EP0724273A2 - Magneteinrichtung mit forciert zu kühlender supraleitender Wicklung - Google Patents

Magneteinrichtung mit forciert zu kühlender supraleitender Wicklung Download PDF

Info

Publication number
EP0724273A2
EP0724273A2 EP96100489A EP96100489A EP0724273A2 EP 0724273 A2 EP0724273 A2 EP 0724273A2 EP 96100489 A EP96100489 A EP 96100489A EP 96100489 A EP96100489 A EP 96100489A EP 0724273 A2 EP0724273 A2 EP 0724273A2
Authority
EP
European Patent Office
Prior art keywords
winding
coolant
partial
coil housing
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96100489A
Other languages
English (en)
French (fr)
Other versions
EP0724273B1 (de
EP0724273A3 (de
Inventor
Helmut Marsing
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0724273A2 publication Critical patent/EP0724273A2/de
Publication of EP0724273A3 publication Critical patent/EP0724273A3/de
Application granted granted Critical
Publication of EP0724273B1 publication Critical patent/EP0724273B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling

Definitions

  • the invention relates to a magnetic device with a coil housing arranged in an outer housing, with a winding made of superconducting conductors arranged in the coil housing and with at least one vacuum space for thermal insulation of the winding.
  • the winding has at least one cooling channel, through which a coolant holding the superconducting material of the conductors below their transition temperature T c is forced.
  • a corresponding magnet device can be found, for example, in EP-B-0 209 134.
  • the windings of magnetic devices to be cooled can be created in particular with superconducting conductors.
  • the so-called classic alloys or compounds such as NbTi or Nb 3 Sn are generally provided as superconductor materials.
  • the new high-T c superconductor materials such as those based on the Y-Ba-Cu-O or Bi-Sr-Ca-Cu-O material systems, have also been planned for such windings. While a helium cooling technology is required for the classic superconductor materials, a nitrogen cooling technology is also possible for the new high-T c superconductor materials.
  • the object of the present invention is to provide a magnetic device of the type mentioned at the outset with flow cooling, in which the aforementioned problems are at least partially reduced.
  • the invention is based on the consideration of largely transferring the required vacuum tightness to the coil housing. Associated with this is the advantage that the magnetic winding accommodated in the coil housing requires only one coolant flow guidance and distribution with a leakage requirement that is several orders of magnitude lower. In addition, advantageously only a single line for returning the coolant from the coil housing is required. Furthermore, an often desired large heat capacity of He at 4.2 K is additionally available.
  • a superconducting winding 3 of a magnetic device 2 is, for example assumed for a superconducting magnetic energy storage.
  • the winding 3 is composed of several circular windings 3i (with 1 ⁇ i ⁇ n) surrounding a common coil axis A. Only a few of these partial windings are indicated in the figure.
  • the partial windings are constructed, for example, in the form of so-called double pancakes with superconductors, which contain, for example, one of the known classic superconductor materials and can therefore be cooled with LHe.
  • a common coolant distribution channel 5 is provided for supplying the corresponding coolant K to the individual partial windings 3i, from which channel-like connections 6i to at least one cooling channel each branch off through the respective partial winding 3i.
  • the cooling channels through the partial windings can be arranged in or on the superconductors themselves or can be formed by spaces between the conductors.
  • Each partial winding 3i is wound on a partial piece of a winding core 7, which preferably consists of a plastic such as, for example, GRP or CFRP.
  • this winding core 7 is shown in more detail in Figure 2 and designated 7i. It is advantageously designed as a capsule-like coolant feed element.
  • This element 7i is positioned on an inner ladder step which is present when the partial winding 3i is designed as a double disk of a pancake winding 3i during the transition from one disk to the other. Furthermore, the element 7i is provided with a passage opening 5i, which forms the corresponding part of the coolant distribution channel 5.
  • the coolant distribution channel 5 is obtained via the passage openings 5i which are positioned relative to one another and from which the winding can be forcedly cooled in parallel partial flows via the respective capsule-like coolant feed element.
  • the through openings 5i are sealed off from one another.
  • the coolant K can thus advantageously flow through the winding from the inside to the outside with a comparatively lower flow resistance in the existing cooling sections compared to a leakage current.
  • a superconductor 10 can be provided which has two cooling channels 11a and 11b which are connected to the coolant distribution channel 5 by means of the coolant feed element 7i via the channel-like connections (6i) which cannot be seen in the figure.
