EP0719570B1 - Implantierbare Vorrichtung mit Schutzmitteln gegen elektromagnetische Störungen - Google Patents

Implantierbare Vorrichtung mit Schutzmitteln gegen elektromagnetische Störungen Download PDF

Info

Publication number
EP0719570B1
EP0719570B1 EP95402975A EP95402975A EP0719570B1 EP 0719570 B1 EP0719570 B1 EP 0719570B1 EP 95402975 A EP95402975 A EP 95402975A EP 95402975 A EP95402975 A EP 95402975A EP 0719570 B1 EP0719570 B1 EP 0719570B1
Authority
EP
European Patent Office
Prior art keywords
voltage
implantable device
circuit
transistor
active implantable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95402975A
Other languages
English (en)
French (fr)
Other versions
EP0719570A1 (de
Inventor
Pascal Pons
Renzo Dal Molin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sorin CRM SAS
Original Assignee
Ela Medical SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ela Medical SAS filed Critical Ela Medical SAS
Publication of EP0719570A1 publication Critical patent/EP0719570A1/de
Application granted granted Critical
Publication of EP0719570B1 publication Critical patent/EP0719570B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/37Monitoring; Protecting
    • A61N1/3706Pacemaker parameters

Definitions

  • the invention relates to the protection of active implantable devices, including pacemakers or defibrillators.
  • the invention is applicable to any type of 'active implantable medical device' as defined by the Directive 90/385 / EEC of 20 June 1990 of the Council of the Communities European.
  • Such protection is in particular intended to guarantee operation normal of the implantable device whatever the conditions surrounding, especially in the presence of electromagnetic interference from outside.
  • the implantable device can pick up all kinds of electromagnetic disturbances from various sources such as electric motors, televisions, induction hobs, radiotelephones, gantries detection of access systems or anti-theft protection systems, etc.
  • sources such as electric motors, televisions, induction hobs, radiotelephones, gantries detection of access systems or anti-theft protection systems, etc.
  • medical devices used during interventions such as electrosurgical units, AC cautery instruments, defibrillators, etc.
  • EMI ElectroMagnetic Interference
  • disurbances ElectroMagnetic Interference
  • Another effect of disturbances picked up by the stimulator is the risk of destruction due to excessive voltages or currents introduced in the stimulator circuits; it is therefore absolutely essential to limit the voltages and currents in the cardiac probes by device input.
  • Zener diodes in the form of discrete components attached to the stimulator microcircuit and mounted at the input, where the various probes are connected.
  • These Zener diodes clipping overvoltages that may appear at the input of the stimulator (clipping at the Zener voltage of the diode), the mounting of the diodes being also designed to ensure symmetrical protection to avoid in particular any demodulation effect in the case of high frequency alternative disturbances.
  • Zener diodes added at the input of the pacemaker has the disadvantage of increasing the size stimulator circuits, due to the need to relate to them additional discrete components, in relatively large numbers high (each of the stimulator input / output terminals requiring minus two diodes), which goes against the miniaturization sought, especially in complex devices such as double and triple chamber stimulators, stimulators connected to a sensor control, defibrillators, etc.
  • these diode protection circuits Zener provide satisfactory protection against high voltages related for example to defibrillation shocks.
  • One of the aims of the present invention is to propose a device active implantable, in particular a pacemaker or defibrillator, having protection circuits providing immunity to against electromagnetic disturbances presenting a very wide variety of electrical and spectral characteristics, ensuring thus in all circumstances compliance with the standards of protection more severe.
  • Another object of the invention is to allow the realization of such a device according to a technology implementing nominal voltages weak control, while providing proper protection to the standards in force.
  • Another object of the invention is to contribute to miniaturization of the device, reducing the number of components to a minimum discrete reported protection circuits.
  • Another object of the invention is to propose protection circuits that can be used and adaptable to technologies various integration (e.g. partially bipolar technology and partially CMOS, or monolithic BiCMOS technology).
  • the invention relates to a device of the type known from US-A-4 739 437, that is to say of which at least all the active components means of protection against electromagnetic disturbances of external origin are monolithically integrated components as well as the microcircuit comprising the signal input stages and switching electrodes, and the switching stages include static voltage switches higher than the battery voltage of the device, the device delivering logic signals from control at a voltage lower than the control voltage.
