EP0731260B1 - Control method for a cooling circuit of an internal combustion engine - Google Patents

Control method for a cooling circuit of an internal combustion engine Download PDF

Info

Publication number
EP0731260B1
EP0731260B1 EP96100636A EP96100636A EP0731260B1 EP 0731260 B1 EP0731260 B1 EP 0731260B1 EP 96100636 A EP96100636 A EP 96100636A EP 96100636 A EP96100636 A EP 96100636A EP 0731260 B1 EP0731260 B1 EP 0731260B1
Authority
EP
European Patent Office
Prior art keywords
cooling medium
temperature
internal combustion
combustion engine
mot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96100636A
Other languages
German (de)
French (fr)
Other versions
EP0731260A1 (en
Inventor
Karsten Dipl.-Ing. Michels
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP0731260A1 publication Critical patent/EP0731260A1/en
Application granted granted Critical
Publication of EP0731260B1 publication Critical patent/EP0731260B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/04Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio
    • F01P7/044Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio using hydraulic drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/164Controlling of coolant flow the coolant being liquid by thermostatic control by varying pump speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2023/00Signal processing; Details thereof
    • F01P2023/08Microprocessor; Microcomputer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/30Engine incoming fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/32Engine outcoming fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/62Load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/64Number of revolutions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/66Vehicle speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2031/00Fail safe
    • F01P2031/30Cooling after the engine is stopped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2037/00Controlling
    • F01P2037/02Controlling starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/04Lubricant cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/04Lubricant cooler
    • F01P2060/045Lubricant cooler for transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/167Controlling of coolant flow the coolant being liquid by thermostatic control by adjusting the pre-set temperature according to engine parameters, e.g. engine load, engine speed

Definitions

  • the invention relates to a method for regulating a cooling circuit Internal combustion engine, in particular for motor vehicles, with at least one Coolant pump for setting a coolant flow, a cooler module in which a Heat exchange between an air flow adjustable by means of a fan and the coolant, possibly a temperature-dependent valve for adjustment a mixing ratio between that passed through the cooler module Coolant flow and a guided over a second flow branch Coolant flow and a control unit that is at least that of the coolant pump generated coolant flow and controls the air flow generated by the fan.
  • a device for controlling the cooling of a device is known Internal combustion engine that uses a coolant pump to generate the Flow of the coolant in an internal combustion engine and a radiator guided coolant circuit, a fan for generating an air flow through the Cooler and a control device depending on a temperature setpoint of the coolant controls the air flow generated by the fan.
  • the Coolant pump is driven by an organ of the internal combustion engine and thus a function of the speed of the internal combustion engine Coolant flow generated, especially in the warm-up phase after the start of Internal combustion engine requires too much energy and the Warm-up phase of the internal combustion engine unnecessarily extended.
  • German laid-open specification DE 38 10 174 A1 Device for controlling the coolant temperature of an internal combustion engine is indeed in addition to the blowers that generate the air flow through the cooler, also those from one Electric motor driven coolant pump depending on a temperature setpoint controlled, but the temperature setpoint is dependent on the engine load and Engine speed specified so that the warm-up phase through the Operating point-dependent control of the coolant pump and fan is unnecessary is extended.
  • WO-A-84 00578 describes a control method according to the preamble of Claim 1 known.
  • the speed of the coolant pump being regulated in such a way that the temperature difference between the inlet and outlet temperature of the Motor is below a certain limit.
  • Has the temperature at the outlet of the Motors reaches a certain threshold the temperature difference between the temperature at the inlet and outlet of the motor in relation to the aforementioned Limit value and also the temperature at the output of the motor in relation to one certain temperature limit regulated by the speed of the coolant pump and if necessary, the fan speed is also set accordingly.
  • the circuitry complexity is relatively high and Operation carried out continuously and two separate temperature measurements must be evaluated.
  • the present invention is therefore based on the object of a method for To provide control of a cooling circuit for an internal combustion engine, in which with the simplest possible means, the power consumption of the coolant pump and the Air flow through the cooler module producing blower kept low Warm-up phase of the internal combustion engine by generating too high Coolant flow is not unnecessarily extended.
  • a temperature limit of the coolant between the warm-up phase after the start of the internal combustion engine and one Operation of the internal combustion engine with operating temperature differentiated. Below of the temperature limit is both that generated by the coolant pump Coolant flow and the air flow generated by the fan through the cooler module in Regulated depending on a differential temperature setpoint. After reaching the The temperature limit value controls the coolant pump and the blower both as a function of the differential temperature setpoint and a temperature setpoint of the coolant at the engine outlet.
  • the Temperature limit only the coolant flow generated by the coolant pump in Regulate dependence of the differential temperature, but no air flow through the Generate cooler module.
  • a further shortening of the warm-up phase is achieved if below one Initial coolant temperature that is less than the temperature limit and one defined period of time after starting the internal combustion engine neither Coolant flow from the coolant pump still generates an air flow from the blower. The time period in which neither the coolant pump nor the blower are activated, is determined so that no hot spots can occur on the internal combustion engine.
  • the control of the coolant pump and / or the fan generating the air flow as a function of the heat flow in the coolant occurs. This is done by creating those from the control unit Control signals with a delay to the coolant pump and / or the fan to get redirected. The size of the delay is chosen so that the Time behavior of the coolant pump and the blower the dynamic behavior of the Heat flow of the coolant corresponds.
  • the temperature setpoint of the coolant for the control at least the Coolant pump and blower is preferred depending on one for each Operating point of the internal combustion engine optimal engine temperature determined.
  • the at least from the operating point of the internal combustion engine and from The coolant flow predetermined heat flow is stored as a map in the control unit.
  • the coolant circuit shown in FIG. 1 for an internal combustion engine 2 of a motor vehicle consists of several line branches a to f, the opening cross sections of which are controlled by a temperature-dependent valve 6 (thermostat).
  • the direction of rotation of the coolant flow, which is driven by the coolant pump 3, is indicated by arrows.
  • the line branch a is guided via a cooler module 1 for cooling the coolant emerging from the internal combustion engine 2. Air is drawn in from outside the motor vehicle by the fan 4 arranged behind the radiator module 1. When flowing through the cooler module 1, a heat exchange takes place between the air flow m ⁇ l adjustable by the blower 4 and the coolant flow m ⁇ w .
  • a line branch b is provided, the cross section of which can be controlled by the temperature-dependent valve 6 in order to influence the coolant temperature.
  • the line branch c has an expansion tank 7 and serves to regulate the pressure in the entire coolant circuit.
  • a heat exchanger 8 for the interior heating of the motor vehicle and a cooler 9 and 10 for cooling the engine oil and the transmission oil are arranged in the additional line branches d to f. These line branches d to f are optional.
  • the corresponding cooling or heating functions can also be solved in other ways.
  • the coolant circuit includes a control unit 5, for example the control unit of the internal combustion engine, which receives the output signal S sen of the coolant temperature ⁇ w as an input signal , is detected at the engine outlet temperature sensor 11 and via the output signals S pump , S air and S therm both the speed of the Coolant pump 3 and the fan 4 and the temperature-dependent valve 6 controls.
  • a control unit 5 for example the control unit of the internal combustion engine, which receives the output signal S sen of the coolant temperature ⁇ w as an input signal , is detected at the engine outlet temperature sensor 11 and via the output signals S pump , S air and S therm both the speed of the Coolant pump 3 and the fan 4 and the temperature-dependent valve 6 controls.
  • the warm-up V1 of the internal combustion engine As illustrated in FIG. 2, three cases are distinguished in the method according to the invention; the warm-up V1 of the internal combustion engine, the driving mode V2 at the operating temperature of the coolant and the run-on V3.
  • the first method step A1 it is checked whether the internal combustion engine 2 has been started. If this is the case, the coolant temperature ⁇ w is compared (output signal S sen from the temperature sensor 11) at the engine outlet with a temperature limit value ⁇ w characterizing the end of the warm-up phase V1 , warm. At a coolant temperature ⁇ w, below this temperature limit, warm-up V1 is detected. If the coolant temperature ⁇ w, the temperature limit ⁇ w, warml has been reached, the coolant circuit is controlled according to the algorithm for driving mode V2 at operating temperature.
  • the coolant circuit is controlled using an algorithm for the run-on V3. If the coolant temperature ⁇ w is below the temperature limit ⁇ w, the control stops after the internal combustion engine 2 is restarted.
  • the first step is to compare the coolant temperature ⁇ w, at the engine outlet, with a coolant start temperature ⁇ w, start . If the coolant temperature is below the coolant start value ⁇ w, start , the coolant pump 3 starts with a delay of the time period t start in order to keep the heat flow from components of the internal combustion engine 2 into the coolant as low as possible and thus to achieve a faster heating of the components .
  • the coolant flow m ⁇ w generated by the coolant pump 3 is continuously increased until, for the first time, the minimum coolant flow m ⁇ w , min for maintaining the differential temperature setpoint ⁇ w, Mot is intended between Motorein- reaches and exits.
  • the control signal S pump, min for the coolant pump 3 is calculated in the control unit 5 from the minimum coolant flow m ⁇ w , min .
  • the coolant pump 3 is controlled to maintain the differential temperature setpoint ⁇ w, Mot, coolant with a control signal S pump, warml .
  • the actual differential temperature ⁇ w, Mot, required for the control results from the heat flow Q ⁇ Mot from the internal combustion engine into the coolant, which in turn is calculated from the current coolant flow m ⁇ w , the current engine load L Mot and the engine speed n.
  • the heat flow Q ⁇ Mot is preferably stored as a map in the control unit 5 for the special internal combustion engine 2.
  • the reaction of the coolant pump 3 to short-term engine load and speed changes should be prevented. Since, due to the thermal inertia of the internal combustion engine 2, brief changes in the engine load L Mot and the engine speed n play no role for the heat flow Q ⁇ Mot in the coolant, carrying the speed of the coolant pump 3 would represent unnecessary energy consumption.
  • the control signal S pump for the coolant pump is therefore assigned a dynamic transmission behavior, the time constant T stg of which is chosen so that the time behavior of the coolant pump roughly corresponds to the behavior of the heat flow Q ⁇ Mot from the internal combustion engine into the coolant. It follows from this that the speed change of the coolant pump 3 follows the change in the heat flow Q Q mot into the coolant.
  • the blower 4 is not activated during the warm-up phase V1, ie no airflow m ⁇ l is generated by the cooler module 1.
  • the warm-up phase V1 has ended when the current coolant temperature ⁇ w, the temperature limit value den w, warml is reached for the first time.
  • the coolant temperature is also controlled as a function of a temperature setpoint ⁇ w, according to the algorithm for driving mode V2 at operating temperature instead.
  • the temperature setpoint ⁇ w, set is first calculated. For this purpose, there is a map in the control unit 5 in which the optimum temperature setpoint ⁇ w, for the specified engine temperature with variable engine load L Mot , engine speed n and coolant flow m ⁇ w , is stored.
  • the control temperature ⁇ w, therm results for the temperature-dependent valve 6, from which the control signal S therm is determined for the temperature-dependent valve 6.
  • the valve 6 regulates the coolant temperature ⁇ w via the coolant flow conditions between the line branch a led via the cooler module 1 and the line branch b.
  • the coolant circuit is simultaneously used to cool the engine oil via a cooler 9, the current oil temperature ⁇ oil can be monitored with a sensor (not shown). Exceeds the current oil temperature ⁇ oil has a temperature limit value ⁇ oil, cross so the coolant temperature is gradually ⁇ w, is lowered until the oil temperature ⁇ oil drops below this limit temperature value. The coolant temperature required for the selected engine temperature is then set again.
  • the dynamic behavior of the control in the event of brief changes in the engine load L Mot and the engine speed n is different for compliance with the differential temperature setpoint ⁇ w, Mot, setpoint and the temperature setpoint ⁇ w, setpoint.
  • the control according to the differential temperature setpoint ⁇ w, Mot, soll corresponds in its dynamics to that of warming up V1.
  • the regulation according to the temperature setpoint ⁇ w should be done faster by varying the valve current S term and the speeds of the coolant pump 3 and blower 4.
  • a compromise must be found between an energetic optimum and the temperature constancy of the components of the internal combustion engine 2. For energy purposes, it makes sense to allow brief temperature changes in the components, such as those that occur during the overtaking process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Regelung eines Kühlkreislaufes eines Verbrennungskraftmotors, insbesondere für Kraftfahrzeuge, mit mindestens einer Kühlmittelpumpe zur Einstellung eines Kühlmittelstromes, einem Kühlermodul, in dem ein Wärmeaustausch zwischen einem mittels einem Gebläses einstellbaren Luftstrom und dem Kühlmittel erfolgt, eventuell einem temperaturabhängigen Ventil zum Einstellen eines Mischungsverhältnisses zwischen dem über das Kühlermodul geführten Kühlmittelstrom und einem über einen zweiten Strömungszweig geführten Kühlmittelstrom und einem Steuergerät, das mindestens den von der Kühlmittelpumpe erzeugten Kühlmittelstrom und den von dem Gebläse erzeugten Luftstrom steuert.The invention relates to a method for regulating a cooling circuit Internal combustion engine, in particular for motor vehicles, with at least one Coolant pump for setting a coolant flow, a cooler module in which a Heat exchange between an air flow adjustable by means of a fan and the coolant, possibly a temperature-dependent valve for adjustment a mixing ratio between that passed through the cooler module Coolant flow and a guided over a second flow branch Coolant flow and a control unit that is at least that of the coolant pump generated coolant flow and controls the air flow generated by the fan.

