to optimize the properties of the steel.
  • the simultaneous addition of Zr and Nb gives an opportunity to increase the range of content of active elements, content between 0.02 and 0.075%.
  • FIG. 4 presents a diagram of behavior in deformation by elongation, at the level, for different contents of zirconium and niobium, the contents of zirconium and niobium being adjusted as a function of the contents of carbon and nitrogen.
  • the addition of zirconium has higher values.
  • the origin of this phenonene is linked to the reactivity of the oxygen stabilizers. The reactivity of these stabilizers is greatly limited when these are added in a controlled amount in relation to the proportions of carbon and nitrogen.
  • the carbon content must be less than 0.03%
  • nitrogen content must be less than 0.02%
  • the carbon and nitrogen content must be preferably less than 0.04%.
  • the nitrogen contents it is preferable to limit the nitrogen contents to less than 0.01% so as to reduce the zirconium contents, for improve the characteristics of steel in elongation.
  • Zirconium and / or nobium are elements of addition volunteers planned to sequester carbon and / or nitrogen and thus improve the hot ductility of the grade. These elements, called stabilizers, must be controlled taking into account the production process envisaged in casting keep on going. In fact, insufficient stabilization would lead to a excessive embrittlement of slabs, incompatible with production industrial. Significant stabilization would lead to a deterioration of the resistance to oxidation of steel in the form of strip.
  • niobium can allow the elimination of solder tracks, by example based on nickel and possible contamination due to metal of the solder.
  • niobium can modify the kinetics of oxidation and must not be added in a proportion greater than 0.3%.
  • the product must withstand several hundred hours at very high temperature, that is, up to 1100 ° C.
  • the alloy must contain at least 4% aluminum. This content is necessary to form a protective oxide layer on the surface and to prevent premature depletion of the aluminum content in the strip.
  • the aluminum content must be less than 7% in order to avoid the problems of transformation of the shade following an excessive degradation of the ductility when hot.
  • aluminum nitrides are preferably formed rather than niobium nitrides.
  • Phosphorus and sulfur are unavoidable impurities entering in the manufacture of stainless steels.
  • Phosphorus is usually found in steels stainless to a content of about 0.02%. This element plays a role neutral or slightly beneficial on the product's resistance to oxidation trapping excess cerium in the form of phosphides. Sulfur is also encountered in stainless steels with a content of approximately 0.005%. Sulfur has a detrimental influence on the behavior oxidation, it reduces the adhesion of the oxide to the strip and promotes chipping of this layer. For this reason, sulfur must be maintained at the lowest possible contents: less than 0.002%.
  • the chromium content of the steel must be sufficient, i.e. greater than 12%, to present the good properties with respect to the corrosion and promote the formation and behavior of the oxide layer at high temperature.
  • the chromium content should also not be too high, i.e. less than 25%, to avoid processing problems steel.
  • the chromium content is included between 14 and 22%, which corresponds to an interval in concentration in chromium optimized for corrosion and steel processing.
  • the copper introduced into the composition is a residual element that found in the products used at the base in the development of steel.
  • the product resulting from the invention is intended for the manufacture of metal support structures for calalyzers, from strips including the thickness is less than 200 ⁇ m, and more commonly equal to 50 ⁇ m +/- 10 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

A ferritic steel alloy, used as a catalyst support in a car exhaust filter, comprises 12-25% Cr, 4-7% Al, less than 0.08% in total of one or more of Ce, La, Nd, Pr and Y, pref. less than 0.3% in total of Zr and/or Nb and less than the following of other constituents 0.03% C, 0.02% N, 0.22% Ni, 0.002% S, 0.6% Si and 0.4% Mn. The actual amounts of Zr and/or Nb are defined mathematically in terms of the C and N levels.

Description

La présente invention concerne un acier inoxydable ferritique, résistant à l'oxydation à haute température, utilisable, notamment pour des structures supports de catalyseur, comme, par exemple, des structures contenues dans des échappements de véhicules automobiles.The present invention relates to a ferritic stainless steel, resistant to oxidation at high temperature, usable, especially for catalyst support structures, such as, for example, structures contained in motor vehicle exhausts.

Les structures supports de catalyseur réalisées avec des feuillards en acier fer-chrome-aluminium sont destinées à résister à l'oxydation et aux déformations à haute température.The catalyst support structures made with strips of iron-chromium-aluminum steel are intended to resist oxidation and deformations at high temperature.

Les aciers utilisés doivent pouvoir être élaborés dans le cadre d'une production industrielle, par exemple, en coulée continue suivie de transformations pour obtenir des bandes d'acier de grande largeur et de faible épaisseur pour la réalisation de feuillards.The steels used must be capable of being produced as part of a industrial production, for example, in continuous casting followed by transformations to obtain wide steel strips and low thickness for making strips.

Il est connu du brevet allemand C 632 657 un alliage fer, chrome, aluminium FeCrAl possédant jusqu'à 30 % de chrome, de 0,1 à 11,5 % d'aluminium, de 0,05 à 2 % de terres rares comme, par exemple, le cérium, et pouvant contenir du zirconium et du titane.It is known from German patent C 632 657 an alloy of iron, chromium, FeCrAl aluminum with up to 30% chromium, from 0.1 to 11.5% of aluminum, 0.05 to 2% of rare earths such as, for example, cerium, and may contain zirconium and titanium.

Il est connu aussi le brevet européen EP 0429 793 qui décrit des alliages FeCrAl contenant des terres rares, éléments actifs, tels que cerium, lanthane, praséodyme et des stabilisants, le titane ou le niobium. L'addition d'éléments actifs à des teneurs élevées est proposée. Une teneur minimale en phosphore est recommandée afin d'améliorer la fragilité à chaud des alliages au regard des fortes teneurs en éléments actifs. Les teneurs minimales en phosphore ainsi précisées sont inférieures à celles rencontrées habituellement lors de l'élaboration des aciers inoxydables. L'addition de stabilisant comme le titane est effectuée pour améliorer la fragilité à chaud des alliages. Les tests d'oxydation, qui ont été effectués, sont réalisés à la température de 1170°C.European patent EP 0429 793 is also known, which describes FeCrAl alloys containing rare earths, active elements, such as cerium, lanthanum, praseodymium and stabilizers, titanium or niobium. The bill active elements at high contents is proposed. A minimum content in phosphorus is recommended in order to improve the hot fragility of alloys with regard to the high contents of active elements. The contents phosphorus levels thus specified are lower than those usually encountered during the development of stainless steels. The addition of stabilizer such as titanium is carried out to improve the hot brittleness of alloys. Oxidation tests, which have been carried out, are carried out at a temperature of 1170 ° C.

Le brevet US 4.414.023 décrit également des alliages FeCrAl contenant les éléments actifs cerium, lanthane, praséodyme et des stabilisants tels que zirconium et/ou niobium. L'addition d'éléments actifs est effectuée pour éviter l'écaillage de la couche d'oxyde.US patent 4,414,023 also describes FeCrAl alloys containing the active elements cerium, lanthanum, praseodymium and stabilizers such as zirconium and / or niobium. Addition of active elements is carried out to prevent chipping of the oxide layer.

L'addition de zirconium en tant que stabilisant sous la condition Zr ≤ 91 (% C/12 + % N/14 + 0,03) est effectuée pour piéger le carbone et l'azote sous forme de carbures et de nitrures.Addition of zirconium as a stabilizer under the condition Zr ≤ 91 (% C / 12 +% N / 14 + 0.03) is performed to trap the carbon and nitrogen in the form of carbides and nitrides.

L'addition de niobium sous la condition Nb ≤ 93 (% C12 + % N/14 + 0,0075) est effectuée pour améliorer la tenue au fluage. The addition of niobium under the condition Nb ≤ 93 (% C12 +% N / 14 + 0.0075) is performed to improve the creep resistance.

