EP0719688B1 - Système de guidage pour vehicules ferroviaires - Google Patents

Système de guidage pour vehicules ferroviaires Download PDF

Info

Publication number
EP0719688B1
EP0719688B1 EP96104661A EP96104661A EP0719688B1 EP 0719688 B1 EP0719688 B1 EP 0719688B1 EP 96104661 A EP96104661 A EP 96104661A EP 96104661 A EP96104661 A EP 96104661A EP 0719688 B1 EP0719688 B1 EP 0719688B1
Authority
EP
European Patent Office
Prior art keywords
mfg
unit
determining
rail vehicle
errors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96104661A
Other languages
German (de)
English (en)
Other versions
EP0719688A2 (fr
EP0719688A3 (fr
Inventor
Helmut Prof. Dr.-Ing. Altmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alstom Schienenfahrzeuge AG
Original Assignee
Fiat Sig Schienenfahrzeuge AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fiat Sig Schienenfahrzeuge AG filed Critical Fiat Sig Schienenfahrzeuge AG
Priority to ES96104661T priority Critical patent/ES2136908T3/es
Priority to AT96104661T priority patent/ATE182533T1/de
Priority to DE59602504T priority patent/DE59602504D1/de
Priority to EP96104661A priority patent/EP0719688B1/fr
Publication of EP0719688A2 publication Critical patent/EP0719688A2/fr
Publication of EP0719688A3 publication Critical patent/EP0719688A3/fr
Priority to AU18656/97A priority patent/AU1865697A/en
Priority to PCT/CH1997/000094 priority patent/WO1997035756A1/fr
Application granted granted Critical
Publication of EP0719688B1 publication Critical patent/EP0719688B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/22Guiding of the vehicle underframes with respect to the bogies