Bekannt ist eine Vorrichtung zur Regelung der Kühlung eines Verbrennungskraftmotors, die eine Kühlmittelpumpe zur Erzeugung der Strömung des Kühlmittels in einem über den Verbrennungskraftmotor und einen Kühler geführten Kühlmittelkreislauf, ein Gebläse zum Erzeugen eines Luftstroms durch den Kühler und eine Steuerungseinrichtung, die in Abhängigkeit eines Temperatursollwertes des Kühlmittels den von dem Gebläse erzeugten Luftstrom steuert, beinhaltet. Die Kühlmittelpumpe wird von einem Organ des Verbrennungskraftmotors angetrieben und damit eine von der Drehzahl des Verbrennungskraftmotors abhängige Kühlmittelströmung erzeugt, die insbesondere in der Warmlaufphase nach dem Start des Verbrennungskraftmotors einen zu hohen Energiebedarf erfordert und die Warmlaufphase des Verbrennungskraftmotors unnötig verlängert.A device for controlling the cooling of a device is known Internal combustion engine that uses a coolant pump to generate the Flow of the coolant in an internal combustion engine and a radiator guided coolant circuit, a fan for generating an air flow through the Cooler and a control device depending on a temperature setpoint of the coolant controls the air flow generated by the fan. The Coolant pump is driven by an organ of the internal combustion engine and thus a function of the speed of the internal combustion engine Coolant flow generated, especially in the warm-up phase after the start of Internal combustion engine requires too much energy and the Warm-up phase of the internal combustion engine unnecessarily extended.

Bei der in der deutschen Offenlegungsschrift DE 38 10 174 A1 beschriebenen Einrichtung zur Regelung der Kühlmitteltemperatur einer Brennkraftmaschine wird zwar neben den den Luftstrom durch den Kühler erzeugenden Gebläse auch die von einem Elektromotor angetriebene Kühlmittelpumpe in Abhängigkeit eines Temperatursollwertes gesteuert, der Temperatursollwert wird jedoch in Abhängigkeit der Motorlast und der Motordrehzahl vorgegeben, so daß auch hier die Warmlaufphase durch die betriebspunktabhängige Regelung der Kühlmittelpumpe und des Gebläses unnötig verlängert wird. In the case of the one described in German laid-open specification DE 38 10 174 A1 Device for controlling the coolant temperature of an internal combustion engine is indeed in addition to the blowers that generate the air flow through the cooler, also those from one Electric motor driven coolant pump depending on a temperature setpoint controlled, but the temperature setpoint is dependent on the engine load and Engine speed specified so that the warm-up phase through the Operating point-dependent control of the coolant pump and fan is unnecessary is extended.

Aus der WO-A-84 00578 ist ein Regelungsverfahren nach dem Oberbegriff des Anspruches 1 bekannt. Gemäß dieser Druckschrift wird in der Warmlaufphase nur die Kühlmittelpumpe betrieben, wobei die Drehzahl der Kühlmittelpumpe derart geregelt wird, daß die Temperaturdifferenz zwischen der Eingangs- und Ausgangstemperatur des Motors unter einem bestimmten Grenzwert liegt. Hat die Temperatur am Ausgang des Motors einen bestimmten Schwellenwert erreicht, wird die Temperaturdifferenz zwischen der Temperatur am Eingang und Ausgang des Motors in Bezug auf den zuvor genannten Grenzwert und zudem die Temperatur am Ausgang des Motors in Bezug auf einen bestimmten Temperaturgrenzwert geregelt, indem die Drehzahl der Kühlmittelpumpe und gegebenenfalls zusätzlich die Drehzahl des Gebläses entsprechend eingestellt wird. Zur Ermittlung der Temperaturdifferenz zwischen der Temperatur am Eingang und der Temperatur am Ausgang des Motors werden zwei separate Temperatursensoren verwendet, wodurch jedoch der schaltungstechnische Aufwand relativ hoch ist und im Betrieb kontinuierlich zwei separate Temperaturmessungen durchgeführt und ausgewertet werden müssen.WO-A-84 00578 describes a control method according to the preamble of Claim 1 known. According to this document, only the Coolant pump operated, the speed of the coolant pump being regulated in such a way that the temperature difference between the inlet and outlet temperature of the Motor is below a certain limit. Has the temperature at the outlet of the Motors reaches a certain threshold, the temperature difference between the temperature at the inlet and outlet of the motor in relation to the aforementioned Limit value and also the temperature at the output of the motor in relation to one certain temperature limit regulated by the speed of the coolant pump and if necessary, the fan speed is also set accordingly. For Determination of the temperature difference between the temperature at the inlet and the The temperature at the output of the motor becomes two separate temperature sensors used, however, the circuitry complexity is relatively high and Operation carried out continuously and two separate temperature measurements must be evaluated.