Ce brevet mentionne des teneurs en stabilisants très importantes et revendique la stabilisation au Zr comme étant préférable pour la tenue à l'oxydation. Il indique également que l'addition de plusieurs stabilisants n'est pas conseillée car elle conduit à un comportement similaire à celui des alliages avec un seul stabilisant ayant la plus mauvaise tenue à l'oxydation.This patent mentions very high stabilizer contents and claims stabilization with Zr as being preferable for resistance to oxidation. It also indicates that the addition of several stabilizers is not recommended because it leads to behavior similar to that alloys with a single stabilizer having the worst resistance to oxidation.

De plus, le domaine des teneurs en zirconium est large et ne permet pas de satisfaire aux conditions de stabilité dimensionnelle des supports de catalyseur. De même, les teneurs en Niobium ne permettent pas une tenue optimum en oxydation.In addition, the range of zirconium contents is wide and does not allow not meet the dimensional stability conditions of the supports catalyst. Similarly, the Niobium contents do not allow a resistance optimum in oxidation.

Il est également connu la demande de brevet EP 0 480 461 concernant un acier ferritique contenant de l'aluminium et ayant une bonne résistance à l'oxydation, demande de brevet dans laquelle, il est précisé que la présence de niobium améliore la tenue au fluage des supports. Cette tenue est définie en fonction des teneurs en azote, ce qui ne se justifie pas du fait de la présence d'aluminium et/ou de zirconium, parce qu'il se forme des composés de nitrure d'aluminium et de zirconium de manière préférentielle au nitrure de niobium.Patent application EP 0 480 461 is also known. relating to a ferritic steel containing aluminum and having a good resistance to oxidation, patent application in which it is specified that the presence of niobium improves the creep resistance of the supports. This behavior is defined according to the nitrogen contents, which is not justified due to the presence of aluminum and / or zirconium, because it forms compounds of aluminum nitride and zirconium so preferable to niobium nitride.

L'invention a pour but de présenter un acier inoxydable ferritique, utilisable notamment pour des structures supports de catalyseurs soumis à un cycle de variation en température, et ayant un comportement amélioré en oxydation et en déformation à l'allongement à haute température.The object of the invention is to present a ferritic stainless steel, usable in particular for support structures of catalysts subjected to a temperature variation cycle, and having improved behavior in oxidation and deformation in elongation at high temperature.

L'invention a pour objet un acier inoxydable comprenant dans sa composition pondérale :

  • de 12 à 25 % de chrome
  • de 4 à 7 % d'aluminium
  • moins de 0,03 % de carbone
  • moins de 0,02 % d'azote
  • moins de 0,22 % de nickel
  • moins de 0,002 % de soufre
  • moins de 0,6 % de silicium
  • moins de 0,4 % de manganèse,
  • des éléments actifs choisis parmi le cerium, le lanthane, le néodyme, le praséodyme, l'ytrium, pris seuls ou en combinaison, à une teneur inférieure à 0,08 %, au moins un élément stabilisant choisi parmi le zirconium et/ou le niobium, le reste étant constitué par le fer et les impuretés inévitables,
       les teneurs en zirconium et/ou niobium satisfaisant aux conditions suivantes :
       pour le zirconium, 91 (C %/12 + N %/14) - 0,1 ≤ Zr ≤ 91 (C %/12 + N %/14) + 0,1    pour le niobium, 93×0,8. (C %/12 ) - 0,1 ≤ Nb ≤ 93×0,8 (C %/12) + 0,15 et Nb < 0,3 %.    pour le zirconium et le niobium, 91 (N %/14) - 0,05 ≤ Zr ≤ 91 (N %/14) + 0,05, et 93×0,8 (C %/12) - 0,05 ≤ Nb ≤ 93×0,8 (C %/12) + 0,10. The subject of the invention is a stainless steel comprising in its weight composition:
  • 12 to 25% chromium
  • 4 to 7% aluminum
  • less than 0.03% carbon
  • less than 0.02% nitrogen
  • less than 0.22% nickel
  • less than 0.002% sulfur
  • less than 0.6% silicon
  • less than 0.4% manganese,
  • active elements chosen from cerium, lanthanum, neodymium, praseodymium, ytrium, taken alone or in combination, at a content of less than 0.08%, at least one stabilizing element chosen from zirconium and / or niobium, the rest being iron and unavoidable impurities,
    the zirconium and / or niobium contents satisfying the following conditions:
    for zirconium , 91 (C% / 12 + N% / 14) - 0.1 ≤ Zr ≤ 91 (C% / 12 + N% / 14) + 0.1 for niobium , 93 × 0.8. (C% / 12) - 0.1 ≤ Nb ≤ 93 × 0.8 (C% / 12) + 0.15 and Nb <0.3%. for zirconium and niobium , 91 (N% / 14) - 0.05 ≤ Zr ≤ 91 (N% / 14) + 0.05, and 93 × 0.8 (C% / 12) - 0.05 ≤ Nb ≤ 93 × 0.8 (C% / 12) + 0.10.

    Les autres caractéristiques de l'invention sont :The other characteristics of the invention are:

    les éléments actifs sont choisis parmi le cerium, le lanthane, le néodyme, le praséodyme, pris seuls ou en combinaison, et contenus dans un composé dit "mischmétal".the active elements are chosen from cerium, lanthanum, neodymium, praseodymium, taken alone or in combination, and contained in a compound called "mischmetal".

    La somme des teneurs en zirconium et niobium est inférieure à 0,300 %.The sum of the zirconium and niobium contents is less than 0.300%.

    La somme des teneurs en carbone et azote est inférieure à 0,04 %.The sum of the carbon and nitrogen contents is less than 0.04%.

    Les teneurs en silicium et en manganèse satisfont à la relation Si/mn ≥1.Silicon and manganese contents satisfy relationship If / min ≥1.

    Pour l'élément stabilisant zirconium, utilisé seul dans la composition, la teneur minimale en aluminium satisfait à la condition suivante : 4 % + 6 Zr % - 91 (C % /12 + N %/14). For the zirconium stabilizing element, used alone in the composition, the minimum aluminum content satisfies the following condition: 4% + 6 Zr% - 91 (C% / 12 + N% / 14).

    Pour l'élément stabilisant niobium, utilisé seul dans la composition, la teneur minimale en aluminium satisfait à la condition suivante : 4 % + 5 Nb % - 93 (C %/12 + N %/14). For the niobium stabilizing element, used alone in the composition, the minimum aluminum content satisfies the following condition: 4% + 5 Nb% - 93 (C% / 12 + N% / 14).

    Pour les éléments stabilisants zirconium et niobium combinés, la teneur minimale en aluminium satisfait à la condition suivante : 4 % + 5 (Zr + Nb) - 92 (C %/12 + N %/14). For combined zirconium and niobium stabilizers, the minimum aluminum content satisfies the following condition: 4% + 5 (Zr + Nb) - 92 (C% / 12 + N% / 14).

    Lorsque le zirconium est introduit seul dans la composition, la teneur en éléments actifs satisfait à la relation suivante : 0,03 - 0,2(Zr% - 91 N%/14) ≤ (Ce + La + Nd + Pr + Y) ≤ 0,08 - 0,2(Zr% - 91 N%/14) When zirconium is introduced alone into the composition, the content of active elements satisfies the following relationship: 0.03 - 0.2 (Zr% - 91 N% / 14) ≤ (Ce + La + Nd + Pr + Y) ≤ 0.08 - 0.2 (Zr% - 91 N% / 14)

    Lorsque le niobium est introduit seul dans la composition, la teneur en éléments actifs satisfait à la relation suivante : 0,03 - 0,025(Nb%) ≤ (Ce + La + Nd +Pr + Y) ≤ 0,08 - 0,025(Nb%) When niobium is introduced alone into the composition, the content of active elements satisfies the following relationship: 0.03 - 0.025 (Nb%) ≤ (Ce + La + Nd + Pr + Y) ≤ 0.08 - 0.025 (Nb%)

    Lorsque le zirconium et le niobium sont introduits dans la composition en combinaison, la teneur en éléments actifs satisfait à la relation suivante : 0,03 - 0,2(Zr% - 91 N%/14) - 0,025(Nb%) ≤ (Ce + La + Nd + Pr + Y) ≤ 0,08 - 0,2(Zr% - 91 N%/14) - 0,025(Nb%). When zirconium and niobium are introduced into the composition in combination, the content of active elements satisfies the following relationship: 0.03 - 0.2 (Zr% - 91 N% / 14) - 0.025 (Nb%) ≤ (Ce + La + Nd + Pr + Y) ≤ 0.08 - 0.2 (Zr% - 91 N% / 14) - 0.025 (Nb%).