  • the protection means include voltage translating means to raise, in absolute value, the level of the logic control signals at a value compatible with the control voltages of the static switches and greater than or equal to the nominal level of parasitic voltages resulting from electromagnetic disturbances likely to appear on the terminals of the static switches.
  • Figure 1 is a block diagram of one of the microcircuits of a pacemaker, microcircuit which includes switching circuits electrodes, protection and supply.
  • Figure 2 is a diagram showing the different voltages produced in the circuit of figure 1, and in particular the levels between which vary these tensions.
  • FIG. 3 is a detailed diagram showing the structure of the circuit Figure 1.
  • Figure 4 is an enlarged diagram of part of the circuit of Figure 1, showing the dynamic polarization and protection members against overvoltages.
  • FIG. 5 is a detailed diagram of the internal structure of organs of overvoltage protection of the circuits of Figures 1 and 4.
  • the configuration that we will describe corresponds to that of a stimulator double bedroom, but this example is of course by no means limiting, the invention being able to apply equally well to stimulators single or triple chamber, with or without slave stimulators (therefore comprising one or more additional electrodes of measurement of a physiological parameter), to the detection / stimulation part a defibrillator, or even active implantable devices other than cardiac.
  • the reference 10 designates a core on which have been connected various electrodes whose configuration corresponds to that a double chamber pacemaker, namely ear electrodes distal 12 and proximal 14 and distal ventricular electrodes 12 'and proximal 14 '(in this respect, it will be noted that, in the example described, the circuits and elements relating to ventricular detection or stimulation are designated by the same reference number, with addition of a "premium”, that similar homologous circuits and elements for atrial stimulation or detection).
  • the various cardiac electrodes are connected to a first microcircuit 16 of the stimulator.
  • the stimulator housing is periodically connected to the circuit earth, corresponding to terminal 18, in particular in the case of unipolar detection or stimulation.
  • Cardiac electrodes and the case having several electrical states this involves carrying out periodic, controlled switching operations according to a particular sequencing.
  • the ear electrode 12 is connected to a terminal 20 via a stimulation capacitor 22, the terminal 20 being able to be switched by a switch 24 to an external capacitor 26 the other terminal of which is connected to zero potential (designated V DD on the diagram, and corresponding to the positive terminal of the battery), or directly to V DD by another switch 28.
  • the ear electrodes 12 and 14 are also connected to terminals 30 and 32 intended to allow bipolar detection (for differential voltage measurement) of cardiac activity, these limits being decoupled by respective external capacitors 34 and 36 filtering high frequency disturbances (greater than 1 MHz).
  • Switches 38 and 40 switch off (during stimulation) or in circuit (excluding stimulation) an input resistance 42 for the evacuation of residual charges remaining after stimulation at the heart-electrode interface.
  • Switch 44 is on in case of bipolar detection, and blocking in the event of monopolar detection, and the switch 46 operates in reverse. The detected signal is then directed via lines 48 to differential amplifiers of detection (not shown).
  • the microcircuit 16 also includes a switch 50 for the switching on the ear mass (in the case of stimulation); without the corresponding electrode (terminal 32) is connected to the mass via a resistor 52 of about ten megohms allowing to maintain on this terminal 32 a static potential no.
  • the ventricular pacing circuit is the same as that we have just described, the elements 20 'to 52' being identical to the elements 20 to 52 which we have just detailed.
  • the circuit finally comprises a switch 54 intended for setting selective circuit of the housing mass (terminal 18).
  • controlled stimulator they can be possibly supplemented by one or more additional switches, for example, in the case of a stimulator controlled by respiratory activity, to discharge the injection capacitor.
  • Switches can also be provided, for example in the case of an implantable defibrillator.
  • This logic control circuit delivers in particular logic signals 56 for controlling the switches and clock signals 68 used by the microcircuit 16.
  • the switches are transistors N-type MOS whose gate is controlled by a voltage having the particular voltage excursion indicated above and the substrate is connected to a strongly negative supply voltage.
  • the switches are associated with respective voltage translators 58 interposed between unbalanced and weak control signals level applied in 56 and the grids of the corresponding switches.
  • These voltage translators receive various supply voltages V DD , V SS , V CC and V EE produced by a block 60, the structure of which is shown in detail in FIG. 3.
  • This block 60 consisting of elements fully integrated in monolithic form (like all the other elements of the microcircuit 16), is connected to the negative terminal of a battery 62 whose other terminal constitutes the zero reference potential (V DD ) , the external components of the power supply being a capacitor 64 and decoupling capacitors 65 and 67, the roles of which will be explained later.