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zur Regelung eines Kühlkreislaufes für einen Verbrennungskraftmotor zu schaffen, bei dem mit möglichst einfachen Mitteln die Leistungsaufnahme der Kühlmittelpumpe und des den Luftstrom durch das Kühlermodul erzeugenden Gebläses gering gehalten und die Warmlaufphase des Verbrennungskraftmotors durch die Erzeugung eines zu hohen Kühlmittelstromes nicht unnötig verlängert wird.The present invention is therefore based on the object of a method for To provide control of a cooling circuit for an internal combustion engine, in which with the simplest possible means, the power consumption of the coolant pump and the Air flow through the cooler module producing blower kept low Warm-up phase of the internal combustion engine by generating too high Coolant flow is not unnecessarily extended.

Diese Aufgabe wird erfindungsgemäß durch die im Kennzeichnungsteil des Anspruchs 1 angegebenen Merkmale gelöst. Die Unteransprüche definieren vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung. This object is achieved by the characterizing part of claim 1 specified features solved. The subclaims define advantageous ones Refinements and developments of the invention.

Gemäß der Erfindung wird durch Vorgabe eines Temperaturgrenzwertes des Kühlmittels zwischen der Warmlaufphase nach dem Start des Verbrennungskraftmotors und eines Betriebes des Verbrennungskraftmotors mit Betriebstemperatur unterschieden. Unterhalb des Temperaturgrenzwertes wird sowohl der von der Kühlmittelpumpe erzeugte Kühlmittelstrom und der vom Gebläse erzeugte Luftstrom durch das Kühlermodul in Abhängigkeit eines Differenztemperatur-Sollwertes geregelt. Nach Erreichen des Temperaturgrenzwertes erfolgt die Regelung der Kühlmittelpumpe und des Gebläses sowohl in Abhängigkeit des Differenztemperatur-Sollwertes als auch eines Temperatur-Sollwertes des Kühlmittels am Motoraustritt.According to the invention, by specifying a temperature limit of the coolant between the warm-up phase after the start of the internal combustion engine and one Operation of the internal combustion engine with operating temperature differentiated. Below of the temperature limit is both that generated by the coolant pump Coolant flow and the air flow generated by the fan through the cooler module in Regulated depending on a differential temperature setpoint. After reaching the The temperature limit value controls the coolant pump and the blower both as a function of the differential temperature setpoint and a temperature setpoint of the coolant at the engine outlet.

Mit Hilfe der Erfindung wird somit ein schnelles Aufheizen des Verbrennungskraftmotors und eine Verkürzung der Warmlaufphase erreicht, wobei jedoch durch die Einhaltung des Differenztemperatur-Sollwertes zwischen Motoreintritt und Motoraustritt keine Heißpunkte an einzelnen Bauteilen des Verbrennungskraftmotors entstehen können.With the help of the invention thus a rapid heating of the internal combustion engine and a shortening of the warm-up phase achieved, but by adhering to the Differential temperature setpoint between engine inlet and engine outlet no hot spots can arise on individual components of the internal combustion engine.

Gemäß einer vorteilhaften Weiterbildung der Erfindung ist vorgesehen, unterhalb des Temperaturgrenzwertes nur den von der Kühlmittelpumpe erzeugten Kühlmittelstrom in Abhängigkeit der Differenztemperatur zu regeln, jedoch keinen Luftstrom durch das Kühlermodul zu erzeugen.According to an advantageous development of the invention, it is provided below the Temperature limit only the coolant flow generated by the coolant pump in Regulate dependence of the differential temperature, but no air flow through the Generate cooler module.

Eine weitere Verkürzung der Warmlaufphase wird erreicht, wenn unterhalb einer Kühlmittelanfangstemperatur, die geringer ist als der Temperaturgrenzwert, und einer definierten Zeitdauer nach dem Starten des Verbrennungskraftmotors weder ein Kühlmittelstrom von der Kühlmittelpumpe noch ein Luftstrom vom Gebläse erzeugt wird. Die Zeitdauer, in der weder die Kühlmittelpumpe noch das Gebläse angesteuert werden, wird so festgelegt, daß keine Heißpunkte am Verbrennungskraftmotor entstehen können.A further shortening of the warm-up phase is achieved if below one Initial coolant temperature that is less than the temperature limit and one defined period of time after starting the internal combustion engine neither Coolant flow from the coolant pump still generates an air flow from the blower. The time period in which neither the coolant pump nor the blower are activated, is determined so that no hot spots can occur on the internal combustion engine.

Da aufgrund der thermischen Trägheit des Verbrennungskraftmotors kurzzeitige Änderungen der Motorlast und der Motordrehzahl für den Wärmestrom vom Verbrennungskraftmotor in das Kühlmittel keine Rolle spielen, ist nach einer weiteren Ausbildung der Erfindung vorgesehen, daß die Ansteuerung der Kühlmittelpumpe und/oder des den Luftstrom erzeugenden Gebläses in Abhängigkeit des Wärmestroms in das Kühlmittel erfolgt. Das geschieht, indem die vom Steuergerät erzeugten Ansteuersignale mit einer Verzögerung an die Kühlmittelpumpe und/oder das Gebläse weitergeleitet werden. Die Größe der Verzögerung ist jeweils so gewählt, daß das Zeitverhalten der Kühlmittelpumpe und des Gebläses dem dynamischen Verhalten des Wärmestroms des Kühlmittels entspricht.Because of the thermal inertia of the internal combustion engine for a short time Changes in engine load and engine speed for heat flow from Internal combustion engine in the coolant does not matter, according to another Formation of the invention provided that the control of the coolant pump and / or the fan generating the air flow as a function of the heat flow in the coolant occurs. This is done by creating those from the control unit Control signals with a delay to the coolant pump and / or the fan to get redirected. The size of the delay is chosen so that the Time behavior of the coolant pump and the blower the dynamic behavior of the Heat flow of the coolant corresponds.

Nach dem Erreichen des Temperaturgrenzwertes wird für einen minimalen Energieeinsatz nach einer Ausbildung der Erfindung der durch die Kühlmittelpumpe erzeugte Kühlmittelstrom und der durch das Gebläse einstellbare Luftstrom in Abhängigkeit eines zeitlichen Vergleiches der Wirkungsgrade von Kühlmittelpumpe und Gebläse für die Wärmeabfuhr vom Kühlermodul gesteuert.After the temperature limit is reached, a minimum Energy use after an embodiment of the invention by the coolant pump generated coolant flow and the air flow adjustable by the fan in Dependence of a time comparison of the efficiency of the coolant pump and Fan for heat dissipation controlled by the cooler module.

Der Temperatur-Sollwertes des Kühlmittels für die Regelung mindestens der Kühlmittelpumpe und des Gebläses wird bevorzugt in Abhängigkeit einer für jeden Betriebspunkt des Verbrennungskraftmotors optimalen Motortemperatur ermittelt.The temperature setpoint of the coolant for the control at least the Coolant pump and blower is preferred depending on one for each Operating point of the internal combustion engine optimal engine temperature determined.

Erfindungsgemäß ist vorgesehen, den für die Regelung in Abhängigkeit des Differenztemperatur-Sollwertes notwendigen Differenztemperatur-Istwert aus dem Wärmestrom vom Verbrennungskraftmotor in das Kühlmittel und dem Kühlmittelstrom zu ermitteln. Der mindestens vom Betriebspunkt des Verbrennungskraftmotors und vom Kühlmittelstrom vorbestimmte Wärmestrom ist dafür als Kennfeld im Steuergerät abgelegt.According to the invention it is provided for the regulation depending on the Differential temperature setpoint necessary differential temperature actual value from the Heat flow from the internal combustion engine into the coolant and the coolant flow determine. The at least from the operating point of the internal combustion engine and from The coolant flow predetermined heat flow is stored as a map in the control unit.

Nachfolgend soll die Erfindung anhand eines Ausführungsbeispiels näher beschrieben werden. Die zugehörigen Zeichnungen zeigen:

Figur 1
eine schematische Darstellung eines Kühlmittelkreislaufes,
Figur 2
ein Ablaufdiagramm für das gesamte Regelverfahren,
Figur 3
ein Ablaufdiagramm für die Regelung in der Warmlaufphase des Verbrennungskraftmotors und
Figur 4
ein Ablaufdiagramm für die Regelung der Betriebstemperatur.
The invention will be described in more detail below using an exemplary embodiment. The associated drawings show:
Figure 1
1 shows a schematic illustration of a coolant circuit,
Figure 2
a flow diagram for the entire control process,
Figure 3
a flowchart for the control in the warm-up phase of the internal combustion engine and
Figure 4
a flow chart for the regulation of the operating temperature.