Definitions

  • the present invention relates to a guidance system according to the preamble of claim 1 and a method according to the preamble of claim 9.
  • the lateral acceleration is of curve radius and Driving speed dependent, the angle by which the Load floor must be placed with respect to the chassis in order to to fulfill the conditions mentioned above, in addition by the Track increase.
  • the current one on the vehicle Lateral acceleration measured for which purpose suitable Measuring devices, such as accelerometers, gyroscopes, Pendulums, etc., are provided on the vehicle.
  • Measuring devices such as accelerometers, gyroscopes, Pendulums, etc.
  • the current measurements are in controlling or in regulatory sense on the actuator for the Intervention of the load-bearing floor bank.
  • pendulum the deflection of which is a direct measure for the bank angle to be set on Load bearing floor is because the mass of the load in the Acceleration considerations not received.
  • EP-B1-0 271 592 also known to help prevent Delays in adjusting the bank angle Load floor the position of the rail vehicle with the help a cross correlation between known ones Route information or reference data and measurement technology determined route information is calculated. Based the position data determined in this way become the reference data a leading address retrieved and with the measured speed of the rail vehicle instantaneous determination of the settings to be set Cross slope of the load floor offset.
  • the known system takes into account the Fault characteristics of the speed measuring device not or insufficiently, resulting in incorrect measured Speeds and therefore too wrong Position values after longer straight distances and thus also to incorrectly set transverse inclinations of the load floor leads. This increases the comfort of the passengers reduced.
  • the present invention is therefore based on the object based on specifying a management system through which the Position of the rail vehicle can be reliably determined can.
  • the invention has the following advantages: Estimation of errors in sensor signals and the current one Position error and by compensating the actual error using the estimated values the position of the rail vehicle is extremely precise certainly. In particular, changes in the Sensors or other measurement errors continuously compensated. Becomes the position determined on the basis of the teaching according to the invention for setting the angle of inclination of the load floor are also used due to position errors errors in the corresponding control signals avoided. This can increase the comfort of the passengers be significantly increased. In addition, the Actuators for setting the load suspension cross slope switch off on straight sections. Overall is thus the performance of the guidance system according to the invention in terms of passenger comfort, in terms of Energy consumption and in terms of protecting the Actuators have been significantly improved.
  • Fig. 1 is a rail vehicle with a Vehicle superstructure SF, in particular consisting of a Load receiving floor LB, and a vehicle substructure shown schematically in cross section, the Vehicle superstructure SF regarding the vehicle substructure in Transverse direction is pivotally mounted.
  • the angle of inclination ⁇ and thus the load-bearing floor LB is replaced by a Adjustment unit STE set such that the off Acceleration due to gravity and lateral acceleration Acceleration to the load in the vertical of the Load bearing floor LB falls.
  • Fig. 2 Functional block diagram is an inventive Guide system for adjusting the angle of inclination ⁇ or of the load bearing floor LB explained, the Guide system essentially from a measuring device ME, a correction unit KRE, one Setting angle calculation unit SPE, an actuating unit STE, a correlator unit KE and one Reference data storage unit RE exists.
  • System sizes SGM are measured in the measuring device ME sensors not shown measured and to the Correction unit KRE passed in the in to system values SGG are calculated in an explanatory manner be on the one hand to the setting angle calculation unit SPE for calculating the estimated system sizes SGG corresponding angle of inclination ⁇ and on the other hand to the Correlator unit KE for determining the measured in the or system sizes SGM calculated from them Errors and to determine an inaccuracy level R des Position measurement error or other observable System errors MFG are passed, whereby for determination this system error MFG and to determine their Degrees of inaccuracy R from the reference data storage unit RE route information SI are required.
  • This Route information SI is also used when calculating the Tilt angle ⁇ in the setting angle calculation unit SPE used.
  • the estimated system errors MFG and their Degrees of inaccuracy R are finally used for determination or to redetermine the estimated system sizes SGG supplied to the correction unit KRE.
  • this estimation filter is a Kalman filter that follows is described in more detail. Thereby the estimated System errors MFG only to the extent of their inaccuracy, namely according to the degree of inaccuracy R, for Correction of the measured and calculated from it System sizes SGM used.
  • Fig. 3 is again a block diagram Another embodiment of the invention Management system shown.
  • the 2 shows the measuring device ME Setting angle calculation unit SPE, the setting unit STE, the correlator unit KE, the reference data storage unit RE and the correction unit KRE provided.
  • a curve detector KD for the detection of Beginning of a sheet inlet and possibly also to Detection of the end of a sheet outlet provided.
  • the lateral acceleration a m and the speed v m of the rail vehicle are measured as system variables SGM (FIG. 2), the lateral acceleration a m not via the correction unit KRE as in the embodiment according to FIG. 2, but rather directly from the correlator unit KE and on the other hand the curve detector KD is supplied.
  • a single variable is provided as system error MFG (FIG. 2), namely a position difference ⁇ s m .
  • ideal values for the inclination angle ⁇ of the load-bearing floor LB are determined in the guide system according to the invention.
  • the position s ⁇ of the rail vehicle is first determined by integrating the measured, faulty speed v m , combined with an "on line” correction of the faulty speed and the faulty position.
  • the "on-line” correction of the faulty position is preferably carried out by means of an "on-line” correction of the measured speed v m in the correction unit KRE over the duration of a predetermined, short time cycle.
  • the determination of the position error ⁇ s m and the on-line correction based thereon is made possible by an additional, discontinuous position determination, which is obtained with the aid of route information SI about the routes traveled by the rail vehicle.
  • the route information SI is stored in the reference data storage unit RE and preferably consists of the track curvature and the track elevation angle as a function of an equidistant path grid.
  • the lateral acceleration a m measured by means of the measuring device ME is recorded over a predefined time interval and converted by interpolation into a spatial grid of the same grid dimension as that of the route information SI.
  • a reference interval assigned to the measuring interval is selected from the set of route information SI and the assigned vehicle lateral acceleration is calculated as a reference signal for this, taking into account the vehicle speed.
  • the instantaneous position error ⁇ s m and the degree of inaccuracy R are then determined in the correlator unit KE by comparing the measured lateral acceleration a m in the predefined measurement interval with corresponding reference signals of the selected reference interval with the aid of a special correlation algorithm which is yet to be explained. These are transferred to the correction unit KRE, which contains an estimation filter, with simultaneous activation of a renewal signal UD, whereupon the estimated position s ⁇ and the estimated speed v ⁇ of the rail vehicle are calculated taking into account the degree of inaccuracy R.