  • the substantially symmetrical voltages V CC and V EE / V SUB are produced in the following manner by the block 60 illustrated in FIG. 3.
  • Block 60 which receives control clock signals 68 coming from the logic circuit of the stimulator, essentially comprises two sub-assemblies, namely a sub-assembly 70 producing the negative voltage V EE (and therefore V SUB which is directly therefrom derivative) from V PILE , and a subset 72 producing the positive voltage V CC from the voltage V EE produced by the subset 70.
  • the sub-assembly 70 is essentially constituted by a voltage doubling circuit 74, of structure in itself known and shown in FIG. 3 (and which will not be explained any more for this reason).
  • This doubling circuit is formed of a plurality of translators suitably sequenced by the logic signals 68, of associated switches and of the external capacitor 64. It makes it possible to transform the battery voltage V PILE of between - 2.8 V and - 2 , 1 V at a voltage V EE (and therefore a voltage V SUB ) of between - 5.5 V and - 4.1 V.
  • the voltage obtained is supplied via a diode 78 with low threshold voltage, polarized by a current which it is applied to it from an external source (not shown) in order to limit as much as possible any voltage drop at this component.
  • the sub-assembly 72 for its part, produces from V EE a positive voltage V CC of between + 5.3 V and + 3.9 V, for example by means of a circuit of the "charge pump" type comprising a plurality of switches sequenced by the clock signals 68 and associated integrated capacitors 80, according to a diagram in itself known and which will not be explained in more detail for this reason.
  • Such a circuit of the charge pump type is advantageous because, in BiCMOS or bipolar technology with boxes isolated from the substrate, it can be made fully integrated; other alternative embodiments are however possible, for example, in the case of a simple CMOS technology, sampled circuits of the type with level recovery ( clamping ); in this latter hypothesis, it will be necessary to provide as many circuits as there are switches and also to provide a refresh signal for the switches whose passing state must be maintained for the duration of a cycle.
  • the voltage translators 58 which are connected to the various potentials V CC , V DD , V SS and V EE are circuits in themselves known, interposed on each transmission line of the logic control signal and ensuring the amplification and symmetrization of the control voltage V DD / V SS to V CC / V EE , therefore the amplification and symmetrization of the control dynamics of the switches.
  • These voltage translators can be produced in monolithic form fully integrated into the microcircuit 16, therefore with the possibility of a high integration density and therefore of extreme miniaturization.
  • V SUB which is the most negative voltage of the circuit
  • each of the terminals 20, 20 ', 32, 32' and 18 is connected, on the one hand, to the cathode of a diode 94 whose anode is connected to V SUB (the diodes 94 are also visible in the enlarged partial view of FIG. 4).
  • the resistors 52 and 52 ' which connect the terminals 32 and 32' to the housing (terminal 18), make it possible to be free from any possible leakage current.
  • Zener diodes mounted in opposition between each input terminal and ground. These diodes provide symmetrical skimming voltages greater than the Zener voltage, typically voltages higher in absolute value than ⁇ 7 V (hatched areas of the figure 2).
  • the invention proposes to replace these components, which were up to present discrete components added to the circuit, by fully integrated and monolithic protection circuits.
  • These circuits according to the invention are dipoles mounted in the same way as the Zener diodes in opposition to the prior art, and likely to lead current levels comparable to these (several hundreds of milliamps), despite their fully integrated structure and their much smaller footprint.
  • These clipping circuits 98 are equal in number to that of the terminals 20, 20 ', 30, 30', 32, 32 'and are each mounted between the respective terminal and the mass of the case, corresponding to terminal 18.
  • these circuits 98 each have the structure illustrated in FIG. 5, which is a symmetrical head-to-tail structure each of whose halves has two bipolar transistors 100, 102 connected in series, the emitter of transistor 100 being connected to one of the poles 104 of circuit 98, the collector of this transistor 100 being connected to the emitter of transistor 102 and the collector of transistor 102 being connected to the other pole 104 of circuit 98.
  • a resistor 106 is mounted and between the base of the transistor 100 and the collector of transistor 102 are mounted in opposition two (or more) integrated Zener diodes 108, 110 used to define the clipping voltage.
  • the dipole thus formed enters into conduction when the potential difference across its terminals exceeds, in absolute value, 7 V. It then operates as a conduction current amplifier triggered by voltage, can conduct currents between its terminals up to 300 mA and can absorb 3 A peaks for 10 ms. It is therefore able to bear without risk of destruction of disturbances even very strong energy.