Der in Figur 1 gezeigte Kühlmittelkreislauf für einen Verbrennungskraftmotor 2 eines Kraftfahrzeuges besteht aus mehreren Leitungszweigen a bis f, deren Öffnungsquerschnitte über ein temperaturabhängiges Ventil 6 (Thermostat) gesteuert werden. Die Umlaufrichtung des Kühlmittelstromes, der über die Kühlmittelpumpe 3 angetrieben wird, ist mit Hilfe von Pfeilen gekennzeichnet. Der Leitungszweig a ist zur Kühlung des aus dem Verbrennungskraftmotors 2 austretenden Kühlmittels über ein Kühlermodul 1 geführt. Durch das hinter dem Kühlermodul 1 angeordnete Gebläse 4 wird von außerhalb des Kraftfahrzeugs Luft angezogen. Beim Durchströmen des Kühlermoduls 1 findet ein Wärmeaustausch zwischen dem durch das Gebläse 4 einstellbaren Luftstrom m ˙l und dem Kühlmittelstrom m ˙w statt. Weiterhin ist ein Leitungszweig b vorgesehen, dessen Querschnitt zur Beeinflussung der Kühlmitteltemperatur vom temperaturabhängigen Ventil 6 steuerbar ist. Der Leitungszweig c weist einen Ausgleichsbehälter 7 auf und dient zur Druckregulierung im gesamten Kühlmittelkreislauf. In den zusätzlichen Leitungszweigen d bis f sind ein Wärmetauscher 8 für die Innenraumheizung des Kraftfahrzeuges und jeweils ein Kühler 9 und 10 zur Kühlung des Motoröls und des Getriebeöls angeordnet. Diese Leitungszweige d bis f sind fakultativ vorgesehen. Die entsprechenden Kühl- bzw. Heizfunktionen können auch auf anderem Wege gelöst werden. Weiterhin beinhaltet der Kühlmittelkreislauf ein Steuergerät 5, beispielsweise das Steuergerät des Verbrennungskraftmotors, das als Eingangssignal das Ausgangssignal Ssen eines die Kühlmitteltemperatur ϑw,ist am Motoraustritt erfassenden Temperatursensors 11 erhält und über die Ausgangssignale Spump, Sluft und Stherm sowohl die Drehzahl der Kühlmittelpumpe 3 und des Gebläses 4 als auch das temperaturabhängige Ventil 6 steuert.The coolant circuit shown in FIG. 1 for an internal combustion engine 2 of a motor vehicle consists of several line branches a to f, the opening cross sections of which are controlled by a temperature-dependent valve 6 (thermostat). The direction of rotation of the coolant flow, which is driven by the coolant pump 3, is indicated by arrows. The line branch a is guided via a cooler module 1 for cooling the coolant emerging from the internal combustion engine 2. Air is drawn in from outside the motor vehicle by the fan 4 arranged behind the radiator module 1. When flowing through the cooler module 1, a heat exchange takes place between the air flow m ˙ l adjustable by the blower 4 and the coolant flow m ˙ w . Furthermore, a line branch b is provided, the cross section of which can be controlled by the temperature-dependent valve 6 in order to influence the coolant temperature. The line branch c has an expansion tank 7 and serves to regulate the pressure in the entire coolant circuit. A heat exchanger 8 for the interior heating of the motor vehicle and a cooler 9 and 10 for cooling the engine oil and the transmission oil are arranged in the additional line branches d to f. These line branches d to f are optional. The corresponding cooling or heating functions can also be solved in other ways. Furthermore, the coolant circuit includes a control unit 5, for example the control unit of the internal combustion engine, which receives the output signal S sen of the coolant temperature ϑ w as an input signal , is detected at the engine outlet temperature sensor 11 and via the output signals S pump , S air and S therm both the speed of the Coolant pump 3 and the fan 4 and the temperature-dependent valve 6 controls.

Im Weiteren sollen das vom Steuergerät 5 durchzuführende Regelverfahren des Kühlmittelkreislaufes näher beschrieben werden. Die Figuren 2 bis 4 zeigen zur Erläuterung Ablaufdiagramme dieses Regelverfahrens.Furthermore, the control method of the coolant circuit to be carried out by the control unit 5 should are described in more detail. Figures 2 to 4 show flow diagrams for explanation this control procedure.

Wie in Figur 2 verdeutlicht, werden im erfindungsgemäßen Verfahren drei Fälle unterschieden; der Warmlauf V1 des Verbrennungskraftmotors, der Fahrbetrieb V2 bei Betriebstemperatur des Kühlmittels und der Nachlauf V3. Im ersten Verfahrensschritt A1 wird überprüft, ob der Verbrennungskraftmotor 2 gestartet wurde., ist dies der Fall, erfolgt ein Vergleich der Kühlmitteltemperatur ϑw,ist (Ausgangssignal Ssen des Temperatursensors 11) am Motoraustritt mit einem die Beendigung der Warmlaufphase V1 kennzeichnenden Temperaturgrenzwert ϑw,warml. Bei einer Kühlmitteltemperatur ϑw,ist unterhalb dieses Temperaturgrenzwertes wird auf Warmlauf V1 erkannt. Hat die Kühlmitteltemperatur ϑw,ist den Temperaturgrenzwert ϑw,warml erreicht, wird der Kühlmittelkreislauf nach dem Algorithmus für den Fahrbetrieb V2 bei Betriebstemperatur gesteuert. As illustrated in FIG. 2, three cases are distinguished in the method according to the invention; the warm-up V1 of the internal combustion engine, the driving mode V2 at the operating temperature of the coolant and the run-on V3. In the first method step A1, it is checked whether the internal combustion engine 2 has been started. If this is the case, the coolant temperature ϑ w is compared (output signal S sen from the temperature sensor 11) at the engine outlet with a temperature limit value ϑ w characterizing the end of the warm-up phase V1 , warm. At a coolant temperature ϑ w, below this temperature limit, warm-up V1 is detected. If the coolant temperature ϑ w, the temperature limit ϑ w, warml has been reached, the coolant circuit is controlled according to the algorithm for driving mode V2 at operating temperature.

Ist der Verbrennungskraftmotor 2 nicht gestartet, wird überprüft, ob die Kühlmitteltemperatur ϑw,ist einen Temperaturgrenzwert ϑw,nach überschreitet, d. h. der Verbrennungskraftmotor 2 muß weiter gekühlt werden. In diesem Fall erfolgt die Regelung des Kühlmittelkreislaufs mit einem Algorithmus für den Nachlauf V3. Liegt die Kühlmitteltemperatur ϑw,ist unterhalb des Temperaturgrenzwertes ϑw,nach stoppt die Regelung bis zum erneuten Starten des Verbrennungskraftmotors 2.If the internal combustion engine 2 is not started, it is checked whether the coolant temperature θ w, is a temperature limit value θ w, exceeds by, that the internal combustion engine 2 has to be further cooled. In this case, the coolant circuit is controlled using an algorithm for the run-on V3. If the coolant temperature ϑ w is below the temperature limit ϑ w, the control stops after the internal combustion engine 2 is restarted.

In der Warmlaufphase V1, deren Ablauf in Figur 3 dargestellt ist, erfolgt in einem ersten Verfahrensschritt der Vergleich der Kühlmitteltemperatur ϑw,ist am Motoraustritt mit einer Kühlmittelanfangstemperatur ϑw,start. Wenn die Kühlmitteltemperatur unterhalb des Kühlmittelanfangswertes ϑw,start liegt, startet die Kühlmittelpumpe 3 mit einer Verzögerung der Zeitdauer tstart, um den Wärmestrom von Bauteilen des Verbrennungskraftmotors 2 in das Kühlmittel so gering wie möglich zu halten und damit ein schnelleres Aufheizen der Bauteile zu erreichen. Nach Ablauf der Zeitdauer tstart oder dem Erreichen des Temperaturanfangswertes ϑw,start wird der durch die Kühlmittelpumpe 3 erzeugte Kühlmittelstrom m ˙w kontinuierlich vergrößert, bis erstmalig der minimale Kühlmittelstrom m ˙w ,min für die Einhaltung des Differenztemperatur-Sollwertes Δϑw,Mot,soll zwischen Motorein- und austritt erreicht ist. Aus dem minimalen Kühlmittelstrom m ˙w ,min wird im Steuergerät 5 das Ansteuersignal Spump,min für die Kühlmittelpumpe 3 berechnet. Ab dem erstmaligen Erreichen des minimalen Kühlmittelstroms m ˙w ,min wird die Kühlmittelpumpe 3 auf die Einhaltung des Differenztemperatur-Sollwertes Δϑw,Mot,soll des Kühlmittels mit einem Ansteuersignal Spump,warml geregelt. Der für die Regelung notwendige Differenztemperatur-Istwert Δϑw,Mot,ist ergibt sich aus dem Wärmestrom Q ˙Mot vom Verbrennungskraftmotor in das Kühlmittel, der sich wiederum aus dem momentanen Kühlmittelstrom m ˙w , der momentanen Motorlast LMot und der Motordrehzahl n errechnet. Vorzugsweise ist der Wärmestrom Q ˙Mot als Kennfeld im Steuergerät 5 für den speziellen Verbrennungskraftmotor 2 abgelegt.In the warm-up phase V1, the sequence of which is shown in FIG. 3, the first step is to compare the coolant temperature ϑ w, at the engine outlet, with a coolant start temperature ϑ w, start . If the coolant temperature is below the coolant start value ϑ w, start , the coolant pump 3 starts with a delay of the time period t start in order to keep the heat flow from components of the internal combustion engine 2 into the coolant as low as possible and thus to achieve a faster heating of the components . After the time period t start or when the temperature start value ϑ w, start has been reached, the coolant flow m ˙ w generated by the coolant pump 3 is continuously increased until, for the first time, the minimum coolant flow m ˙ w , min for maintaining the differential temperature setpoint Δϑ w, Mot is intended between Motorein- reaches and exits. The control signal S pump, min for the coolant pump 3 is calculated in the control unit 5 from the minimum coolant flow m ˙ w , min . When the minimum coolant flow m ˙ w , min is reached for the first time, the coolant pump 3 is controlled to maintain the differential temperature setpoint Δϑ w, Mot, coolant with a control signal S pump, warml . The actual differential temperature Δϑ w, Mot, required for the control results from the heat flow Q ˙ Mot from the internal combustion engine into the coolant, which in turn is calculated from the current coolant flow m ˙ w , the current engine load L Mot and the engine speed n. The heat flow Q ˙ Mot is preferably stored as a map in the control unit 5 for the special internal combustion engine 2.