  • the correlator unit KE by comparing a measured acceleration profile, namely the transverse accelerations a m measured in the measuring interval, with a reference transverse acceleration profile, the position difference between the two is obtained by calculation from the route information SI contained in the reference data storage unit RE, by means of a correlation algorithm Profiles and thus the position difference ⁇ s m are determined, the speed v ⁇ estimated in the correction unit KRE and the estimated position s ⁇ being used to generate the reference profile from the plug information SI.
  • the procedure is as follows:
  • the result is transferred to the correction unit KRE together with the position difference ⁇ s m . This is indicated to the correction unit KRE by an active renewal signal UD.
  • FIG. 1 Another suitable system variable SGM (FIG. 1) could be used, for example the track or bogie roll rate.
  • the index i runs through the measurement data location interval i 1 , ..., i 2 , ie the index i identifies the measurement function, while the relative shift between the measurement values m (i) and the reference values r (i + k) is defined by the index k.
  • the correlation function A xx (k) is thus formed as the square of the amount of the difference ⁇ m (k), the correlation function created with this special correlation algorithm taking a minimum if the two patterns best match.
  • FIG. 4 shows a correlation function A xx (k), as can arise, for example, from the above calculation type.
  • the minimum at k min is clearly recognizable, at which the correlation function A xx (k) assumes the value A min and on the basis of which the position difference ⁇ s m is determined according to the above-mentioned formula.
  • a measure of the degree of inaccuracy R of the position difference ⁇ s m can be read out - in the twelfth method step - from the course of the function of the correlation function A xx (k).
  • the degree of inaccuracy R is smaller, the smaller the minimum value A min on the one hand and the larger the maximum values A 1max and A 2max occurring at the window edge on the other.
  • the formula is based on a base value R 0 . If the position difference ⁇ s m has a low degree of inaccuracy R, the value A min is relatively small, ideally even zero. The ratio of A min and A max also allows conclusions to be drawn about the quality of the correlation: for a good correlation this ratio goes towards zero, for a bad correlation this ratio converges towards one. Furthermore, factors K 1 and K 2 are provided, which are selected according to a desired weighting of the different proportions.
  • FIG. 5 shows a block diagram of the correction unit KRE contained in FIG. 3, a computing unit RET, two multipliers M1 and M2, three adders AD1 to AD3, a path correction unit WG, an integrator unit IE and a quadrature unit Q being provided.
  • the computing unit RET an estimated (filtered) value for the position error ⁇ s m and a linear and a square scale factor error ⁇ k 1 and ⁇ k q of the measuring device ME are calculated from the position difference ⁇ s m and the associated degree of inaccuracy R (FIGS.
  • the linear scale factor error ⁇ k 1 in the multiplier M1 with the measured speed v m and the quadratic scale factor error ⁇ k q with the speed v m squared in the quadrature unit Q is multiplied in multiplier M2.
  • the results of the multipliers M1 and M2 are added in the adder AD1 to form an estimated speed difference, which in turn is offset in the adder AD2 with the measured speed v m (error compensation).
  • the algorithm of an estimation filter is used in the computing unit RET, which in an advantageous embodiment the algorithm of a Kalman filter (A. Gelb, "Applied Optimal Estimation", THE MIT PRESS, Massachusetts Institute on Technology Cambridge, Massachusetts and London, England, 1994).
  • the position difference ⁇ s m determined in the correction unit KRE is used to make estimates of the true position error ⁇ s and the errors of the tachometer.
  • This embodiment of the estimation filter is therefore a state observer with variable dynamics, because the uncertainty in the knowledge of the current position and the uncertainty in the knowledge of the position determined with the correlator unit KE are weighed against one another in order to calculate time-variable filter gain factors therefrom. This has the following meaning:
  • the position difference ⁇ s m determined by the correlator unit KE becomes the next calculation process used almost in full for the position correction and is also used to a large extent in the estimation of the tachometer errors (linear and quadratic scale factor errors ⁇ k 1 and ⁇ k q ).
  • This process is controlled by calculating the covariance of a state vector used in the Kalman filter and by calculating the covariance of the position error determination (ie the correlation) already explained with reference to FIGS. 3 and 4, the state vector in the embodiment shown in FIGS. 3 and 5 following Shape has:
  • the selected model is therefore of the 3rd order, whereby at this model to take into account the tachometer zero point error was waived. However, it could Model by recording the zero point error of the Tachometer with a relatively little effort on one 4th order system can be expanded.
  • the Kalman filter is used to estimate the state variables x ⁇ .
  • the inaccuracy of the estimation of the errors, the so-called estimation error of the individual components, is expressed by the covariance matrix P, which represents the expected value of the estimation error: in which
  • the so-called measurement vector z of the Kalman filter has only one component in the present case.
  • the relationship between the measurement vector z and the state vector x thus exists for the specified model: in which
  • the matrix H is referred to as the measurement matrix, which in the the present case is constant.
  • the inaccuracy of Measurement is, as mentioned, by the covariance matrix R of the Measurement vector z shown. Since in the present case the Measurement vector z has only one component is Covariance matrix R a scalar quantity, i.e. the already mentioned degree of uncertainty R.
  • the matrix ⁇ k-1 represents the transition matrix, which is variable in time due to the variable speed v, and which shows the transition of the additional vector x from the discrete point in time (k-1) ⁇ ⁇ t at the discrete time k ⁇ ⁇ t describes.
  • the plus sign means "immediately after an update", ie immediately after processing the position difference ⁇ s m supplied by the correlator unit KE, and the minus sign "before the following update". This designation can also be understood to mean that, in the case of a series of intervals without an update, the extrapolation over a corresponding time period is simply meant.
  • update means a correction of the state made possible by an "external measurement” and the term extrapolation means the calculation of the change in state between two updates (or within a specified time interval) as a result of system error influences (non-compensated residual errors and System noise influences) is to be understood.
  • the computing unit RET or the realized in this Kalman filter one position difference .DELTA.s m is reported by the correlator unit KE, an update of the state vector and the covariance of the estimation error is made.
  • the Kalman filter therefore not only tracks the estimates, but also the inaccuracy of its own knowledge of the state vector.
  • the Kalman filter is operated with variable amplification factors. If the system has a low level of uncertainty in the knowledge of its state and the external measurement is relatively imprecise, the external measurement is only taken into account to a small extent. If, for example, the correlator unit KE reports an unsafe position difference ⁇ s m of 100 m, the Kalman filter would only take a few meters of this into account. The filter is very careful, so to speak, and trusts the external information very little. On the other hand, if the own uncertainty were very high and the correlation unit KE would report a fairly safe position difference ⁇ s m of 100 m, the Kalman filter would take over the 100 m almost completely, since it now trusts the external information much more than it knows itself. This behavior is represented mathematically in the following using a gain matrix K k , the calculation being carried out at time k:
