EP0715538B1 - Verfahren zum selektiven ioneneinfang für quadrupolionenfallenmassenspektrometer - Google Patents

Verfahren zum selektiven ioneneinfang für quadrupolionenfallenmassenspektrometer Download PDF

Info

Publication number
EP0715538B1
EP0715538B1 EP95908467A EP95908467A EP0715538B1 EP 0715538 B1 EP0715538 B1 EP 0715538B1 EP 95908467 A EP95908467 A EP 95908467A EP 95908467 A EP95908467 A EP 95908467A EP 0715538 B1 EP0715538 B1 EP 0715538B1
Authority
EP
European Patent Office
Prior art keywords
mass
ions
frequency
voltage
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95908467A
Other languages
English (en)
French (fr)
Other versions
EP0715538A4 (de
EP0715538A1 (de
Inventor
Gregory J. Wells
Mingda Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Varian Medical Systems Inc
Original Assignee
Varian Associates Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Varian Associates Inc filed Critical Varian Associates Inc
Publication of EP0715538A1 publication Critical patent/EP0715538A1/de
Publication of EP0715538A4 publication Critical patent/EP0715538A4/de
Application granted granted Critical
Publication of EP0715538B1 publication Critical patent/EP0715538B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/426Methods for controlling ions
    • H01J49/427Ejection and selection methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/4205Device types
    • H01J49/424Three-dimensional ion traps, i.e. comprising end-cap and ring electrodes