Nach dem Erreichen des minimalen Kühlmittelstroms m ˙w ,min sollte das Reagieren der Kühlmittelpumpe 3 auf kurzfristige Motorlast- und Drehzahländerungen verhindert werden. Da aufgrund der thermischen Trägheit des Verbrennungskraftmotors 2 kurzzeitige Änderungen der Motorlast LMot und der Motordrehzahl n für den Wärmestrom Q ˙Mot in das Kühlmittel keine Rolle spielen, würde das Mitführen der Drehzahl der Kühlmittelpumpe 3 einen unnötigen Energieverbrauch darstellen. Das Ansteuersignal Spump für die Kühlmittelpumpe wird daher mit einem dynamischen Übertragungsverhalten belegt, dessen Zeitkonstanten Tstg so gewählt ist, daß das Zeitverhalten der Kühlmittelpumpe etwa dem Verhalten des Wärmestroms Q ˙Mot vom Verbrennungskraftmotor in das Kühlmittel. Hieraus ergibt sich, daß die Drehzahländerung der Kühlmittelpumpe 3 der Änderung des Wärmestroms Q ˙mot in das Kühlmittel folgt. After reaching the minimum coolant flow m ˙ w , min , the reaction of the coolant pump 3 to short-term engine load and speed changes should be prevented. Since, due to the thermal inertia of the internal combustion engine 2, brief changes in the engine load L Mot and the engine speed n play no role for the heat flow Q ˙ Mot in the coolant, carrying the speed of the coolant pump 3 would represent unnecessary energy consumption. The control signal S pump for the coolant pump is therefore assigned a dynamic transmission behavior, the time constant T stg of which is chosen so that the time behavior of the coolant pump roughly corresponds to the behavior of the heat flow Q ˙ Mot from the internal combustion engine into the coolant. It follows from this that the speed change of the coolant pump 3 follows the change in the heat flow Q Q mot into the coolant.

Während der Warmlaufphase V1 wird das Gebläse 4 nicht angesteuert, d. h. es wird kein Luftstrom m ˙l durch das Kühlermodul 1 erzeugt. Die Warmlaufphase V1 ist beendet, wenn erstmalig die momentane Kühlmitteltemperatur ϑw,ist den Temperaturgrenzwert ϑw,warml erreicht.The blower 4 is not activated during the warm-up phase V1, ie no airflow m ˙ l is generated by the cooler module 1. The warm-up phase V1 has ended when the current coolant temperature ϑ w, the temperature limit value den w, warml is reached for the first time.

Beim Erreichen des Temperaturgrenzwertes ϑw,warml (Figur 4) findet neben der Regelung in Abhängigkeit des Differenztemperatur-Sollwertes Δϑw,Mot,soll auch eine Regelung der Kühlmitteltemperatur in Abhängigkeit eines Temperatur-Sollwertes ϑw,soll nach dem Algorithmus für den Fahrbetrieb V2 bei Betriebstemperatur statt. Hierfür wird zunächst der Temperatur-Sollwert ϑw,soll errechnet. Dazu liegt im Steuergerät 5 ein Kennfeld vor, in dem der optimale Temperatur-Sollwert ϑw,soll für die vorgegebene Motortemperatur bei variabler Motorlast LMot, Motordrehzahl n und Kühlmittelstrom m ˙w abgelegt ist. Aus diesem variablen Temperatur-Sollwert ϑw,soll am Motoraustritt, dem Kühlmittelstrom m ˙w und dem Wärmestrom Q ˙Mot vom Verbrennungskraftmotor 2 in das Kühlmittel ergibt sich die Regeltemperatur ϑw,therm für das temperaturabhängige Ventil 6, aus der das Ansteuersignal Stherm für das temperaturabhängige Ventil 6 ermittelt wird. Wie auch in einem herkömmlichen Kühlkreislauf regelt das Ventil 6 über die Kühlmittelströmungsverhältnisse zwischen dem über das Kühlermodul 1 geführten Leitungszweig a und dem Leitungszweig b die Kühlmitteltemperatur ϑw,ist.When the temperature limit value ϑ w, warml (FIG. 4) is reached, in addition to the control as a function of the differential temperature setpoint Δϑ w, Mot, the coolant temperature is also controlled as a function of a temperature setpoint ϑ w, according to the algorithm for driving mode V2 at operating temperature instead. To do this, the temperature setpoint ϑ w, set is first calculated. For this purpose, there is a map in the control unit 5 in which the optimum temperature setpoint ϑ w, for the specified engine temperature with variable engine load L Mot , engine speed n and coolant flow m ˙ w , is stored. From this variable temperature setpoint ϑ w, at the engine outlet, the coolant flow m ˙ w and the heat flow Q ˙ Mot from the internal combustion engine 2 into the coolant, the control temperature ϑ w, therm results for the temperature-dependent valve 6, from which the control signal S therm is determined for the temperature-dependent valve 6. As in a conventional cooling circuit, the valve 6 regulates the coolant temperature ϑ w via the coolant flow conditions between the line branch a led via the cooler module 1 and the line branch b.

Aus der Berechnung des minimalen Kühlmittelstromes m ˙w ,min ergibt sich die erforderliche Mindestdrehzahl der Kühlmittelpumpe 3 und damit das optimale Ansteuersignal Spump, min. Überschreitet die momentane Kühlmitteltemperatur ϑw,ist den Temperatursollwert ϑw,soll am Motoraustritt um einen Differenzwert Δϑw,heiß, so wird entweder die Drehzahl der Kühlmittelpumpe 3 und damit der Kühlmittelstrom m ˙w oder die Drehzahl des Gebläses 4 und damit der Luftstrom m ˙l gesteigert. Ob es energetisch sinnvoller ist, Drehzahl der Kühlmittelpumpe 3 oder des Gebläses 4 zu verändern, wird einem zeitlichen Vergleich ihrer Wirkungsgrade für die Wärmeabfuhr am Kühlermodul 1 entnommen. Die Wärmeabfuhr bzw. der Wärmestrom Q ˙w , k am Kühlermodul 1 hängt vom Wärmedurchgangskoeffizienten k ab, der sich aus den Wärmeübergangskoeffizienten Kühlmittel-Kühlermodul und Kühlermodul-Luft ergibt und nach der Formel: k = 1 Ak · 0,8 m l · m w ak · m w 0,8+bk · m l 0,8+ck 0,8 m l · m w berechnet wird, wobei Ak die Fläche am Kühlermodul 1 und ak, bk und ck Konstanten für die Berechnung des Wärmedurchgangskoeffizienten sind.From the calculation of the minimum coolant flow m ˙ w, min results in the required minimum speed of the coolant pump 3 and thereby the optimum drive signal S pump, min. If the current coolant temperature exceeds ϑ w, the temperature setpoint is ϑ w, and if the engine outlet is hot by a differential value Δϑ w, either the speed of the coolant pump 3 and thus the coolant flow m ˙ w or the speed of the fan 4 and thus the air flow m ˙ l increased. Whether it makes more sense in terms of energy to change the speed of the coolant pump 3 or of the blower 4 is determined by comparing their efficiency for heat dissipation at the cooler module 1 over time. The heat dissipation or the heat flow Q ˙ w , k at the cooler module 1 depends on the heat transfer coefficient k, which results from the heat transfer coefficients coolant-cooler module and cooler module-air and according to the formula: k = 1 A k · 0.8 m l · m w a k · m w 0.8 + b k · m l 0.8 + c k 0.8 m l · m w is calculated, where A k is the area on the cooler module 1 and a k , b k and c k are constants for the calculation of the heat transfer coefficient.