  • the flow directions of the coolant K are indicated by arrowed lines.
  • the conductor 10 contains a superconducting conductor core 12 running between the cooling channels 11a and 11b and is spaced apart, possibly also insulated, from conductor parts adjacent to the partial winding by means of a conductor bandage 13.
  • This bandage is primarily intended to absorb inflating magnetic forces so that it can consist of metal with particularly large forces. If necessary, it is also made of an insulating material such as glass fiber reinforced plastic.
  • the coolant K After the coolant K has forcedly flowed through the individual partial windings 3i in the radial direction from the inside to the outside, it emerges from the winding 3 as a coolant K ′ at channel openings 14j into a coolant bath space 15 as shown in FIG.
  • the outlet openings 14j are expediently located on the radially outer electrical connections of the winding 3 and the electrical contact points between their adjacent partial windings 3i.
  • the bath space 15 receiving the coolant K ' is formed by the gaps present between the outside of the winding 3 and the inner wall of a high-vacuum-tight coil housing 16 receiving the winding.
  • the coolant K 'filling this bath space 15 thus at least largely floods the winding 3 from the outside. This is advantageous Additional cooling capacity, in particular for winding parts supplied with uneven flow, is provided from the outside of the winding.
  • a highly vacuum-tight bushing 17a through the wall of the coil housing 16 is advantageously required for feeding the coolant K into the coolant distribution channel 5, and advantageously only a single further, high-vacuum-tight bushing 17b is required for removing the coolant K '.
  • a potential isolator 19a and 19b must be provided in the corresponding coolant supply line 18a and coolant discharge line 18b.
  • the electrical connection of the winding 3 for carrying a current I is carried out separately via corresponding connecting lines 20a and 20b, which are to be guided through the wall of the coil housing 16 in an insulated and highly vacuum-tight manner at bushings 21a and 21b.
  • the coil housing is arranged in a high vacuum space 22 for thermal insulation.
  • This vacuum space is located inside an outer housing, not shown in the figure, which is generally at room temperature.
  • Additional thermal insulation means such as e.g. cooled radiation shields, cooled intermediate spaces or further vacuum spaces can be provided.
  • FIG. 3 shows a section through a partial winding 3i designed as a double pancake in the region of its winding core section or coolant feed element 7i.
  • the connection channels 6a and 6b leading from the coolant distribution channel 5 on the coolant feed element 7 into a single superconductor 10 of a first, inner winding layer to its two cooling channels 11a and 11b can be seen.
  • This conductor 10 forms, for example, the inner conductor crossing of the double disc of a pancake winding.
  • the partial winding 3i is constructed by the two superconductors of the double disk lying next to one another.
  • a disk-shaped insulation 23, which is transparent to the coolant K ′ of the coolant bath space 15, is provided between adjacent partial windings.
  • the coolant K in the coolant distribution channel 5 is sealed off from this coolant K ′.
  • the coolant K is supplied to the superconductor 10 of the winding 3 separately from the at least one electrical connection conductor 20a or 20b via a special coolant distribution channel 5 and the coolant supply line 18a arranged in front. If necessary, however, the coolant can also be supplied via an electrical connecting conductor designed as a waveguide. It is possible to do without a special coolant distribution channel.
  • embodiments of magnetic devices are also possible in which the electrical connection lines of the winding 3 are laid in the lines for supplying and discharging the coolant K or K '.
  • the coolant K flows through larger parts of the winding 3 or the entire winding until it reaches the coolant bath space 15.
  • a coolant guide is particularly suitable for windings that are not subdivided into discrete partial windings. In this case, too, a special coolant distribution channel is not required.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

Die Magneteinrichtung (2) enthält ein in einem Außengehäuse angeordnetes Spulengehäuse (16), in dem eine Wicklung (3) aus supraleitenden Leitern (10) angeordnet ist, die forciert zu kühlen sind. Erfindungsgemäß soll das Spulengehäuse (16) vakuumdicht ausgeführt und von einem Vakuumraum (22) umgeben sein und soll ein Austritt (14j) des Kühlmittels (K') nach der forcierten Führung durch die Wicklung (3) in einen zwischen der Wicklung (3) und dem Spulengehäuse (16) vorhandenen Kühlmittelbadraum (15) vorgesehen sein, aus dem dann das Kühlmittel (K') vakuumdicht abzuführen ist. Vorteilhaft werden die elektrischen Anschlußleiter (20a, 20b) der Wicklung (3) von den Kühlmittelzu- und Abführungsleitungen (18a, 18b) getrennt geführt. <IMAGE>