Claims (11)

  1. Eine aktive implantierbare Vorrichtung, insbesondere ein Herzschrittmacher oder ein Herzdefibrillator, aufweisend Schutzmittel gegen elektromagnetische Störungen externen Ursprungs,
    wobei diese Schutzmittel aktive Komponenten und passive Komponenten aufweisen, und wobei zumindest alle aktiven Komponenten integrierte Komponenten sind in monolithischer Art, wie auch die Mirkoschaltung (16), welche die Eingangsstufen von Signalen und die Kommutationsstufen von Elektroden aufweist,
    wobei diese Kommutationsstufen statische Schalter aufweisen (24, 24', 28, 28', 38, 38', 40, 40', 44, 44', 46, 46', 50, 50', 54) mit einer Steuerungsspannung (VSUB, VCC), die größer ist als die Spannung (VPILE) der Versorgungsbatterie der Vorrichtung,
    wobei die Vorrichtung logische Steuerungssignale mit einer Spannung (VDD, VSS) liefert, die niedriger ist als die Steuerungsspannung,
    wobei die Vorrichtung dadurch gekennzeichnet ist, dass die Schutzmittel Spannungstranslatorenmittel (58) aufweisen, um im Absolutwert den Pegel der logischen Steuerungssignale auf einen Wert zu erhöhen, der kompatibel ist mit den Steuerungsspannungen der statischen Schalter und höher ist oder gleich dem nominalen Pegel parasitärer Spannungen, die aus elektromagnetischen Störungen resultieren, die in der Lage sind, auf den Anschlussklemmen der statischen Schalter aufzutreten.
  2. Aktive implantierbare Vorrichtung nach Anspruch 1, bei welcher die logischen Steuerungssignale Signale mit einem Pegel sind, der niedriger ist als der nominale Pegel parasitärer Spannungen, wobei die Spannungstranslatorenmittel Steuerungsspannungen liefern, die größer oder gleich sind als der nominale Pegel der parasitären und symmetrischen Spannungen, geeignet um die Phänomene einer Signaldemodulation in dem Fall von Wechselstörungen hoher Frequenz zu vermeiden.
  3. Aktive implantierbare Vorrichtung nach Anspruch 1, bei welcher die Pegel der Steuerungsspannungen, die durch die Translatorenmittel geliefert werden, erzeugt werden durch eine integrierte monolithische Spannungsheberversorgungsschaltung (60).
  4. Aktive implantierbare Vorrichtung nach Anspruch 3, bei welcher die Spannungsheberversorgungsschaltung zumindest eine Schaltung des Typs Ladungspumpe (72) und/oder eine Schaltung des Typs Spannungsverdoppler (70) und/oder eine Schaltung des Abtasttyps mit Pegelwiederherstellung aufweist.
  5. Aktive implantierbare Vorrichtung nach Anspruch 3, bei welcher die Substrate der statischen Schalter auf ein Potential vorgespannt sind, welches dem Pegel der Steuerungsspannung desselben Vorzeichens entspricht, der durch die Spannungsheberversorgungsschaltung (60) geliefert wird.
  6. Aktive implantierbare Vorrichtung nach Anspruch 3, bei welcher die Substrate der statischen Schalter an ihrer Quelle kurzgeschlossen sind.
  7. Aktive implantierbare Vorrichtung nach Anspruch 1, bei welcher die Schutzmittel unter anderem Aufladungsmittel (94) aufweisen, welche ein Bauteil aufweisen, das einerseits mit einer Signalseingangsanschlussklemme verbunden ist, andererseits mit einer Versorgungsleitung, welche ein Potential liefert, entsprechend den Spannungssteuerungspegeln, die durch die Translatorenmittel erzeugt werden, wobei dieses Bauteil geeignet ist, dann zu leiten, wenn die Spannung an der entsprechenden Eingangsanschlussklemme im Absolutwert die Spannung über diese Versorgungsleitung überschreitet, in der Weise, um auf dieser letzteren eine Spannung aufrechtzuerhalten, die im Absolutwert immer die höchste der Schaltung ist, selbst im Fall von Störungen hohen Niveaus.
  8. Aktive implantierbare Vorrichtung nach Anspruch 1, bei welcher die Eingangsstufen der Signale monolithische integrierte Begrenzermittel (98) aufweisen, die einerseits mit einer Signaleingangsanschlussklemme verbunden sind und andererseits mit einem Massepotential der Vorrichtung.
  9. Aktive implantierbare Vorrichtung nach Anspruch 8, bei welcher die Begrenzerschaltung eine Stromverstärker-Kopf-bei-Fuß-Schaltung (100, 102, 106, 108, 110) mit durch die Spannung ausgelöster Leitung aufweist.
  10. Aktive implantierbare Vorrichtung nach Anspruch 9, bei welcher die Begrenzermittel Begrenzerschaltungen (98) aufweisen, die jeweils in integrierter und monolithischer Form einen Dipol mit symmetrischer Kopfbei-Fuß Struktur aufweisen, wovon jede der Hälften einen ersten (100) und einen zweiten (102) bipolaren Transistor aufweisen, die in Serie montiert sind, wobei der Emitter des ersten Transistors verbunden ist mit einem der Pole (104) der Begrenzerschaltung, der Kollektor dieses ersten Transistors verbunden ist mit dem Emitter des zweiten Transistors und der Kollektor des zweiten Transistors verbunden ist mit dem anderen Pol (104) der Begrenzerschaltung, wobei ein Widerstand (106) zwischen der Basis und dem Emitter des ersten Transistors montiert ist und zumindest zwei Zener-Dioden (108, 110) entgegengesetzt zwischen der Basis des ersten Transistors und dem Kollektor des zweiten Transistors montiert sind.
  11. Aktive implantierbare Vorrichtung nach Anspruch 1, bei welcher die aktiven Komponenten der Schutzmittel und die Mikroschaltung auf demselben monolithischen Substrat integriert sind.
EP95402975A 1994-12-30 1995-12-29 Implantierbare Vorrichtung mit Schutzmitteln gegen elektromagnetische Störungen Expired - Lifetime EP0719570B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9415911A FR2728799B1 (fr) 1994-12-30 1994-12-30 Dispositif implantable actif, notamment stimulateur ou defibrillateur cardiaque, comportant des moyens de protection contre les perturbations electromagnetiques d'origine externe
FR9415911 1994-12-30