    La description qui suit et les dessins annexés, le tout donné à titre d'exemple non limitatif, fera bien comprendre l'invention.The following description and the attached drawings, all given as non-limiting example, will make the invention well understood.

    La figure 1 groupe des caractéristiques de résilience par la mesure de la température de transition pour des aciers possédant différentes teneurs en stabilisants choisis.Figure 1 group of resilience characteristics by measuring the transition temperature for steels with different grades in selected stabilizers.

    La figure 2 présente une série de caractéristiques d'évolution des constantes de cinétique d'oxydation en fonction de la température pour différents stabilisants.Figure 2 presents a series of evolution characteristics of oxidation kinetics constants as a function of temperature for different stabilizers.

    La figure 3 présente une série de courbes d'allongement en fonction de la teneur en éléments actifs.Figure 3 shows a series of elongation curves as a function the content of active elements.

    La figure 4 présente une suite de caractéristiques en allongement pour différentes teneurs en zirconium et en niobium dans des compositions ayant une teneur en éléments actifs définie.Figure 4 shows a series of features in elongation for different zirconium and niobium contents in compositions having a defined content of active elements.

    L'acier inoxydable ferritique, selon l'invention, résistant à l'oxydation à haute température, a la composition pondérale suivante :
    Cr : (12-25) % ; Al : (4-7) % ; C ≤ 0,03% N ≤ 0,02 % ; S ≤ 0,002 % ; Si ≤ 0,6 % ; Mn ≤ 0,4 % ; des éléments actifs choisis parmi le cerium, le lanthane, le praséodyme, le néodyme, l'ytrium, pris seul ou en combinaison à une teneur ≤ 0,08 %, des stabilisants choisi parmi le zirconium , le niobium, pris seuls ou en combinaison, à une teneur ≤ 0,300 %.
    The ferritic stainless steel, according to the invention, resistant to oxidation at high temperature, has the following weight composition:
    Cr: (12-25)%; Al: (4-7)%; C ≤ 0.03% N ≤ 0.02%; S ≤ 0.002%; If ≤ 0.6%; Mn ≤ 0.4%; active elements chosen from cerium, lanthanum, praseodymium, neodymium, ytrium, taken alone or in combination at a content ≤ 0.08%, stabilizers chosen from zirconium, niobium, taken alone or in combination , at a content ≤ 0.300%.

    De préférence, les éléments actifs sont choisis parmi le cerium, le lanthane, le praséodyme, le néodyme, pris seuls ou en combinaison, ces éléments étant les constituants du mélange appelé "mischmétal".Preferably, the active elements are chosen from cerium, lanthanum, praseodymium, neodymium, taken alone or in combination, these elements being the constituents of the mixture called "mischmetal".

    Le lanthane peut être remplacé par l'ytrium qui possède des propriétés chimiques proches.Lanthanum can be replaced by ytrium which has close chemical properties.

    L'acier destiné, notamment à la fabrication de structure support de catalyseur réalisée avec un feuillard dont l'épaisseur est généralement inférieure à 200µm, doit posséder une tenue à l'oxydation à des températures généralement inférieures à 1 150°C pendant plusieurs centaines d'heures. La structure support doit avoir une bonne aptitude à la transformation à chaud et à froid et également satisfaire aux caractéristiques de déformation à l'allongement durant l'oxydation.
    Selon l'invention, il a été mis en évidence des conditions précises concernant les teneurs en éléments stabilisants et en éléments actifs devant être respectées pour l'élaboration de l'acier sous forme de bandes laminées et pour une amélioration de la résistance à l'oxydation et à allongement dudit acier.
    Du point de vue de l'élaboration et de la transformation à chaud, l'effet bénéfique de l'addition de stabilisants qui permet la diminution des températures de transition ductile/fragile a été mis en évidence. Cependant l'excès de stabilisant est néfaste. Selon l'invention, il est mis en évidence qu'il est impératif de contrôler les teneurs en stabilisants de manière à respecter les conditions suivantes :
    The steel intended, in particular for the manufacture of a catalyst support structure produced with a strip whose thickness is generally less than 200 μm, must have an oxidation resistance at temperatures generally below 1150 ° C. for several hundred d 'hours. The support structure must have good aptitude for hot and cold transformation and also satisfy the elongation deformation characteristics during oxidation.
    According to the invention, it has been demonstrated precise conditions concerning the contents of stabilizing elements and active elements which must be respected for the production of steel in the form of rolled strips and for an improvement of the resistance to oxidation and elongation of said steel.
    From the point of view of hot processing and transformation, the beneficial effect of the addition of stabilizers which allows the reduction of the ductile / brittle transition temperatures has been highlighted. However, the excess of stabilizer is harmful. According to the invention, it is highlighted that it is imperative to control the stabilizer contents so as to comply with the following conditions:

    Pour un acier, selon l'invention, stabilisé avec le zirconium : 91 (C %/12 + N %/14) - 0,1 ≤ Zr ≤ 91 (C %/12 + N %/14) + 0,1 For a steel, according to the invention, stabilized with zirconium: 91 (C% / 12 + N% / 14) - 0.1 ≤ Zr ≤ 91 (C% / 12 + N% / 14) + 0.1

    Pour un acier, selon l'invention, stabilisé avec le niobium : 93×0,8. (C %/12 ) - 0,1 ≤ Nb ≤ 93×0,8 (C %/12) + 0,15 et Nb < 0,3 %. For a steel, according to the invention, stabilized with niobium: 93 × 0.8. (C% / 12) - 0.1 ≤ Nb ≤ 93 × 0.8 (C% / 12) + 0.15 and Nb <0.3%.

    Pour un acier, selon l'invention, stabilisé avec du zirconium et du niobium : 91 (N %/14) - 0,05 ≤ Zr ≤ 91 (N %/14) + 0,05, et 93×0,8 (C %/12) - 0,05 ≤ Nb ≤ 93×0,8 (C %/12) + 0,10. For a steel, according to the invention, stabilized with zirconium and niobium: 91 (N% / 14) - 0.05 ≤ Zr ≤ 91 (N% / 14) + 0.05, and 93 × 0.8 (C% / 12) - 0.05 ≤ Nb ≤ 93 × 0.8 (C% / 12) + 0.10.

    Le coefficient 0,8 est un facteur imposé par l'analyse de la stochiométrie des composés à base de niobium précipités dans la matrice.The coefficient 0.8 is a factor imposed by the analysis of the stochiometry of the niobium-based compounds precipitated in the matrix.

    La figure 1 groupe des caractéristiques de résilience mesurées au moyen des températures de transition d'aciers possédant différentes teneurs en stabilisants choisis parmi le zirconium et le niobium.Figure 1 group of resilience characteristics measured at average transition temperatures of steels with different contents of stabilizers chosen from zirconium and niobium.