Um die Effektivität der Veränderung des Luftstroms m ˙l und des Kühlmittelstroms m ˙w zu beurteilen werden die partiellen Ableitungen gebildet:

Figure 00080001
Figure 00080002
In order to assess the effectiveness of the change in the air flow m ˙ l and the coolant flow m ˙ w , the partial derivatives are formed:
Figure 00080001
Figure 00080002

Für jeden Betriebspunkt des Kühlermoduls ergibt sich damit die Größe der Wärmeabfuhrsteigerung pro Masseneinheit der beteiligten Stoffe. Setzt man diese Werte jetzt im Bezug zum Energieeinsatz PL, Pwapu, den man für die Bereitstellung des Kühlmittelstroms bzw. Luftstroms benötigt, erhält man einen Vergleichswert Kη zur Beurteilung der günstigsten Betriebspunktänderung. Kη = η k,l·1 PL η k,wapu ·1 Pwapu For each operating point of the cooler module, the size of the increase in heat dissipation per unit mass of the substances involved is thus obtained. If these values are now related to the energy input P L , P wapu , which is required for the provision of the coolant flow or air flow, a comparison value K η is obtained to assess the most favorable change in the operating point. K η = η k, l · 1 P L η k, wapu · 1 P wapu

Ist der Kennwert Kη > 1 ist es Wirkungsgrad günstiger den Luftstrom m ˙l zu steigern. Für Kη < 1 sollte der Kühlmittelstrom m ˙w erhöht werden.If the characteristic value K η > 1, it is more efficient to increase the air flow m ˙ l . For K η <1, the coolant flow m ˙ w should be increased.

Wenn der Kühlmittelkreislauf, wie in Figur 1 gezeigt, über einen Kühler 9 gleichzeitig zur Kühlung des Motoröls verwendet wird, kann mit einem nicht dargestellten Sensor die momentane Öltemperatur ϑÖl überwacht werden. Überschreitet die momentane Öltemperatur ϑÖl einen Grenztemperaturwert ϑÖl,grenz so wird schrittweise die Kühlmitteltemperatur ϑw,ist gesenkt, bis die Öltemperatur ϑÖl wieder unter diesen Grenztemperaturwert sinkt. Danach wird wieder die für die gewählte Motortemperatur benötigte Kühlmitteltemperatur eingestellt.If, as shown in FIG. 1, the coolant circuit is simultaneously used to cool the engine oil via a cooler 9, the current oil temperature ϑ oil can be monitored with a sensor (not shown). Exceeds the current oil temperature θ oil has a temperature limit value θ oil, cross so the coolant temperature is gradually θ w, is lowered until the oil temperature θ oil drops below this limit temperature value. The coolant temperature required for the selected engine temperature is then set again.

Das dynamische Verhalten der Regelung bei kurzzeitigen Veränderungen der Motorlast LMot und der Motordrehzahl n ist für die Einhaltung des Differenztemperatur-Sollwertes Δϑw,Mot,soll und des Temperatur-Sollwertes ϑw,soll unterschiedlich. Die Regelung nach dem Differenztemperatur-Sollwert Δϑw,Mot,soll entspricht in ihrer Dynamik der des Warmlaufs V1. Die Regelung nach dem Temperatur-Sollwert ϑw,soll mittels Variation des Ventilstroms Sterm sowie der Drehzahlen von Kühlmittelpumpe 3 und Gebläse 4 muß schneller erfolgen. Bei der Auslegung muß ein Kompromiß gefunden werden zwischen einem energetischen Optimum und der Temperaturkonstanz der Bauteile des Verbrennungskraftmotors 2. Für die Energiebetrachtung ist es sinnvoll, kurzzeitige Temperaturänderungen der Bauteile, wie sie zum Beispiel beim Überholvorgang entstehen, zuzulassen. Optimiert man in Richtung Temperaturkonstanz der Bauteile des Verbrennungskraftmotors, so kann man durch die Reaktion auf Veränderungen der Motorlast eine Vorsteuerung gegenüber der Veränderung der Kühlmitteltemperatur ϑw,ist bzw. des Wärmestroms Q ˙mot in das Kühlmittel erreichten. Wird ein Motorbetriebspunkt eingestellt, der einen erhöhten Wärmestrom Q ˙Mot in das Kühlmittel zur Folge hätte, so kann man durch Steuerung des temperaturabhängigen Ventils 6 kälteres Kühlmittel in den Verbrennungskraftmotor pumpen, was einen höheren Wärmestrom Q ˙Mot in das Kühlmittel und damit geringere Bauteiltemperaturschwankungen zur Folge hätte. Weiterhin kann im Vorgriff der Kühlmittelstrom m ˙w oder der Luftstrom m ˙l erhöht werden. Dies empfiehlt sich insbesondere, wenn das Ventil 6 aufgrund seiner Bauart nicht in der Lage ist, schnellen Änderungen zu folgen. The dynamic behavior of the control in the event of brief changes in the engine load L Mot and the engine speed n is different for compliance with the differential temperature setpoint Δϑ w, Mot, setpoint and the temperature setpoint ϑ w, setpoint. The control according to the differential temperature setpoint Δϑ w, Mot, soll corresponds in its dynamics to that of warming up V1. The regulation according to the temperature setpoint ϑ w, should be done faster by varying the valve current S term and the speeds of the coolant pump 3 and blower 4. When designing, a compromise must be found between an energetic optimum and the temperature constancy of the components of the internal combustion engine 2. For energy purposes, it makes sense to allow brief temperature changes in the components, such as those that occur during the overtaking process. If one optimizes in the direction of constant temperature of the components of the internal combustion engine, then by reacting to changes in the engine load, a precontrol against the change in the coolant temperature ϑ w, ist or the heat flow Q ˙ mot into the coolant can be achieved. If an engine operating point is set which would result in an increased heat flow Q ˙ Mot into the coolant, 6 cooler coolant can be pumped into the internal combustion engine by controlling the temperature-dependent valve, which results in a higher heat flow Q ˙ Mot in the coolant and thus lower component temperature fluctuations Episode. Furthermore, the coolant flow m ˙ w or the air flow m ˙ l can be increased in advance. This is particularly recommended if the valve 6 is not able to follow rapid changes due to its design.

BEZUGSZEICHENLISTEREFERENCE SIGN LIST

11
KühlermodulCooler module
22nd
VerbrennungskraftmotorInternal combustion engine
33rd
KühlmittelpumpeCoolant pump
44th
Gebläsefan
55
SteuergerätControl unit
66
temperaturabhängiges Ventiltemperature dependent valve
77
Ausgleichsbehältersurge tank
88th
WärmetauscherHeat exchanger
99
Kühlercooler
1010th
Kühlercooler
1111
TemperatursensorTemperature sensor
a - fa - f
LeitungszweigeLine branches
m ˙w , min m ˙ w , min
minimaler Kühlmittelstromminimal coolant flow
m ˙w m ˙ w
KühlmittelstromCoolant flow
m ˙l m ˙ l
LuftstromAirflow
ϑw,warml ϑ w, warm
Temperaturgrenzwert für den WarmlaufTemperature limit for warm-up
Δϑw,Mot,ist Δϑ w, Mot, is
Differenztemperatur-IstwertDifferential temperature actual value
Δϑw,Mot,soll Δϑ w, Mot, should
Differenztemperatur-SollwertDifferential temperature setpoint
ϑw,soll ϑ w, should
TemperatursollwertTemperature setpoint
ϑw,nach ϑ w, after
Temperaturgrenzwert für den NachlaufTemperature limit for the wake
tstart t start
Zeitdauer der VerzögerungDuration of the delay
ϑw,start ϑ w, start
TemperaturanfangswertInitial temperature value
ϑw,therm ϑ w, therm
Regeltemperatur des temperaturabhängigen VentilsControl temperature of the temperature-dependent valve
Δϑw,heiß Δϑ w, hot
DifferenzwertDifference value
ϑw,ist ϑ w, is
momentane Temperatur des Kühlmittels am MotoraustrittCurrent temperature of the coolant at the engine outlet
LMot L Mot
MotorlastEngine load
nn
MotordrehzahlEngine speed
BEZUGSZEICHENLISTEREFERENCE SIGN LIST