  • the above-mentioned gain matrix K k only contains components in one column, because only one and no more different measurement variables are processed. This enables the update of the state vector x using the following formula:
  • the curve detector KD triggers the update cycle in the Correlator unit KE off.
  • the beginning of a sheet entry or the end determined a sheet outlet and by means of a Detection signal DF of the correlator unit KE displayed.
  • a possible embodiment of the curve detector KD is that the sensor signal with the measured lateral acceleration a m is first filtered with the aid of a filter with a low-pass characteristic. The output signal of the filter then runs through a non-linear characteristic with response sensitivity (dead zone) (Winfried Oppelt, "Small manual of technical control processes", Verlag Chemie, Darmstadt, 1972) with preset acceleration threshold values. Finally, in order to determine the direction of the arc, the sign for generating the curve detection signal DF is extracted with a signum function (Netz, "Formula of Mathematics", Carl Hanser Verlag Kunststoff Vienna, 1981).
  • curve detector KD Another embodiment for the curve detector KD would be given by using the measured track roll rate (i.e. the roll angular velocity) instead of the Lateral acceleration signal or by using both Signals as a logical link from the Detection signal of the lateral acceleration and one with the Determine track or bogie roll rate Detection signal.
  • the curve detector KD also others Signals such as the body or bogie yaw rate or the turning angle of the bogie alone or in Combination with the other signals can be used.
  • Embodiment is using the Kalman filter and a correlation the actual position of the Rail vehicle valued.
  • the Kalman filter can also be used in the Kalman filter other or even additional position measurements be included. For example, the position of the rail vehicle through GPS (Global Positioning System), by track magnets or other external Position measuring systems can be measured. Then that's it Kalman filter - with a slight modification of the illustrated embodiment - almost predestined, to record this additional information and weight it to process that the best possible estimate of the Position including all available information is achieved.
  • GPS Global Positioning System
  • the teaching according to the invention is not only suitable for one Guide system for adjusting the bank angle of the Load floor of a rail vehicle.
  • Guide system for adjusting the bank angle of the Load floor of a rail vehicle.
  • management system also a system understand where the position of the rail vehicle for purposes other than to adjust the load floor bank angle is determined. This includes in particular application in monitoring the Rail traffic or the speed of Rail vehicles.
  • the contained in the reference data storage unit RE Route information SI (Fig. 2 and 3) and possibly the in the setting angle calculation unit SPE for calculating the Information on which the angle of inclination ⁇ is based is given in further embodiments of the invention in the sense of a "Teach-in" determined that not necessarily Sizes themselves, but directly dependent on them, such as lateral acceleration and their direction during a teach-in ride of the rail vehicle with known Measuring devices such as gyroscopes, pendulums, inclination sensors etc., recorded and e.g. in the reference data storage unit RE and / or in the setting angle calculation unit SPE from Fig. 2 or 3 are filed.
  • the inventive Management system at least one second management system parallel to one hand Redundancy check of the delivered by both systems Tilt angle ⁇ for the control units STE (Fig. 2 and 3) to be able to make and, in case of deviations of the Control signals that exceed a specified level on Take appropriate precautions for the rail vehicle, e.g. to tie the bank guide to the second guide system, if the latter e.g. is more fail-safe. That namely a redundant guidance system e.g. known guide system measuring the bank control less efficient the current one Then does not bother, because this case only occurs as a makeshift operation.
  • the guide system 41 is shown schematically in block 41 until the angle of inclination ⁇ , here referred to as ⁇ SE, is output.
  • the guide system 41 according to the invention comprises a reference data storage unit RE of the type explained with reference to FIGS. 2 and 3.
  • a further guidance system is shown schematically with block 43 and is preferably based on the metrological detection of a variable related to the lateral acceleration a m , as shown schematically with the gyro in block 43.
  • This guidance system also, in its own way, provides an angle of inclination ⁇ Sm as a control signal. Both control signals ⁇ SE and ⁇ Sm or other signals that uniquely determine them are then compared with one another in a comparison unit 45 as to whether they do not differ from one another by more than a maximum dimension ⁇ max that can be specified on a specification unit 47.
  • the rail vehicle can be guided, for example, with the safer of the two guide systems 41, 43, even if the safer system is less precise in terms of control technology in the sense of the input comments is.
  • the comparison unit 45 switches the input of the actuation angle calculation unit SPE (Fig. 2 and 3) on the on the lateral acceleration measurement based, for example already known makeshift system 43 um. At the same time, as shown in FIG. 6 at 49, this situation e.g. displayed.
  • the lateral acceleration or this defining size measuring guide system 43 must inevitably sensors on the vehicle Transverse acceleration detection can be provided, which in a teach-in phase for the system 41 according to the invention can be used by, as previously described a route is traveled with the vehicle and the metrological characteristics recorded in a Storage device can be loaded.
  • each vehicle 1 to 5 has a setting angle calculation unit 11 for the load floor cross slope position, as has been described.
  • the master system 41 M supplies the actuating signals ⁇ for all carriages 1 to 5 equipped with bank control of the type described.
  • the overall master system on the carriage 1 monitors itself, for example by the current manipulated variable for the load floor on one of the carriages, output by the system 41 according to the invention M , is compared with that of the system 43 M. If these control signals deviate from one another in such a way that this is no longer plausible, the control of the load floor transverse inclinations of all carriages 1 to 5 is transferred to the slave system 41 S according to the invention, as is shown schematically in FIG. 7 by the switchover unit 60.
  • Plausibility is also monitored on the overall slave system in the rearmost carriage 5, for example by comparing the control signals of the system 41 S according to the invention and the system 43 S based on measurement. If a no longer plausible deviation of these control signals is detected, it is in turn concluded that the system 41 S according to the invention is faulty, whereupon the system 43 M based on measurement temporarily takes over the bank control. If this system is also defective, which can be detected, for example, by comparing the chassis twist and bank setting signal, or if one or more of the bank actuators 11 is defective, the system is switched to emergency operation and the train is operated at regulating speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Platform Screen Doors And Railroad Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Machines For Laying And Maintaining Railways (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Claims (21)