    Il est représenté en abscisse :

    • la teneur en zirconium libre ΔZr telle que ΔZr satisfait à la relation suivante: ΔZr % = Zr % - 91(C %/ 12 + N %/ 14),
    • la teneur en niobium libre ΔNb telle que ΔNb satisfait à la relation suivante : ΔNb % = Nb % - 93 × 0,8 (C % / 12 )
    It is represented on the abscissa:
    • the free zirconium content ΔZr such that ΔZr satisfies the following relationship: ΔZr% = Zr% - 91 (C% / 12 + N% / 14),
    • the content of free niobium ΔNb such that ΔNb satisfies the following relationship: ΔNb% = Nb% - 93 × 0.8 (C% / 12)

    On constate qu'un excès, comme un défaut de stabilisant dans la composition de l'acier, est néfaste.It can be seen that an excess, such as a lack of stabilizer in the composition of steel, is harmful.

    Il est donc nécessaire de contrôler les teneurs du zirconium et/ou du niobium de manière à conférer à l'acier des températures de transition ductile/fragile les plus basses possibles. Le contrôle des éléments stabilisants est important, compte tenu du procédé de production en coulée continue. Une stabilisation non contrôlée peut conduire à une fragilisation des brames, incompatible avec une production industrielle.It is therefore necessary to control the contents of zirconium and / or niobium so as to give the steel transition temperatures lowest possible ductile / brittle. Control of the elements stabilizers is important, given the casting production process keep on going. Uncontrolled stabilization can lead to embrittlement slabs, incompatible with industrial production.

    Du point de vue du choix des stabilisants, des aciers contenant dans leur composition du zirconium ou du niobium ou du titane, ont été testés en oxydation à différentes températures choisies entre 900°C et 1 400°C. From the point of view of the choice of stabilizers, steels containing in their composition of zirconium or niobium or titanium, have been tested in oxidation at different temperatures chosen between 900 ° C and 1400 ° C.

    Le test d'oxydation consiste en la mesure d'un gain de masse ΔM rapporté à une unité de surface S.The oxidation test consists in measuring a mass gain ΔM reported to an area unit S.

    Le gain de masse, correspondant à une oxydation, obéit à une loi du type (ΔM / S)2 = Kpt, Kp étant une constante dite de loi parabolique, de type exponentielle, fonction de la température et de l'énergie d'activation de la réaction d'oxydation et t étant la durée du test.The mass gain, corresponding to an oxidation, obeys a law of the type (ΔM / S) 2 = Kp t , Kp being a constant called parabolic law, of exponential type, function of the temperature and the energy of activation of the oxidation reaction and t being the duration of the test.

    Sur la figure 2, sont tracés :

    • les variations de Kp (g2/m4/sec) en fonction de l'inverse de la température absolue 1/T, pour des aciers stabilisés au titane ou au zirconium ou au niobium. Les vitesses de réaction d'oxydation sont exprimées par les valeurs de la constante parabolique Kp. Lorsque ces valeurs sont faibles, les cinétiques sont plus lentes et l'oxydation moins importante. Le bon comportement à l'oxydation est obtenu pour les valeurs de Kp les plus faibles possibles. D'après cette figure, nous pouvons remarquer que quel que soit l'acier, les constantes paraboliques augmentent avec la température. Les cinétiques d'oxydation augmentent donc aussi logiquement avec la température.
    In Figure 2, are plotted:
    • variations in Kp (g 2 / m 4 / sec) as a function of the inverse of the absolute temperature 1 / T, for steels stabilized with titanium or zirconium or niobium. The oxidation reaction rates are expressed by the values of the parabolic constant Kp. When these values are low, the kinetics are slower and the oxidation less important. The good oxidation behavior is obtained for the lowest possible Kp values. From this figure, we can notice that whatever the steel, the parabolic constants increase with temperature. The oxidation kinetics therefore also logically increase with temperature.

    Cette figure montre également que la nature des stabilisants modifie ces cinétiques et que, d'une façon surprenante, ils peuvent avoir une influence bénéfique ou néfaste suivant la température d'utilisation. Ainsi, aux températures supérieures à 1 150 °C, c'est le titane qui possède le meilleur caractère protecteur vis-à-vis de l'oxydation. Aux températures inférieures à 1 150°C, en revanche, l'addition de titane exerce une influence néfaste par rapport à l'addition de niobium ou de zirconium. La température extrême d'utilisation des structures supports métalliques de catalyseur se situe généralement en dessous de 1 150°C. Nous voyons, d'après cette figure, et compte tenu des températures d'utilisation des structures supports de catalyseur, que les meilleurs stabilisants sont le niobium et/ou le zirconium. L'addition de titane ne donne pas de bons résultats dans le domaine de température envisagé. En outre l'addition combinée de zirconium et de niobium ne conduit pas, contrairement à ce qui est mentionné dans l'art antérieur, à une dégradation de la nuance dans les proportions définies selon l'invention. D'après la figure 2, nous pouvons remarquer que l'addition de stabilisants conduit à des écarts importants dans les cinétiques d'oxydation.
    La quantité d'aluminium nécessaire pour résister à l'oxydation à une température et un temps donné dépend donc de la nature des stabilisants. Ainsi pour résister à 1 100°C pendant 400 heures, nous avons établi les quantités d'aluminium minimales nécessaires, en fonction des stabilisants et de la teneur en carbone et azote.
       Pour le zirconium : Al % minimum = 4 % + 6 Zr % - 91 (C %/12 + N %/14).    Pour le niobium : Al % minimum = 4 % + 5 Nb % - 93×0,8 ( C % / 12).
    This figure also shows that the nature of the stabilizers modifies these kinetics and that, surprisingly, they can have a beneficial or harmful influence depending on the temperature of use. Thus, at temperatures above 1150 ° C, it is titanium which has the best protective character against oxidation. At temperatures below 1150 ° C, on the other hand, the addition of titanium exerts a detrimental influence compared to the addition of niobium or zirconium. The extreme temperature of use of metallic catalyst support structures is generally below 1150 ° C. We see from this figure, and taking into account the temperatures of use of the catalyst support structures, that the best stabilizers are niobium and / or zirconium. The addition of titanium does not give good results in the envisaged temperature range. In addition, the combined addition of zirconium and niobium does not, contrary to what is mentioned in the prior art, lead to degradation of the shade in the proportions defined according to the invention. From Figure 2, we can notice that the addition of stabilizers leads to significant differences in the kinetics of oxidation.
    The amount of aluminum necessary to resist oxidation at a given temperature and time therefore depends on the nature of the stabilizers. So to withstand 1,100 ° C for 400 hours, we have established the minimum amounts of aluminum necessary, depending on the stabilizers and the carbon and nitrogen content.
    For zirconium: Al% minimum = 4% + 6 Zr% - 91 (C% / 12 + N% / 14). For niobium: Al% minimum = 4% + 5 Nb% - 93 × 0.8 (C% / 12).

    Nous remarquons que la quantité d'aluminium nécessaire pour la stabilisation avec le titane répond à la relation suivante : Al % minimum = 4 % + 20 Ti % - 48 (C %/12 + N %/14). We note that the quantity of aluminum necessary for stabilization with titanium corresponds to the following relationship: Al% minimum = 4% + 20 Ti% - 48 (C% / 12 + N% / 14).

    Pour l'addition combinée de zirconium et de niobium, nous avons : Al % minimum = 4 % + 6 Zr% + 5 Nb % - 91 (N% / 14 ) - 93×0,8 (C % / 12 ). For the combined addition of zirconium and niobium, we have: Al% minimum = 4% + 6 Zr% + 5 Nb% - 91 (N% / 14) - 93 × 0.8 (C% / 12).

    L'addition de titane conduit à des valeurs minimales en aluminium élevées qui ne sont pas compatibles avec une production industrielle.The addition of titanium leads to minimum aluminum values which are not compatible with industrial production.