Description

  • Die Erfindung bezieht sich auf eine Magneteinrichtung mit einem in einem Außengehäuse angeordneten Spulengehäuse, mit einer in dem Spulengehäuse angeordneten Wicklung aus supraleitenden Leitern sowie mit mindestens einem Vakuumraum zur thermischen Isolation der Wicklung. Dabei weist die Wicklung mindestens einen Kühlkanal auf, durch welchen forciert ein das supraleitende Material der Leiter unterhalb deren Sprungtemperatur Tc haltendes Kühlmittel zu fuhren ist. Eine entsprechende Magneteinrichtung ist z.B. der EP-B-0 209 134 zu entnehmen.
  • Die zu kühlenden Wicklungen von Magneteinrichtungen z.B. für Anlagen zur Energiespeicherung, zur Führung von Strahlen geladener Teilchen oder zur Kernspintomographie (NMR) können insbesondere mit supraleitenden Leitern erstellt werden. Als Supraleitermaterialien werden hierfür im allgemeinen noch die sogenannten klassischen Legierungen oder Verbindungen wie z.B. NbTi bzw. Nb3Sn vorgesehen. Seit Ende 1986 werden für derartige Wicklungen auch die neuen Hoch-Tc-Supraleitermaterialien wie z.B. auf Basis der Stoffsysteme Y-Ba-Cu-O oder Bi-Sr-Ca-Cu-O eingeplant. Wahrend für die klassischen Supraleitermaterialien eine Helium-Kühltechnik erforderlich ist, kommt für die neuen Hoch-Tc-Supraleitermaterialien auch eine Stickstoff-Kühltechnik in Frage.
  • Zwei Kühltechniken zur Kühlung supraleitender Magnetwicklungen sind gebräuchlich, nämlich eine sogenannte Badkühlung oder eine sogenannte, auch als forcierte Kühlung bezeichnete Strömungskühlung (vgl. z.B. "Elektrotechnik und Informationstechnik", Bd. 109, Heft 6, 1992, Seiten 322 bis 329). Die Strömungskühlung, die bevorzugt für große Magnetwicklungen vorgesehen wird, zeichnet sich gegenüber einer Badkühlung durch eine Reihe von Vorteilen aus. Dies sind insbesondere
    • ein mechanisch robusterer Wicklungsaufbau,
    • eine spannungsfestere Wicklungsisolation,
    • eine lageunabhängige Wicklungsgeometrie,
    • eine flexiblere Anpassung der Kühlleistung,
    • ein verhältnismäßig geringes Volumen des Kühlmittels und
    • die Nutzung von überkritischem einphasigen Helium im Falle einer He-Kühlung.
      Jedoch sind mit dieser Kühltechnik auch eine Reihe von Problemen verbunden, nämlich
    • ein hoher Fertigungs- und Qualitätssicherungsaufwand für eine Vakuumdichtheit der gesamten Leiterlänge,
    • ein ebensolcher Aufwand auch für die benötigten elektrischen Leiterverbindungen,
    • eine große Anzahl von Potentialtrennvorrichtungen in den Kühlmittelversorgungsleitungen zu einzelnen Teilwicklungen und
    • keine zusätzliche Nutzungsmöglichkeit der großen Wärmekapazität von flüssigem Helium (LHe) bei 4,2 K bei einer He-Badkühlung.
  • Aufgabe der vorliegenden Erfindung ist es, eine Magneteinrichtung der eingangs genannten Art mit einer Strömungskühlung anzugeben, bei der die vorerwähnten Probleme zumindest teilweise vermindert sind.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst,
    • daß das Spulengehäuse vakuumdicht ausgeführt und zur thermischen Isolation von einem Vakuumraum umgeben ist,
    • daß ein Austritt des Kühlmittels nach der forcierten Führung durch die Wicklung in einen zwischen der Wicklung und dem Spulengehäuse vorhandenen Kühlmittelbadraum vorgesehen ist und
    • daß eine vakuumdichte Abführung des Kühlmittels aus diesem Kühlmittelbadraum vorgesehen ist.
  • Die Erfindung liegt dabei die Überlegung zugrunde, die benötigte Vakuumdichtheit weitestgehend auf das Spulengehäuse zu übertragen. Damit verbunden ist der Vorteil, daß die in dem Spulengehäuse untergebrachte Magnetwicklung nur eine Kühlmittelströmungsfuhrung und -verteilung mit einer um mehrere Größenordnung geringeren Dichtheitsanforderung benötigt. Außerdem ist vorteilhaft nur eine einzige Leitung zur Rückfuhrung des Kühlmittels aus dem Spulengehäuse erforderlich. Weiterhin ist eine oft erwünschte große Wärmekapazität von He bei 4,2 K zusätzlich verfügbar.
  • Vorteilhafte Ausgestaltungen der erfindungsgemäßen Magneteinrichtung gehen aus den abhängigen Ansprüchen hervor.
  • Die Erfindung wird nachfolgend noch weiter erläutert, wobei auf die Zeichnung Bezug genommen wird. Dabei sind in deren
  • Figur 1