  1. Système de guidage comprenant
    un dispositif de mesure (ME) pour mesurer au moins une grandeur de système (SGM) d'un véhicule ferroviaire,
    une unité de mémoire de données de référence (RE) qui contient des informations de trajet (SI) relatives aux trajets couverts par le véhicule ferroviaire, notamment la distance, la courbe de la voie et l'angle d'inclinaison de la voie,
    caractérisé en ce qu'il est prévu
    des moyens (KE) pour définir des erreurs de système (MFG) apparues lors de la mesure et/ou du calcul des grandeurs de mesure (SGM), et pour définir au moins un degré d'imprécision (R) des erreurs de système (MFG),
    et une unité de correction (KRE) pour éliminer au moins partiellement les erreurs de système (MFG), les erreurs de système (MFG) étant utilisées suivant leurs degrés d'imprécision (R) pour corriger les grandeurs de système (SGM) mesurées et/ou calculées, pour former au moins une grandeur évaluée (SGG).
    étant précisé qu'au moins une sortie du dispositif de mesure (ME) agit directement et/ou par l'intermédiaire de l'unité de correction (KRE) sur au moins une entrée des moyens (KE) pour définir les erreurs de système (MFG), dont les sorties sont reliées aux entrées de l'unité de correction (KRE), et que l'unité de mémoire de données de référence (RE) est reliée aux moyens (KE) pour définir les erreurs de système (MFG) et les degrés d'imprécision (R).
  2. Système de guidage selon la revendication 1, caractérisé en ce qu'il est prévu un détecteur de courbe (KD) pour définir l'entrée et/ou la sortie d'une courbe, en ce que le détecteur de courbe (KD) est sollicité par au moins une grandeur de système (SGM), et en ce que le détecteur de courbe (KD) est en relation fonctionnelle avec les moyens (KE) pour définir les erreurs de système (MFG) et les degrés d'imprécision (R).
  3. Système de guidage selon la revendication 1 ou 2, caractérisé en ce que l'unité de correction (KRE) se compose d'au moins une unité d'intégration (IE) pour définir la position (s ∧), et d'une unité de calcul (RET) pour définir une erreur de position filtrée (Δs) et pour définir au moins une erreur de facteur d'échelle (Δk1, Δkq) du dispositif de mesure (ME).
  4. Système de guidage selon la revendication 3, caractérisé en ce qu'une vitesse (vm) du véhicule ferroviaire mesurée à l'aide du dispositif de mesure (ME) est transmise à l'unité de correction (KRE), et une accélération latérale (am) mesurée à l'aide du dispositif de mesure (ME) est transmise au détecteur de courbe (KD) et aux moyens (KE) pour définir les erreurs de système (MFG), dans lesquels une différence de position (Δsm) est définie.
  5. Système de guidage selon l'une des revendications précédentes, caractérisé en ce qu'il est prévu une unité de calcul d'angle de réglage (SPE) et une unité de réglage (STE), en ce que des grandeurs de système évaluées (SGG), en particulier une position évaluée (s ∧) et/ou une vitesse (v ∧) du véhicule ferroviaire sont transmises à l'unité de calcul d'angle de réglage (SPE), et en ce que l'unité de calcul d'angle de réglage (SPE) est en relation fonctionnelle avec l'unité de réglage (STE).
  6. Système de guidage selon la revendication 5, caractérisé en ce qu'un dispositif de comparaison (45) est monté en amont de l'unité de réglage (STE, 11) et est relié, côté entrée, à la sortie de l'unité de calcul d'angle de réglage (41) et à celle d'un dispositif métrologique de détection d'accélération latérale (43), de préférence avec un calcul propre d'angle de réglage, et en ce que la sortie du dispositif de comparaison (45) relie de manière active soit la sortie de l'unité de calcul d'angle de réglage (41), soit la sortie, de préférence la sortie d'angle de réglage, du dispositif métrologique de détection d'accélération latérale (43) à l'unité de réglage (STE, 11).
  7. Convoi ferroviaire comprenant au moins deux véhicules ferroviaires (1-5) et un système de guidage selon la revendication 5 ou 6, caractérisé en ce qu'une unité de réglage (STE, 11) du système de guidage est prévue sur un véhicule ferroviaire tandis que d'autres éléments (ME, KRE, KE, RE, SPE) du système de guidage sur au moins un autre véhicule ferroviaire.
  8. Convoi ferroviaire comprenant au moins deux véhicules ferroviaires, deux de ces véhicules ferroviaires (1-5) étant équipés chacun d'un système de guidage selon la revendication 5 ou 6, caractérisé en ce que suivant le sens de marche, un véhicule agit comme véhicule pilote (1) et l'autre comme véhicule asservi (5), étant précisé qu'au moins en cas de défaillance du système de guidage sur le véhicule pilote, le système de guidage devient dépendant du véhicule asservi.
  9. Procédé pour définir la position (s ∧) et/ou pour commander l'inclinaison latérale du plancher de charge (LB) d'un véhicule ferroviaire, lequel procédé consiste à
    mesurer des grandeurs de système (SGM) du véhicule ferroviaire à l'aide d'un dispositif de mesure (ME),
    définir au moins une erreur de système (MFG) apparue lors de la mesure et/ou lors du calcul des grandeurs de système (SGM), et au moins un degré d'imprécision (R) des erreurs de système (MFG),
    définir à partir des valeurs pour les erreurs de système (MFG) et à partir des valeurs pour les degrés d'imprécision (R) au moins un paramètre (Δk1, Δkq) d'un filtre d'évaluation, à partir duquel les grandeurs de système évaluées (SGG) sont calculées,