Publications (2)

Publication Number Publication Date
EP0719570A1 EP0719570A1 (de) 1996-07-03
EP0719570B1 true EP0719570B1 (de) 2003-04-09

Family

ID=9470445

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95402975A Expired - Lifetime EP0719570B1 (de) 1994-12-30 1995-12-29 Implantierbare Vorrichtung mit Schutzmitteln gegen elektromagnetische Störungen

Country Status (5)

Country Link
US (1) US5649965A (de)
EP (1) EP0719570B1 (de)
JP (1) JPH08266647A (de)
DE (1) DE69530272T2 (de)
FR (1) FR2728799B1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8014867B2 (en) 2004-12-17 2011-09-06 Cardiac Pacemakers, Inc. MRI operation modes for implantable medical devices
US8032228B2 (en) 2007-12-06 2011-10-04 Cardiac Pacemakers, Inc. Method and apparatus for disconnecting the tip electrode during MRI
US8086321B2 (en) 2007-12-06 2011-12-27 Cardiac Pacemakers, Inc. Selectively connecting the tip electrode during therapy for MRI shielding
US8160717B2 (en) 2008-02-19 2012-04-17 Cardiac Pacemakers, Inc. Model reference identification and cancellation of magnetically-induced voltages in a gradient magnetic field
US8311637B2 (en) 2008-02-11 2012-11-13 Cardiac Pacemakers, Inc. Magnetic core flux canceling of ferrites in MRI
US8565874B2 (en) 2009-12-08 2013-10-22 Cardiac Pacemakers, Inc. Implantable medical device with automatic tachycardia detection and control in MRI environments
US8571661B2 (en) 2008-10-02 2013-10-29 Cardiac Pacemakers, Inc. Implantable medical device responsive to MRI induced capture threshold changes
US8639331B2 (en) 2009-02-19 2014-01-28 Cardiac Pacemakers, Inc. Systems and methods for providing arrhythmia therapy in MRI environments