Definitions

  • This invention relates to an improved process during ionization for filling a quadrupole ion trap with a selected range of ions of interest.
  • the quadrupole ion trap was first disclosed in the year 1952 in a paper by Paul, et al. This 1952 paper disclosed the QIT and the disclosure of a slightly different device which was called a quadrupole mass spectrometer (QMS). This quadrupole mass spectrometer was very different from all earlier mass spectrometers because it did not require the use of a magnet and because it employed radio frequency fields for enabling the separation of ions, i.e. performing mass analysis.
  • Mass spectrometers are devices for making precise determination of the constituents of a material by providing separations of all the different masses in a sample according to their mass to charge ratio. The material to be analyzed is first disassociated/fragmented into ions which are charged atoms or molecularly bound group of atoms.
  • the principle of the quadrupole mass spectrometer relies on the fact that within a specifically shaped structure, radio frequency (RF) fields can be made to interact with a charged ion so that the resultant force on certain of the ions is a restoring force thereby causing those particles to oscillate about some referenced position.
  • RF radio frequency
  • the QIT is capable of providing restoring forces on selected ions in all three directions. This is the reason that it is called a trap. Ions so trapped can be retained for relatively long periods of time which supports separation of masses and enables various important scientific experiments and industrial testing which can not be as conveniently accomplished in other spectrometers.
  • the QIT was only of laboratory interest until recent years when relatively convenient techniques evolved for use of the QIT in a mass spectrometer application. Specifically, methods are now known for ionizing an unknown sample after the sample was introduced into the QIT (usually by electron bombardment), and adjusting the QIT parameters so that it stores only a selectable range of ions from the sample with the QIT. Then, by linearly changing, i.e. scanning, one of the QIT parameters, it become possible to cause consecutive values of m/e of the stored ions to become successively unstable and to sequentially pass the separated ions which had become unstable into a detector.
  • the detected ion current signal intensity is the mass spectrum of the trapped ions.
  • the first step in every analysis of a sample in a QIT employs ionization. We have determined that an improved mass range isolation during ionization procedure can be of significant benefit in analysis.
  • the European patent 0362,432 of Franzen provides a so called supplemental broadband RF excitation voltage to the end caps of the trap during the electron bombardment ionization.
  • the broadband voltage was to be designed to contain frequencies corresponding to the secular frequencies of all the unwanted ions that were in the trap. The intention was that the unwanted ions would absorb power from such selected frequency components and increase their secular motion and be ejected or removed by impacting the trap.
  • the term "r” is a fixed trap dimension Accordingly, for any particular ion, "a” and “q” for that ion are determined by the RF trapping frequency W, the DC RF bias amplitude (U) and AC voltage amplitude (V) of the RF trapping field.
  • the RF field frequency, W 0 is approximately 1.050 MHz and the typical low frequency modulation, W 2 , is preferably 300 Hz, although any frequency less than 2000 Hz is successful.
  • the form of the modulation function can be sine, triangle, sawtooth, or any form that periodically changes the secular frequency of ions by changing the RF trapping voltage amplitude.
  • the amplitude modulation three frequency spectrum is not the mechanism underlying our invention. Rather, the slow variation of the voltage V changes the q z for each ion according to the equation q ⁇ V/m. Changing q will cause the value of B z , and thus the secular frequency W s to change. Accordingly, this modulation results in an ability of those ions nearby in frequency to the frequencies in the calculated broadband supplemental waveform to be periodically brought into resonance with the supplemental frequencies and if the scan is slow enough to permit sufficient energy to be absorbed by those ions, it will cause their path to increase sufficiently for the ions to become ejected or to be lost on impact with the walls of the trap.
  • a rapid RF scan 48 known in the prior art, called “prescan” is applied to eject all ions trapped after ionization. These ions are collected and activate an Automatic Gain Control circuit (AGC) which is not part of this invention.
  • AGC Automatic Gain Control circuit
  • the electron bombardment 41 is gated on a few hundred microseconds 52 after the supplemental broadband waveform 49 is turned on and after the modulation 42 of the RF field is turned on. Alternatively, these could be turned simultaneously with the electron bombardment gate 41. After the gate 41 is turned off, the broadband waveform 49, and modulation 42 remain on for a small reaction period 51, followed by ramping of the RF field voltage 46 which can be applied to sequentially scan out the ions and obtain the mass spectrum of the ions in the trap, or other experiments can be carried out. Alternative methods of generating a mass spectrum could be employed such as scanned resonance ejection.
  • Fig. 1, Fig. 2 and Fig. 3 illustrates the equipment employed to carry out this invention.
  • the apparatus to carry out this invention is seen to be similar to the apparatus described in my copending patent application S/N 08/890,996 filed May 29, 1992.
  • the entire modulation apparatus in the 08/890,996 application is for carrying out collisionally induced disassociation (CID).
  • CID collisionally induced disassociation
  • the RF modulator was to gently excite a single parent ion to disassociate it into daughter ions.
  • the supplemental broadband waveform calculated in generator 2 is to provide the frequencies to eject the unwanted original ions produced by electron bombardment.
  • a gas chromatograph 11 is connected to the QIT and feeds its output directly into the trap between the ring electrode 10 and the pair of end caps 8 and 9.
  • a filament and its power supply 12 are positioned to introduce an e-beam through the aperture in end cap 9.
  • the vacuum pressure maintains a significant mean-free-path of the electron in the QIT to avoid swamping by interfering air gas ions.
  • the detector 20 is mounted in the usual way to capture those ions ejected from the QIT during a scan.
  • Ions may be introduced to the trap by known alternative techniques such as laser desorption or by injecting ions into the trap from an external source.
  • the RF Generator 3 Connected to the ring electrode 10 is the RF Generator 3 for providing the trapping field, i.e. 1050 MHz.
  • the RF Generator is connected to RF Modulator 1.
  • the controller 12 Also connected via line 16 to the RF Generator 3 is the controller 12 for enabling the RF Generator at the appropriate times during the desired sequence. Controller 12 also sequences the modulator 1 through connector 18. Coupled to the QIT end cap electrodes is a primary of coupling transformer 7 which has a center tap ground.
  • the secondary winding 5 is connected to the Supplemental Waveform Generator 2, which preferably includes a means to provide a broadband output with user selected frequency components.
  • the Supplemental Generator is coupled to the Controller 12 via line 13 for sequence timing control and via bus 14 for high data rate transfer to provide the desired frequency spectrum to the Broadband Generator 2.
  • the Controller 12 is coupled to the user for input/output via bus 12-3.
  • the apparatus for modulating the RF Generator 3 is more fully disclosed in Fig. 2.
  • This apparatus is the same as the apparatus described in my earlier patent application 08/890, 996 filed May 29, 1992 (US-A-5 198 665).
  • the modulator 1 provides one input to a summing point 42 via a resistor 32.
  • the amplitude of the RF oscillator signal is controlled by the input from the DAC 12-2 via line 16 through resistor 31, and the third resistor 30 connected to point 42 is a feedback from the RF Detector 40.
  • the waveforms used for ejection can be crated by several methods, such as was used in the prior art method of Marshall, which employs Inverse Fourier Transforms.
  • Fig. 3 illustrates the function of the Supplemental Waveform Generator 2.
  • the function includes a secular frequency computer 2' and an inverse Fourier Transform computer, 2''.
  • the user provides the mass units to be ejected.
  • the secular frequency computer provides the corresponding frequency and its phase and intensity to the transform generator which is preferably an inverse FT computer.
  • the transform generator which is preferably an inverse FT computer.
  • the coefficients for each secular frequency are provided to the transform computer and the output 71 is a time domain f(t) excitation having the nominal secular excitation frequencies for the ions to be ejected.
  • the coefficients can be selected so that the amplitude is sufficient to eject the ion when it is on resonance, and the phase is selected so as to minimize the amplitude of the resulting composite waveform.
  • the frequencies selected to form the waveform should be such that ions that are desired to be selectively trapped do not encounter a resonance with any component of the waveform at either extreme of the modulation cycle.
  • Fig. 5 shows the spectrum of PFTBA used as a calibration gas.
  • the supplemental generator 2 and the modulator are de-energized and the PFTBA is fragmented by an e-beam, and all the resultant ions have been scanned out by a ramping trapping field waveform 46, such as illustrated in the upper portion of Fig. 4, without excitation by the modulator 42.
  • the spectrum shows nine (9) distinct peaks.
  • the spectrum of PFTBA is shown with the same parameters, except in this experiment the Supplemental Generator has been energized to provide a waveform containing eight of the nine frequencies.
  • Fig. 7 The spectra of Fig. 7 was obtained with the modulator 1 energized at 300 Hz as shown in Fig. 4.
  • the ionization time was increased by a factor of 20 to 17,721 ⁇ sec for the experiment of Fig. 7.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Tubes For Measurement (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Claims (11)