    le filtre d'évaluation étant réalisé sous la forme d'un observateur à dynamique constante ou d'un observateur à dynamique variable dans le temps, et de préférence, dans ce dernier cas, sous la forme d'un filtre de Kalman.
  10. Procédé selon la revendication 9, caractérisé en ce que les paramètres (Δk1, Δkq) sont réglés, à partir des erreurs de système (MFG) déterminées et des degrés d'imprécision (R) correspondants, de telle sorte que
    dans le cas de degrés d'imprécision (R) faibles, les erreurs de système (MFG) déterminées sont largement prises en compte lors de la définition des grandeurs de système évaluées (SGG), et
    dans le cas de degrés d'imprécision (R) élevés, les erreurs de système (MFG) déterminées ne sont pratiquement pas prises en compte lors de la définition des grandeurs de système évaluées (SGG).
  11. Procédé selon la revendication 9 ou 10, caractérisé en ce qu'on utilise comme grandeurs de système (SGM) mesurées et/ou calculées une vitesse (vm) et une accélération latérale (am), et en ce qu'on définit une différence de position (Δsm) comme erreur de système (MFG).
  12. Procédé selon la revendication 11, caractérisé en ce que la différence de position (Δsm) est définie de telle sorte
    qu'un intervalle de référence est calculé à partir d'informations de trajet (SI) connues,
    qu'un intervalle de mesure est défini à partir de l'accélération latérale mesurée (am), dans une fenêtre de temps,
    qu'une valeur de corrélation ou une valeur du type corrélation (Axx) est calculée entre l'intervalle de référence et l'intervalle de mesure,
    cette dernière phase du procédé étant répétée avec des intervalles de référence et de mesure décalés, pour former une fonction de corrélation ou une fonction du type corrélation (Axx(k)) à l'aide de laquelle est calculée la différence de position (Δsm).
  13. Procédé selon l'une des revendications 9 à 12, caractérisé
    en ce que le degré d'imprécision (R) est calculé comme covariance de la différence de position (Δsm) ou
    en ce que le degré d'imprécision (R) est calculé suivant la formule suivante : R = R0 + K1 · (Amin)2 + K2 · Amin Amax 2 R0 désignant une valeur de base, K1, K2 des facteurs de pondération et Amin, Amax des valeurs minimale et maximale d'une fonction de corrélation Axx(k) calculée entre valeurs de mesure et valeurs de référence.
  14. Procédé selon l'une des revendications 9 à 13, caractérisé en ce qu'on tient compte comme paramètres (Δk1, Δkq) d'une erreur de facteur d'échelle linéaire et/ou carrée (Δk1, Δkq), ces erreurs de facteur d'échelle (Δk1, Δkq) étant utilisées selon la formule v = vm + vm · Δk1 + vm 2 · Δkq pour définir la vitesse évaluée (v ∧).
  15. Procédé selon l'une des revendications 12 à 14, caractérisé en ce que le début de l'intervalle de mesure est fonction d'un signal de détection (DF) d'un détecteur de courbe (KD) qui détecte l'entrée dans une courbe et/ou la sortie de la courbe.
  16. Procédé selon l'une des revendications 9 à 15, caractérisé en ce que des informations de position obtenues à l'aide d'un système GPS (Global Positioning System) et/ou d'aimants de trajet et/ou d'autres systèmes externes de mesure de position sont intégrées à la définition des grandeurs de système évaluées (SGG).
  17. Procédé selon l'une des revendications 9 à 16, caractérisé en ce que l'inclinaison latérale du plancher de charge (LB) du véhicule ferroviaire est réglée à partir des grandeurs de système évaluées (SGG), en particulier à partir de la vitesse évaluée (v ∧) et de la position évaluée (s ∧).
  18. Procédé selon la revendication 17, caractérisé en ce qu'on mesure des données relatives à la voie qui sont importantes pour l'inclinaison latérale, en empruntant ladite voie, on les met en mémoire et on les utilise ultérieurement pour définir et régler l'inclinaison latérale.
  19. Procédé selon la revendication 17 ou 18, caractérisé en ce qu'on met en oeuvre le procédé deux fois, indépendamment, sur un convoi ferroviaire, on effectue la commande d'inclinaison latérale selon le premier procédé, on vérifie la vraisemblance du signal de réglage d'inclinaison latérale, et en cas de non vraisemblance, on confie la commande d'inclinaison latérale au second procédé.
  20. Véhicule ferroviaire pourvu d'un système de guidage selon l'une des revendications 1 à 6.
  21. Véhicule ferroviaire pourvu de deux systèmes de guidage fonctionnant indépendamment l'un de l'autre, comme systèmes pilote et asservi, selon l'une des revendications 1 à 6.
EP96104661A 1996-03-23 1996-03-23 Système de guidage pour vehicules ferroviaires Expired - Lifetime EP0719688B1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES96104661T ES2136908T3 (es) 1996-03-23 1996-03-23 Sistema de conduccion para vehiculos ferroviarios.
AT96104661T ATE182533T1 (de) 1996-03-23 1996-03-23 Führungssystem für schienenfahrzeuge
DE59602504T DE59602504D1 (de) 1996-03-23 1996-03-23 Führungssystem für Schienenfahrzeuge
EP96104661A EP0719688B1 (fr) 1996-03-23 1996-03-23 Système de guidage pour vehicules ferroviaires
PCT/CH1997/000094 WO1997035756A1 (fr) 1996-03-23 1997-03-11 Systeme de guidage pour vehicules sur rail
AU18656/97A AU1865697A (en) 1996-03-23 1997-03-11 Guide system for rail vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP96104661A EP0719688B1 (fr) 1996-03-23 1996-03-23 Système de guidage pour vehicules ferroviaires