    eine erfindungsgemäß gekühlte Magneteinrichtung im Querschnitt,
    Figur 2
    ein einzelnes Kühlmitteleinspeisungselement dieser Magneteinrichtung in Schrägansicht
    und
    Figur 3
    ein Teilausschnitt durch eine Teilwicklung der Magneteinrichtung im Querschnitt
    jeweils schematisch veranschaulicht. In den Figuren sind sich entsprechende Teile mit denselben Bezugszeichen versehen.
  • Supraleitende Magnetwicklungen mit forcierter (Strömungs)-Kühlung sind prinzipiell bekannt (vgl. z.B. die genannte EP-B). Bei in den Figuren nicht naher ausgeführten Einzelheiten handelt es sich um gängige Teile.
  • Gemaß dem in Figur 1 dargestellten Ausführungsbeispiel sei eine supraleitende Wicklung 3 einer Magneteinrichtung 2 beispielsweise für einen supraleitenden magnetischen Energiespeicher angenommen. Die Wicklung 3 setzt sich dabei aus mehreren kreisscheibenförmigen, eine gemeinsame Spulenachse A umschließenden Teilwicklungen 3i (mit 1 ≦ i ≦ n) zusammen. In der Figur sind nur einige dieser Teilwicklungen angedeutet. Die Teilwicklungen sind z.B. in Form von sogenannten Doppel-Pancakes mit Supraleitern aufgebaut, die beispielsweise eines der bekannten klassischen Supraleitermaterialien enthalten und somit mit LHe zu kühlen sind. Zur Zuführung des entsprechenden Kühlmittels K zu den einzelnen Teilwicklungen 3i ist ein gemeinsamer Kühlmittelverteilungskanal 5 vorgesehen, von dem kanalartige Verbindungen 6i zu jeweils mindestens einem Kühlkanal durch die jeweilige Teilwicklung 3i abgehen. Die Kühlkanäle durch die Teilwicklungen können dabei in oder an den Supraleitern selbst angeordnet oder durch Zwischenräume zwischen den Leitern ausgebildet sein. Jede Teilwicklung 3i ist auf einem Teilstuck eines Wickelkerns 7 aufgewickelt, der vorzugsweise aus einem Kunststoff wie z.B. GFK oder CFK besteht.
  • Ein entsprechendes Teilstück dieses Wickelkerns 7 ist aus Figur 2 näher ersichtlich und mit 7i bezeichnet. Es ist vorteilhaft als kapselartiges Kühlmitteleinspeisungselement gestaltet. Dieses Element 7i wird an einem inneren Leiterüberstieg positioniert, der bei einer Ausbildung der Teilwicklung 3i als Doppelscheibe einer Pancake-Wicklung 3i beim Übergang von der einen auf die andere Scheibe vorhanden ist. Ferner wird das Element 7i mit einer Durchtrittsöffnung 5i versehen, die den entsprechenden Teil des Kühlmittelverteilungskanals 5 bildet. Bei der Montage der Wicklung 3 durch Aneinanderreihung der einzelnen modulartigen Teilwicklungen 3i mit ihren zugehörigen Wickelkernteilstücken 7i erhält man dann über die zueinander positionierten Durchtrittsöffnungen 5i den Kühlmittelverteilungskanal 5, aus dem über das jeweilige kapselartige Kühlmitteleinspeisungselement die Wicklung in parallelen Teilströmen forciert gekühlt werden kann. Bei der Montage der Wicklung werden die Durchtrittsöffnungen 5i zueinander abgedichtet. Damit kann vorteilhaft das Kühlmittel K die Wicklung von innen nach außen mit einem vergleichsweise geringeren Strömungswiderstand in den vorhandenen Kühlstrecken gegenüber einem Leckagestrom durchströmen.
  • Wie ferner aus Figur 2 zu entnehmen ist, kann ein Supraleiter 10 vorgesehen sein, der zwei Kühlkanäle 11a und 11b aufweist, die mittels des Kühlmitteleinspeisungselementes 7i mit dem Kühlmittelverteilungskanal 5 über die aus der Figur nicht ersichtlichen kanalartigen Verbindungen (6i) verbunden sind. Die Strömungsrichtungen des Kühlmittels K sind durch gepfeilte Linien angedeutet. Der Leiter 10 enthält einen zwischen den Kühlkanälen 11a und 11b verlaufenden supraleitenden Leiterkern 12 und ist gegenüber in der Teilwicklung benachbarten Leiterteilen mittels einer Leiterbandage 13 beabstandet, eventuell auch isoliert. Diese Bandage soll in erster Linie aufblähende Magnetkräfte aufnehmen, so daß sie bei besonders großen Kräften aus Metall bestehen kann. Gegebenenfalls wird sie auch aus einem isolierenden Material wie z.B. glasfaserverstärktem Kunststoff hergestellt.