  1. Verfahren zum Füllen einer Quadrupol-Ionenfalle (QIT) mit einem vorgewählten Massenbereich von Ionen, wobei die QIT eine Ringelektrode und Abschlußkappenelektroden (8, 9, 10) aufweist, umfassend die Schritte:
    (a) Einleiten eines Probengases in die QIT;
    (b) Anlegen einer RF-Einfangspannung V(t) an die Ringelektrode (10) bei einer Radiofrequenz Wo, wobei der Schritt (b) des Anlegens gleichzeitig mit mindestens einem Teil der Zeit stattfindet, in der Schritt (a), Einleitung des Probengases, stattfindet;
    (c) Einstellen der Amplitude der RF-Einfangspannung, um alle Ionen unterhalb eines bestimmten Massenbereichs auszustoßen;
    (d) Anlegen einer ausgewählten zusätzlichen Breitbandspannung an die Abschlußkappen (8, 9), wobei die zusätzliche Breitbandspannung Frequenzen nahe der nominalen säkularen Frequenz derjenigen Ionen der Probe, die ausgestoßen werden sollen, aufweist, wobei die zusätzliche Breitbandspannung während des Zeitraums von Schritt (b), in dem die RF-Einfangspannung angelegt wird, angelegt wird;
    gekennzeichnet durch den zusätzlichen Schritt
    (e) Modulieren der Amplitude der RF-Einfangspannung gleichzeitig mit mindestens einem Teil von Schritt (d), so daß das Potentialfeld in der Falle periodisch eine Frequenzkomponente aufweist, die gleich der säkularen Frequenz der auszustoßenden Ionen ist,
    wobei der Schritt des Modulierens der Amplitude der RF-Einfangspannung das Auswählen der Modulationsfrequenz W1, wobei W1 geringer ist als 2000 Hz, umfaßt.
  2. Verfahren nach Anspruch 1, wobei die Amplitude ΔV der Modulation zu einem Resonanzausstoß für einen Massenbereich geringer als das Äquivalent von plus und minus zwei Masseneinheiten um eine ausgewählte Masse führt, welche ausgestoßen werden soll, wenn die Modulationsamplitude gleich Null ist.
  3. Verfahren nach Anspruch 1, wobei W1 etwa 300 Hz beträgt.
  4. Verfahren nach Anspruch 3, wobei die Modulationsamplitude ΔV ungefähr plus und minus das Äquivalent von 0,5 Masseneinheiten um eine ausgewählte Masse ist.
  5. Verfahren nach Anspruch 3, wobei die Modulationsamplitude ΔV geringer ist als das Äquivalent von plus und minus zwei Masseneinheiten um eine ausgewählte Masse.
  6. Verfahren nach Anspruch 5, wobei die ausgewählte zusätzliche Breitbandspannungswellenform als Reaktion auf eine Eingabe vom Benutzer, der die auszustoßenden Masseneinheiten festlegt, berechnet wird.
  7. Verfahren nach Anspruch 6, wobei die Berechnung als Reaktion auf die Eingabe der auszustoßenden Masseneinheiten die Berechnung der nominalen säkularen Frequenz WS für jede Masseneinheit entsprechend der nominalen RF-Einfangfeldspannung gemäß den Gleichungen umfaßt: Ws = BZW0/2, wobei BZ = Funktion (a,q) und wobei q = 4eV/mW20r02 und wobei e = Elementarladung, m = Teilchenmasse, r0 = eine feststehende Abmessung der Falle und a = an das Feld angelegtes Gleichstrompotential.
  8. Verfahren nach Anspruch 6, wobei die Berechnung ferner eine inverse Fourier-Transformation zu einem Breitband-Zeitbereichsansprechen entsprechend den nominalen säkularen Frequenzen umfaßt.
  9. Verfahren nach Anspruch 5, wobei die ausgewählte zusätzliche Breitbandspannung als Reaktion auf eine Eingabe vom Benutzer, der die in der QIT zurückzuhaltenden Masseneinheiten festlegt, berechnet wird.
  10. Verfahren nach Anspruch 9, wobei die Berechnung ferner eine inverse Fourier-Transformation umfaßt und ein Breitband-Zeitbereichsansprechen entsprechend den nominalen säkularen Frequenzen zum Ausstoß ungewollter Ionen vorsieht.
  11. Verfahren nach Anspruch 5, wobei die ausgewählte zusätzliche Breitbandwellenform als Reaktion auf eine Eingabe von einem Benutzer, der sowohl die zu speichernden Masseneinheiten als auch die auszustoßenden Masseneinheiten festlegt, berechnet wird.
EP95908467A 1994-01-11 1995-01-11 Verfahren zum selektiven ioneneinfang für quadrupolionenfallenmassenspektrometer Expired - Lifetime EP0715538B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US179844 1994-01-11
US08/179,844 US5457315A (en) 1994-01-11 1994-01-11 Method of selective ion trapping for quadrupole ion trap mass spectrometers
PCT/US1995/000329 WO1995018669A1 (en) 1994-01-11 1995-01-11 A method of selective ion trapping for quadrupole ion trap mass spectrometers