    La formation de la couche d'oxyde lors du traitement d'oxydation génère des contraintes. Ces contraintes ne sont pas négligeables et peuvent déformer la structure support de catalyseur. La structure support de catalyseur suit des variations d'allongement en fonction du temps, à une température donnée. Ces variations se manifestent par un fort allongement pendant une période de temps relativement courte, puis, par une stabilité de l'allongement dans le temps correspondant à un palier et enfin, par de forts allongements pendant une période de temps relativement longue. Les forts allongements se manifestant pendant une période longue, sont liés à la formation d'oxyde de chrome diffusant dans la couche d'alumine. Ce type d'allongement a été identifié, il est lié à l'appauvrissement de la teneur en aluminium de la composition du feuillard.The formation of the oxide layer during the oxidation treatment generates constraints. These constraints are not negligible and can deform the catalyst support structure. The support structure of catalyst follows variations in elongation as a function of time, at a given temperature. These variations are manifested by a strong lengthening for a relatively short period of time and then, by stability of the elongation over time corresponding to a plateau and finally, by strong elongations for a period of time relatively long. The strong elongations occurring during a long period, are linked to the formation of chromium oxide diffusing in the alumina layer. This type of elongation has been identified, it is linked to the depletion of the aluminum content of the strip composition.

    La figure 3 présente des allongements au palier en fonction de la teneur en éléments actifs. L'allongement au palier dépend, dans cet exemple, de la teneur en éléments actifs Ce, La, Pr, Nd entrant dans la composition du "mischmetal" mais aussi, et d'une façon étonnante, de l'élément stabilisant utilisé. Par exemple, la teneur en "mischmétal" dépend de la teneur en zirconium, car celui-ci est un élément actif du point de vue de l'oxydation. Ainsi, les meilleurs comportements en déformation par allongement sont obtenus pour des teneurs en "mischmétal" comprises entre 0,02 et 0,04 % pour une stabilisation au zirconium et entre 0,04 et 0,075 % pour l'acier stabilisé au niobium. L'addition de ces éléments, en piégeant le soufre, améliore la tenue à l'oxydation des aciers. Ces additions doivent être contrôlées de manière à optimiser les propriétés de l'acier. L'addition simultanée de Zr et de Nb donne une possibilité d'augmenter l'intervalle de la teneur en éléments actifs, teneur comprise entre 0,02 et 0,075 %.FIG. 3 shows elongations at the bearing as a function of the content of active elements. The elongation at the bearing depends, in this example, the content of active elements Ce, La, Pr, Nd entering the composition of "mischmetal" but also, and surprisingly, of the stabilizing element used. For example, the "mischmetal" content depends the zirconium content, because it is an active element from the point of view from oxidation. So the best deformation behaviors by elongation are obtained for "mischmetal" contents included between 0.02 and 0.04% for zirconium stabilization and between 0.04 and 0.075% for niobium stabilized steel. The addition of these elements, in trapping sulfur, improves the resistance to oxidation of steels. These additions must be controlled to optimize the properties of the steel. The simultaneous addition of Zr and Nb gives an opportunity to increase the range of content of active elements, content between 0.02 and 0.075%.

    La figure 4 présente un diagramme de comportement à la déformation par l'allongement, au palier, pour différentes teneurs en zirconium et en niobium, les teneurs en zirconium et niobium étant réglées en fonction des teneurs en carbone et en azote.
    En ce qui concerne les valeurs d'allongement au palier, les meilleurs résultats sont obtenus avec l'addition de niobium. L'addition de zirconium présente des valeurs plus élevées. L'origine de ce phénonène est liée à la réactivité des stabilisants pour l'oxygène. La réactivité de ces stabilisants est fortement limitée lorsque ceux-ci sont ajoutés en quantité contrôlée en rapport avec les proportions de carbone et d'azote.
    Le tableau l, ci-dessous, donne les différentes compositions des alliages A, B1, B2, B3, C1, C2, représentées sur la figure. A B1 B2 B3 C1 C2 C 0.019 0.009 0.018 0.037 0.014 0.017 Si 0.296 0.319 0.386 0.560 0.350 0.340 Mn 0.285 0.299 0.428 0.295 0.288 0.290 Ni 0.195 0.215 0.150 0.196 0.216 0.214 Cr 20.10 20.19 20.18 22.10 20.03 20.11 Mo 0.033 0.033 0.041 0.018 0.031 0.028 Cu 0.036 0.039 0.035 0.012 0.035 0.043 S < 5 ppm 2 ppm 9 ppm 4 ppm < 10 ppm < 10 ppm P 0.020 0.020 0.020 0.011 0.018 0.021 Al 5.03 4.7 5.18 4.6 5.2 5.4 N 0.007 0.004 0.008 0.012 0.006 0.006 Ce 0.0351 0.0133 0.0177 0.0111 0.0339 0.023 La 0.0151 0.0064 0.0082 0.0050 0.0155 0.010 Zr - 0.083 0.191 0.284 0.006 - Nb - - - - 0.205 0.285 Cette figure montre que l'allongement au palier augmente d'une façon linéaire avec la teneur en stabilisant. Afin d'obtenir les meilleurs comportements à l'allongement, les teneurs en stabilisants, et par voie de conséquence, les teneurs en carbone et en azote doivent être limitées à des teneurs très faibles : (C + N) ≤ 0,04 % Zr et/ou Nb ≤ 0,300 %.
    FIG. 4 presents a diagram of behavior in deformation by elongation, at the level, for different contents of zirconium and niobium, the contents of zirconium and niobium being adjusted as a function of the contents of carbon and nitrogen.
    With regard to the elongation values at the plateau, the best results are obtained with the addition of niobium. The addition of zirconium has higher values. The origin of this phenonene is linked to the reactivity of the oxygen stabilizers. The reactivity of these stabilizers is greatly limited when these are added in a controlled amount in relation to the proportions of carbon and nitrogen.
    Table 1, below, gives the different compositions of the alloys A, B1, B2, B3, C1, C2, shown in the figure. AT B1 B2 B3 C1 C2 VS 0.019 0.009 0.018 0.037 0.014 0.017 Yes 0.296 0.319 0.386 0.560 0.350 0.340 Mn 0.285 0.299 0.428 0.295 0.288 0.290 Or 0.195 0.215 0.150 0.196 0.216 0.214 Cr 20.10 20.19 20.18 22.10 20.03 20.11 Mo 0.033 0.033 0.041 0.018 0.031 0.028 Cu 0.036 0.039 0.035 0.012 0.035 0.043 S <5 ppm 2 ppm 9 ppm 4 ppm <10 ppm <10 ppm P 0.020 0.020 0.020 0.011 0.018 0.021 Al 5.03 4.7 5.18 4.6 5.2 5.4 NOT 0.007 0.004 0.008 0.012 0.006 0.006 This 0.0351 0.0133 0.0177 0.0111 0.0339 0.023 The 0.0151 0.0064 0.0082 0.0050 0.0155 0.010 Zr - 0.083 0.191 0.284 0.006 - Nb - - - - 0.205 0.285 This figure shows that the elongation at the plateau increases linearly with the stabilizer content. In order to obtain the best elongation behaviors, the stabilizer contents, and consequently, the carbon and nitrogen contents must be limited to very low contents: (C + N) ≤ 0.04% Zr and / or Nb ≤ 0.300%.

    L'addition simultanée de Zr et Nb piège le carbone et l'azote pour former essentiellement des composés du type ZrN et NbC. Ce choix réduit considérablement la quantité de stabilisants libres disponibles pour l'oxydation du fait de la stabilité thermodynamique des nitrures ZrN. La formation de NbC se développe pendant le cycle thermique du fait de la plus faible affinité chimique du niobium pour l'oxygène.The simultaneous addition of Zr and Nb traps carbon and nitrogen to essentially form compounds of the ZrN and NbC type. This reduced choice considerably the amount of free stabilizers available for oxidation due to the thermodynamic stability of ZrN nitrides. The NbC formation develops during the thermal cycle due to the lower chemical affinity of niobium for oxygen.

    Le carbone et l'azote sont des éléments inévitables entrant dans la composition des aciers. Ces éléments occasionnent de très fortes diminutions de la ductilité à chaud et entraínent des problèmes de transformation de l'acier.Carbon and nitrogen are inevitable elements entering the composition of steels. These elements cause very strong reductions in hot ductility and lead to problems of steel processing.