Q ˙w,k Q ˙ w, k
Wärmestrom am KühlermodulHeat flow at the cooler module
Q ˙Mot Q ˙ Mot
WärmestromHeat flow
V1V1
WarmlaufWarm up
V2V2
Fahrbetrieb bei BetriebstemperaturDriving operation at operating temperature
V3V3
Nachlauftrailing
Ssen S sen
Ausgangssignal des TemperatursensorsOutput signal of the temperature sensor
Spump S pump
Ansteuersignal für die KühlmittelpumpeControl signal for the coolant pump
Spump,min S pump, min
Ansteuersignal für den minimalen KühlmittelstromControl signal for the minimum coolant flow
Spump,warml S pump, warm
Ansteuersignal für die Kühlmittelpumpe in der WarmlaufphaseControl signal for the coolant pump in the warm-up phase
Stherm S therm
Ansteuersignal für das VentilControl signal for the valve
Sluft S air
Ansteuersignal für das GebläseControl signal for the fan
Tstg T stg
ZeitkonstanteTime constant
ϑÖl ϑ oil
ÖltemperaturOil temperature
ϑÖl,Grenz ϑ oil, limit
GrenztemperaturwertLimit temperature value
kk
WärmedurchgangskoeffizientHeat transfer coefficient
Ak A k
Fläche am KühlermodulSurface on the cooler module
ak, bk, ck a k, b k, c k
KonstantenConstants
PL P L
Energieeinsatz für das GebläseEnergy use for the blower
Pwapu P wapu
Energieeinsatz für die KühlmittelpumpeUse of energy for the coolant pump
Kη K η
VergleichswertComparative value
ηk,wapu η k, wapu
Wirkungsgrad der KühlmittelpumpeEfficiency of the coolant pump
ηk,l η k, l
Wirkungsgrad des GebläsesFan efficiency

Claims (10)

  1. Method for controlling a cooling circuit of an internal combustion engine, in particular of a motor vehicle,
    having at least one cooling medium pump (3) for controlling a cooling medium flow,
    having a cooler module (1) in which a heat exchange takes place between an air flow, which can be adjusted by means of a fan (4), and the cooling medium, and
    having a control device (5), which controls at least the cooling medium flow produced by the cooling medium pump (3) and the air flow produced by the fan (4),
    wherein the cooling medium flow produced by the cooling medium pump (3), and the air flow produced by the fan (4) through the cooler module (1) is controlled below a temperature limit value (ϑw,warml) of the cooling medium in dependence upon a differential temperature set value (Δϑw,Mot, soll) of the cooling medium between the engine inlet and the engine outlet, and after reaching the temperature limit value (ϑw,warml) is controlled in dependence upon both the differential temperature set value (Δϑw,Mot, soll) and on a temperature set value (ϑw,soll),
    characterised in that
    a differential temperature actual value (Δϑw, Mot,ist) required for the control in dependence upon the differential temperature set value (Δϑw,Mot,soll) is determined from the heat flow (Q ˙Mot ) from the internal combustion engine (2) into the cooling medium and from the cooling medium flow (m ˙w ).
  2. Method according to claim 1, characterised in that the differential temperature set value (Δϑw,Mot, soll) and/or the temperature set value (ϑw,soll) are dependent upon the operating point (LMot, n) of the internal combustion engine (2).
  3. Method according to claim 1 or 2, characterised in that the temperature limit value (ϑw,warml) characterises the end of the warm-up phase (V1) of the internal combustion engine (2).
  4. Method according to one of claims 1 to 3, characterised in that below the temperature limit value (ϑw,warml) only the cooling medium flow (m ˙w ) produced by the cooling medium pump (3) is controlled in dependence upon the differential temperature (Δϑw,Mot, soll), but no air flow (m ˙l ) is produced by the fan (4).
  5. Method according to one of claims 1 to 4, characterised in that after starting the internal combustion engine (2) below a cooling medium initial temperature (ϑw,start), which is lower than the temperature limit value (ϑw,warml), and during a predetermined period of time (tstart) no cooling medium flow (m ˙w ) is produced by the cooling medium pump (3) nor is an air flow (m ˙l ) produced by the fan (4).
  6. Method according to claim 5, characterised in that the length of the predeterminable period of time (tstart) is defined in dependence upon the operating points which have occurred since starting the internal combustion engine.
  7. Method according to one of claims 1 to 6, characterised in that the cooling medium pump (3) and/or the fan (4) is actuated with a delay, of which the time constants (Tstg,wapu; Tstg,l) are selected in such a way that the behaviour of the cooling medium pump (3) and/or of the fan (4) with respect to time corresponds to the behaviour of the heat flow (Q ˙Mot) from the internal combustion engine (2) Lin the cooling agent at high engine speeds (n).
  8. Method according to one of claims 1 to 7, characterised in that after reaching the temperature limit value (ϑw,warml) and the cooling medium flow (m ˙w ) produced by the cooling medium pump (3) and the air flow (m ˙l ) which can be adjusted by the fan (4) are controlled in dependence upon a comparison, with respect to time, of the operating efficiency (ηk,wapu;k,l) of the cooling medium pump and fan for the dissipation of heat at the cooler module (1).
  9. Method according to one of claims 1 to 8, characterised in that the temperature set value (ϑw,soll) is determined in dependence upon an engine temperature which is optimal for each operating point (Lmot,n) of the internal combustion engine (2).
  10. Method according to one of claims 1 to 9, characterised in that the heat flow (Q ˙Mot ) from the internal combustion engine (2) into the cooling medium is stored in the control device (5) in dependence upon the operating point (Lmot,n) of the internal combustion engine (2) and upon the cooling medium flow (m ˙w ).
EP96100636A 1995-03-08 1996-01-18 Control method for a cooling circuit of an internal combustion engine Expired - Lifetime EP0731260B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19508104 1995-03-08
DE19508104A DE19508104C2 (en) 1995-03-08 1995-03-08 Method for regulating a cooling circuit of an internal combustion engine

Publications (2)

Publication Number Publication Date
EP0731260A1 EP0731260A1 (en) 1996-09-11
EP0731260B1 true EP0731260B1 (en) 2000-06-07

Family

ID=7755955

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96100636A Expired - Lifetime EP0731260B1 (en) 1995-03-08 1996-01-18 Control method for a cooling circuit of an internal combustion engine

Country Status (4)