Publications (3)

Publication Number Publication Date
EP0715538A1 EP0715538A1 (de) 1996-06-12
EP0715538A4 EP0715538A4 (de) 1997-09-03
EP0715538B1 true EP0715538B1 (de) 1999-03-24

Family

ID=22658213

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95908467A Expired - Lifetime EP0715538B1 (de) 1994-01-11 1995-01-11 Verfahren zum selektiven ioneneinfang für quadrupolionenfallenmassenspektrometer

Country Status (4)

Country Link
US (1) US5457315A (de)
EP (1) EP0715538B1 (de)
DE (1) DE69508539T2 (de)
WO (1) WO1995018669A1 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998011428A1 (en) * 1996-09-13 1998-03-19 Hitachi, Ltd. Mass spectrometer
JP3413079B2 (ja) * 1997-10-09 2003-06-03 株式会社日立製作所 イオントラップ型質量分析装置
JP3470671B2 (ja) * 2000-01-31 2003-11-25 株式会社島津製作所 イオントラップ型質量分析装置における広帯域信号生成方法
US6777673B2 (en) * 2001-12-28 2004-08-17 Academia Sinica Ion trap mass spectrometer
JP3936908B2 (ja) * 2002-12-24 2007-06-27 株式会社日立ハイテクノロジーズ 質量分析装置及び質量分析方法
WO2005024381A2 (en) * 2003-09-05 2005-03-17 Griffin Analytical Technologies, Inc. Analysis methods, analysis device waveform generation methods, analysis devices, and articles of manufacture
US7456396B2 (en) * 2004-08-19 2008-11-25 Thermo Finnigan Llc Isolating ions in quadrupole ion traps for mass spectrometry
DE102005025497B4 (de) * 2005-06-03 2007-09-27 Bruker Daltonik Gmbh Leichte Bruckstückionen mit Ionenfallen messen
US7378648B2 (en) * 2005-09-30 2008-05-27 Varian, Inc. High-resolution ion isolation utilizing broadband waveform signals
US8334506B2 (en) 2007-12-10 2012-12-18 1St Detect Corporation End cap voltage control of ion traps
US7973277B2 (en) 2008-05-27 2011-07-05 1St Detect Corporation Driving a mass spectrometer ion trap or mass filter
US8178835B2 (en) * 2009-05-07 2012-05-15 Thermo Finnigan Llc Prolonged ion resonance collision induced dissociation in a quadrupole ion trap
US8754361B1 (en) * 2013-03-11 2014-06-17 1St Detect Corporation Systems and methods for adjusting a mass spectrometer output
KR20160031134A (ko) 2014-09-11 2016-03-22 한국기초과학지원연구원 다중 주파수 알에프 증폭기, 그것을 포함한 질량 분석기, 및 질량 분석기의 질량 분석 방법
TWI693625B (zh) * 2017-05-09 2020-05-11 譜光儀器股份有限公司 四極離子阱裝置及四極離子阱質譜儀
US11984311B2 (en) * 2018-10-10 2024-05-14 Purdue Research Foundation Mass spectrometry via frequency tagging
CN110553896A (zh) * 2019-09-06 2019-12-10 长安大学 一种手动马歇尔试件脱模仪
CN112071737B (zh) * 2020-03-20 2024-04-16 昆山聂尔精密仪器有限公司 一种离子激发和离子选择信号的生成方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4761545A (en) * 1986-05-23 1988-08-02 The Ohio State University Research Foundation Tailored excitation for trapped ion mass spectrometry
US5134286A (en) * 1991-02-28 1992-07-28 Teledyne Cme Mass spectrometry method using notch filter
US5200613A (en) * 1991-02-28 1993-04-06 Teledyne Mec Mass spectrometry method using supplemental AC voltage signals
US5302826A (en) * 1992-05-29 1994-04-12 Varian Associates, Inc. Quadrupole trap improved technique for collisional induced disassociation for MS/MS processes
US5198665A (en) * 1992-05-29 1993-03-30 Varian Associates, Inc. Quadrupole trap improved technique for ion isolation