    La présence de stabilisants zirconium et/ou niobium, en piégeant le carbone et ou l'azote, améliorent la ductilité à chaud de l'alliage. Cependant des teneurs en carbone et azote élevées aboutissent en contrepartie à des teneurs en stabilisants également très importantes. La précipitation importante de carbures et de nitrures dans l'alliage diminuent la tenue à l'oxydation du produit en fragilisant la couche d'oxyde.The presence of zirconium and / or niobium stabilizers, by trapping the carbon and or nitrogen improve the hot ductility of the alloy. However, high carbon and nitrogen contents result in counterpart to stabilizers contents also very important. The significant precipitation of carbides and nitrides in the alloy decreases resistance to oxidation of the product by weakening the oxide layer.

    Ainsi, afin de limiter la présence de trop nombreux précipités, la teneur en carbone doit être inférieure à 0,03 %, la teneur en azote doit être inférieure à 0,02 % et la teneur en carbone et en azote doit être de préférence inférieure à 0,04 %.Thus, in order to limit the presence of too many precipitates, the carbon content must be less than 0.03%, nitrogen content must be less than 0.02% and the carbon and nitrogen content must be preferably less than 0.04%.

    Selon l'invention, il est préférable de limiter les teneurs en azote à moins de 0,01% de façon à réduire les teneurs en zirconium, pour améliorer les caractéristiques de l'acier en allongement.According to the invention, it is preferable to limit the nitrogen contents to less than 0.01% so as to reduce the zirconium contents, for improve the characteristics of steel in elongation.

    Le zirconium et/ou le nobium sont des éléments d'addition volontaires prévus pour piéger le carbone et/ou l'azote et améliorer ainsi la ductilité à chaud de la nuance. Ces éléments, dits stabilisants, doivent être contrôlés compte tenu du procédé de production envisagé en coulée continue. En effet, une stabilisation insuffisante conduirait à une fragilisation excessive des brames, incompatible avec la production industrielle. Une stabilisation importante conduirait à une dégradation de la tenue à l'oxydation de l'acier sous forme de feuillard.Zirconium and / or nobium are elements of addition volunteers planned to sequester carbon and / or nitrogen and thus improve the hot ductility of the grade. These elements, called stabilizers, must be controlled taking into account the production process envisaged in casting keep on going. In fact, insufficient stabilization would lead to a excessive embrittlement of slabs, incompatible with production industrial. Significant stabilization would lead to a deterioration of the resistance to oxidation of steel in the form of strip.

    L'addition combinée des éléments stabilisants zirconium et niobium permet à la fois une bonne tenue à l'oxydation et une bonne cohésion des supports. En effet, outre les propriétés du niobium en tant que stabilisant, il permet un collage entre les feuilles enroulées en spirale des supports. Ainsi, le niobium peut permettre la suppression des pistes de brasure, par exemple à base de nickel et une éventuelle contamination due au métal d'apport de la brasure.The combined addition of zirconium and niobium stabilizers allows both good resistance to oxidation and good cohesion of supports. Indeed, in addition to the properties of niobium as a stabilizer, it allows bonding between the spirally wound sheets of the supports. Thus, niobium can allow the elimination of solder tracks, by example based on nickel and possible contamination due to metal of the solder.

    Toutefois, le niobium peut modifier les cinétiques d'oxydation et ne doit pas être additionné dans une proportion supérieure à 0,3%.
    Le produit doit résister plusieurs centaines d'heures à très haute température, c'est-à-dire, jusqu'à 1 100°C. Pour satisfaire à cette condition, l'alliage doit contenir au moins 4 % d'aluminium. Cette teneur est nécessaire pour former une couche d'oxyde protectrice en surface et éviter l'appauvrissement prématuré de la teneur en aluminium dans le feuillard. La teneur en aluminium doit être inférieure à 7 % afin d'éviter les problèmes de transformation de la nuance suite à une dégradation trop importante de la ductilité à chaud.
    Pour des alliages contenant ces teneurs en aluminium, il se forme préférentiellement des nitrures d'aluminium plutôt que des nitrures de niobium.
    However, niobium can modify the kinetics of oxidation and must not be added in a proportion greater than 0.3%.
    The product must withstand several hundred hours at very high temperature, that is, up to 1100 ° C. To meet this condition, the alloy must contain at least 4% aluminum. This content is necessary to form a protective oxide layer on the surface and to prevent premature depletion of the aluminum content in the strip. The aluminum content must be less than 7% in order to avoid the problems of transformation of the shade following an excessive degradation of the ductility when hot.
    For alloys containing these aluminum contents, aluminum nitrides are preferably formed rather than niobium nitrides.

    Le silicium et le manganèse sont des éléments très oxydables et jouent également un rôle non négligeable sur le comportement à l'allongement. Ces deux éléments, sous l'influence d'un traitement à température élevée, ont tendance à migrer à la surface du métal. Il existe alors deux possibilités :

    • ces éléments restent à la surface et éventuellement s'oxydent si l'activité chimique de l'élément est suffisante, c'est, plus particulièrement, le cas du silicium. Dans le cas d'aciers contenant beaucoup d'aluminium, l'oxydation du silicium est impossible. Cet élément reste en surface et participe efficacement à la protection en exerçant le rôle de barrière à la diffusion d'autres éléments.
    • ces éléments migrent vers la surface et se subliment. C'est, plus particulièrement, le cas du manganèse, qui se trouve en grande quantité sur les parois des fours lors des traitements sous vide. Ce phénomène est néfaste du point de vue déformation à l'allongement car l'évaporation du manganèse libère la surface du métal et provoque l'oxydation des éléments ayant une grande affinité chimique pour l'oxygène.
    Pour ces deux raisons, il est important pour conserver de bonnes propriétés en résistance à l'oxydation de maintenir le rapport Si/Mn
    Figure 00100001
    1.Silicon and manganese are highly oxidizable elements and also play a non-negligible role in elongation behavior. These two elements, under the influence of a treatment at high temperature, tend to migrate to the surface of the metal. There are then two possibilities:
    • these elements remain on the surface and possibly oxidize if the chemical activity of the element is sufficient, this is, more particularly, the case of silicon. In the case of steels containing a lot of aluminum, oxidation of silicon is impossible. This element remains on the surface and participates effectively in protection by exercising the role of barrier to the diffusion of other elements.
    • these elements migrate to the surface and sublimate. This is, more particularly, the case of manganese, which is found in large quantities on the walls of ovens during vacuum treatments. This phenomenon is harmful from the point of view of elongation deformation because the evaporation of manganese frees the surface of the metal and causes the oxidation of the elements having a great chemical affinity for oxygen.
    For these two reasons, it is important to maintain good oxidation resistance properties to maintain the Si / Mn ratio
    Figure 00100001
    1.

    Concernant les autres éléments contenus dans la composition de l'acier selon l'invention : Concerning the other elements contained in the composition of the steel according to the invention:

    Le phosphore et le soufre sont des impuretés inévitables entrant dans la fabrication des aciers inoxydables.Phosphorus and sulfur are unavoidable impurities entering in the manufacture of stainless steels.

    Le phosphore est habituellement rencontré dans les aciers inoxydables à une teneur d'environ 0,02 %. Cet élément joue un rôle neutre ou légèrement bénéfique sur la tenue du produit à l'oxydation en piégeant le cerium en excès sous forme de phosphures. Le soufre est également rencontré dans les aciers inoxydables à une teneur d'environ 0,005 %. Le soufre exerce une influence néfaste sur le comportement à l'oxydation, il diminue l'adhérence de l'oxyde sur le feuillard et favorise l'écaillage de cette couche. Pour cette raison, le soufre doit être maintenu à des teneurs les plus faibles possibles : inférieures à 0,002 %.Phosphorus is usually found in steels stainless to a content of about 0.02%. This element plays a role neutral or slightly beneficial on the product's resistance to oxidation trapping excess cerium in the form of phosphides. Sulfur is also encountered in stainless steels with a content of approximately 0.005%. Sulfur has a detrimental influence on the behavior oxidation, it reduces the adhesion of the oxide to the strip and promotes chipping of this layer. For this reason, sulfur must be maintained at the lowest possible contents: less than 0.002%.