Publications (3)

Publication Number Publication Date
EP0719688A2 EP0719688A2 (fr) 1996-07-03
EP0719688A3 EP0719688A3 (fr) 1996-10-23
EP0719688B1 true EP0719688B1 (fr) 1999-07-28

Family

ID=8222593

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96104661A Expired - Lifetime EP0719688B1 (fr) 1996-03-23 1996-03-23 Système de guidage pour vehicules ferroviaires

Country Status (6)

Country Link
EP (1) EP0719688B1 (fr)
AT (1) ATE182533T1 (fr)
AU (1) AU1865697A (fr)
DE (1) DE59602504D1 (fr)
ES (1) ES2136908T3 (fr)
WO (1) WO1997035756A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19703322C1 (de) * 1997-01-30 1998-03-26 Abb Daimler Benz Transp Neigungssteuerung für Schienenfahrzeuge
DE19707175C2 (de) * 1997-02-22 1999-09-02 Tzn Forschung & Entwicklung Verfahren und Vorrichtung zur Ermittlung eines Winkels um die Fahrzeuglängsachse in einer Kurvenfahrt
CN106324633B (zh) * 2015-06-26 2022-07-05 无线电通信系统公司 Gnss应用中跟踪位置及速度的系统及方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2689476B1 (fr) * 1992-04-01 1994-06-10 Faiveley Transport Suspension transversale pour vehicule ferroviaire.
JP3127688B2 (ja) * 1993-12-03 2001-01-29 トヨタ自動車株式会社 フィードバックゲイン決定方法