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6198972B1 (en) * 1997-04-30 2001-03-06 Medtronic, Inc. Control of externally induced current in implantable medical devices
JP3646472B2 (ja) * 1997-05-19 2005-05-11 株式会社日立製作所 非接触型icカードおよび送受信回路
US6052623A (en) * 1998-11-30 2000-04-18 Medtronic, Inc. Feedthrough assembly for implantable medical devices and methods for providing same
US6114876A (en) * 1999-05-20 2000-09-05 Pericom Semiconductor Corp. Translator switch transistor with output voltage adjusted to match a reference by controlling gate and substrate charge pumps
FR2806311B1 (fr) * 2000-03-14 2002-10-18 Ela Medical Sa Dispositif medical implantable actif, notamment stimulateur cardiaque, defibrillateur et/ou cardioverteur et/ou dispositif multisite comportant des moyens de mesure de bioimpedance transseptale
US8527046B2 (en) 2000-04-20 2013-09-03 Medtronic, Inc. MRI-compatible implantable device
AU2001255522A1 (en) 2000-04-20 2001-11-07 Greatbio Technologies, Inc. Mri-resistant implantable device
US20020116029A1 (en) 2001-02-20 2002-08-22 Victor Miller MRI-compatible pacemaker with power carrying photonic catheter and isolated pulse generating electronics providing VOO functionality
US6829509B1 (en) 2001-02-20 2004-12-07 Biophan Technologies, Inc. Electromagnetic interference immune tissue invasive system
US6731979B2 (en) 2001-08-30 2004-05-04 Biophan Technologies Inc. Pulse width cardiac pacing apparatus
US7082328B2 (en) 2002-01-29 2006-07-25 Medtronic, Inc. Methods and apparatus for controlling a pacing system in the presence of EMI
US7024249B2 (en) * 2002-02-21 2006-04-04 Alfred E. Mann Foundation For Scientific Research Pulsed magnetic control system for interlocking functions of battery powered living tissue stimulators
US6711440B2 (en) 2002-04-11 2004-03-23 Biophan Technologies, Inc. MRI-compatible medical device with passive generation of optical sensing signals
US6725092B2 (en) 2002-04-25 2004-04-20 Biophan Technologies, Inc. Electromagnetic radiation immune medical assist device adapter
US7242981B2 (en) * 2003-06-30 2007-07-10 Codman Neuro Sciences Sárl System and method for controlling an implantable medical device subject to magnetic field or radio frequency exposure
US7231251B2 (en) * 2003-08-14 2007-06-12 Cardiac Pacemakers, Inc. EMI detection for implantable medical devices
US20050070972A1 (en) * 2003-09-26 2005-03-31 Wahlstrand Carl D. Energy shunt for producing an MRI-safe implantable medical device
US7174219B2 (en) * 2004-03-30 2007-02-06 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
US9155877B2 (en) * 2004-03-30 2015-10-13 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
US7877150B2 (en) 2004-03-30 2011-01-25 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
US7844344B2 (en) 2004-03-30 2010-11-30 Medtronic, Inc. MRI-safe implantable lead
US7844343B2 (en) * 2004-03-30 2010-11-30 Medtronic, Inc. MRI-safe implantable medical device
US8989840B2 (en) * 2004-03-30 2015-03-24 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
US7561915B1 (en) 2004-12-17 2009-07-14 Cardiac Pacemakers, Inc. MRI system having implantable device safety features
US20060167496A1 (en) * 2005-01-26 2006-07-27 Nelson Shannon D System and method for operating an implantable medical device in a disruptive energy field
US8280526B2 (en) * 2005-02-01 2012-10-02 Medtronic, Inc. Extensible implantable medical lead
US8027736B2 (en) * 2005-04-29 2011-09-27 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
US7853332B2 (en) * 2005-04-29 2010-12-14 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
US7729770B2 (en) * 2006-04-26 2010-06-01 Medtronic, Inc. Isolation circuitry and method for gradient field safety in an implantable medical device
US8768486B2 (en) 2006-12-11 2014-07-01 Medtronic, Inc. Medical leads with frequency independent magnetic resonance imaging protection
US7865247B2 (en) 2006-12-18 2011-01-04 Medtronic, Inc. Medical leads with frequency independent magnetic resonance imaging protection
US9044593B2 (en) * 2007-02-14 2015-06-02 Medtronic, Inc. Discontinuous conductive filler polymer-matrix composites for electromagnetic shielding
US10537730B2 (en) * 2007-02-14 2020-01-21 Medtronic, Inc. Continuous conductive materials for electromagnetic shielding
US8483842B2 (en) * 2007-04-25 2013-07-09 Medtronic, Inc. Lead or lead extension having a conductive body and conductive body contact
US9037263B2 (en) 2008-03-12 2015-05-19 Medtronic, Inc. System and method for implantable medical device lead shielding
ATE500865T1 (de) 2009-04-28 2011-03-15 Sorin Crm Sas Induktives schaltnetzteil mit digitaler steuerung für aktive implantierbare medizinische vorrichtung
EP2429631B1 (de) 2009-04-30 2014-09-10 Medtronic, Inc. Abschluss einer abschirmung in einer implantierbaren medizinischen elektrode
US9919158B2 (en) 2009-12-29 2018-03-20 Medtronic, Inc. Configuring operating parameters of a medical device based on exposure to a disruptive energy field
US20120116479A1 (en) * 2010-11-08 2012-05-10 Werner Meskins Two-wire medical implant connection
US8615303B2 (en) * 2011-02-17 2013-12-24 Cochlear Limited Power transfer to a medical implant located adjacent to tissue while preventing short circuits through the tissue
EP2838609B1 (de) 2012-04-19 2019-03-06 Medtronic, Inc. Gepaarte medizinische führungselemente mit geflochtenen leitfähigen abschirmungen mit verschiedenen physikalischen parameterwerten
AU2013356332B2 (en) 2012-12-04 2016-07-07 Boston Scientific Neuromodulation Corporation Implantable medical device having electromagnetic interference filter device to reduce pocket tissue heating
US9993638B2 (en) 2013-12-14 2018-06-12 Medtronic, Inc. Devices, systems and methods to reduce coupling of a shield and a conductor within an implantable medical lead
WO2015164522A1 (en) 2014-04-23 2015-10-29 Medtronic, Inc. Overvoltage protection circuitry
EP3171931B1 (de) 2014-07-23 2021-11-10 Medtronic, Inc. Verfahren zur abschirmung implantierbarer medizinischer elektroden und implantierbare medizinische elektrodenerweiterungen
WO2016014816A1 (en) 2014-07-24 2016-01-28 Medtronic, Inc. Methods of shielding implantable medical leads and implantable medical lead extensions
US10786665B2 (en) * 2016-09-10 2020-09-29 Boston Scientific Neuromodulation Corporation Biasing of a current generation architecture for an implantable medical device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2935309C2 (de) * 1979-08-31 1981-11-26 SIEMENS AG AAAAA, 1000 Berlin und 8000 München Elektromedizinisches Gerät.
US4379459A (en) * 1981-04-09 1983-04-12 Medtronic, Inc. Cardiac pacemaker sense amplifier
US4745923A (en) * 1985-11-20 1988-05-24 Intermedics, Inc. Protection apparatus for patient-implantable device
US4739437A (en) * 1986-10-22 1988-04-19 Siemens-Pacesetter, Inc. Pacemaker output switch protection
EP0426969A3 (en) * 1989-11-10 1992-10-28 Lewicki Microelectronic Gmbh Protecting circuit