    La teneur en chrome de l'acier doit être suffisante, c'est-à-dire supérieure à 12 %, pour présenter les bonnes propriétés vis-à-vis de la corrosion et favoriser la formation et la tenue de la couche d'oxyde à haute température. La teneur en chrome ne doit pas être également trop élevée, c'est-à-dire inférieure à 25 %, afin d'éviter les problèmes de transformation de l'acier.The chromium content of the steel must be sufficient, i.e. greater than 12%, to present the good properties with respect to the corrosion and promote the formation and behavior of the oxide layer at high temperature. The chromium content should also not be too high, i.e. less than 25%, to avoid processing problems steel.

    Selon l'invention, de préférence, la teneur en chrome est comprise entre 14 et 22%, ce qui correspond à un intervalle en concentration en chrome optimisé vis-à-vis de la corrosion et de la transformation de l'acier.According to the invention, preferably, the chromium content is included between 14 and 22%, which corresponds to an interval in concentration in chromium optimized for corrosion and steel processing.

    Le cuivre introduit dans la composition est un élément résiduel que l'on retrouve dans les produits utilisés à la base dans l'élaboration de l'acier.The copper introduced into the composition is a residual element that found in the products used at the base in the development of steel.

    Le produit issu de l'invention est destiné à la fabrication de structures supports métalliques de calalyseurs, à partir de feuillards dont l'épaisseur est inférieure à 200 µm, et, plus communément égale à 50 µm +/-10 µm.The product resulting from the invention is intended for the manufacture of metal support structures for calalyzers, from strips including the thickness is less than 200 µm, and more commonly equal to 50 µm +/- 10 µm.

    Claims (12)

    1. Stainless ferritic steel, resisting oxidation at high temperature and particularly suitable as a catalyst substrate, comprising in its composition by weight:
      between 12 and 25% chromium
      between 4 and 7% aluminium
      less than 0.03% carbon
      less than 0.02% nitrogen
      less than 0.22% nickel
      less than 0.002% sulphur
      less than 0.6% silicon
      less than 0.4% manganese,
      active elements chosen from cerium, lanthanum, neodymium, praseodymium, yttrium, taken on their own or in combination, with a content less than 0.08%, at least one stabilising element chosen from zirconium and/or niobium, the remainder being constituted by iron and the inevitable impurities,
         the content of zirconium and/or niobium satisfying the following conditions:
         for zirconium, 91 (C %/12 + N %/14) - 0.1≤Zr≤91 (C %/12 + N %/14) + 0.1    for niobium, 93x0.8. (C %/12) - 0.1≤Nb≤93x0.8 (C %/12) + 0.15 and Nb < 0.3 %.    for zirconium and niobium, 91 (N %/14) - 0,05≤Zr≤91 (N %/14) + 0.05, and 93x0.8 (C %/12) - 0.05≤Nb≤93x0.8 (C %/12) + 0.1.
    2. Steel according to claim 1, characterised in that the active elements are chosen from cerium, lanthanum, neodymium, praseodymium, yttrium, taken on their own or in combination, and contained in a compound called Amischmetal®.
    3. Steel according to claim 1, characterised in that the sum of the contents of zirconium and niobium is lower than 0.300%.
    4. Steel according to claim 1, characterised in that the sum of the contents of carbon and nitrogen is lower than 0.04%,
    5. Steel according to claim 1, characterised in that the contents of silicon and manganese satisfy the relationship Si/Mn≥1.
    6. Steel according to claim 1, characterized in that for the stabilising element zirconium used on its own in the composition, the minimum content of aluminium satisfies the following condition: 4 % + 6 Zr % - 91 (C %/12 + N %/14).
    7. Steel according to claim 1, characterized in that for the stabilising element niobium used on its own in the composition, the minimum content of aluminium satisfies the following condition: 54 % + 5 Nb % - 93 (C %/12 + N %/14).
    8. Steel according to claim 1, characterised in that for the stabilising elements zirconium and niobium combined, the minimum content of aluminium satisfies the following condition: 4 % + 5 (Zr + Nb) - 92 (C %/12 + N %/14).
    9. Steel according to claims 1 and 6, characterised in that the content of active elements satisfies the following relationship: 0.03 - 0.2(Zr% - 91 N%/14)≤(Ce + La + Nd + Pr + Y) ≤0.08 - 0.2(Zr% - 91 N%/14)
    10. Steel according to claims 1 and 7, characterised in that the content of active elements satisfies the following relationship: 0.03 - 0.025(Nb%)≤(Ce + La + Nd + Pr + Y)≤0.08 - 0.025(Nb%)
    11. Steel according to claims 1 and 8, characterised in that the content of active elements satisfies the following relationship: 0.03 - 0.2(Zr% - 91 N%/14) - 0.025(Nb%)≤(Ce + La + Nd + Pr + Y)≤0.08 - 0.2(Zr% - 91 N%/14) - 0.025(Nb%).
    12. Steel according to claims 1 to 11, characterised in that it additionally includes in its composition less than 0.5% copper.
    EP96400630A 1995-03-29 1996-03-25 Stainless ferritic steel, particularly suitable as catalyst substrate Expired - Lifetime EP0735153B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR9503641A FR2732360B1 (en) 1995-03-29 1995-03-29 FERRITIC STAINLESS STEEL FOR USE, IN PARTICULAR FOR CATALYST SUPPORTS
    FR9503641 1995-03-29

    Publications (2)

    Publication Number Publication Date
    EP0735153A1 EP0735153A1 (en) 1996-10-02
    EP0735153B1 true EP0735153B1 (en) 1999-10-27

    Family

    ID=9477508

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP96400630A Expired - Lifetime EP0735153B1 (en) 1995-03-29 1996-03-25 Stainless ferritic steel, particularly suitable as catalyst substrate

    Country Status (10)

    Country Link
    US (1) US5866065A (en)
    EP (1) EP0735153B1 (en)
    CN (1) CN1051582C (en)
    AT (1) ATE186078T1 (en)
    CA (1) CA2172921C (en)
    DE (1) DE69604852T2 (en)
    DK (1) DK0735153T3 (en)
    ES (1) ES2140043T3 (en)
    FR (1) FR2732360B1 (en)
    GR (1) GR3032240T3 (en)

    Families Citing this family (15)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19743720C1 (en) * 1997-10-02 1998-12-24 Krupp Vdm Gmbh Cost effective production of iron alloy foil with high resistance to high temperature oxidation
    FR2806940B1 (en) * 2000-03-29 2002-08-16 Usinor STAINLESS STEEL FERRITIC STRIP ALUMINUM-CONTAINING, ESPECIALLY USEFUL FOR A MOTOR VEHICLE EXHAUST CATALYST SUPPORT AND METHOD FOR MANUFACTURING SAID STRIP
    SE520027C2 (en) * 2000-05-22 2003-05-13 Sandvik Ab Austenitic alloy
    MD2816C2 (en) * 2001-06-21 2006-02-28 Владислав ФАТЕЕВ Welding on material
    MD2819C2 (en) * 2001-06-26 2006-03-31 Илие ЦУРКАН Electrode material
    SE527177C2 (en) * 2001-09-25 2006-01-17 Sandvik Intellectual Property Use of an austenitic stainless steel
    SE520617C2 (en) 2001-10-02 2003-07-29 Sandvik Ab Ferritic stainless steel, foil made of steel, use of steel and foil, and method of making steel
    SE525252C2 (en) * 2001-11-22 2005-01-11 Sandvik Ab Super austenitic stainless steel and the use of this steel
    US7842434B2 (en) * 2005-06-15 2010-11-30 Ati Properties, Inc. Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells
    US8158057B2 (en) * 2005-06-15 2012-04-17 Ati Properties, Inc. Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells
    US7981561B2 (en) * 2005-06-15 2011-07-19 Ati Properties, Inc. Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells
    US20080069717A1 (en) * 2002-11-20 2008-03-20 Nippon Steel Corporation High A1 stainless steel sheet and double layered sheet, process for their fabrication, honeycomb bodies employing them and process for their production
    SE527176C2 (en) * 2003-04-02 2006-01-17 Sandvik Intellectual Property Stainless steel for use in high temperature applications
    DE102014226282A1 (en) * 2014-12-17 2016-06-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Reactor for the dehydrogenation of liquid hydrogen carrier materials
    CN112703264B (en) * 2018-09-13 2022-03-04 杰富意钢铁株式会社 Ferritic stainless steel sheet, method for producing same, and Al-based plated stainless steel sheet