Country Link
US (1) US5724924A (en)
EP (1) EP0731260B1 (en)
DE (2) DE19508104C2 (en)
ES (1) ES2148598T3 (en)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5660149A (en) * 1995-12-21 1997-08-26 Siemens Electric Limited Total cooling assembly for I.C. engine-powered vehicles
FR2752016B1 (en) * 1996-07-31 1998-09-11 Renault COOLING DEVICE OF AN INTERNAL COMBUSTION ENGINE
ITTO980348A1 (en) 1998-04-24 1999-10-24 Gate Spa MINIMUM ELECTRIC CONSUMPTION CONTROL SYSTEM FOR A COOLING SYSTEM FOR AN INTERNAL COMBUSTION ENGINE.
JP3473398B2 (en) * 1998-05-01 2003-12-02 株式会社日立製作所 Map application system and map display control method
US6178928B1 (en) 1998-06-17 2001-01-30 Siemens Canada Limited Internal combustion engine total cooling control system
DE19841720A1 (en) * 1998-09-11 2000-03-16 Mueller Bbm Gmbh Cooling system for rail vehicles incorporates second heat exchanger unit in series or parallel to first unit and device for temperature detection of cooling fluid
US6142110A (en) * 1999-01-21 2000-11-07 Caterpillar Inc. Engine having hydraulic and fan drive systems using a single high pressure pump
FR2793842B1 (en) * 1999-05-17 2002-06-14 Valeo Thermique Moteur Sa ELECTRONIC DEVICE FOR REGULATING THE COOLING OF A MOTOR VEHICLE HEAT ENGINE
FR2796987B1 (en) * 1999-07-30 2002-09-20 Valeo Thermique Moteur Sa DEVICE FOR REGULATING THE COOLING OF A MOTOR VEHICLE HEAT ENGINE
DE19939138A1 (en) * 1999-08-18 2001-02-22 Bosch Gmbh Robert Method for regulating the temperature of the coolant of an internal combustion engine by means of an electrically operated coolant pump
US6394044B1 (en) * 2000-01-31 2002-05-28 General Electric Company Locomotive engine temperature control
FR2808304B1 (en) * 2000-04-27 2002-11-15 Valeo Thermique Moteur Sa COOLING DEVICE AT THE STOP OF A MOTOR VEHICLE HEAT ENGINE
KR100348588B1 (en) * 2000-07-07 2002-08-14 국방과학연구소 Cooling system for vehicles
US6374780B1 (en) * 2000-07-07 2002-04-23 Visteon Global Technologies, Inc. Electric waterpump, fluid control valve and electric cooling fan strategy
DE60223188T2 (en) * 2001-03-06 2008-02-14 Calsonic Kansei Corp. Cooling system for a water-cooled internal combustion engine and control method therefor
DE10123444B4 (en) * 2001-05-14 2006-11-09 Siemens Ag Control system for controlling the coolant temperature of an internal combustion engine
DE10153486A1 (en) * 2001-10-22 2003-05-08 Bosch Gmbh Robert Method, computer program and control and / or regulating device for operating an internal combustion engine, and internal combustion engine
DE10154091A1 (en) 2001-11-02 2003-05-15 Bayerische Motoren Werke Ag Method and device for controlling a cooling system of an internal combustion engine
JP4023176B2 (en) * 2002-02-13 2007-12-19 トヨタ自動車株式会社 Cooling device for internal combustion engine
DE10224063A1 (en) 2002-05-31 2003-12-11 Daimler Chrysler Ag Method for heat regulation of an internal combustion engine for vehicles
US6802335B2 (en) * 2003-01-23 2004-10-12 Masco Corporation Of Indiana Faucet handle retainer
DE102004008170B4 (en) * 2004-02-19 2015-04-30 Robert Bosch Gmbh Method and device for controlling the cooling circuit of an internal combustion engine
FR2869355B1 (en) * 2004-04-22 2010-09-10 Valeo Thermique Moteur Sa PREDICTIVE MODEL THERMAL CONTROL METHOD FOR AN ENGINE COOLING CIRCUIT
JP4631652B2 (en) * 2005-10-25 2011-02-16 トヨタ自動車株式会社 COOLING SYSTEM, ITS CONTROL METHOD, AND AUTOMOBILE
US7421983B1 (en) * 2007-03-26 2008-09-09 Brunswick Corporation Marine propulsion system having a cooling system that utilizes nucleate boiling
DE102008000907A1 (en) 2008-04-01 2009-10-08 Robert Bosch Gmbh Solenoid valve with multipart anchor without armature guide
DE102009001706A1 (en) 2009-03-20 2010-09-23 Robert Bosch Gmbh Residual air gap disc
US8215381B2 (en) * 2009-04-10 2012-07-10 Ford Global Technologies, Llc Method for controlling heat exchanger fluid flow
DE102009026522A1 (en) 2009-05-28 2010-12-02 Robert Bosch Gmbh Pressure-balanced solenoid valve for actuation of fuel injector of common rail injection system of internal combustion engine, has valve member provided with excess/forward stroke and excess stroke stop, which limits movement of anchor
US8452459B2 (en) * 2009-08-31 2013-05-28 Fisher-Rosemount Systems, Inc. Heat exchange network heat recovery optimization in a process plant
US20120067332A1 (en) * 2010-09-17 2012-03-22 Gm Global Technology Operations, Inc. Integrated exhaust gas recirculation and charge cooling system
US9416720B2 (en) * 2011-12-01 2016-08-16 Paccar Inc Systems and methods for controlling a variable speed water pump
US9341105B2 (en) 2012-03-30 2016-05-17 Ford Global Technologies, Llc Engine cooling system control
US8683854B2 (en) 2012-03-30 2014-04-01 Ford Global Technologies, Llc Engine cooling system control
US8689617B2 (en) 2012-03-30 2014-04-08 Ford Global Technologies, Llc Engine cooling system control
US9022647B2 (en) 2012-03-30 2015-05-05 Ford Global Technologies, Llc Engine cooling system control
US8922033B2 (en) 2013-03-04 2014-12-30 General Electric Company System for cooling power generation system
US9523306B2 (en) * 2014-05-13 2016-12-20 International Engine Intellectual Property Company, Llc. Engine cooling fan control strategy
JP6123741B2 (en) * 2014-06-20 2017-05-10 トヨタ自動車株式会社 Cooler
US10480391B2 (en) * 2014-08-13 2019-11-19 GM Global Technology Operations LLC Coolant control systems and methods to prevent coolant boiling
US9957875B2 (en) 2014-08-13 2018-05-01 GM Global Technology Operations LLC Coolant pump control systems and methods for backpressure compensation
DE102015006303A1 (en) * 2015-05-16 2016-11-17 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Cooling system with a coolant pump for an internal combustion engine
DE102015006302A1 (en) 2015-05-16 2016-11-17 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Cooling system with a coolant pump for an internal combustion engine
KR101694012B1 (en) * 2015-06-18 2017-01-06 현대자동차주식회사 A method for controlling water pump of vehicle and an apparatus therefor
JP6384409B2 (en) * 2015-06-24 2018-09-05 トヨタ自動車株式会社 Waste heat recovery unit structure
US10006335B2 (en) * 2015-11-04 2018-06-26 GM Global Technology Operations LLC Coolant temperature correction systems and methods
US10215080B2 (en) 2016-11-01 2019-02-26 Ford Global Technologies, Llc Systems and methods for rapid engine coolant warmup
JP6863228B2 (en) * 2017-10-26 2021-04-21 トヨタ自動車株式会社 Cooling system
CN108644003A (en) * 2018-07-18 2018-10-12 龙城电装(常州)有限公司 A kind of water-cooled engine Intelligent heat management system
CN111520227B (en) * 2020-05-08 2021-03-16 蜂巢动力系统(江苏)有限公司 Control method of electronic water pump of engine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2384106A1 (en) * 1977-03-16 1978-10-13 Sev Marchal IC engine cooling system - has pump driven by electric motor with control circuit receiving constant voltage input and variable input from temp. transducer
DE3024209A1 (en) * 1979-07-02 1981-01-22 Guenter Dr Rinnerthaler Liq. cooling system for automobile engine with electronic control - regulating circulation pump or variable selective blocking element and by=pass line
FR2495687B1 (en) * 1980-12-10 1985-11-29 Peugeot Aciers Et Outillage SAFETY CIRCUIT FOR A DEVICE FOR CONTROLLING THE TEMPERATURE OF A COOLING FLUID OF AN INTERNAL COMBUSTION ENGINE
JPS5874824A (en) * 1981-10-29 1983-05-06 Nissan Motor Co Ltd Cooling device of engine
FR2531489B1 (en) * 1982-08-05 1987-04-03 Marchal Equip Auto COOLING DEVICE OF AN INTERNAL COMBUSTION ENGINE
FR2554165B1 (en) * 1983-10-28 1988-01-15 Marchal Equip Auto METHOD FOR CONTROLLING THE TEMPERATURE OF THE COOLING LIQUID OF AN INTERNAL COMBUSTION ENGINE AND DEVICE FOR IMPLEMENTING IT
DE3810174C2 (en) * 1988-03-25 1996-09-19 Hella Kg Hueck & Co Device for regulating the coolant temperature of an internal combustion engine, in particular in motor vehicles
DE69325044T2 (en) * 1992-02-19 1999-09-30 Honda Motor Co Ltd Machine cooling system
DE4238364A1 (en) * 1992-11-13 1994-05-26 Behr Gmbh & Co Device for cooling drive components and for heating a passenger compartment of an electric vehicle

Also Published As

Publication number Publication date
US5724924A (en) 1998-03-10
DE59605375D1 (en) 2000-07-13
DE19508104A1 (en) 1996-09-12
EP0731260A1 (en) 1996-09-11
ES2148598T3 (en) 2000-10-16
DE19508104C2 (en) 2000-05-25

Similar Documents

Publication Publication Date Title
EP0731260B1 (en) Control method for a cooling circuit of an internal combustion engine
EP0731261B1 (en) Control method of a cooling circuit of an internal combustion engine, especially for motor vehicles
EP1509687B1 (en) Method for regulating the heat of an internal combustion engine for vehicles
EP1940636B1 (en) Control device for an engine-independent heater, heating system, and method for controlling an engine-independent heater
DE19719792B4 (en) Method and device for regulating the temperature of a medium
EP0372171B1 (en) Air conditioning system
DE3601532C2 (en)
WO2003016690A1 (en) Device for cooling and heating a motor vehicle
DE10234608A1 (en) Method for operating a cooling and heating circuit of a motor vehicle
DE102018127584B4 (en) Method for controlling a cooling system for a vehicle
DE102013206499A1 (en) Apparatus and method for controlling the coolant temperature of a fuel cell system
EP1399656B1 (en) Method for monitoring a coolant circuit of an internal combustion engine
DE102018127409A1 (en) STRATEGY / METHOD FOR CONTROLLING AN EQUATION-BASED COOLING SYSTEM
DE2806708C2 (en) Device for regulating the temperature of a cooling system of an internal combustion engine, in particular for motor vehicles
DE10260260B4 (en) Engine cooling system
DE102009056616B4 (en) Method for distributing heat in a coolant circuit of a vehicle
DE60013082T2 (en) Cooling control device of a vehicle internal combustion engine during a hot start
DE3430397C2 (en) Internal combustion engine with evaporative cooling
DE4123678C2 (en) Method for controlling a heater for motor vehicles
DE10133243B4 (en) Vehicle air conditioning
DE60214515T2 (en) DEVICE AND METHOD FOR COOLING A CONTROL DEVICE OF AN INTERNAL COMBUSTION ENGINE
EP1275537B1 (en) Method for controlling a heating appliance and heating appliance
EP1523612A1 (en) Method and device for regulating the temperature of a coolant in an internal combustion engine
EP1140532B1 (en) Heating system for the interior of a vehicle
EP1375213A2 (en) Method for operating a cooling- and heating circuit of a motor vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB

17P Request for examination filed

Effective date: 19970311

17Q First examination report despatched

Effective date: 19990203

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB

REF Corresponds to:

Ref document number: 59605375

Country of ref document: DE

Date of ref document: 20000713

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000905

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2148598

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20031231

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040122

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20040129

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050119

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050119

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120131

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130801

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59605375

Country of ref document: DE

Effective date: 20130801