  • Nachdem das Kühlmittel K die einzelnen Teilwicklungen 3i forciert in radialer Richtung von innen nach außen durchströmt hat, tritt es gemäß der Darstellung der Figur 1 aus der Wicklung 3 als Kühlmittel K' an Kanalöffnungen 14j in einen Kühlmittelbadraum 15 aus. Die Austrittsöffnungen 14j befinden sich zweckmäßig an den radial außen liegenden elektrischen Anschlüssen der Wicklung 3 und den elektrischen Kontaktstellen zwischen ihren benachbarten Teilwicklungen 3i. Der das Kühlmittel K' aufnehmende Badraum 15 ist durch die zwischen den Außenseiten der Wicklung 3 und der Innenwand eines hochvakuumdichten, die Wicklung aufnehmenden Spulengehäuses 16 vorhandenen Zwischenräumen gebildet. Das diesen Badraum 15 ausfüllende Kühlmittel K' überflutet somit zumindest großenteils die Wicklung 3 von außen. Damit wird vorteilhaft eine zusätzliche Kühlleistung, insbesondere für strömungstechnisch ungleichmäßig versorgte Wicklungsteile, von den Außenseiten der Wicklung her erbracht.
  • Wie ferner aus Figur 1 hervorgeht, sind zur Einspeisung des Kühlmittels K in den Kühlmittelverteilungskanal 5 eine hochvakummdichte Durchführung 17a durch die Wand des Spulengehäuses 16 und zur Abfuhrung des Kühlmittels K' vorteilhaft nur eine einzige weitere hochvakuumdichte Durchfuhrung 17b erforderlich. Zur Potentialtrennung sind in der entsprechenden Kühlmittelzuführungsleitung 18a und Kühlmittelabführungsleitung 18b jeweils ein Potentialtrenner 19a bzw. 19b vorzusehen. Der elektrische Anschluß der Wicklung 3 zur Führung eines Stromes I erfolgt davon getrennt über entsprechende Anschlußleitungen 20a und 20b, die isoliert und hochvakuumdicht an Durchführungen 21a bzw. 21b durch die Wand des Spulengehäuses 16 zu führen sind.
  • Das Spulengehäuse ist zur thermischen Isolation in einem Hochvakuumraum 22 angeordnet. Dieser Vakuumraum befindet sich innerhalb eines in der Figur nicht dargestellten Außengehäuses, das im allgemeinen auf Raumtemperatur liegt. Zwischen diesem Außengehäuse und dem Spulengehäuse können noch weitere thermischen Isolationsmittel wie z.B. gekühlte Strahlungsschilde, gekühlte Zwischenräume oder weitere Vakuumräume vorgesehen sein.
  • Figur 3 zeigt einen Ausschnitt durch eine als Doppel-Pancake gestaltete Teilwicklung 3i im Bereich ihres Wickelkernteilstücks bzw. Kühlmitteleinspeisungselementes 7i. In dieser Figur sind die von dem Kühlmittelverteilungskanal 5 an dem Kühlmittelseinspeisungselement 7 in einen einzigen Supraleiter 10 einer ersten, inneren Wicklungslage zu dessen beiden Kühlkanälen 11a und 11b fuhrenden Verbindungskanäle 6a und 6b ersichtlich. Dieser Leiter 10 bildet z.B. den inneren Leiterüberstieg der Doppelscheibe einer Pancake-Wicklung. Ab der zweiten Wicklungslage ist die Teilwicklung 3i durch die zwei nebeneinanderliegenden Supraleiter der Doppelscheibe aufgebaut. Zwischen benachbarten Teilwicklungen ist eine für das Kühlmittel K' des Kühlmittelbadraumes 15 transparente scheibenförmige Isolation 23 vorgesehen. Gegenüber diesem Kühlmittel K' ist das Kühlmittel K in dem Kühlmittelverteilungskanal 5 abgedichtet.
  • Gemäß dem anhand der Figuren dargestellten Ausführungsbeispiel wurde davon ausgegangen, daß das Kühlmittel K dem Supraleiter 10 der Wicklung 3 über einen besonderen Kühlmittelverteilungskanal 5 und die voran angeordnete Kühlmittelzuführungsleitung 18a getrennt von dem mindestens einen elektrischen Anschlußleiter 20a oder 20b zugeführt wird. Gegebenenfalls kann jedoch die Kühlmittelzuführung auch über einen als Hohlleiter gestalteten elektrischen Anschlußleiter erfolgen. Dabei ist es möglich, auf einen besonderen Kühlmittelverteilungskanal zu verzichten.
  • Darüber hinaus sind auch Ausführungsformen von Magneteinrichtungen möglich, bei denen in den Leitungen zur Zu- und Abführung des Kühlmittels K bzw. K' die elektrischen Anschlußleitungen der Wicklung 3 verlegt sind.
  • Ferner läßt sich auch vorsehen, daß das Kühlmittel K erst größere Teile der Wicklung 3 oder die gesamte Wicklung forciert durchströmt, bis es in den Kühlmittelbadraum 15 gelangt. Eine derartige Kühlmittelführung bietet sich insbesondere bei nicht in diskrete Teilwicklungen unterteilte Wicklungen an. Auch in diesem Falle ist ein besonderer Kühlmittelverteilungskanal nicht erforderlich.
  • Selbstverständlich ist für die Magneteinrichtung nach der Erfindung auch eine Verwendung von Supraleitern mit Hoch-Tc-Supraleitermaterial, für das gegebenenfalls eine LN2- oder LHe-Kühltechnik vorgesehen wird, möglich.