Also Published As

Publication number Publication date
ATE182533T1 (de) 1999-08-15
EP0719688A2 (fr) 1996-07-03
WO1997035756A1 (fr) 1997-10-02
ES2136908T3 (es) 1999-12-01
AU1865697A (en) 1997-10-17
EP0719688A3 (fr) 1996-10-23
DE59602504D1 (de) 1999-09-02

Similar Documents

Publication Publication Date Title
DE4228414B4 (de) Verfahren und Vorrichtung zur Aufbereitung von Sensorsignalen
DE69828316T2 (de) Verfahren und vorrichtung zum feststellen des entgleisens von eisenbahnwagen
EP2771713A1 (fr) Système de détection conçu pour une autoévaluation de la précision de ses données
DE60118501T2 (de) Verfahren und Vorrichtung zur Ortung eines Fahrzeuges auf einem Gleis
EP3676138B1 (fr) Procédé et dispositif de détermination de valeurs réelles réeles liées au freinage d'un véhicule ferroviaire pour effectuer un freinage à décélération régulée avec capteurs centralisés
DE102013210361A1 (de) Verfahren zur Ermittlung zumindest einer Geschwindigkeit bei einem Schienenfahrzeug
DE10008550A1 (de) Verfahren und Vorrichtung zur Bestimmung eines Bewegungsparameters eines Kraftfahrzeuges mit einem D-GPS-System
DE19649137A1 (de) Verfahren zur Regelung des dynamischen Verhaltens eines Kraftfahrzeuges
CH674180A5 (fr)
EP0647553B1 (fr) Système de guidage et méthode pour la commande de la pente latérale d'un véhicule ferroviaire
EP3934965A1 (fr) Procédé de commande d'un système de direction à commande par câble et système de direction à commande par câble pour un véhicule à moteur
EP0719688B1 (fr) Système de guidage pour vehicules ferroviaires
EP0568167B1 (fr) Procédé pour la détermination de la résistance au roulement de véhicules ferroviaires
WO2020224971A1 (fr) Procédé de détermination de valeurs de mesure au moyen d'au moins deux procédés de mesure différents et son utilisation
DE102004038000A1 (de) Verfahren zur Bestimmung des Neigungswinkels eines Fahrzeuges und Verwendung desselben für die Erzeugung eines Auslösesignales für eine Sicherheitseinrichtung bei einem Überrollvorgang
EP0860340B1 (fr) Méthode et dispositif pour générer un signal de capteur
DE4416586A1 (de) Verfahren und Vorrichtung zur Regelung der Neigung eines Fahrzeug-Wagenkastens
EP1609691A1 (fr) Procédé pour minimiser l'usure des roues d'un véhicule ferroviaire
DE102016207011A1 (de) Verfahren und Vorrichtung zur Bestimmung eines sicheren Bremswerts eines Schienenfahrzeugs
EP1628863B1 (fr) Dispositif et procede pour mesurer des parametres de mouvement d'automobile
DE19621561C2 (de) Verfahren zur Neigung und/oder Positionierung eines auf einem Wagenkasten angeordneten Stromabnehmers
DE19939067C1 (de) Verfahren zur Überwachung und Minimierung von Wankstufentorsionen bei Schienenfahrzeugen mit Neigevorrichtungen
DE2205858C3 (de) Kompensationssteueranordnung für den gefederten Wagenkasten eines Eisenbahnwagens
DE102006044329B3 (de) System und Verfahren zur Fahrwegs- und/oder Geschwindigkeitsbestimmung von Fahrzeugen, insbesondere zur Zugbeeinflussung
DE10239254A1 (de) Verfahren zur Regelung der Fahrstabilität

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI NL PT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 19970211

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI NL PT SE

17Q First examination report despatched

Effective date: 19980526

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990728

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990728

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990728

REF Corresponds to:

Ref document number: 182533

Country of ref document: AT

Date of ref document: 19990815

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990803

REF Corresponds to:

Ref document number: 59602504

Country of ref document: DE

Date of ref document: 19990902

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19991028

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19991028

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2136908

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000720

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: FIAT-SIG SCHIENENFAHRZEUGE A.G.

Effective date: 20000331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20010306

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20010315

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010321

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20010327

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010328

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20010529

Year of fee payment: 6

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020323

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020324

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020426

Year of fee payment: 7

EUG Se: european patent has lapsed

Ref document number: 96104661.2

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020323

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021129

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031001

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050323