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8886317B2 (en) 2004-12-17 2014-11-11 Cardiac Pacemakers, Inc. MRI operation modes for implantable medical devices
US8014867B2 (en) 2004-12-17 2011-09-06 Cardiac Pacemakers, Inc. MRI operation modes for implantable medical devices
US8543207B2 (en) 2004-12-17 2013-09-24 Cardiac Pacemakers, Inc. MRI operation modes for implantable medical devices
US8032228B2 (en) 2007-12-06 2011-10-04 Cardiac Pacemakers, Inc. Method and apparatus for disconnecting the tip electrode during MRI
US8086321B2 (en) 2007-12-06 2011-12-27 Cardiac Pacemakers, Inc. Selectively connecting the tip electrode during therapy for MRI shielding
US8554335B2 (en) 2007-12-06 2013-10-08 Cardiac Pacemakers, Inc. Method and apparatus for disconnecting the tip electrode during MRI
US8897875B2 (en) 2007-12-06 2014-11-25 Cardiac Pacemakers, Inc. Selectively connecting the tip electrode during therapy for MRI shielding
US8311637B2 (en) 2008-02-11 2012-11-13 Cardiac Pacemakers, Inc. Magnetic core flux canceling of ferrites in MRI
US8160717B2 (en) 2008-02-19 2012-04-17 Cardiac Pacemakers, Inc. Model reference identification and cancellation of magnetically-induced voltages in a gradient magnetic field
US8571661B2 (en) 2008-10-02 2013-10-29 Cardiac Pacemakers, Inc. Implantable medical device responsive to MRI induced capture threshold changes
US9561378B2 (en) 2008-10-02 2017-02-07 Cardiac Pacemakers, Inc. Implantable medical device responsive to MRI induced capture threshold changes
US8639331B2 (en) 2009-02-19 2014-01-28 Cardiac Pacemakers, Inc. Systems and methods for providing arrhythmia therapy in MRI environments
US8977356B2 (en) 2009-02-19 2015-03-10 Cardiac Pacemakers, Inc. Systems and methods for providing arrhythmia therapy in MRI environments
US8565874B2 (en) 2009-12-08 2013-10-22 Cardiac Pacemakers, Inc. Implantable medical device with automatic tachycardia detection and control in MRI environments
US9381371B2 (en) 2009-12-08 2016-07-05 Cardiac Pacemakers, Inc. Implantable medical device with automatic tachycardia detection and control in MRI environments