Claims (10)

  1. Magneteinrichtung
    - mit einem in einem Außengehäuse angeordneten Spulengehäuse,
    - mit einer in dem Spulengehäuse angeordneten Wicklung aus supraleitenden Leitern, wobei die Wicklung mindestens einer Kühlkanal aufweist, durch welchen forciert ein das supraleitende Material der Leiter unterhalb deren Sprungtemperatur Tc haltendes Kühlmittel zu führen ist,
    und
    - mit mindestens einem Vakuumraum zur thermischen Isolation der Wicklung,
    dadurch gekennzeichnet,
    - daß das Spulengehäuse (16) vakuumdicht ausgeführt und zur thermischen Isolation von dem Vakuumraum (22) umgeben ist,
    - daß ein Austritt (14j) des Kühlmittels (K') nach der forcierten Fuhrung durch die Wicklung (3) in einen zwischen der Wicklung (3) und dem Spulengehäuse (16) vorhandenen Kühlmittelbadraum (15) vorgesehen ist
    und
    - daß eine vakuumdichte Abführung des Kühlmittels (K') aus diesem Kühlmittelbadraum (15) vorgesehen ist.
  2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Wicklung (3) in mehrere Teilwicklungen (3i) unterteilt ist.
  3. Einrichtung nach Anspruch 2, dadurch gekennzeichnet, daß jede Teilwicklung (3i) als Doppel-Pancake-Wicklung aufgebaut ist.
  4. Einrichtung nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß der Austritt (14j) des Kühlmittels (K') in den Kühlmittelbadraum (15) nach der forcierten Fuhrung des Kühlmittels (K) durch jeweils mindestens eine Teilwicklung (3i) vorgesehen ist.
  5. Einrichtung nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß zur Zuführung des Kühlmittels (K) zu den einzelnen Teilwicklungen (3i) ein gemeinsamer Verteilungskanal (5) mit Verbindungen (6a, 6b; 6i) zu dem jeweils mindestens einen Kühlkanal (11a, 11b) jeder Teilwicklung (3i) vorgesehen ist.
  6. Einrichtung nach Anspruch 5, dadurch gekennzeichnet, daß jeder Teilwicklung (3i) ein Kühlmitteleinspeisungselement (7i) zugeordnet ist, das den entsprechenden Teil des Verteilungskanals (5) und die Verbindung (6a, 6b; 6i) zu dem mindestens einen Kühlkanal (11a, 11b) der Teilwicklung (3i) bildet.
  7. Einrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die Kühlmitteleinspeisungselemente (7i) unter Ausbildung des Verteilungskanals (5) aneinanderfügbar sind.
  8. Einrichtung nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß die Kühlmitteleinspeisungselemente (7i) Wickelkerne der jeweiligen Teilwicklung (3i) sind.
  9. Einrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß durch die Wand des Spulengehäuses (16)) elektrische Anschlußleitungen (20a, 20b) der Wicklung (3) und davon getrennt Leitungen (18a, 18b) zur Zu- und Abführung des Kühlmittels (K bzw. K') vakuumdicht hindurchgeführt sind.
  10. Einrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß elektrische Anschlußleitungen der Wicklung innerhalb von Leitungen zur Zu- und Abführung des Kühlmittels angeordnet sind.
EP96100489A 1995-01-27 1996-01-15 Magneteinrichtung mit forciert zu kühlender supraleitender Wicklung Expired - Lifetime EP0724273B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19502549 1995-01-27
DE19502549A DE19502549A1 (de) 1995-01-27 1995-01-27 Magneteinrichtung mit forciert zu kühlender supraleitender Wicklung