    Family Cites Families (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPS4841918A (en) * 1971-10-04 1973-06-19
    US4414023A (en) * 1982-04-12 1983-11-08 Allegheny Ludlum Steel Corporation Iron-chromium-aluminum alloy and article and method therefor
    DE3221087A1 (en) * 1982-06-04 1983-12-08 Thyssen Edelstahlwerke AG, 4000 Düsseldorf METHOD FOR PRODUCING AND PROCESSING HIGH ALLOY NON-RUSTIC FERRITIC CHROME-MOLYBDAEN-NICKEL STEELS
    DE3706415A1 (en) * 1987-02-27 1988-09-08 Thyssen Edelstahlwerke Ag SEMI-FINISHED FERRITIC STEEL PRODUCT AND ITS USE
    DE3908526A1 (en) * 1989-03-16 1990-09-20 Vdm Nickel Tech FERRITIC STEEL ALLOY
    US5045404A (en) * 1989-03-27 1991-09-03 Nippon Steel Corporation Heat-resistant stainless steel foil for catalyst-carrier of combustion exhaust gas purifiers
    JPH04147945A (en) * 1990-10-11 1992-05-21 Nisshin Steel Co Ltd High al-containing ferritic stainless steel excellent in high temperature oxidation resistance and toughness
    EP0516097B1 (en) * 1991-05-29 1996-08-28 Kawasaki Steel Corporation Iron-chromium-aluminium alloy, catalytic substrate comprising the same and method of preparation

    Also Published As

    Publication number Publication date
    FR2732360A1 (en) 1996-10-04
    EP0735153A1 (en) 1996-10-02
    CA2172921A1 (en) 1996-09-30
    US5866065A (en) 1999-02-02
    DE69604852D1 (en) 1999-12-02
    ES2140043T3 (en) 2000-02-16
    CA2172921C (en) 2002-03-26
    FR2732360B1 (en) 1998-03-20
    DE69604852T2 (en) 2000-05-25
    CN1147562A (en) 1997-04-16
    DK0735153T3 (en) 2000-04-25
    GR3032240T3 (en) 2000-04-27
    ATE186078T1 (en) 1999-11-15
    CN1051582C (en) 2000-04-19

    Similar Documents

    Publication Publication Date Title
    EP0735153B1 (en) Stainless ferritic steel, particularly suitable as catalyst substrate
    EP2893049B1 (en) Ferritic stainless steel sheet, method for the production thereof, and use of same, especially in exhaust lines
    CA2584449C (en) Hot-dip coating method in a zinc bath for strips of iron/carbon/manganese steel
    EP0889145B1 (en) Stainless austenoferritic steel with very low nickel content and showing high elongation under tensile load
    CA2342744C (en) Clad ferritic stainless steel for use in motor vehicle exhausts
    JPH08507107A (en) High manganese steel having excellent hot workability, and method for producing high manganese hot rolled steel sheet without causing cracks
    WO2006042931A1 (en) Method for production of sheets of austenitic iron/carbon/manganese steel and sheets produced thus
    FR2857980A1 (en) Hot rolled iron-carbon-manganese austenitic steel combining high mechanical strength with an aptitude for pressing, notably for applications in motor vehicles requiring shock resistance and lightness
    EP1818422B2 (en) Ferritic stainless steel with 19% of chromium stabilised with niobium
    EP2855725A1 (en) Low-density hot- or cold-rolled steel, method for implementing same and use thereof
    EP0861916A1 (en) Process for making a stainless steel strip rich in aluminium especially suitable for a catalytic converter support for a motor vehicle
    CA3065036A1 (en) Method for producing high-strength steel parts with improved ductility, and parts obtained by said method
    JPS61568A (en) Aluminium-coated low alloy steel foil
    EP1601804A2 (en) Iron-chromium-aluminum alloy
    EP1319726A1 (en) Method of manufacturing cold rolled dual-phase microalloyed steel sheets with high strength
    FR2798394A1 (en) FERRITIC STEEL HAVING 14% CHROME STABILIZED WITH NIOBIUM AND USE THEREOF IN THE FIELD OF AUTOMOBILE
    FR2684392A1 (en) BORON STEEL FOR CEMENTED GEARS.
    JP3690325B2 (en) Fe-Cr-Al alloy foil excellent in oxidation resistance and high temperature deformation resistance and method for producing the same
    EP0745697B1 (en) Iron-cobalt-nickel alloy and its use for the manufacture of a shadow mask
    US5476554A (en) FE-CR-AL alloy foil having high oxidation resistance for a substrate of a catalytic converter and method of manufacturing same
    EP1138796A1 (en) High strength hot rolled steel with high yield strength for use in the car industry
    JP2006009119A (en) STAINLESS STEEL SHEET SUPERIOR IN POTASSIUM-CORROSION RESISTANCE, MANUFACTURING METHOD THEREFOR, AND CARRIER FOR NOx-OCCLUDING CATALYST
    JPH07233451A (en) Al plated stainless steel sheet excellent in high temperature oxidation resistance
    JP3491334B2 (en) Fe-Cr-Al alloy for catalytic converter carrier excellent in oxidation resistance and method for producing alloy foil using the same
    FR2495189A1 (en) High strength three-phase steel sheet - contg. polygonal ferrite, bainite and martensite, formed by hot rolling and controlled cooling

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

    17P Request for examination filed

    Effective date: 19960809

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    17Q First examination report despatched

    Effective date: 19990319

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

    REF Corresponds to:

    Ref document number: 186078

    Country of ref document: AT

    Date of ref document: 19991115

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

    Owner name: UGINE S.A.

    REF Corresponds to:

    Ref document number: 69604852

    Country of ref document: DE

    Date of ref document: 19991202

    ITF It: translation for a ep patent filed
    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: FRENCH

    NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

    Owner name: UGINE S.A.

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20000113

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2140043

    Country of ref document: ES

    Kind code of ref document: T3

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: SC4A

    Free format text: AVAILABILITY OF NATIONAL TRANSLATION

    Effective date: 19991220

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: T3

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20020218

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: LU

    Payment date: 20030217

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FI

    Payment date: 20030218

    Year of fee payment: 8

    Ref country code: CH

    Payment date: 20030218

    Year of fee payment: 8

    Ref country code: AT

    Payment date: 20030218

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20030219

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DK

    Payment date: 20030220

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GR

    Payment date: 20030221

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IE

    Payment date: 20030304

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: PT

    Payment date: 20030306

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20030312

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20030313

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20030314

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20030318

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20030328

    Year of fee payment: 8

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040325

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040325

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040325

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040325

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040325

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040326

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040326

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040331

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040331

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040331

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040331

    BERE Be: lapsed

    Owner name: S.A. *USINOR SACILOR

    Effective date: 20040331

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041001

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041001

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041006

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041015

    EUG Se: european patent has lapsed
    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20040325

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041130

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: MM4A

    Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

    Effective date: 20040930

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20041001

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: MM4A

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20050325

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20040326