Also Published As

Publication number Publication date
EP0715538A4 (de) 1997-09-03
WO1995018669A1 (en) 1995-07-13
DE69508539D1 (de) 1999-04-29
DE69508539T2 (de) 1999-11-25
EP0715538A1 (de) 1996-06-12
US5457315A (en) 1995-10-10

Similar Documents

Publication Publication Date Title
EP0715538B1 (de) Verfahren zum selektiven ioneneinfang für quadrupolionenfallenmassenspektrometer
EP0700069B1 (de) Ionenselektion durch Frequenzmodulation in einer Quadrupolionenfalle
EP0579935B1 (de) Verfahren zur selektiven Speicherung von Ionen in einer Quadrupolionenfalle
EP0580986B1 (de) Betriebsverfahren einer Quadrupolionenfalle für Kollisioninduzierte Dissoziation in NS/MS Vorgängen
EP0262928B1 (de) Quadrupol-Massenspektrometer und Verfahren zum Betrieb desselben
US5075547A (en) Quadrupole ion trap mass spectrometer having two pulsed axial excitation input frequencies and method of parent and neutral loss scanning and selected reaction monitoring
US5572025A (en) Method and apparatus for scanning an ion trap mass spectrometer in the resonance ejection mode
US5128542A (en) Method of operating an ion trap mass spectrometer to determine the resonant frequency of trapped ions
EP0736221B1 (de) Massenspektrometrisches verfahren mit zwei sperrfeldern gleicher form
EP0747929B1 (de) Verfahren zur Verwendung eines Quadrupolionenfallenmassenspektrometers
EP0643415B1 (de) Massenspektrometrie mittels kollisionsinduzierter Dissoziation
EP0746873B1 (de) Verfahren zur isolierung einer quadrupolionenfalle
EP0617837B1 (de) Verfahren zur massenspektrometrie unter verwendung eines rauschfreien signals
EP0581600B1 (de) Quadrupolionenfalle mit hoher Empfindlichkeit und Verfahren zum Betrieb derselben
JPH09501537A (ja) 非共鳴周波数を持つ引加信号の四極子
Wells et al. MS n using CID

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960112

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

A4 Supplementary search report drawn up and despatched

Effective date: 19970714

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): CH DE FR GB IT LI

17Q First examination report despatched

Effective date: 19980212

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWAELTE BREITER + WIEDMER AG

REF Corresponds to:

Ref document number: 69508539

Country of ref document: DE

Date of ref document: 19990429

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070125

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20070129

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070228

Year of fee payment: 13

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: VARIAN ASSOCIATES, INC.

Free format text: VARIAN ASSOCIATES, INC.#3050 HANSEN WAY#PALO ALTO, CALIFORNIA 94304-1030 (US) -TRANSFER TO- VARIAN ASSOCIATES, INC.#3050 HANSEN WAY#PALO ALTO, CALIFORNIA 94304-1030 (US)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070522

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070117

Year of fee payment: 13

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080801

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080111