Publications (3)

Publication Number Publication Date
EP0724273A2 true EP0724273A2 (de) 1996-07-31
EP0724273A3 EP0724273A3 (de) 1996-10-16
EP0724273B1 EP0724273B1 (de) 2000-05-24

Family

ID=7752462

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96100489A Expired - Lifetime EP0724273B1 (de) 1995-01-27 1996-01-15 Magneteinrichtung mit forciert zu kühlender supraleitender Wicklung

Country Status (2)

Country Link
EP (1) EP0724273B1 (de)
DE (2) DE19502549A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2895802A1 (fr) * 2005-12-30 2007-07-06 Commissariat Energie Atomique Procede et dispositif de creation d'un champ magnetique homogene dans une zone d'interet, notamment pour l'imagerie rmn
CN106062905A (zh) * 2013-12-18 2016-10-26 维多利亚联结有限公司 用于超导设备的低温恒温器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10117847C1 (de) * 2001-04-04 2003-02-06 Siemens Ag Transformator mit forcierter Flüssigkeitskühlung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3056071A (en) * 1959-02-12 1962-09-25 William R Baker Electrical coil structure
FR1510110A (fr) * 1966-12-08 1968-01-19 Alsthom Savoisienne Enroulements pour cryotransformateurs
EP0011267A1 (de) * 1978-11-13 1980-05-28 Kabushiki Kaisha Toshiba Supraleitermagnetanordnung
JPS61113217A (ja) * 1984-11-08 1986-05-31 Agency Of Ind Science & Technol 超電導マグネツト装置
EP0472197A1 (de) * 1990-08-24 1992-02-26 Sumitomo Electric Industries, Limited Hochtemperatur-supraleitende Spule

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3363207A (en) * 1966-09-19 1968-01-09 Atomic Energy Commission Usa Combined insulating and cryogen circulating means for a superconductive solenoid
CH584450A5 (de) * 1975-04-24 1977-01-31 Bbc Brown Boveri & Cie
JPS607396B2 (ja) * 1976-05-31 1985-02-23 株式会社東芝 超電導装置
JPS6220303A (ja) * 1985-07-19 1987-01-28 Hitachi Ltd 強制冷却超電導コイル装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3056071A (en) * 1959-02-12 1962-09-25 William R Baker Electrical coil structure
FR1510110A (fr) * 1966-12-08 1968-01-19 Alsthom Savoisienne Enroulements pour cryotransformateurs
EP0011267A1 (de) * 1978-11-13 1980-05-28 Kabushiki Kaisha Toshiba Supraleitermagnetanordnung
JPS61113217A (ja) * 1984-11-08 1986-05-31 Agency Of Ind Science & Technol 超電導マグネツト装置
EP0472197A1 (de) * 1990-08-24 1992-02-26 Sumitomo Electric Industries, Limited Hochtemperatur-supraleitende Spule