Also Published As

Publication number Publication date
DE69530272D1 (de) 2003-05-15
DE69530272T2 (de) 2004-03-25
FR2728799B1 (fr) 1997-03-28
JPH08266647A (ja) 1996-10-15
FR2728799A1 (fr) 1996-07-05
US5649965A (en) 1997-07-22
EP0719570A1 (de) 1996-07-03

Similar Documents

Publication Publication Date Title
EP0719570B1 (de) Implantierbare Vorrichtung mit Schutzmitteln gegen elektromagnetische Störungen
EP0641572A1 (de) Schaltkreis zum Schützen einer elektronischen Einrichtung
FR2725306A1 (fr) Mosfet de puissance ayant un circuit de commande et de protection contre les surintensites de courant et les surtemperatures decouple du corps de diode
FR2981783A1 (fr) Systeme de detection d'une attaque par laser d'une puce de circuit integre
EP0742591B1 (de) Bauelement für den vollständigen Schutz einer Schnittstellenschaltung von Teilnehmerleitungen
EP0109996B1 (de) Widerstandsanordnung mit Selbstvorspannung und Anwendung zur Herstellung von Schnittstellenschaltungen
FR2994335A1 (fr) Dispositif de protection d'un circuit integre contre des surtensions
US9214799B2 (en) Electrostatic discharge protection circuit for implantable medical device
EP0490788B1 (de) Schutzschaltung mit niedriger Kapazität
EP3706274A1 (de) Schutzvorrichtung gegen überspannungen
FR2475825A1 (fr) Dispositif electronique de commutation a effet de proximite, protege contee les impulsions parasites
FR2572600A1 (fr) Stabilisateur electronique de tension, utilisable en particulier dans l'automobile, avec protection contre les surtensions transitoires de polarite opposee a celle du generateur
EP3276662B1 (de) Struktur zum schutz eines integrierten schaltkreises gegen elektrostatische entladungen
EP0301635B1 (de) Schaltvorrichtung für Hochfrequenzsignale
EP0677874B1 (de) Fehlerindikator für ein Schutzbauelement
EP0619637B1 (de) Schutz eines Kraftfahrzeugdrehstromgenerators
EP3657677A1 (de) Stromversorgungsschaltkreis für steuerschaltungen von schaltern
EP3863140A1 (de) Schutz gegen überspannungen
FR3049766A1 (fr) Dispositif de protection contre des decharges electrostatiques a seuil de declenchement ajustable
EP3772753A1 (de) Schutzvorrichtung
EP3726731B1 (de) Steuerschaltkreis von transistoren
FR2677771A1 (fr) Circuit de detection de niveau de polarisation inverse dans un dispositif de memoire a semiconducteurs.
FR3079348A1 (fr) Circuit de protection contre les decharges electrostatiques
EP0241067B1 (de) Filterschaltung für Metalloxyd-Halbleiter integrierte Einrichtung und ihre Anwendung in einer solchen Einrichtung
EP4344065A1 (de) Transistorsteuerschaltung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE ES FR GB IT LI SE

17P Request for examination filed

Effective date: 19961127

17Q First examination report despatched

Effective date: 20011205

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH DE ES FR GB IT LI SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: M. ZARDI & CO. SA

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040112

BERE Be: lapsed

Owner name: S.A. *ELA MEDICAL

Effective date: 20031231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20121227

Year of fee payment: 18

Ref country code: IT

Payment date: 20121218

Year of fee payment: 18

Ref country code: SE

Payment date: 20121217

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130107

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121231

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69530272

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131230

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140829

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69530272

Country of ref document: DE

Effective date: 20140701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131229