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CRYOGENICS, Bd. 30, 1.September 1990, Seiten 23-30, XP000168673 SHIMAMOTO S ET AL: "DEVELOPMENT OF SUPERCONDUCTING PULSED POLOIDAL COIL IN JAERI" *
PATENT ABSTRACTS OF JAPAN vol. 010, no. 297 (E-444), 9.Oktober 1986 & JP-A-61 113217 (AGENCY OF IND SCIENCE & TECHNOL;OTHERS: 01), 31.Mai 1986, *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2895802A1 (fr) * 2005-12-30 2007-07-06 Commissariat Energie Atomique Procede et dispositif de creation d'un champ magnetique homogene dans une zone d'interet, notamment pour l'imagerie rmn
WO2007077383A1 (fr) 2005-12-30 2007-07-12 Commissariat A L'energie Atomique Bobine supraconductrice sous la forme de double galettes pour la creation d ' un champ magnetique homogene dans une zone d ' interet , notamment pour l ' imagerie par rmn
JP2009521968A (ja) * 2005-12-30 2009-06-11 コミサリア ア レネルジ アトミク 関心領域に一様磁場を発生させる特にnmrイメージング用の方法および装置
US7952454B2 (en) 2005-12-30 2011-05-31 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method and device for generating a homogeneous magnetic field in an area of interest, especially for NMR imaging
CN106062905A (zh) * 2013-12-18 2016-10-26 维多利亚联结有限公司 用于超导设备的低温恒温器

Also Published As

Publication number Publication date
EP0724273B1 (de) 2000-05-24
DE59605270D1 (de) 2000-06-29
EP0724273A3 (de) 1996-10-16
DE19502549A1 (de) 1996-08-01

Similar Documents

Publication Publication Date Title
EP0276360B1 (de) Magneteinrichtung mit gekrümmten Spulenwicklungen
EP0830693B1 (de) Wechselstromkabel mit verseilten elektrischen leitern
DE69333128T2 (de) Stromzuleitung für supraleitendes Magnetsystem ohne flüssiges Helium
DE19721985A1 (de) Gradientenspulenbaugruppe und Herstellungsverfahren
DE3782952T2 (de) Supraleitende dipolmagnete und verfahren zu deren herstellung.
DE102015218019B4 (de) Kryostat mit Magnetanordnung, die einen LTS-Bereich und einen HTS-Bereich umfasst
DE69023424T2 (de) Supraleitende bandförmige Spulen.
DE102014211316A1 (de) Elektrische Spuleneinrichtung mit wenigstens zwei Teilspulen und Herstellungsverfahren dazu
DE3811051C2 (de)
EP0485395B1 (de) Supraleitende homogene hochfeldmagnetspule
DE2905993A1 (de) Supraleitende spule und damit ausgestattetes kernresonanzspektrometer
EP0004009B1 (de) Supraleiteraufbau und Verfahren zu seiner Herstellung
DE2709300B2 (de) Supraleitende Magnetspule mit Imprägniereinrichtung
EP0082409B1 (de) Thermisches Verfahren zum schnellen Überführen einer supraleitenden Wicklung vom supraleitenden in den normalleitenden Zustand und Vorrichtung zur Durchführung des Verfahrens
EP0724273B1 (de) Magneteinrichtung mit forciert zu kühlender supraleitender Wicklung
DE2901333C2 (de) Verfahren zum forcierten Kühlen einer supraleitenden Magnetspulenwicklung
EP0055804A1 (de) Kabelförmiger, stabilisierter Supraleiter für Wechselfelder
DE2249560A1 (de) Endverschluss fuer tieftemperaturkabel
DE3027605C2 (de) Vorrichtung zur Übertragung großer Kräfte
DE3811050C2 (de)
DE102014224363A1 (de) Vorrichtung der Supraleitungstechnik mitSpuleneinrichtungen und Kühlvorrichtung sowie damitausgestattetes Fahrzeug
DE4223145C2 (de) Stromzuführungsvorrichtung für eine auf Tieftemperatur zu haltende, insbesondere supraleitende Einrichtung
DE3027616A1 (de) Stuetzstruktur zur uebertragung grosser kraefte
DE2516661A1 (de) Supraleitender schalter
DE2327629A1 (de) Durchfuehrungsisolator fuer hochspannungseinrichtungen und verfahren zu seiner herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19961118

17Q First examination report despatched

Effective date: 19990217

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 59605270

Country of ref document: DE

Date of ref document: 20000629

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000612

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020110

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020124

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020318

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030801

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST